Theorem: \(X, Y \in \text{metric spaces}, f : E \to Y \) \(p \) limit point of \(E \)

Then \(\lim_{x \to p} f(x) = \delta \) iff \(\lim_{n \to \infty} f(p_n) = \delta \)

\(\forall p_n \in p \Rightarrow p_n \to p, \lim_{n \to \infty} p_n = p \)

Proof: trivial

Definition: \(X, Y \) metric spaces, \(E \subset X \), \(p \in E \) \(f : E \to Y \)

\(f \) is continuous at \(p \) iff for every \(\epsilon > 0 \) \(\exists \delta > 0 \) \(d_Y(f(x), f(p)) < \epsilon \) \(\forall x \in E \) \(\delta < d_X(x, p) \)

Theorem: Assume that \(p \) is a limit point of \(E \). Then \(f \) is continuous at \(p \) iff \(\lim_{x \to p} f(x) = f(p) \).

Theorem: \(X, Y, Z \) metric spaces, \(E \subset X \) \(f : E \to Y \), \(g : f(E) \to Z \), \(h : E \to Z \) given by

\(h(x) = g(f(x)) \). If \(f \) is continuous at \(p \in E \) \(g \) is continuous at \(f(p) \), then \(h \) is continuous at \(p \).
Proof: Immediate

Theorem: A mapping \(f : X \to Y \) is continuous iff \(f^{-1}(V) \) is open in \(X \) for every open set \(V \subseteq Y \).

Proof: Suppose that \(f \) is continuous on \(X \) and \(V \) is open in \(Y \).

Suppose that \(p \in X \) and \(f(p) \in V \). Since \(V \) is open, \(\exists \delta > 0 \) such that \(\forall y \in V \), if \(d_Y(f(p), y) < \delta \), which implies that \(\exists \delta > 0 \), \(d_Y(f(p), y) < \delta \), if \(d_X(x, p) < \delta \). Thus \(x \in f^{-1}(V) \) as soon as \(d_X(x, p) < \delta \).

Conversely, suppose that \(f^{-1}(V) \) is open in \(X \) for every \(V \) open in \(Y \).

Fix \(p \in X \) and \(\epsilon > 0 \), let \(V = \{ y \in Y : d_Y(y, f(p)) < \epsilon \} \).

Then \(V \) is open, so \(f^{-1}(V) \) is open, so \(\exists \delta > 0 \) such that \(x \in f^{-1}(V) \) as soon as \(d_X(x, p) < \delta \). But if \(x \in f^{-1}(V) \), \(f(x) \in V \), so \(d_Y(f(x), f(p)) < \epsilon \).
Corollary: \(f : X \to Y \) continuous if and only if \(f^{-1}(C) \) is closed for every \(C \) closed in \(Y \).

Theorem: \(f_1, \ldots, f_k \) functions on \(X \),
\[f : X \to \mathbb{R}^k \quad f(x) = (f_1(x), \ldots, f_k(x)) \quad x \in X \]
Then \(f \) is continuous if and only if each \(f_i \) is continuous.
\[f, g \text{ continuous } \implies f \circ g, f + g \text{ continuous} \]

Proof: Metric comparison.

Examples: Boundless...

Definition: \(f : E \to \mathbb{R}^k \) bounded if \(\exists M \geq 0 \) such that \(|f(x)| \leq M \quad \forall x \in E \).

Theorem: Suppose that \(f \) is a continuous mapping of a compact metric space \(X \) to \(Y \). Then \(f(X) \) is compact.

Proof: Let \(\{ V_\alpha \} \) be an open cover of \(f(X) \). Since \(f \) is continuous, \(f^{-1}(V_\alpha) \) is open. By compactness,
\[X \subset f^{-1}(V_\alpha) \cup \cdots \cup f^{-1}(V_{\alpha_n}) \]
Since \(f(f^{-1}(E)) \subseteq E \), \(f(X) \subseteq V_\alpha \cup \cdots \cup V_{\alpha_n} \) and we are done!
Theorem: If \(f \) is a continuous mapping of a compact metric space \(X \) into \(\mathbb{R}^k \), then \(f(X) \) is closed and bounded. Thus \(f \) is bounded.

Theorem: If continuous real valued on a compact metric space and \(M = \sup_{p \in X} f(p) \), \(m = \inf_{p \in X} f(p) \).

Then \(\exists \ p, q \in X \in f(p) = M \) \& \(f(q) = m \).

Theorem: \(f \) continuous 1-1 mapping of \(X \) compact to \(Y \) metric. Then \(f \) is a continuous mapping of \(Y \) to \(X \).

Proof: It suffices to prove that \(f^{-1}(V) \) is open if \(V \) is open. Since \(V \) is closed, \(f^{-1}(V) \) is compact and hence closed in \(Y \). Since \(f \) is 1-1, \(f^{-1}(V) \) is a complement of \(f^{-1}(V^c) \).

Definition: We say that \(f \) is uniformly continuous if for every \(\varepsilon > 0 \) \(\exists \ \delta > 0 \) \(\forall \) \(p, q \in X \) for which
\[
\forall (p, q) \in f \quad d_X(p, q) < \delta \quad \Rightarrow \quad d_Y(f(p), f(q)) < \varepsilon.
\]
Theorem: \(f : X \rightarrow Y \), metric \(X \) compact

Then \(f \) is uniformly continuous.

Proof: Given \(\varepsilon > 0 \), \(\exists \delta(p) \) for each \(p \in X \)

\(\exists \in X, \ d(x, \varepsilon) < \delta(p) \Rightarrow d_y(f(p), f(\varepsilon)) < \varepsilon \)

Let \(J(p) = \{ x \in X : d(x, \varepsilon) < \frac{1}{2} \delta(p) \} \)

an open cover. Now argue by compactness.