MATH 437: Homework X. Due in class on Wednesday, April 28

1. Cyclotomic extensions Let k be a field of characteristic zero.

- (a) If ζ_1, \ldots, ζ_r are a collection of roots of unity of orders l_1, \ldots, l_r show that $k[\zeta_1, \ldots, \zeta_r] \subseteq k[\zeta]$ where ζ is a primitive Lth root of unity where $L = lcm(l_1, \ldots, l_r)$.
- (b) Let $f \in k[x]$. Show that if the roots of f are k-polynomial combinations of roots of unity then $Gal_k(f) = Gal(Split_k(f)/k)$ is an Abelian group. (Hint: Show that $k \subseteq Split_k(f) \subseteq k[\zeta]$ for suitable ζ first.)

(Note: Kronecker showed the converse over \mathbb{Q} , i.e., if $Gal_{\mathbb{Q}}(f)$ is Abelian then the roots of f are \mathbb{Q} -polynomial combinations of roots of unity.)

- (c) Show that $\sqrt[4]{2}$ is not a \mathbb{Q} -polynomial combination of roots of unity by considering $Gal_{\mathbb{Q}}(x^4-2)$.
- (d) Recall we have shown in class that if ζ is a primitive nth root of unity then $Gal(\mathbb{Q}[\zeta]/\mathbb{Q})$ is isomorphic to $(\mathbb{Z}/n\mathbb{Z})^*$. If $n=p_1^{k_1}\dots p_r^{k_r}$ then the Chinese Remainder theorem shows that $(\mathbb{Z}/n\mathbb{Z})^* \equiv (\mathbb{Z}/p_1^{k_1}\mathbb{Z})^* \times \cdots \times (\mathbb{Z}/p_r^{k_r}\mathbb{Z})^*$. It also can be calculated (see Lang/Hungerford) that:

$$(\mathbb{Z}/p^r\mathbb{Z})^* \equiv \begin{cases} \text{Cyclic of order } (p-1)p^{r-1} \text{ if } p \text{ odd} \\ \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{r-2}\mathbb{Z} \text{ if } p = 2 \text{ and } r \ge 3. \end{cases}$$

Use these facts to calculate the structure of $(\mathbb{Z}/15\mathbb{Z})^*$ explicitly.

(e) Dirichlet's theorem on arithmetic progressions states that if a,b are relatively prime positive integers then the arithmetic progression $\{a+mb|m\in\mathbb{N}\}$ contains infinitely many primes. Use this to show that if N is a positive integer then N|p-1 for infinitely many odd primes p. Use this to show that if A is a finite Abelian group, there is an integer M such that A is a quotient group of $(\mathbb{Z}/M\mathbb{Z})^*$. Use this to find a field extension $\mathbb{Q} \subseteq F \subseteq \mathbb{Q}[\zeta_M]$ such that $\mathbb{Q} \subseteq F$ Galois with $Gal(F/\mathbb{Q}) = A$. Thus every finite Abelian group may occur as the Galois group of some extension over \mathbb{Q} . (Note: It is still unknown if every finite group occurs as the Galois group over \mathbb{Q} . This is called the "Inverse Galois problem". The best so far is every finite solvable group is $Gal(F/\mathbb{Q})$ for some Galois extension F of \mathbb{Q} which was proven by Shaferevich.)

2. Splitting field of $x^n - \alpha$.

Let k be a field, n a positive integer and $\alpha \in k$.

(a) If char(k) does not divide n (this includes the case of char zero) then

show that $x^n - \alpha$ has distinct roots and that a primitive nth root of unity ζ exists in \bar{k} . If $\beta \in \bar{k}$ is a root of $x^n - \alpha$ show that $Split_k(x^n - \alpha)$ is equal to $k[\beta, \zeta]$ and is a finite Galois extension over k. Describe the factorization of $x^n - \alpha$ in $\bar{k}[x]$ explicitly.

- (b) Explain why $k \subseteq k[\zeta]$ is a Galois extension with $Gal(k[\zeta]/k) \subseteq (\mathbb{Z}/n\mathbb{Z})^*$. Conclude $Gal(k[\zeta]/k)$ is an Abelian group. (Hint: Consider the map ϵ : $Gal(k[\zeta]/k) \to (\mathbb{Z}/n\mathbb{Z})^*$ defined by $\sigma(\zeta) = \zeta^{\epsilon(\sigma)}$ for $\sigma \in Gal(k[\zeta]/k)$.)
- (c) Explain why $k[\zeta] \subseteq k[\zeta, \beta]$ is a Galois extension and consider the map $\mu : Gal(k[\zeta, \beta], k[\zeta]) \to (\mathbb{Z}/n\mathbb{Z}, +)$ given by the identity $\sigma(\beta) = \beta \zeta^{\mu(\sigma)}$ for $\sigma \in Gal(k[\zeta, \beta], k[\zeta])$. Explain why this identity holds and show that the map μ is well-defined and is an **injective homomorphism**. Use this to show that $Gal(k[\zeta, \beta], k[\zeta])$ is cyclic of order $Irr(\beta, k[\zeta])$.
- (d) Show that there exists a short exact sequence of groups:

$$0 \to C \to Gal(k[\zeta, \beta], k) \to A \to 0$$

where C is cyclic and A is Abelian. Conclude that $Gal_k(x^n - \alpha) = Gal(k[\zeta, \beta]/k)$ is solvable.

- (e) Compute $Gal_{\mathbb{Q}}(x^{15}-2)$. You should find its order and exhibit a short exact sequence as in (d) where C and A are explicitly determined.
- (f) Let $E = Split_{\mathbb{Q}}(x^{15} 2)$ and let $\zeta = e^{\frac{2\pi i}{15}}$. Explain why there exists $\sigma \in Gal(E/\mathbb{Q}[\zeta]) \subseteq Gal(E/\mathbb{Q})$ with $\sigma(\sqrt[15]{2}) = \sqrt[15]{2}\zeta$. Explain why there exists $\tau_a \in Gal(E/\mathbb{Q}[\sqrt[15]{2}]) \subseteq Gal(E/\mathbb{Q})$ with $\tau_a(\zeta) = \zeta^a$ if a is relatively prime to 15. Compute $\tau_a \circ \sigma$ and $\sigma \circ \tau_a$ on the elements ζ and β . Is $Gal_{\mathbb{Q}}(x^{15} 2)$ Abelian?
- (g) Given a polynomial f in k[x] we say that f is solvable by radicals over k if $Split_k(f) = k[\sqrt[n_1]{\alpha_1}, \ldots, \sqrt[n_k]{\alpha_n}]$ for some $\alpha_i \in k$. Note when this happens the roots $\{r_1, \ldots, r_m\}$ of f are k-polynomial combinations of certain nth roots of elements of k. Show that if char(k) = 0 and $f \in k[x]$ is solvable by radicals over k then $Gal(Split_k(f)/k)$ is a solvable group. (The converse is also true, as proven by Galois we will see this in class time permitting.)
- (h) Explain why if g is an irreducible polynomial over k of degree $n \geq 5$ with $Gal(Split_k(g)/k)$ equal to A_n or Σ_n then g is not solvable by radicals over k.
- 3. Irreducible polynomials with Galois group Σ_p . Let f be an irreducible polynomial of \mathbb{Q} of prime degree. Suppose f has exactly two nonreal roots.

Let $E = Split_{\mathbb{Q}}(f)$ and $Gal(E/\mathbb{Q}) = G$ the corresponding Galois group. Recall that G acts transitively and faithfully on the roots $\{r_1, \ldots, r_p\}$ of f.

- (a) Show that $G \subseteq \Sigma_p$ has an element μ of order p and a transposition τ . Explain why by suitable labeling of the roots, we may assume $\mu = (1, 2, \ldots, p)$ and $\tau = (1, k)$ in cycle notation of Σ_p .
- (b) Recall that we had shown in a HW exercise in the first semester that $(1,2),(2,3),\ldots,(p-1,p)$ generate Σ_p as a group. Use this to show that τ and μ generate Σ_p and conclude that $Gal(E/\mathbb{Q}) = Gal_{\mathbb{Q}}(f) \cong \Sigma_p$. Thus for $p \geq 5$, conclude that f is not solvable by radicals.
- 4. Cyclotomic polynomials. Let ϕ_n denote the *n*th cyclotomic polynomial. This is the polynomial which has roots the primitive *n*th roots of unity in $\bar{\mathbb{Q}}$.
- (a) Explain why $x^n 1 = \prod_{d|n} \phi_d$ in $\mathbb{Z}[x]$.
- (b) Check that $\phi_p(x) = x^{p-1} + x^{p-2} + \cdots + x + 1$ and $\phi_{p^k}(x) = \phi_p(x^{p^{k-1}})$ for $k \ge 1$ and primes p. Show that $\phi_{p^k}(1) = p$ for all primes p and $k \ge 1$. Check that $\phi_1(1) = 0$.
- (c) Show by induction that

$$\phi_n(1) = \begin{cases} p \text{ if } n = p^k, p \text{ prime }, k \ge 1\\ 0 \text{ if } n = 1\\ 1 \text{ otherwise} \end{cases}$$

(Hint: For composite n, note $\phi_n(x) = \frac{x^n - 1}{(x-1) \prod_{k|n,1 < k < n} \phi_k(x)}$. Consider the prime factorization of n.)

- factorization of n.)
 (d) Find $\frac{(x^{30}-1)(x-1)}{(x^6-1)(x^5-1)}$ explicitly as a product of cyclotomic polynomials. If p,q are distinct primes show that $\phi_{pq}(x) = \frac{(x^{pq}-1)(x-1)}{(x^p-1)(x^q-1)}$ and use this to show $\phi_{pq}(x) = \frac{\phi_p(x^q)}{\phi_p(x)}$. Use this to find $\phi_{10}(x)$ as an integer polynomial.
- (e) Since the $\phi_n(x)$ are integer polynomials, we may consider their reductions modulo p. Show that every nonzero $\alpha \in \overline{\mathbb{F}}_p$ is a root of $\phi_d(x)$ for some $d \geq 1$, d relatively prime to p. Conclude that every element of $\overline{\mathbb{F}}_p$ is a root of unity or zero.
- (f) If q, p are primes. Show that $\phi_q(x)$ has a root in \mathbb{F}_p if and only if $p \equiv 1$ or $0 \mod q$. Thus ϕ_q is not irreducible in $\mathbb{F}_p[x]$ in general.
- (g) Show that $\phi_5(x)$ factors into two quadratic irreducibles in $\mathbb{F}_{19}[x]$. To do this, first show that ϕ_5 splits into linear factors over \mathbb{F}_{19^2} and then consider the action of $Gal(\mathbb{F}_{19^2}/\mathbb{F}_{19})$.