MATH 437: Homework X.
Due in class on Wednesday, April 28

1. Cyclotomic extensions Let k be a field of characteristic zero.

(a) If (1,...,¢ are a collection of roots of unity of orders [, ...,[, show
that k[C1,...,¢:] € k[¢] where ¢ is a primitive Lth root of unity where
L=lem(ly,...,1,).

(b) Let f € k[z]. Show that if the roots of f are k-polynomial combina-
tions of roots of unity then Galy(f) = Gal(Splity(f)/k) is an Abelian group.
(Hint: Show that k C Split,(f) C k[C] for suitable ( first.)

(Note: Kronecker showed the converse over Q, i.e., if Galg(f) is Abelian then
the roots of f are Q-polynomial combinations of roots of unity.)

(¢) Show that v/2 is not a Q-polynomial combination of roots of unity by
considering Galg(z* — 2).

(d) Recall we have shown in class that if ¢ is a primitive nth root of unity
then Gal(Q[¢]/Q) is isomorphic to (Z/nZ)*. If n = pf* ... pk then the Chi-
nese Remainder theorem shows that (Z/nZ)* = (Z/p* 7)* x - - - x (Z/pFrZ)*.
It also can be calculated (see Lang/Hungerford) that:

Cyclic of order (p — 1)p" ! if p odd

Z/p" ) =
(Z/y'Z) {Z/QZXZ/T’_QZifp:QandTZ?).

Use these facts to calculate the structure of (Z/15Z)* explicitly.

(e) Dirichlet’s theorem on arithmetic progressions states that if a, b are rela-
tively prime positive integers then the arithmetic progression {a+mb|m € N}
contains infinitely many primes. Use this to show that if /V is a positive in-
teger then N|p — 1 for infinitely many odd primes p. Use this to show that if
A is a finite Abelian group, there is an integer M such that A is a quotient
group of (Z/MZ)*. Use this to find a field extension Q C F' C Q[(y] such
that Q C F Galois with Gal(F/Q) = A. Thus every finite Abelian group
may occur as the Galois group of some extension over Q. (Note: It is still
unknown if every finite group occurs as the Galois group over Q. This is
called the “Inverse Galois problem”. The best so far is every finite solvable
group is Gal(F/Q) for some Galois extension F' of Q which was proven by
Shaferevich.)

2. Splitting field of 2" — a.
Let k£ be a field, n a positive integer and « € k.
(a) If char(k) does not divide n (this includes the case of char zero) then
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show that ™ — a has distinct roots and that a primitive nth root of unity ¢
exists in k. If 3 € k is a root of 2™ — a show that Split,(z" — a) is equal to
k[B, (] and is a finite Galois extension over k. Describe the factorization of
2" — a in k[z] explicitly.

(b) Explain why k C k[(] is a Galois extension with Gal(k[C]/k) C (Z/nZ)*.
Conclude Gal(k[¢]/k) is an Abelian group. (Hint: Consider the map € :
Gal(k[¢]/k) — (Z/n7Z)* defined by o(¢) = ¢ for o € Gal(Kk[¢]/k). )

(¢) Explain why k[¢] C k[¢, 5] is a Galois extension and consider the map
p: Gal(k[¢, B).k[¢]) — (Z/nZ,+) given by the identity o(8) = B¢H9) for
o € Gal(k[¢, 5], k[¢]). Explain why this identity holds and show that the
map g is well-defined and is an injective homomorphism. Use this to
show that Gal(k[C, 5], k[C]) is cyclic of order Irr(3, k[C]).

’

(d) Show that there exists a short exact sequence of groups:

0— C — Gal(k[¢,B],k) = A—0

where C'is cyclic and A is Abelian. Conclude that

Galg (2™ — a) = Gal(k[C, B]/k) is solvable.

(e) Compute Galg(xz'® — 2). You should find its order and exhibit a short
exact sequence as in (d) where C' and A are explicitly determined.

(f) Let E = Splitg(s'® — 2) and let ¢ = ¢75 . Explain why there exists o €
Gal(E/Q[¢]) € Gal(E/Q) with o( ¥/2) = ¥/2¢. Explain why there exists
7, € Gal(E/Q[ ¥/2]) C Gal(E/Q) with 7,(¢) = ¢* if a is relatively prime to
15. Compute 7, o 0 and o o 7, on the elements ¢ and 3. Is Galg(z" — 2)
Abelian?

(g) Given a polynomial f in k[z] we say that f is solvable by radicals over k if
Split,(f) = k[ /oa, ..., §/ay] for some o; € k. Note when this happens the
roots {ry,...,r,} of f are k-polynomial combinations of certain nth roots of
elements of k. Show that if char(k) = 0 and f € k[z] is solvable by radicals
over k then Gal(Splity(f)/k) is a solvable group. (The converse is also true,
as proven by Galois - we will see this in class time permitting.)

(h) Explain why if g is an irreducible polynomial over k of degree n > 5 with
Gal(Splity(g)/k) equal to A, or 3, then g is not solvable by radicals over k.

3. Irreducible polynomials with Galois group X,. Let f be an irre-
ducible polynomial of Q of prime degree. Suppose f has exactly two nonreal
roots.

Let E = Splitg(f) and Gal(E/Q) = G the corresponding Galois group. Re-
call that G acts transitively and faithfully on the roots {ry,...,r,} of f.
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(a) Show that G C X, has an element p of order p and a transposition 7. Ex-
plain why by suitable labeling of the roots, we may assume p = (1,2,...,p)
and 7 = (1, k) in cycle notation of ¥,,.

(b) Recall that we had shown in a HW exercise in the first semester that
(1,2),(2,3),...,(p — 1,p) generate ¥, as a group. Use this to show that 7
and g generate X, and conclude that Gal(£/Q) = Galg(f) = X,. Thus for
p > 5, conclude that f is not solvable by radicals.

4. Cyclotomic polynomials. Let ¢, denote the nth cyclotomic polyno-
mial. This is the polynomial which has roots the primitive nth roots of unity
in Q.

(a) Explain why 2" — 1 = ][, ¢4 in Z[z].

(b) Check that ¢,(z) = 27 + 272 4+ -+ 2+ 1 and ¢pu(z) = ¢ (z¥" ") for
k > 1 and primes p. Show that ¢,«(1) = p for all primes p and £ > 1. Check
that ¢1(1) =

(¢) Show by induction that

pif n=p* pprime k >1
on(1) =2 0ifn—1

1 otherwise

" —1

z—1) Hk|n,1<k<n dr(z)

(Hint: For composite n, note ¢, (x) = ( Consider the prime

factorization of n.)

(d) Find @P-D-1) explicitly as a product of cyclotomic polynomials. If

@ D@5 1)
p, q are distinct primes show that ¢,,(z) = %

Gpg(x) = d)p((x 7 Use this to find ¢19(z) as an integer polynomial.

(e) Since the ¢, (z) are integer polynomials, we may consider their reductions
modulo p. Show that every nonzero o € [, is a root of ¢4(z) for some d > 1,
d relatively prime to p. Conclude that every element of F, is a root of unity
or Zero.

(f) If g, p are primes. Show that ¢,(z) has a root in F, if and only if p =
1 or 0 mod ¢g. Thus ¢, is not irreducible in F,[z] in general.

(g) Show that ¢s(x) factors into two quadratic irreducibles in Fyg[z]. To do
this, first show that ¢5 splits into linear factors over Fig2 and then consider
the action of Gal(Fyg2 /Fq9).

and use this to show




