1. [Representing homomorphisms of free modules.] Let R be a ring with $1 \neq 0$ (not necessarily commutative) and let F be a free R-module with a basis $\{\hat{e}_1, \ldots, \hat{e}_n\}$ of size n. (This exercise also goes thru for infinite basis but we will stick to the finite dimensional case for ease of notation.)

Given $\hat{w} \in F$ we may write \hat{w} uniquely as $\hat{w} = \sum_{i=1}^{n} w_i \hat{e}_i$. Thus we may represent \hat{w} uniquely as a column vector $\begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix}$ where the $w_i \in R$ are the “components of \hat{w}” with respect to the basis $\{\hat{e}_1, \ldots, \hat{e}_n\}$.

Now if $S : F \to F$ is an R-module endomorphism, we may define scalars $a_{ij} \in R$, $1 \leq i, j \leq n$ by the identity:

$$S(\hat{e}_j) = \sum_{i=1}^{n} a_{ij} \hat{e}_i.$$

Finally it will be useful to introduce the concept of the opposite ring $R^{op} = (R, +, \star)$ to a given ring $R = (R, +, \cdot)$. As an Abelian group under $+$, $R^{op} = R$, however the multiplication is given by $r \star s = s \cdot r$ for all $r, s \in R$. Note that if R is commutative then $R^{op} = R$.

(a) Show that $S(\hat{w}) = \sum_{i=1}^{n} (\sum_{j=1}^{n} w_j a_{ij}) \hat{e}_i = \sum_{i=1}^{n} (\sum_{j=1}^{n} a_{ij} \star w_j) \hat{e}_i$.

What this calculation shows is that if we let A_S be the matrix whose (i, j)-entry is a_{ij} then the column vector representing $S(\hat{w})$ is obtained by matrix multiplication

$$A_S \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix}$$

in the “opposite ring” R^{op}. Thus we say the matrix A_S represents the endomorphism $S : F \to F$.

(b) Show that the correspondence $S \to A_S$ induces an isomorphism between the rings $\text{Hom}_R(F, F)$ and $\text{Mat}_n(R^{op})$. (In particular you should show composition of endomorphisms corresponds to matrix multiplication
of the corresponding representing matrices when the entries are viewed in \(R^{op} \). Here the matrix multiplication \(AB \) is defined via the usual formula
\[
(AB)_{ij} = \sum_{k=1}^{n} a_{ik} * b_{kj}
\] (from linear algebra.)
(c) Fix a field \(k \) and consider the polynomial ring \(F = k[x_1, \ldots, x_n] \). Check that \(F \) is free as a \(R = k[x_1, \ldots, x_{n-1}] \)-module, with basis \(\{x_n^k | k = 0, 1, 2, \ldots \} \).
We define formal differentiation with respect to \(x_n \) as the \(R \)-module endomorphism \(\frac{\partial}{\partial x_n} \) of \(F \) given uniquely by the condition
\[
\frac{\partial(x_n^k)}{\partial x_n} = kx_n^{k-1}
\]
for \(k = 0, 1, 2, \ldots \). Find the kernel of \(\frac{\partial}{\partial x_n} \) (be careful to consider the characteristic of \(k \)) and also write down the matrix representing \(\frac{\partial}{\partial x_n} : F \to F \) with respect to the given basis.

2. [I-adic metrics] Fix a real number \(0 < \alpha < 1 \) throughout this problem. As usual we adopt the conventions \(\alpha^0 = 1 \) and \(\alpha^\infty = 0 \).

(a) Let \(R \) be any ring and \(I \) be a two-sided ideal of \(R \) and set \(I^0 = R \).
We define the I-adic pseudometric \(d_I(r, s) = \sup_{n \in \mathbb{N}} \{r - s \in I^n\} \).

Show that this is a non-Archimedean pseudometric on \(R \), i.e.,
\[
d_I(r, s) \geq 0 \text{ for all } r, s \in R
\]
\[
d_I(r, s) = d_I(s, r) \text{ for all } r, s \in R \text{ and}
\]
\[
d_I(r, s) \leq \max \{d_I(r, z), d_I(z, s)\} \text{ for all } r, s, z \in R.
\]

Note that the final condition which is called the non-Archimedean property implies the usual triangle inequality and is a stronger condition in general. Also note that this pseudometric is translation invariant, i.e., \(d_I(r+z, s+z) = d_I(r, s) \). The word pseudometric is used as it is possible that \(d_I(r, s) = 0 \) but \(r \neq s \) in general.

Show that \(d_I \) defines a metric on \(R \) whenever \(\cap_{n=1}^{\infty} I^n = 0 \).

Describe \(B_{d_I}(0, \epsilon) = \{r \in R | d_I(r, 0) < \epsilon \} \) in terms of \(I \) for all \(\epsilon > 0 \).

(b) Review the concepts of convergence, Cauchy sequences and dense sets from metric space theory. Recall that a metric space is complete if every Cauchy sequence converges.

Show that in a non-Archimedean metric space, a sequence \(\{x_n | n \in \mathbb{N}\} \) is Cauchy if and only if for every \(\epsilon > 0 \), there exists a \(N_\epsilon \) such that \(d(x_n, x_{n+1}) < \epsilon \) for all \(n > N_\epsilon \). (Note: The condition is not the definition of a Cauchy
sequence as this requires a control of \(d(x_n, x_m) \) for all sufficiently high \(m, n \).

In an arbitrary metric space, the condition would not be equivalent.)

(c) Note that the Krull Intersection Theorem shows that \(d_J \) defines a metric on \(R \) when \(R \) is a commutative Noetherian ring and \(J \) is the Jacobson radical of \(R \). Now consider the power series ring \(k[[x]] \) where \(k \) is a field. Recall \(J = (x) \). Given two power series \(f \) and \(g \) give a simple description of \(d_J(f, g) \) in terms of the coefficients of \(f \) and \(g \).

Show that \((k[[x]], d_J)\) is a complete metric space.

Show that the polynomial ring \(k[x] \) is dense inside of \((k[[x]], d_J)\).

(d) Show that the polynomials \(f_N = \prod_{n=1}^{N} (1 + x^n) \) form a Cauchy sequence in \((k[[x]], d_J)\) and hence that they converge to a power series \(f \). \(f \) is usually denoted as \(\prod_{n=1}^{\infty} (1 + x^n) \). Can you find the first 9 terms in the power series expansion of \(f \)?

(e) Let \(R = \mathbb{Z} \) and let \(p \) be a prime number. Check that \(d_{(p)} \) is a metric on \(\mathbb{Z} \). Calculate \(d_{(p)}(20, 32) \) for all primes \(p \) (in terms of \(\alpha \)).

\(d_{(p)} \) is called the \(p \)-adic metric on \(\mathbb{Z} \). Usually one sets \(\alpha = \frac{1}{p} \) when using the \(p \)-adic metric but this is not essential. We will see later that \((\mathbb{Z}, d_{(p)})\) is not a complete metric space.

3. \([\ell\text{-adic completions}]\) Fix a real number \(0 < \alpha < 1 \) as before.

An inverse system \(\{R_n | n \in \mathbb{N}\} \) of rings is a collection of rings \(R_n \) and ring homomorphisms \(\phi_n : R_{n+1} \to R_n \) for each \(n \in \mathbb{N} \). Given such an inverse system, the inverse limit \(\text{Lim} R_n \) is the subset of the direct product \(\times_{n \in \mathbb{N}} R_n \) consisting of tuples \((r_n)_{n \in \mathbb{N}}\) of compatible elements. More precisely,

\[
\text{Lim} R_n = \{(r_n)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} R_n | \phi_n(r_{n+1}) = r_n \text{ for all } n \in \mathbb{N}\}.
\]

[This is a special kind of inverse system and inverse limit, there is a more general theory of inverse limits of which this is the most important example - see Lang.]

(a) Check that \(\text{Lim} R_n \) is a subring of \(\times_{n \in \mathbb{N}} R_n \). The projections \(\pi_j : \times_{n \in \mathbb{N}} R_n \to R_j \) restrict to projections \(\pi_j : \text{Lim} R_n \to R_j \). Show that

\[
d(\hat{r}, \hat{s}) = \alpha^{\sup\{n \in \mathbb{N} | r - s \in \ker(\pi_j) \text{ for all } j \leq n\}}
\]

is a metric on \(\text{Lim} R_n \). This is called the canonical metric on the inverse limit.
(b) Given a two-sided ideal I of R, note that $R_n = R/I^n$ are rings with canonical quotient homomorphisms $\phi_n : R/I^{n+1} \rightarrow R/I^n$ between them.

The inverse limit $\lim_{\rightarrow} (R/I^n)$ of this inverse system is called the I-adic completion of R and is denoted \hat{R}_I or just \hat{R} if the ideal I is understood.

Show that the map $\lambda : R \rightarrow \hat{R}_I$ given by $\lambda(r) = (r + I^n)_{n \in \mathbb{N}}$ is a well-defined homomorphism of rings with kernel equal to $\cap_{n \in \mathbb{N}} I^n$.

(c) By (b), when $\cap_{n \in \mathbb{N}} I^n = 0$, R embeds inside of \hat{R}_I as the “constant sequences”. Show that in this case, the canonical metric d on the inverse limit \hat{R}_I when restricted to R gives the I-adic metric d_I on R. Furthermore show that any Cauchy sequence in (R, d_I) converges in (\hat{R}_I, d). Finally show that R is dense in \hat{R}_I, that is arbitrarily close to any “compatible sequence” lies a “constant sequence”. These three things show that (\hat{R}_I, d) is a metric space completion of (R, d_I).

(d) When $R = \mathbb{Z}$ and $I = (p)$ where p is a prime, the completion $\hat{\mathbb{Z}}_{(p)}$ is called the p-adic integers and is usually just denoted by \mathbb{Z}_p.

For any formal expression $\sum_{n=0}^{\infty} a_i p^i$ where $0 \leq a_i < p$, show that the sequence of integers $Z_N = \sum_{n=0}^{N} a_i p^i$ is a Cauchy sequence in $(\mathbb{Z}, d_{(p)})$. Conclude that the sequence $\{Z_N\}_{N \in \mathbb{N}}$ hence converges to a unique $Z \in \mathbb{Z}_p$. Thus $\sum_{i=0}^{\infty} a_i p^i$ defines a unique p-adic integer in this way.

It turns out with a little work, one may also show the converse, i.e., that every p-adic integer is given by such an expansion and hence develop a picture of p-adic integers as formal series in p. The integers then correspond to the “polynomials in p”.

(e) Let $f \in \mathbb{Z}_p[x]$ be a polynomial. Show that the map $x \rightarrow f(x)$ is a continuous map on \mathbb{Z}_p. (In the canonical metric of \mathbb{Z}_p)

4. [One variable Hensel’s Lemma] Let $f(x) \in \mathbb{Z}[x]$ and let p be a prime of \mathbb{Z}.

(a) Show that for every $a \in \mathbb{Z}$, there exists a polynomial $h_a(x) \in \mathbb{Z}[x]$ such that $f(a + x) = f(a) + f'(a)x + h_a(x)x^2$. Here f' is the derivative of f.

(b) Suppose p does not divide an integer γ, show that the map $\theta_\gamma : \mathbb{Z}/p^{k+1} \rightarrow \mathbb{Z}/p^{k+1}$ given by $\theta_\gamma(m) = \gamma m$ is an isomorphism of abelian groups.

(c) Let $k \geq 1$. Suppose $a_k \in \mathbb{Z}$ is a nonsingular approximate root of f in the sense that $f(a_k) \equiv 0 \mod p^k$ and p does not divide $f'(a_k)$. Show that there exists an integer a_{k+1} such that

$$f'(a_k)(a_{k+1} - a_k) \equiv -f(a_k) \mod p^{k+1}.$$
Show that \(a_{k+1} \equiv a_k \mod p^k \), \(f(a_{k+1}) \equiv 0 \mod p^{k+1} \) and that \(p \) does not divide \(f'(a_{k+1}) \).

Note that this shows that \(a_{k+1} \) is a “better” nonsingular approximate root of \(f(x) \) in the sense that \(d(p)(f(a_{k+1}),0) < d(p)(f(a_k),0) \).

(d) Show that if \(f \in \mathbb{Z}[x] \) has a nonsingular root \(a_1 \in \mathbb{F}_p \), i.e., \(f(a_1) \equiv 0 \mod p \) and \(f'(a_1) \not\equiv 0 \mod p \) then one can construct a sequence of integers \(\{a_n|n \in \mathbb{Z}\} \) which converge in \(\mathbb{Z}_p \) (in the canonical metric) to a \(p \)-adic root of \(f \), i.e., an \(a \in \mathbb{Z}_p \) with \(f(a) = 0 \).

(e) Let \(p \) be an odd prime. Show that \(x^2 + 1 \) has a \(p \)-adic root if and only if \(p \equiv 1 \mod 4 \). (Hint: First decide when \(x^2 + 1 \) has a root in \(\mathbb{F}_p \) by analyzing the multiplicative order of such a root.)

Remark: Hensel’s Lemma is the basis of finding \(p \)-adic solutions to polynomial equations once one has found a \(\mathbb{F}_p \) solution say by an exhaustive search. Since \(\mathbb{Z} \) is dense in \(\mathbb{Z}_p \), it is a “folklore principle” called the Hasse principle that once one has a \(\mathbb{Z}_p \) solution for all primes \(p \) to the equation, it is likely there is an integer solution. Finding the integer solutions to a given polynomial equation is in general very hard - think Fermat’s Last Theorem!