Maxima and Minima (Extrema)

Absolute Extrema

$f(c)$ is an absolute maximum value of f if $f(c) \geq f(x)$ for all x in the domain of f.

$f(c)$ is an absolute minimum value of f if $f(c) \leq f(x)$ for all x in the domain of f.

Absolute Extrema on a Set

Suppose D is a set of real numbers containing c.

$f(c)$ is an absolute maximum value of f on D if $f(c) \geq f(x)$ for all x in D.

$f(c)$ is an absolute minimum value of f on D if $f(c) \leq f(x)$ for all x in D.

Absolute Extrema on $[3,5]$

- $f(3)$ is the absolute maximum of f on $[3,5]$
- $f(4)$ is the absolute minimum of f on $[3,5]$

Absolute Extrema on $(3,5)$

- $f(4)$ is the absolute minimum of f on $(3,5)$
- f has no absolute maximum on $(3,5)$

Absolute Extrema on $(3.1,4.8)$

- $f(4)$ is absolute minimum of f on $(3.1,4.8)$
- f has no absolute maximum on $(3.1,4.8)$

Extrema on the domain

- $f(2)$ is the absolute maximum of f
- f has no absolute minimum

Local Extrema

$f(2)$ and $f(6)$ are local maxima of f.

$f(4)$ is a local minimum of f.

$f(0)$ is not a local minimum of f.

$y = f(x)$, domain $= [0, \infty)$

$\lim_{{x \to \infty}} f(x) = 0$
Local Extrema

\(f(c) \) is a local maximum of \(f \) if \(f(c) \geq f(x) \) for all \(x \) in some open interval around \(c \) (Think: for all \(x \) near \(c \)).

\(f(x) \) is a local minimum of \(f \) if \(f(c) \leq f(x) \) for all \(x \) in some open interval around \(c \) (Think: for all \(x \) near \(c \)).

Extra Example

Extra Example

Extra Example

Remark: According to the definition, local maxima and local minima cannot occur at the endpoints of the domain.

Extreme Value Theorem

If \(f \) is continuous on the closed and bounded interval \([a,b]\), then \(f \) has an absolute maximum and an absolute minimum on \([a,b]\).
Observation

Unless it occurs at an endpoint, each absolute extremum of \(F \) on \([a,b]\) is a local extremum.

Fermat’s Theorem

If \(F \) has a local extremum at \(c \), then \(F'(c) = 0 \) or \(F'(c) \) doesn’t exist. \(c \) is a critical point of \(F \).

Critical Points

A point \(c \) in the domain of \(F \) where \(F'(c) = 0 \) or \(F'(c) \) doesn’t exist is called a critical point of \(F \).

Locating Absolute Extremum Values on a Closed and Bounded Interval \([a, b]\)

If \(F \) is continuous on the closed and bounded interval \([a, b]\), then the following procedure will determine the absolute extrema of \(F \) on \([a, b]\).

1. Find the critical points of \(F \) in \((a,b)\).
2. Evaluate \(F \) (not \(F' \)) at the critical points in \((a,b)\) and at the endpoints \(a \) and \(b \).
3. The largest value of \(F \) from Step 2 is the absolute maximum of \(F \) on \([a,b]\).
 The smallest value of \(F \) from Step 2 is the absolute minimum of \(F \) on \([a,b]\).
Example

Find the absolute maximum and minimum values of
\(f(x) = x^3 - 6x^2 + 1 \) on the interval \([-2, 1]\).

\(f'(x) = 3x^2 - 12x \)

\(f'(x) \) exists everywhere.

Set \(0 = f'(x) \)

\[0 = 3x^2 - 12x \]
\[0 = x^2 - 4x \]
\[0 = x(x - 4) \]
\[x = 0 \quad \text{or} \quad x = 4 \]

CPs in \((-2, 1)\): \(0 \)

Evaluate \(f \) at CPs in \((-2, 1)\) and at the endpoints \(-2, 1\)

\[f(0) = 0^3 - 6(0)^2 + 1 = 1 \] \(\text{abs. max} \)

\[f(-2) = (-2)^3 - 6(-2)^2 + 1 = -8 - 24 + 1 = -31 \] \(\text{abs. min} \)

\[f(1) = (1)^3 - 6(1)^2 + 1 = -4 \]

Therefore:

\[f(0) = 1 \] is the absolute maximum of \(f \) on \([-2, 1]\)

\[f(-2) = -31 \] is the absolute minimum of \(f \) on \([-2, 1]\)

Example

Find the absolute maximum and minimum values of
\(f(x) = x^{2/3} \) on \([-8, 8]\).

\(f'(x) = \frac{2}{3}x^{-\frac{1}{3}} \)

\(f'(x) \) does not exist at \(x = 0 \)

Set \(0 = f'(x) = \frac{2}{3}x^{-\frac{1}{3}} \). No solution.
CPs in \((-8,8)\): 0

\[f(0) = 0^{\frac{2}{3}} = 0 \]
\[f(-8) = (-8)^{\frac{2}{3}} = (-2)^2 = 4 \]
\[f(8) = (8)^{\frac{2}{3}} = 2^2 = 4 \]

\[f(0) = 0 \text{ is the absolute min of } f \text{ on } [-8,8] \]
\[f(-8) = f(8) = 4 \text{ is the absolute max of } f \text{ on } [-8,8] \]

Extra Example

Find the absolute maximum and minimum values of

\[f(x) = x^2e^{-x} \text{ on } [-3,3]. \]

\[f'(x) = 2xe^{-x} - x^2e^{-x} = x(2-x)e^{-x} \]

f(x) exists everywhere

Set \(0 = f'(x) \)

\(0 = e^{-x}x(2-x) \)

\(x = 0 \text{ or } x = 2 \)

CPs in \((-3,3)\): 0, 2

\[f(0) = 0^2e^0 = 0 \text{ ← smallest} \]
\[f(2) = 2^2e^{-2} = 4e^{-2} \]
\[f(-3) = (-3)^2e^{-(3)} = 9e^3 \text{ ← largest} \]
\[f(3) = 3^2e^{-3} = 9e^{-3} \]

\(f(0) \text{ is the absolute minimum value of } f \text{ on } [-3,3] \)
\(f(-3) \text{ is the absolute maximum value of } f \text{ on } [-3,3]. \)