Numerical Integration

It is sometimes difficult or impossible to find the exact value of a definite integral. For example, it is impossible to evaluate the following integrals exactly:

\[
\int_{0}^{1} e^{x^2} \, dx \quad \int_{-1}^{1} \sqrt{1 + x^3} \, dx
\]

As another example, if a function is determined from collected data, there may be no formula for the function and hence no way to compute a definite integral of the function exactly. When we can’t compute a definite integral exactly, we need to approximate it.

The definite integral of \(f\) on \([a,b]\) is a limit of Riemann sums of \(f\) on \([a,b]\):

\[
\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(\bar{x}_i) \Delta x,
\]

where \(\Delta x = \frac{b-a}{n}, \, x_i = a + i \Delta x\), and \(\bar{x}_i\) is in \([x_{i-1}, x_i]\).

Any Riemann sum for \(f\) on \([a,b]\) is an approximation to the definite integral of \(f\) on \([a,b]\):

\[
\int_{a}^{b} f(x) \, dx \approx \sum_{i=1}^{n} f(\bar{x}_i) \Delta x
\]

For a midpoint Riemann sum, \(\bar{x}_i = \frac{1}{2}(x_{i-1} + x_i) = \text{midpoint of } [x_{i-1}, x_i] \text{ for } i = 1, \ldots, n\). The approximation obtained using a midpoint Riemann sum is called the Midpoint Rule approximation to \(\int_{a}^{b} f(x) \, dx\).

Midpoint Rule

\[
\int_{a}^{b} f(x) \, dx \approx M(n) = \sum_{i=1}^{n} f \left(\frac{x_{i-1} + x_i}{2} \right) \Delta x
\]

\[
= \Delta x \left[f \left(\frac{x_0 + x_1}{2} \right) + f \left(\frac{x_1 + x_2}{2} \right) + \cdots + f \left(\frac{x_{n-1} + x_n}{2} \right) \right]
\]

where \(\Delta x = \frac{b-a}{n}\) and \(x_i = a + i \Delta x\) for \(i = 0, \ldots, n\).
A Riemann sum approximation to \(\int_{a}^{b} f(x)\,dx \) works by approximating the region between \(y = f(x) \), the \(x \)-axis, \(x = a \), and \(x = b \) by rectangles.

We obtain a different approximation to \(\int_{a}^{b} f(x)\,dx \) if we use trapezoids instead of rectangles:

The area of the \(i \)th trapezoid is \(\frac{1}{2} (f(x_{i-1}) + f(x_{i})) \Delta x \), so the trapezoid approximation to \(\int_{a}^{b} f(x)\,dx \) is

\[
\int_{a}^{b} f(x)\,dx \approx T(n) = \sum_{i=1}^{n} \frac{f(x_{i-1}) + f(x_{i})}{2} \Delta x
\]

where \(\Delta x = \frac{b-a}{n} \) and \(x_{i} = a + i \Delta x \) for \(i = 0, \ldots, n \).
When approximating the region between \(y = f(x) \), the \(x \)-axis, \(x = a \), and \(x = b \) by trapezoids, we used the line segment between \(f(x_{i-1}) \) and \(f(x_i) \) to form the \(i \)th trapezoid. In other words, we approximated the graph of \(f \) by line segments.

We obtain another approximation if we use parabolic arcs instead of line segments to approximate the graph of \(f \):

\[
\begin{align*}
\text{Simpson's Rule} \\
\int_a^bf(x)dx & \approx S(n) = \frac{\Delta x}{3} \left[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \cdots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \right]
\end{align*}
\]

where \(n \) is even, \(\Delta x = \frac{b-a}{n} \), and \(x_i = a + i\Delta x \) for \(i = 0, \ldots, n \).

Remark

- In a Riemann sum approximation, we are approximating \(f \) by a constant function (degree 0 polynomial) on each interval \([x_{i-1}, x_i]\).
- In the trapezoidal approximation, we are approximating \(f \) by a linear function (degree 1 polynomial) on each interval \([x_{i-1}, x_i]\).
- In Simpson’s approximation, we are approximating \(f \) by a quadratic function (degree 2 polynomial) on each interval \([x_{i-1}, x_i]\).
\textbf{Example} Use the trapezoid rule with \(n = 3 \) subintervals to approximate \(\int_{0}^{3} \frac{1}{1 + x^3} \, dx \).

\[\Delta x = \frac{b - a}{n} = \frac{3 - 0}{3} = 1 \]

\[x_i = a + i \Delta x = 0 + i \cdot 1 = i \]

\[x_0 = 0 \]
\[x_1 = 1 \]
\[x_2 = 2 \]
\[x_3 = 3 \]

\[f(x) = \frac{1}{1 + x^3} \]

Therefore

\[\int_{0}^{3} \frac{1}{1 + x^3} \, dx \approx \Delta x \left[\frac{1}{2} f(x_0) + f(x_1) + f(x_2) + \frac{1}{2} f(x_3) \right] \]

\[= 1 \cdot \left[\frac{1}{2} \cdot \frac{1}{1 + 0^3} + \frac{1}{1 + 1^3} + \frac{1}{1 + 2^3} + \frac{1}{2} \cdot \frac{1}{1 + 3^3} \right] \quad \text{(you can stop here on the exams)} \]

\[= \frac{1}{2} + \frac{1}{2} + \frac{1}{9} + \frac{1}{56} = \frac{569}{504} \]

\[= 1.1289 \ldots \]
An approximation is not very useful without some information about its accuracy.

Example 3. 3.14, 3.14159, and 10 are all approximations to π. Some of these approximations are more accurate than others.

If c is an approximate numerical solution to a problem having an exact solution x, then

$$\text{absolute error} = |x - c|$$

$$\text{relative error} = \frac{|x - c|}{|x|} \quad (\text{if } x \neq 0)$$

When the value of the exact solution x is not be known, an upper bound on the absolute or relative error is very valuable.

Example If we know that $c = 1.3191$ is an approximate solution to the equation $e^x = x^2 + 2$ and the absolute error of this approximation satisfies $|x - c| \leq 0.0002$, then the exact solution x satisfies

$$c - 0.0002 \leq x \leq c + 0.0002$$

$$1.3189 \leq x \leq 1.3193$$

Midpoint Rule Error Bound

If we can find a number K such that $|f''(x)| \leq K$ for all x in $[a, b]$, then the absolute error in approximating $\int_a^b f(x)dx$ using the Midpoint Rule with n subintervals satisfies

$$E_M(n) = \left| \int_a^b f(x)dx - M(n) \right| \leq \frac{K(b - a)^3}{24n^2}$$

Trapezoid Rule Error Bound

If we can find a number K such that $|f''(x)| \leq K$ for all x in $[a, b]$, then the absolute error in approximating $\int_a^b f(x)dx$ using the Trapezoid Rule with n subintervals satisfies

$$E_T(n) = \left| \int_a^b f(x)dx - T(n) \right| \leq \frac{K(b - a)^3}{12n^2}$$

Simpson’s Rule Error Bound

If we can find a number K such that $|f^{(4)}(x)| \leq K$ for all x in $[a, b]$, then the absolute error in approximating $\int_a^b f(x)dx$ using Simpson’s rule with n subintervals satisfies

$$E_S(n) = \left| \int_a^b f(x)dx - S(n) \right| \leq \frac{K(b - a)^5}{180n^4}$$
Example How large should we take n in order to guarantee that the Simpson’s rule approximation to
\[
\int_1^2 \frac{1}{x^3} \, dx
\]
is accurate to $0.000000000002 = 2 \cdot 10^{-12}$?

A 10
B 100
C 1000
D 10000
E 100000

We want
\[
E_{S(n)} = \left| \int_1^2 \frac{1}{x^3} \, dx - S(n) \right| \leq 2 \cdot 10^{-12}.
\]

Note that
\[
\begin{align*}
f(x) &= x^{-3}
\quad f'(x) = -3x^{-4}
\quad f''(x) = 12x^{-5}
\quad f^{(3)}(x) = -60x^{-6}
\quad f^{(4)}(x) = 360x^{-7}
\end{align*}
\]

Since $0 < \frac{1}{x} \leq 1$ on $[1, 2]$, we have
\[
\left| f^{(4)}(x) \right| = \frac{360}{x^7} \leq 360 \quad \text{on} \quad [1, 2].
\]

Therefore
\[
E_{S(n)} \leq \frac{K(b-a)^5}{180n^4} = \frac{360(2-1)^5}{180n^4} = \frac{2}{n^4}.
\]

So it suffices to have
\[
\frac{2}{n^4} \leq 2 \cdot 10^{-12}
n^4 \geq 10^{12}
n \geq 10^3 = 1000
\]

Remark
\[
\int_1^2 \frac{1}{1 + x^3} \, dx = \frac{3}{8} = 0.375
\]
\[
\begin{align*}
S(10) &= 0.3750312659228 \ldots & (\text{Time (seconds): 0.000} \ldots) \\
S(100) &= 0.3750000032795 \ldots & (\text{Time (seconds): 0.031} \ldots) \\
S(1000) &= 0.3750000000003 \ldots & (\text{Time (seconds): 0.049} \ldots) \\
S(10000) &= 0.3750000000000003 \ldots & (\text{Time (seconds): 1.435} \ldots) \\
S(100000) &= 0.375000000000000003 \ldots & (\text{Time (seconds): 135.674} \ldots)
\end{align*}
\]