An antiderivative of \(f \) on an interval \(I \) is a function \(F \) such that
\[
F'(x) = f(x) \quad \text{for all } x \text{ in } I.
\]

If \(F \) is an antiderivative of \(f \) on \(I \), then the family of all antiderivatives of \(f \) on \(I \) consists of the functions of the form
\[
G(x) = F(x) + C
\]
where \(C \) is any constant.

\[
\frac{d}{dx} G(x) = \frac{d}{dx} (F(x) + C) = \frac{d}{dx} F(x) = f(x)
\]

The indefinite integral of \(f \) (on \(I \)), denoted by \(\int f(x) \, dx \), is the family of all antiderivatives of \(f \) (on \(I \)):
\[
\int f(x) \, dx = F(x) + C,
\]
where \(F \) is an antiderivative of \(f \) (on \(I \)) and \(C \) is an arbitrary constant.
• \(\frac{d}{dx} \int f(x) \, dx = f(x) \)

• \(\int \frac{d}{dx} f(x) \, dx = f(x) + C \)

• \(\int f(x) \, dx = F(x) + C \iff \frac{d}{dx} F(x) = f(x) \)

Table of Indefinite Integrals

\[
\int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)
\]

because \(\frac{d}{dx} \left(\frac{x^{n+1}}{n+1} \right) = \frac{(n+1)x^n}{n+1} = x^n \) for \(n \neq -1 \).

\[
\int \frac{1}{x} \, dx = \ln|x| + C
\]

because \(\frac{d}{dx} (\ln|x|) = \frac{1}{x} \).

\[
\int e^x \, dx = e^x + C
\]

because \(\frac{d}{dx} (e^x) = e^x \).
\[\int \ln x \, dx = x \ln x - x + C \]

because \[\frac{d}{dx}(x \ln x - x) = \left(\frac{dx}{dx} \right) \ln x + x \cdot \left(\frac{d}{dx} \ln x \right) - x \]

\[= \ln x + x \cdot \frac{1}{x} - 1 \]

\[= \ln x + 1 - 1 \]

\[= \ln x \]

(or use integration by parts, which we'll learn about soon)

\[\int \sin x \, dx = -\cos x + C \]

because \[\frac{d}{dx}(-\cos x) = \sin x \]

\[\int \cos x \, dx = \sin x + C \]

because \[\frac{d}{dx}(\sin x) = \cos x \]

\[\int \sec^2 x \, dx = \tan x + C \]

because \[\frac{d}{dx} \tan x = \sec^2 x \]

\[\int \sec x \tan x \, dx = \sec x + C \]

because \[\frac{d}{dx} \sec x = \sec x \tan x \]

\[\int \csc^2 x \, dx = \cot x + C \]

because \[\frac{d}{dx}(-\cot x) = \csc^2 x \]

\[\int \csc x \cot x \, dx = -\csc x + C \]

because \[\frac{d}{dx}(-\csc x) = \csc x \tan x \]
\[\int \tan x \, dx = \ln |\sec x| + C \]

(Check that \(\frac{d}{dx} \ln |\sec x| = \tan x \) or use the substitution rule, which we'll learn about soon)

\[\int \sec x \, dx = \ln |\sec x + \tan x| + C \]

(Check that \(\frac{d}{dx} \ln |\sec x| = \tan x \) or use the substitution rule, which we'll learn about soon)

\[\int \frac{1}{1 + x^2} \, dx = \arctan(x) + C \]

because \(\frac{d}{dx} \arctan(x) = \frac{1}{1 + x^2} \)

By substitution: \(\int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \arctan \left(\frac{x}{a} \right) + C \)

\[\int \frac{1}{\sqrt{1 - x^2}} \, dx = \arcsin(x) + C \]

because \(\frac{d}{dx} \arcsin(x) = \frac{1}{\sqrt{1 - x^2}} \)

By substitution: \(\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \arcsin \left(\frac{x}{a} \right) + C \)
The definite integral \(\int_a^b f(x) \, dx \) is a number (the net area between \(y = f(x) \), the x-axis, \(x=a \), and \(x=b \)).

The indefinite integral \(\int f(x) \, dx \) is a family of functions (the family of all antiderivatives of \(f \))

\[
\int f(x) \, dx = F(x) + C
\]

where \(F \) is an antiderivative of \(f \) and \(C \) is an arbitrary constant.

The area function of \(f \) with left endpoint \(c \) is defined to be

\[
A_c(x) = \int_c^x f(t) \, dt
\]

= net area between the graph of \(f \), and the horizontal axis from \(c \) to the variable point \(x \).
Ex. Let $f(x) = 2x - 3$. Compute the area function of f with left endpoint $c = -1$,

$$A_{-1}(x) = \int_{-1}^{x} (2t - 3) \, dt,$$

(a) using a limit of Riemann sums
(b) using the geometric interpretation of the integral

(a) $A_{-1}(x) = \lim_{n \to \infty} \sum_{i=1}^{n} (2t_i - 3) \Delta t$

$$\Delta t = \frac{x - (-1)}{n} = \frac{x + 1}{n}$$

$$t_i = a + i \Delta t = -1 + \frac{i(x + 1)}{n}$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \left(2(i \Delta t) - 3 \right) \left(\frac{x + 1}{n} \right)$$

$$= \lim_{n \to \infty} \left(\frac{x + 1}{n} \right) \sum_{i=1}^{n} \left(-2 + \frac{2(x + 1)}{n} \right) i - 3$$

$$= \lim_{n \to \infty} \left(\frac{x + 1}{n} \right) \left(\frac{\sum_{i=1}^{n} (-5) + 2(x + 1) \sum_{i=1}^{n} i}{n} \right)$$

$$= \lim_{n \to \infty} \left(\frac{x + 1}{n} \right) \left(-5n + \frac{2(x + 1)}{n} \cdot \frac{n(n+1)}{2} \right)$$

$$= \lim_{n \to \infty} \left(\frac{x + 1}{n} \right) \left(-5 + \frac{(x + 1)(n^2 + n)}{n^2} \right)$$

$$= \lim_{n \to \infty} \left(\frac{x + 1}{n} \right) \left(-5 + \frac{(x + 1)}{1 + \frac{1}{n}} \right)$$

$$= (x + 1) \left(-5 + (x + 1) \left(1 + \frac{1}{n} \right) \right)$$

$$= (x + 1)^2 - 5(x + 1)$$

$$= x^2 + 2x + 1 - 5x - 5 = x^2 - 3x - 4$$
(b) \(f(\cdot) = 2\cdot + 3 \)

\[
A(c(x)) = \int_{-1}^{x} (2\cdot + 3) \, dx = A_1 - A_2 = \frac{1}{2}(base)(height)
\]

\[
= \frac{1}{2} \left(x - \frac{3}{2} \right) f(x) + \frac{1}{2} \left(\frac{3}{2} - (-1) \right) f(-1)
\]

(We can simply add the signed areas of the individual triangles.)

\[
= \frac{1}{2} \left(x - \frac{3}{2} \right) \left(2x - 3 \right) + \frac{1}{2} \left(\frac{5}{2} \right) (-5)
\]

\[
= \frac{1}{2} \left(2x^2 - 3x - 3x + \frac{9}{2} \right) + \frac{1}{2} \left(-\frac{25}{2} \right)
\]

\[
= \frac{1}{2} \left(2x^2 - 6x + \frac{9}{2} - \frac{25}{2} \right)
\]

\[
= \frac{1}{2} \left(2x^2 - 6x - 8 \right)
\]

\[
= x^2 - 3x - 4
\]
Fundamental Theorem of Calculus - Part I

If \(f \) is continuous on \([a, b]\), then \(A_a \) (the area function of \(f \) with left endpoint \(a \)) is an antiderivative of \(f \) on \([a, b]\).

In other words,

\[
A'_a(x) = \frac{d}{dx} \int_a^x f(t) dt = f(x) \quad \text{for all } x \in [a, b]
\]

(In fact, for any \(c \) in \([a, b]\), \(A_c \) is an antiderivative of \(f \) on \([a, b]\):

\[
A'_c(x) = \frac{d}{dx} \int_c^x f(t) dt = f(x) \quad \text{for all } x \in [a, b]
\]

Example Let \(f(x) = 2x - 3 \). From the previous example, we know \(A_{-1}(x) = x^2 - 3x - 4 \). Note that

\[
A'_{-1}(x) = \frac{d}{dx} (x^2 - 3x - 4) = 2x - 3 = f(x).
\]

This is no coincidence; it's the Fundamental Theorem of Calculus (part I)!