Independence and Joint Distributions

\(X_1, \ldots, X_n \) are independent IFF
\[
P(X_1 \in B_1, \ldots, X_n \in B_n) = P(X_1 \in B_1) \cdots P(X_n \in B_n)
\]
for all sets \(B_1, \ldots, B_n \subseteq \mathbb{R} \)

Equivalently
\[
P(X_1 = t_1, \ldots, X_n = t_n) = P(X_1 = t_1) \cdots P(X_n = t_n)
\]
for all \(t_1, \ldots, t_n \in \mathbb{R} \)

[Special case when \(B_i = (-\infty, t_i] \)]

Equivalently
\[
F_{X_1, \ldots, X_n}(t_1, \ldots, t_n) = F_{X_1}(t_1) \cdots F_{X_n}(t_n)
\]
for all \(t_1, \ldots, t_n \in \mathbb{R} \)

The discrete rvs \(X_1, \ldots, X_n \) are independent IFF the pmf's factor
\[
P_{X_1, \ldots, X_n}(x_1, \ldots, x_n) = P_{X_1}(x_1) \cdots P_{X_n}(x_n)
\]
for all \(x_1, \ldots, x_n \in \mathbb{R} \)

Enough to have \(x_i \in \text{Range}(X_i), \ldots, x_n \in \text{Range}(X_n) \).

The jointly continuous rvs \(X_1, \ldots, X_n \) are independent IFF
\[
f_{X_1, \ldots, X_n}(x_1, \ldots, x_n) = f_{X_1}(x_1) \cdots f_{X_n}(x_n)
\]
for all \(x_1, \ldots, x_n \in \mathbb{R} \)
Example

\[X \sim \text{Poisson}(\lambda), \quad Y \sim \text{Bernoulli}(p) \]

\[X, Y \text{ are independent} \]

Find joint pmf

\[
P_X(k) = \frac{e^{-\lambda} \lambda^k}{k!} \quad \text{for } k = 0, 1, 2, \ldots
\]

\[
P_Y(l) = (1-p)^{l-1} p \quad \text{for } l = 1, 2, 3, \ldots
\]

By independence, the pmf of the pair \((X, Y) \) evaluated at \(k, l \)

\[
P_{X,Y}(k, l) = P_X(k) P_Y(l) = \frac{e^{-\lambda} \lambda^k}{k!} \cdot (1-p)^{l-1} p
\]

\[\text{for } k = 0, 1, 2, \ldots ; \quad l = 1, 2, 3, \ldots \]

Example

\((X, Y) \) is uniformly distributed on the rectangle \(A = [a, b] \times [c, d] = \]

Are \(X, Y \) independent?

\[
\frac{1}{(b-a)(d-c)} \int_a^b \int_c^d f_{X,Y}(x, y) \, dx \, dy
\]

\[f_{X,Y}(x, y) = \frac{1}{(b-a)(d-c)} \quad \text{for } a \leq x \leq b, \quad c \leq y \leq d
\]

If \(X \in [a, b] \), then

\[
P_X(x) = \int_{\text{lower limit}}^{\text{upper limit}} f_{X,Y}(x, y) \, dy
\]

\[
P_X(x) = \int_c^d \frac{1}{(b-a)(d-c)} \, dy = \frac{d-c}{b-a}
\]
\[x \neq \{a, b\}, \quad \text{then} \]
\[f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, dy = \int_{a}^{b} 0 \, dy = 0 \]
\[f_X(x) = \begin{cases} \frac{1}{b-a} & \text{if } x \in [a, b] \\ 0 & \text{if } x \notin [a, b] \end{cases} \]

Then \(f_X(x) f_Y(y) = \begin{cases} \frac{1}{(b-a)^2} & \text{if } x \leq y \leq 1 - x \\ 0 & \text{otherwise} \end{cases} \)

\[f_X(x) f_Y(y) = f_{X,Y}(x, y) \quad \forall x, y \]

Show that \(X, Y \) are independent

Example

\((X, Y) \) are uniformly distributed on the triangle \(\triangle \) with vertices \((0,0), (1,0), (0,1) \)

\(X, Y \) independent

Find the marginal pdf's of \(X \) and \(Y \) and from that are \(X, Y \) independent?
The joint pdf is
\[f_{X,Y}(x,y) = \begin{cases} \frac{1}{1-e^{-2}} & \text{if } (x,y) \in A \\ 0 & \text{otherwise} \end{cases} \]

\[
\forall y \in [0,1], \text{ then } f_X(x) = \int_0^x f_{X,Y}(x,y) \, dy = \int_0^x 2 \, dy = ay \bigg|_0^1 = a(1-x)
\]

continued next class...
The text on the page is not clearly legible, but it appears to be mathematical or scientific content. The handwriting is difficult to interpret due to the quality of the image. If you have a clearer version of the document or if you can provide more context, I might be able to help further.
\[P_x(u) P_y(v) = \sum_{k=-\infty}^{\infty} P_x(\xi_u - k) P_y(\xi_v - k) \]

We also have:

\[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_x(u) P_y(v) \, \text{d}u \, \text{d}v = 1 \]

Therefore, if \(y = x^2 \),

we can use another way to determine:

\[P(x = \frac{y^2}{2}, y > \frac{1}{2}) = 0 \]

\[P(x > \frac{1}{2}) = \frac{1}{2} \]

\[P(x > y > \frac{1}{2}) = \text{full \ expression} \]
Preliminary: Let \(f \) be a non-negative \(\mathbb{R} \)-valued function of \(\mathbb{R} \times \mathbb{R} \) such that
\[
\int_{\mathbb{R}^2} f(x_1, x_2) \, dx_1 \, dx_2 < \infty.
\]

Given \(x_1, x_2 \in \mathbb{R} \), we can consider the function of \(x_1 \)
\[
\rho(x_1) = \frac{g_2(x_2)}{\int_{-\infty}^{\infty} g_1(x_1) \, dx_1}.
\]

Then for any \(x_1, x_2 \in \mathbb{R} \), we have
\[
f_{X_2}(x_2) = g_2(x_2) \rho(x_1) \, dx_1.
\]
Example

With joint pdf

\[
(f(x,y), \frac{1}{x^2} y \text{ if } 1 < x + z \text{ and } y > 0)
\]

Given that \(f(x,y) \) may be found for all \(x, y \)

\[
g(x) = \int_{-\infty}^{\infty} f(x,y) \, dy
\]

\[
u = 0 \text{ or other case}
\]

\[
\text{expected }
\]

Fact about expectation (Proof: Exercise)

Expected value of the conditional

\[
E[X|H] = \int_{-\infty}^{\infty} x f(x|h) \, dx
\]

\[
h(x) = \int_{-\infty}^{\infty} f(x,y) \, dy
\]

Example: the \(X, Y, Z \) are independent

\[
x \quad y + z
\]