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Chapter 7
Sheaf theory

The theory of sheaves has come to play a central role in the theories of several
complex variables and holomorphic differential geometry. The theory is also essential
to real analytic geometry. The theory of sheaves provides a framework for solving
“local to global” problems of the sort that are normally solved using partitions of unity
in the smooth case. In this chapter we provide a fairly comprehensive overview of
sheaf theory. Since we are interested in fairly concrete applications of the theory, our
presentation is correspondingly concrete. When one delves deeply into sheaf theory,
a categorical approach is significantly more efficient than the direct approach we
undertake here. However, for many first-timers to the world of sheaves—particularly
those coming to sheaves from the differential geometric rather than the algebraic
world—the categorical setting for sheaf theory is an impediment to understanding the
point of the theory. This being said, the reader looking for more than the superficial
understanding of sheaves we will provide here will benefit from a more sophisticated
approach, and for this we refer to [Kashiwara and Schapira 1990] for a geometric
treatment, or to [Godement 1958] or [Bredon 1997] for a treatment with the focus on
algebraic topological applications of sheaf theory. A concise overview can be found
in [Warner 1983, Chapter 5], along with some differential geometric applications.

7.1 Elementary sheaf theory

In this section we review those parts of the theory that will be useful for us. Our
interest in sheaves arises primarily in the context of holomorphic and real analytic
functions and sections of real analytic vector bundles. However, in order to provide
some colour for the particular setting in which we are interested, we give a treatment
with greater generality. The treatment, however, is far from comprehensive, and we
refer to the references at the beginning of the chapter for more details.

One of the places we do engage in some degree of generality is the class of functions
and sections for which we consider sheaves. While our applications of sheaf theory
will focus on the holomorphic and real analytic cases, we will also treat the cases of
general differentiability. Specifically, we consider sheaves of functions and sections of
class C" for r € Z>y U {00, @, hol}. The manifolds on which we consider a certain class
of differentiability will, of course, vary with the degree of differentiability. To encode
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this, we shall use the language, “ let 7’ € {00, w, hol} be as required.” By this we mean
thatr = coif r € Z.y U {00}, that ¥ = w if r = w, and ¥ = hol if r = hol. Also, we shall
implicitly or explicitly let F = R if r € Z.( U {0, w} and let F = C if r = hol.

7.1.1 Presheaves

The basic ingredient in the theory of sheaves is a presheaf. We shall need vari-
ous sorts of presheaves, and will define these separately. This is admittedly a little
laboured, and is certainly a place where a categorical presentation of the subject is
more efficient. But we elect not to follow this abstract approach.

Since nothing is made more complicated by doing so at this point, we give our
general definition of presheaf in terms of topological spaces.

Definition (Presheaf of sets) Let (S, ©) be a topological space. A presheaf of sets
over § is an assignment to each U € ¢ a set F(U) and to each V,U € & with V C U a
mapping ryy: F(U) — F(V) called the restriction map, with these assignments having
the following properties:

(i) ruu is the identity map;
(II) if W, V,u € Owith'WcCVCcC u, then uw = ryweryy.

We shall frequently use a single symbol, like .#, to refer to a presheaf, with the
understanding that .% = (F(U))ycs, and that the restriction maps are understood. e

Definition (Presheaf of rings) Let (S, ©) be a topological space. A presheaf of rings
over § is an assignment to each U € &' a set R(U) and to each V, U € & with V C U aring
homomorphism ryy: R(U) = R(V) called the restriction map, with these assignments
having the following properties:

(i) ryu is the identity map;

(II) if W,V,U € 6 withWCVCU, then rn w = rvweryv.
We shall frequently use a single symbol, like %, to refer to a presheaf, with the
understanding that # = (R(U))ues, and that the restriction maps are understood. e

Definition (Presheaf of modules) Let (S, &) be a topological space and let # =
(R(U))yee be a presheaf of rings over § with restriction maps denote by r:{{: v A presheaf
of #-modules over S is an assignment toeach U € &' aset E(U) andtoeach V, U € & with
V C Uamappingry ,: E(U) — E(V) called the restriction map, with these assignments
having the following properties:

(i) ryy is the identity map;

(i) if W,V,U € 6 with WC V C U, then rﬁ,w

&

/
vw°

=7 Fuvr

(iii) the relations
riv(s + 1) = 1 p(8) + 1 y(8), s,t € E(0),
rv(fs) = ry(NriyG),  feRMW), s e EUW .
hold.
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We shall frequently use a single symbol, like &, to refer to a presheaf of #-modules,
with the understanding that & = (E(U))ycs, and that the restriction maps are under-
stood. .

Said more compactly, a presheaf of rings is a presheaf of sets where all sets are
rings and where the restriction maps are homomorphisms. One can easily imagine
doing this for algebraic structures of all sorts, but we shall stick to what we need here.
Also, if we wish to talk about a presheaf and wish to include all of the flavours of
presheaves, we shall simply write the presheaf as .# = (F(U))ucs. An elements € F(U)
is called a section of .# over U and an element of F(8) is called a global section. If
U € O then we denote by .Z|U the restriction of .# to U, which is the presheaf over U
whose sections over V C U are simply F(V).

Sometimes, presheaves of rings with certain properties a prescribed.

Definition (Ringed space) A ringed space is a pair ((S, ¢), Z) where (8, ©) is a topo-
logical space and where # is a presheaf of rings such that
(i) R(U) < C°(U) for each U € & and
(ii) ruv(f)is the restriction of the function f € R(U) to V for every U, V € & for which
VCcu. .

Let us look at the principal examples we shall use in this book.

Example (Presheaves)

1. If X is a set, a constant presheaf of sets .7y = (Fx(U))esr on a topological space
(8, 0) is defined by Fx(U) = X for every U € &. The restriction maps are taken to
be ryy = idy for every U,V € & with V C U. If the set X has a ring structure, then
we have a constant presheaf of rings.

2. Let us denote by Zs the constant presheaf over a topological space (8, €) assigning
the ring Z to every open set. Then an Zs-module is a sheaf of Abelian groups, in
the sense that to every U € & we assign an Z-module, i.e., an Abelian group.

We now let r € Z>y U {00, w, hol}, let " € {o0, @, hol} be as required, and let F = R if
r € Zso U {oo,w} and let F = C if r = hol. We let M be a manifold of class C" and let
1i: E — M be a vector bundle of class C.

8. The presheaf of functions on M of class C" assigns to each open U C M the ring
C'(U). The restriction map ryy for open sets V,U € M with V € U is simply the
restriction of functions on U to V. These maps clearly satisfy the conditions for a
presheaf of rings. This presheaf we denote by ¢j,.

4. In rather similar manner, the presheaf of sections of E of class C" assigns to each
open U € M the C'(U)-module I"(E|U). The restriction map ry for open sets
V,U € Mwith V C Uis again just the restriction of sections on U to V. These maps

satisfy the conditions for a presheaf of 4j-modules. This presheaf we denote by
@qr
GL.
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5. Generalising the preceding example a little, a presheaf of ¢ -modules is a presheaf
& = (E(U))yopen such that E(U) is a C'(U)-module and such that the restriction maps
satisfy the natural algebraic conditions

ruv(s + 1) = ry(s) + ryv(t), s, t € E(U),
ruv(f 8) = ru(fruv(s), feC(W), s e EW). .

The value of a presheaf is that it allows us to systematically deal with objects that
are not globally defined, but are only locally defined. We have seen in various places,
most explicitly at the end of Section 4.1.3, that there is value in doing this, especially
in the holomorphic and real analytic cases.

7.1.2 Sheaves

The notion of a sheaf, which we are about to define, allows us to patch locally
defined objects together to produce an object defined on a union of open sets.

Definition (Sheaf (of sets, rings, or modules)) Let (8, ©) be a topological space and
suppose that we have a presheaf .# = (F(U))uecs (of sets, rings, or modules) with
restriction maps ry,y for U,V € & satisfying V C U.

(i) The presheaf .7 is separated when, if U € @, if (U,),c4 is an open covering of U,
and if s,t € F(U) satisfy ry,(s) = ryy, (t) for everya € A, thens = ;

(i) The presheaf .7 has the gluing property when, if U € &, if (U,),c4 is an open
covering of U, and if, for each a € A, there exists s, € F(U,) with the family (s,),ca
satisfying

Moy Uy MUay (Sa)) = Mgy Uay MU, (Sa,)
for each ay,a, € A, then there exists s € F(U) such that s, = ryy,(s) for each a € A.

(iii) The presheaf (of sets, rings, or modules) .7 is a sheaf (of sets, rings, or modules)
if it is separated and has the gluing property. .

It is fairly easy to show that the presheaves %}, and ¢! are sheaves, and let us record
this here.

Proposition (Presheaves of functions and sections are sheaves) Let r € Z., U
{00, w, hol}, let 1’ € {00, , hol} be as required, and let F = R if r € ZoU {oo, w}and let F = C
if r = hol. Let M be a manifold of class C" and let : E — M be a vector bundle of class C".
Then the presheaves 6y, and ¢ are sheaves.
Proof We shall prove this for functions, the proof for sections following mutatis mutandis.
Let U € M be open and let (U;),ca be an open cover for U. To prove condition (i), if
f,g € C'(U) agree on each neighbourhood U,, a € A, then it follows that f(x) = g(x) for
every x € U since (U,)sea covers U. To prove condition (i) let f, € C"(U,) satisfy

Py Moy (e, (far) = T e, U, (far)

for each ay,a; € A. Define f: U — F by f(x) = f,(x) if x € U,. This gives f as being
well-defined by our hypotheses on the family (f;)sea. It remains to show that f is of class
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C'". This, however, follows since f as defined agrees with f;, on U, and f; is of class C" for
eacha € A. [ |

Let us also give some examples of presheaves that are not sheaves.

7.1.8 Example (Presheaves that are not sheaves)
1. Letr € Z,o U {co,w} and take M = R. Let us define a presheaf ¢, (R) over R by

(W) = (f € C'(W)| fisbounded).

The restriction maps are, of course, just restriction of functions, and one readily
verifies that this defines a presheaf of rings. It is not a sheaf. Indeed, let (U,),c4 be
a covering of R by bounded open sets and define f, € ¢/, (U) by f,(x) = x. Then
we certainly have f,(x) = f,(x) for x € U, N U,. However, it does not hold that there
exists f € ¢, (R) such that f(x) = f,(x) for every x € U, and for every a € A, since
any such function would necessarily be unbounded. The difficulty in this case is
that presheaves are designed to carry local information, and so they do not react
well to cases where local information does not carry over to global information, in
this case boundedness. Note that the defect in this example comes in the form of
the violation of gluing condition (ii) in Definition 7.1.6; condition (i) still holds.

2. Let (8, ©) be a topological space and let X be a set. As in Example 7.1.5-1, 7y =
(Fx(U))er denotes the constant presheaf defined by Fx(U) = X. It is clear that .7
satisfies the separation condition. We claim that .7y does not generally satisfy the
gluing condition. Indeed, let U;, Uz € & be disjoint and take U = U; U U,. Let
51 € Fx(U]) and Sy € F(uZ) If S1 # S then thereisnos € Fx(U) for which I’u,ul(S) =85
and ruluz(S) = X3.

3. Anexample of a presheaf that is not separated is a little less relevant, but we give it
for the sake of completeness. Let § = {0, 1} have the discrete topology and define a
presheaf .7 by requiring that F(0) = 0 and that F(U) = R" (i.e., the set of maps from
U into R). The restriction maps are defined by asking that ry(s) = Cy whenever
V is a proper subset of U, where Cy: V — R is defined by (y(x) = 0. Now let
s, t € F({0,1}) be defined by

s(0)=s(1)=1, #HO0)=1t(1)=-1.
Note that ({0}, {1}) is an open cover for {0, 1} and

ro11,0018) = roao(t),  r01,m(8) = ram)(E)-
But it does not hold that s = t. °

The examples suggest that the gluing condition is the one that will fail most often,
and there is a reason for this feeling.

7.1.9 Proposition (Presheaves of mappings are separated) If (S, ©) is a topological space,
if Xisa set, and if .# = (F(U))uee is a presheaf over S such that
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(i) each element f € F(U) is a mapping from U to X and
(ii) if U,V € O are such that V C U, then the restriction map ryy is given by

ryv(f)(x) = f(x), x €V,

then .7 is separated.
Proof Suppose that U € &, that (U,),e4 is an open cover of U, and that f, ¢ € F(U) satisfy
now, (f) = () for every a € A. For x € U let a € A be such that x € U,. It follows
immediately from the definition of the restriction maps that f(x) = g(x). |

In practice, one often wishes to patch together locally defined objects and have
these be a sheaf. The following result shows how this can be done, the statement
referring ahead to Section 7.1.6 for the notion of morphisms of sheaves.

Proposition (Building a sheaf from local constructions) Let (S, &) be a topological
space and let (Ua)aca be an open cover for 8. Suppose that, for each a € A,

Fa = (Fa(u))uw, UCU, -+

is a sheaf (of sets, rings, or modules) over U, and denote the restriction maps for 7, by ry, ,, for
U,V €U, open with V € W. If, for a;, a, € A satisfying U,, N U,, # 0, we have

ru Mo, N, (Fn(un)) = ru‘,, Uy, Ny, (Fa,(Us)), (7.1)

then there exists a sheaf .7 over 8, unique up to isomorphism, with the property that F(U,) is
isomorphic to F,(U,) for each a € A.

Proof While this is the natural place to state this result, to prove the result we shall make
use of the étalé space of a sheaf which is defined in the next section. We suppose, therefore,
that the reader has understood this section.

Let x € § and suppose that x € U, for some a € A. Let .7, be the stalk of the sheaf .%, at

x. Note that .%, does not depend on a by (7.1). We then take Ey = Oxeu Fy. Let us say that
amap o: U — Ey is a section of Ey if o(x) € .%, for each x € U and if, for each x € U there
exists a neighbourhood V C U of x,a € A, and s, € F,(V N U,) such that o(y) = [s,], for all
y € V. Again, the condition (7.1) ensures that if this condition holds for some V,a € A. and
s; € F,(VN,), it will hold for all such. We let F(U) be the set of sections of Ey, and we
claim that (F(U))yee is a sheaf with the restriction maps being restriction of sections in the
usual sense.

By Proposition 7.1.9 it follows that .%# as defined is separated. To verify the gluing
property, let U € & and let (V}),c5 be an open cover of U. Suppose that sections g, € F(V}),
b € B, satisfy "y, Vi, NV (o) 1y, %, 1V, (7) for every by, by € B. For x € U, let o(x) = 0(x)
where b € B satlsfles x € Vp. This definition clearly does not depend on b. We must show
that o is a section of Ey as defined above. Let x € U. By assumption, ¢ = ¢, agree in a
neighbourhood of x. Since gy, is a section of Ey, there exists a neighbourhood V C V}, of
x,a € A, and s, € F,(VNU,) such that o,(y) = [s,], for every y € V. Since a(y) = [s,], for
every y € V.
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Note that for each a € A we have that F(U,) is actually the sheafification of .%,. Since
F, is a sheaf, it follows from Propositions 7.1.27 and 7.1.29 that .%, is isomorphic to F(Uy).
This gives the existence part of the result.

To show uniqueness, note that the condition that F(U,) be isomorphic to .%, ensures
that the stalk of .# be isomorphic to .%;, and so by Proposition 7.1.53 it follows that any
sheaf satisfying the conclusions of the proposition must be isomorphic to the sheaf .7#
constructed above. [ |

7.1.3 The étalé space of a presheaf

The examples of presheaves we are most interested in, the presheaves ¢}, and ¢,
arise naturally as sections of some geometric object. However, there is nothing built
into our definition of a presheaf that entails that it arises in this way. In this section
we associate to a presheaf a space which realises sections of a presheaf as sections of
some object, albeit a sort of peculiar one.

In Section 5.7.1 we saw the notions of germs of C'-functions and germs of C’-
sections of a vector bundle. We begin our constructions of this section by understand-
ing the germ construction for general presheaves. For the purposes of this discussion,
we work with a presheaf .7 (of sets, rings, or modules) over a topological space (8, ).
Welet x € § let 0 be the collection of open subsets of § containing x. This is a directed
set using inclusion since, given U;, U, € &, we have U; NU, € &, and U; NU, € U, and
U; N Uz € Up. What we want is the direct limit in (F(U))ues,. This we define using the
equivalence relation where, for U, U, € @, s1 € F(U;) and s; € F(Uz) are equivalent if
there exists V € &, such that V C U;, V € Uy and ry, v(s1) = ru,,v(s2). The equivalence
class of a section s € F(Ul) we denote by ry«(s), or simply by [s], if we are able to forget
about the neighbourhood on which s is defined.

The preceding constructions allow us to make the following definition.

Definition (Stalk, germ of a section) Let (S, @) be a topological space and let .7 =
(F(U))es be a presheaf (of sets, rings, or modules) over 8. For x € §, the stalk of .7 at
x is the set of equivalence classes under the equivalence relation defined above, and is
denoted by .%,. The equivalence class ry,(s) of a section s € F(U) is called the germ of
s at x.

In case .# = # is a sheaf of rings over §, we denote by 0, € %, and 1, € #, the
germs of the sections C, u € R(U) over some neighbourhood U of x given by C = 0 and
u = 1. Similarly, if .# = & is a sheaf of Z-modules, 0, € &, denotes the germ of a local
section of & over a neighbourhood of x taking the value 0. .

If # = % is a presheaf of rings let us define a ring operation on the set %, of
equivalence classes under this equivalence relation by
rux(f) + mx(8) = runvx e ruunv(f) + ruavx e rvunv(g),

(fu,x(f)) “(rvx(8)) = (ruav e © ru,um?(f ) - (ruav,x e rvunv(8)),

where f € R(U), g € R(V). One readily verifies, just as we did for germs of functions,
mappings, and sections of vector bundles, that these ring operations is well-defined
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and satisfy the ring axioms. Similarly, if .7 = & is a presheaf of #-modules, we can
define a module structure on the set &, of equivalence class by

rux(8) + 1y (t) = ruavx o ruunv(s) + runv,x o rounv(t),
(rW,x(f)) (rv(8)) = (rwavx e r\‘v,wm?(f ) - (rwavx e v wav(s)),

where s € E(U), t € E(V), and f € R(W). Again, these operations can be verified to
make sense and provide the structure of a module over the ring %..

For sheaves of rings or modules the notion of stalk makes it possible to define the
notion of the support of a local section.

Definition (Support of a local section) Let (S, ©) be a topological space, let #Z =
(R(U))ee be a presheaf of rings over 8, and let & = (E(U))yesr be a presheaf of #-
modules over 8. The support of a local section s € E(U) is

supp(s) = {x e U | [s], # 0,}. .

Note that the support of alocal section s € E(U) is necessarily closed since if [s], = 0y
then [s], = 0, for y in some neighbourhood of x.

With stalks at hand, we can make another useful construction associated with a
presheaf.

Definition (Etalé space of a presheaf) Let (S, &) be a topological space and let .7 =
(F(U))ueos be a presheaf (of sets, rings, or modules). The étalé space of .7 is the disjoint
union of the stalks of .%: )

Et(#) = U Z,.

X€S

The étalé topology on Et(.%) is that topology whose basis consists of subsets of the
form
B(U, s) = {ru(s) | xe U}, Ued,seFU).

By mz: Et(#) — § we denote the canonical projection 7 (1 ,(s)) = x which we call
the étalé projection. .

Let us give some properties of étalé spaces, including the verification that the
proposed basis we give for the étalé topology is actually a basis.

Proposition (Properties of the étalé topology) Let (S, @) be a topological space with
F = (F(U))yes a presheaf (of sets, rings, or modules) over 8. The étalé topology on Et(.#) has
the following properties:

(i) the sets B(U,s), W € &, s € F(U), form a basis for a topology;

(ii) the projection 14 is a local homeomorphism, i.e., about every [s], € Et(.#) there exists
a neighbourhood O C Et(.%) such that 7 # is a homeomorphism onto its image.
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Proof (i) According to [Willard 1970, Theorem 5.3] this means that we must show that
for sets B(Uy,s1) and B(Uy,s2) and for [s]y € B(Uy,s1) N B(Uy,sz), there exists B(V,t) C
B(Uq,51)NB(Usz, 52) such that [s], € B(V, ). Welet'V € Uy NUz be a neighbourhood of x such
that s(y) = s1(y) = s2(y) for each y € V, this being possible since [s], € B(Uy,s1) N B(Uz, s2).
We then clearly have B(V, t) € B(Uq,s1) N B(Uz,s2) as desired.

(i) By definition of the étalé topology, 1 #|B(1,s) is a homeomorphism onto U (its
inverse is s), and this suffices to show that 7 7 is a local homeomorphism. [ |

The way in which one should think of the étalé topology is depicted in Figure 7.1.
The point is that open sets in the étalé topology can be thought of as the “graphs” of

Ne—
N~ )

Figure 7.1 How to think of open sets in the étalé topology

local sections. A good example to illustrate the étalé topology is the constant sheaf.

Example (The étalé space of a constant sheaf) We let (8, ©) be a topological space
and let X be a set. By .#x = (Fx(U))yesr we denote the constant sheaf defined by
Fx(U) = X. Note that the stalk .7y, is simply X. Thus Et(#x) = U,s(x, X) which we
identity with 8 X X in the natural way. Under this identification of Et(.#x) with § X X,
the étalé projection m: § X X — § is identified with projection onto the first factor.
Thus a section is, first of all, a map 0: § — X. It must also satisfy the criterion of
continuity, and so we must understand the étalé topology on § X X. Let U € ¢ and let
s € Fx(U) = X. The associated basis set for the étalé topology is then

B(U,s) ={(x,s) | xe U}

These are precisely the open sets for 8§ x X if we equip X with the discrete topology.
Thus Et(.Zy) is identified with the product topological space 8§ X X where X has the
discrete topology. .

Let us close this section by thinking about the étalé spaces for the examples of
interest to us.

Examples (The étalé spaces for %I:I and %é) Let r € Zso U {oo,w,hol}, let ¥ €
{00, w, hol} be as required, and let F = Rif r € Z.( U {oo, w} and let F = Cif r = hol. Let
M be a manifold of class C" and let 1: E — M be a vector bundle of class C". It is rather
apparent that the stalks of Et(4;) and Et(¥;) are exactly the sets ¢}, and ¢ of germs
of functions and sections, respectively.

Let us examine some of the properties of these etalé spaces.
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Lemma The étalé topology on both Et(%},) and EX(Y() is not Hausdorff when r € Zo U {co}.

Proof We shall prove this for Et(4},), the construction for ¢ being quite similar. Let
U € M be an open set and as in, let f € C*(M) be such that f(x) € R., for x € U and
f(x) = 0forx € M\ U. Let g € C*(M) be the zero function. Now let x € bd(U). We
claim that any neighbourhoods of [f], and [g], in Et(4],) intersect. To see this, let O
and O, be neighbourhoods in the étalé topology of [f], and [g].. Since any sufficiently
small neighbourhood of [ f], and [g], is homeomorphic to a neighbourhood of x under
the étalé projection, let us suppose without loss of generality that O and O, are both
homeomorphic to a neighbourhood V of x under the projection. Fory € VN (M \ cl(W)),
[f1, = [gl,. Since Of and O, are uniquely determined by the germs of f and gin V,
respectively, it follows that [f], = [g], € Of N Oy, giving the desired conclusion. v

Lemma If M is Hausdorff, then the étalé topology on both Et(¢},) and EX(94Y) is Hausdorff
when r € {w, hol}.

Proof We again prove the result for functions, leaving the very similar proof for
vector bundles as an exercise. Let [f], and [g], be distinct. If x # y then there
are disjoint neighbourhoods U and V of x and y and then B(U, f) and B(V, g) are
disjoint neighbourhoods of [f]: and [g],, respectively, since the étalé projection is a
homeomorphism from the neighbourhoods in M to the neighbourhoods in Et(%},). If
x = y let [f]y and [g]. be distinct and suppose that every neighbourhood of [f], and
[g]: in the étalé topology intersect. This implies, in particular, that for every connected
neighbourhood U of x the basic neighbourhoods B(U, f) and B(l, g) intersect. This
implies by Lemma 7.1.20 below the existence of an open subset V of U such that f and
g agree on V. This, however, contradicts the identity principle, Theorem 4.1.5. Thus
the étalé topology is indeed Hausdorff in the holomorphic or real analytic case. v

Readers who are annoyed by the notation Et(%},) and Et(¢) will be pleased to
know that we will stop using this notation eventually. .
7.1.4 Etalé spaces

Let us now talk about étalé spaces in general. As with presheaves, we will give a
few definitions associated with the various structures we shall use.

Definition (Etalé space of sets) If (S, ) is a topological space, an étalé space of sets
over § is a topological space . with a surjective map n: ./ — §, called the étalé
projection, such that 7 is a local homeomorphism. The the stalk at x is ., = 17'(x). o

Given étalé spaces m: . — S and p: .7 — S over (8, ©), let us define
S xs T ={(a,p) € S X T | n(a) = p(p)}.
This space is given the relative topology from . X .7.

Definition (Etalé space of rings) If (S, ©) is a topological space, an étalé space of
rings over § is a topological space # with a surjective map n: % — 8 such that
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(i) Z is an étalé space of sets,
(ii) the stalk %, = m~1(x) is a ring for each x € 8,
(iii) the ring operations are continuous, i.e., the maps

RXsKHS(f, Q)P f+S€EH, RAXsA>(f,) > f-SEX
are continuous. °

7.1.19 Definition (Etalé space of modules) If (S, &) is a topological space and if # is an
étalé space of rings over 8, an étalé space of Z%7-modules over § is a topological space
& with a surjective map n: & — 8 such that
(i) & is an étalé space of sets,
(ii) the stalk & = m~!(x) is an Z,-module for each x € 8,
(iii) the module operations are continuous, i.e., the maps

EXsE3(0,T)>0+T€EE, AXsE3(f,o)> f-0€8

are continuous. .

A section of . over U € € is a continuous map o: U — .& for which o0 = ids.
The set of sections of .7 over U is denoted by I'(U;.%). The following properties of
sections are used often when proving statements about étalé spaces.

7.1.20 Lemma (Properties of sections of étalé spaces) Let (S, @) be a topological space, let
n: ./ — 8 be an étalé space (of sets, rings, or modules) over 8, and let x € S:

(i) if a € ./ then there exists a neighbourhood U of x and a section o of . over U such
that o(x) = «;

(if) if o and T are sections of . over neighbourhoods W and 'V, respectively, of x for which
o(x) = 1(x), then there exists a neighbourhood W C U of x such that o|W = |W.

Proof (i) Let O be a neighbourhood of a in .7, and suppose, without loss of generality,
that 7|0 is a homeomorphism onto its image. Theinverse : m(0) — O C .7 is continuous,
and so it a section.

(i) Let @ = o(x) = 7(x) and let O C . be a neighbourhood of a such that 7|0 is a
homeomorphism onto its image. Let U € U and V' C V be such that o(U’), (V") C O, this
by continuity of the sections. Let W = U’ Nn'V’". Note that ¢/W and 7|W are continuous
bijections onto their image and that they are further homeomorphisms onto their image,
with the continuous inverse being furnished by 7. Thus ¢ and 7 are both inverse for 7 in
the same neighbourhood of a, and so are, therefore, equal. u

Most of our examples of étalé spaces will come from Proposition 7.1.22 below. Let
us give a somewhat independent example.

7.1.21 Example (The constant étalé space) Let (S, ©) be a topological space and let X be a
set. We define .x = § x X and we equip this set with the product topology inherited by
using the discrete topology on X. One readily verifies that the projectionm: § XX — §
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given by projection onto the first factor then makes .“x into an étalé space. One also
verifies that sections of .#x over U € ¢ are regarded as locally constant maps from U
to X. .

We should verify that the étalé space of a presheaf is an étalé space in the general
sense.

7.1.22 Proposition (Et(%) is an étalé space) If (S, 0) is a topological space and if .F =
(F(U))yee is a presheaf (of sets, rings, or modules) over §, then mz: Et(#) — § is an
étalé space (of sets, rings, or modules) and Et(.7), = 7.
Proof By Proposition 7.1.14 the étalé projection is a local homeomorphism. Let us show
that the ring operations on Et(#) are continuous if .# = # is a presheaf of rings; the
corresponding result for modules is proved in an entirely similar manner. Let O C Et(%)
be open and let [f], [g]: € Et(#) be such that [f], + [g], € O. Without loss of generality,
suppose that f, ¢ € R(U) and, still without loss of generality, suppose that B(l, f + g) € O.
Then we have

Et(#) xs Et(Z) 2 B(U, f) xs B(U, g) 3 ([f]yr [g]y) B [f+ S]y €EBU, f+9)<cO,
where, of course,
B, f) xs B, g) = {([fly, [gl) € B, f) x B, g) | y =z}

This gives the desired conclusion since B(U, f) Xs B(U, g) is open in Et(#) Xs Et(Z).
The final assertion of the proposition is just the definition. u

7.1.23 Notation (Stalks) We shall write either .7, or Et(.%), for the stalk, depending on what
is most appropriate. .

Thus, associated to every presheaf is an étalé space. Moreover, associated to every
étalé space is a natural presheaf.

7.1.24 Definition (The presheaf of sections of an étalé space) For a topological space
(8,0) and an étalé space m: . — § (of sets, rings, or modules), the presheaf of
sections .’ is the presheaf Ps(.%) (of sets, rings, or modules) which assigns to U € &
the set I'(U;.”) of sections of . over U and for which the restriction map for U,V € &
with V C Wis given by ryy(0) = o|V.

In the case that . = # is an étalé space of rings, the ring operations are

(f + Q@) = f) +3(), (f Q) = f)-g(x)  f,§ €T R), x € U.
In the case that . = & is an étalé space of Z-modules, the module operations are
(0 +1)(x) =0(x) + 1(x), (f-0)x) = f(x)-0(x) otel(W;&), feT(W,Z), xel. o
It is readily seen that Ps(.#) is indeed a presheaf. Moreover, it is a sheaf.

7.1.25 Proposition (Ps(.¥) is a sheaf) If (S, ©) is a topological space and if . is an étalé space
(of sets, rings, or modules) over 8, then the presheaf Ps(.7’) is a sheaf.
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Proof Let U € ¢ and let (Us)sea be an open cover for U. Suppose that 0,7 € T'(U;.”)
satisfy o(x) = 7(x) for every x € U, and every a € A. It is obvious, then, that o = 7. Now
again let U € ¢ and let (U;)sea be an open cover for U. Suppose that for each a € A there
exists g, € I'(Ug; .7’) such that 0,4, (x) = 04,(x) for every x € U,;, N U,,. Then, for x € U, define
0(x) = 04(x) where a € A is such that x € U,. This is clearly well-defined. We need only
show that ¢ is continuous. But this follows since g, is continuous, and ¢ agrees with ¢, in
a neighbourhood of x. [

Now we have a process of starting with a presheaf .7 and constructing another
presheaf Ps(Et(.%)), and also a process of starting with an étalé space .”” and construct-
ing another étalé space Et(Ps(.#’)). One anticipates that there is a relationship between
these objects, and we shall explore this now. It is convenient at this point to refer ahead
to the notion of an étalé morphism from Definition 7.1.32.

7.1.26 Proposition (Et(Ps(.)) = .77) If (8, ©) is a topological space and if ./ is an étalé space (of
sets, rings, or modules) over 8, then the map a: . — Et(Ps(.¥")) given by a(o(x)) = [o]y,
where o: U — . is a section over U, is an isomorphism of étalé spaces.

Proof First, let us verify that a is well-defined. Suppose that local sections ¢ and 7 of
. agree at x. By Lemma 7.1.20 it follows that ¢ and 7 agree in some neighbourhood
of x. But this means that [o], = [7],, giving well-definedness of a. To show that a is
injective, suppose that a(o(x)) = a(7(x)). Thus [o]y = [7]y and so ¢ and 7 agree on some
neighbourhood of x by Lemma 7.1.20. Thus o(x) = 7(x), giving injectivity. To show
that « is surjective, let [0]y € Et(Ps(.#)). Again since sections of .7 are local inverses for
the étalé projection, it follows that a(o(x)) = [o]y, giving surjectivity. It is also clear that
a(.#y) € Et(Ps(.7))x. Let us verify that the ring operations are preserved by «a when . = %
is an étalé space of rings; an entirely similar verification holds for étalé spaces of modules.
The definition of the ring operation on stalks of Et(Ps(.#’)) ensures that

a(o(x) + ©(x)) = [0 + 1]y = [0]x + [7]x = a(0(x)) + a(T(x))

and

a(o(x) - 1(x)) = [0 - t]x = [0]; - [T]x = a(o(x)) - a(T(x))
i.e., a is a ring homomorphism of stalks. It thus remains to show that a is continuous. Let
[c]y € Et(Ps(.#)) and let O be a neighbourhood of [¢], in Et(Ps(.#)). By Lemma 7.1.20,
there exists a neighbourhood U of x such that B(U, [¢]) is a neighbourhood of x contained
in O. Here [0] is the section of Et(Ps(.#’)) over U given by [¢](y) = [c],. Since a(a(y)) = [c]y
for every y € U, it follows that a(B(U, 0)) = B(U, [0]), giving continuity as desired. [

Now let us look at the relationship between a presheaf .# and the presheaf
Ps(Et(.7#)). We again refer ahead to Definition 7.1.32 for the notion of a morphism of
presheaves.

7.1.27 Proposition (Ps(Et(#)) =~ .7 if .7 is a sheaf) If (S, 0) is a topological space and if
F = (F(W))ee is a sheaf (of sets, rings, or modules) over S, then the map which assigns
to s € F(U) the section By(s) € I'(W; Et(.F)) given by py(s)(x) = [slx is an isomorphism of
presheaves.
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Proof We must show that py is a bijection for each U € ¢. To see that fy is injective,
suppose that py(s) = pu(t). Then [s]y = [t]y for every x € U. Thus, for each x € U
there exists a neighbourhood Uy € U of x such that r 1 (s) = rua, (f). By condition (i) of
Definition 7.1.6 it follows that s = t. For surjectivity, let 0 € I'(I; Et(.%#)). Let x € U and let
Uy be aneighbourhood of x and sy € F(Uy) be such that o(x) = [sy]y. Since sections of Et(.%)
are local inverses for the local homeomorphism 71+ (by definition of the étalé topology),
sections of Et(.#) agreeing at x must agree in a neighbourhood of x. In particular, there
must exist a neighbourhood of x, V, € U,, such thato(y) = [s,], forevery y € V,. It follows
from Definition 7.1.6(i), therefore, that '

TV Viy (W, (Sx1) = T, v, Wy, (Sx2)

for every xq,x, € U. By Definition 7.1.6(ii) it follows that there exists s, € F(U) such that
0(x) = [sy]y = [s5]y for every x € U, as desired.
Now we prove that fy is a ring homomorphism if .# = # is a sheaf of rings. Indeed,

Bu(f + )(x) = [f + glx = [flx + [glx = Pu(/)(x) + Pu(g)(x)

and

Bu(f - )(x) =[f - glx = [flx - [g]x = (Bu(/)(X)) - (Bu(Q)(x)),

showing that fy is a homomorphism of rings.
An entirely similar proof gives that fy is a module homomorphism in the case that
F = & is a sheaf of Z-modules. u

Thus, one of the nice things about the étalé space is that it allows one to realise a
presheaf as a presheaf of sections of something, somehow making the constructions
more concrete (although the étalé spaces themselves can be quite difficult to under-
stand). This correspondence between sheaves and étalé spaces leads to a common
abuse of notation and terminology, with the frequent and systematic confounding of a
sheaf and its étalé space. Moreover, as we shall see in Section 7.1.8, there is a degree of
inevitability to this, as some constructions with sheaves lead one naturally to building
étalé spaces.

7.1.5 The sheafification of a presheaf

While it is true that many of the presheaves we will encounter are sheaves, cf. Propo-
sition 7.1.7, it is also the case that some presheaves are not sheaves, and we saw a
natural and not so natural example of this in Example 7.1.8. As we saw in those
examples, a presheaf may fail to be a sheaf for two reasons: (1) the local behaviour of
restrictions of sections does not accurately represent the local behaviour of sections
(failure of the presheaf to be separated); (2) there are characteristics of global sections
that are not represented by local characteristics (failure of the presheaf to satisfy the
gluing conditions). The process of sheafification seeks to repair these defects by shrink-
ing or enlarging the sets of sections as required by the sheaf axioms. The construction
is as follows.
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7.1.28 Definition (Sheafification) Let (S, ©) be a topological space and let .# = (F(U))ues be
a presheaf (of sets, rings, or modules) over 8. The sheafification of .7 is the presheaf
F* = (F*(U)hes such that an element of F*(U) is comprised of the (not necessarily
continuous) maps o: U — Et(.#) such that

(i) Mz eoo=idy,
(i) for each x € U there is a neighbourhood V C U of x and s € F(V) such that
o(y) = ry,(s) for every y € V, and

(iii) if U,V € @ satisfy V C U, then the restriction map r;

1.y is defined by
n(@)(x) = a(x)

for eachx € V.
(iv) If # = Z is a presheaf of rings, the ring operations on R*(U) are defined by

[f]t + [g]r = [f+ g]xr [f]r ' [g]t = [f ' g]xl
where [f]., [g]: € F(V) for some sufficiently small neighbourhood V € U of x and

for x € U.
(v) If # = & is a presheaf of Z-modules, the module operations on E*(U) are defined
by

[sls + [ty = [s +t]y, [flx-[slx =[f - sl

where [s]y, [t]y € E(V) and [ f]; € R(V) for some sufficiently small neighbourhood
V C U of x and for x € U. °

As one hopes, the sheafification of a presheaf is a sheaf.

7.1.29 Proposition (The sheafification is a sheaf) If (S, ©) is topological space and if .7 is a
presheaf (of sets. rings, or modules) over 8, then
(i) 7+ = Ps(Et(#)),

(ii) the sheafification 7™ is a sheaf, and

(iii) if x € 8, the map 1,.: F, — F[ defined by 1,([s]x) = [0s]x where a,(y) = [s]y for y in
some neighbourhood of x, is a bijection.

Proof (i) It is clear that we have an inclusion from Ps(Et(.%)) into .#7, just by definition
of Z*. We shall show that this inclusion is a surjective mapping of presheaves. For
surjectivity of the natural inclusion, let U € ¢ and let T € F*(U). For x € U there exists
a neighbourhood U, € U of x and s, € F(U,) such that ©(y) = [s,], for each y € U,.

Define o, € T'(Uy; Et(#)) by 0.(y) = [s4],. Thus we have an open cover (U,)yey of Uand a
corresponding family (o,),ey of sections of Et(.%). Since Et(.7) is separated, it follows that

M, Ay, MU, (0x,) = T, 1, e, (0x,)s

cf. the proof of surjectivity for Proposition 7.1.27. Now we use the gluing property of
Ps(Et(.#)) to assert the existence of ¢ € F(U) such that ryy (0) = o, for every x € U. We
clearly have o(x) = 7(x) for every x € U, giving surjectivity.
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(i) This follows from the previous part of the result along with Proposition 7.1.25.

(iif) To prove injectivity of the map, suppose that t,([s]y) = tx([t]y). Then there exists
a neighbourhood U of x such that s and ¢ restrict to U and agree on U. Thus o5 = o on
U. For surjectivity, let [c], € .#{. Then there exists a neighbourhood V of x such that ¢ is
defined on V and a section s € F(V) such that o(x) = [s]y. Thus tx([s]y) = 0s(x) = o(x), giving
surjectivity. u

The sheafification has an important “universality” property. To state this property,
we refer ahead to the notion of a morphism of presheaves in Definition 7.1.32.

7.1.30 Proposition (Universality of the sheafification) If (S, @) is a topological space and if
Fisa presheaf (of sets, rings, or modules) over 8, then there exists a morphism of presheaves
(wues from F to F* such that, if & is a sheaf over 8 and if (Py)yep is a morphism of
presheaves from .7 to (f then there exists a unique morphism of presheaves (®; Jyes from F*
to & satisfying Oy = O} oy for every U € 0.

Moreover, gf F is a sheaf and if (iy)yes is a morphism of presheaves (of sets, rings, or
modules) from .7 to #* having the above property, then there exists a unique isomorphism of
presheaves from F to F*.

Proof Let us define : F(U) — F*(U) by ty(s)(x) = [s]y. Now, given a morphism (®y)ycs
of presheaves from .7 to ¥, define a morphism ((I)u+ Jues of presheaves from . * to Ps(Et(¥))
by

(D’J([S]x) = [Py(9)]x-

We should show that this definition is independent of s. That is to say, we should show

that if [s]y = [t]¢ for every x € U then @y(s) = Py(t). Since [s]y = [t]\ for every x € U, for

each x € U there exists a neighbourhood Uy such that ry (s) = r, (t). Since (Py)yes is a

morphism of presheaves, we have

o (Pu(s)) = ruu (Pult)).

Since ¥ is separable, we infer that ®y(t) = ®y(s), as desired.

Recall from Proposition 7.1.27 the mapping fy from G(U) to I'(U; Et(¥¢)) and that the
family of mappings (fu)uees defines a presheaf 1som0rphlsm by virtue of ¢ being a sheaf.
Sorting through the definitions glves Dy (s) = ﬁu ofDu o1y, which gives the existence part
of the first assertion by taking ®; ﬁ‘ oCDJ For the uniqueness part of the assertion,
note that the requirement that ®y(s) = CI),Z o1y((s) implies that

Dj([sk) = Pu(s)(x) = By =@y (Is]y),

as desired.

Now we turn to the second assertion. Thus.# = (F(U))ycs is a sheaf and foreach U € &
we have a mapping iy : F(l) — F(U) such that, for any presheaf morphism (O )yc from .7
to 4, there exists a unique presheaf morphism (®y )y from Z t0 ¥ such that Oy = &y o iy
for every U € ¢. Applying this hypothesis to the presheaf morphism (n()yes from .#
to .Z* gives a unique presheaf morphism (ky)ies from Z to Z* such that i = kyoly
for every U € ¢. We claim that, for every U € &, Ky is a bijection from E(U) to FH(U).
Fix U € @. In the same manner as we deduced the existence of ky, we have a mapping
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fRu: FY(U) — F(U) such that iy = Ryown. Thus iy = Ry okyoiy. However, we also have
fu = idpqy) °fu and so, by the uniqueness part of the first part of the proposition, we have
Ry o ky = idpqy. In like manner, ky o Ry = idgy), giving that &y is the inverse of xy. u

To better get a handle on the sheafification of a presheaf, let us consider the sheafi-
fication of the presheaves from Example 7.1.8.

Examples (Sheafification)

1. We revisit Example 7.1.8—1 where we consider the presheaf % ,(R) of functions
of class C" on M = R that were bounded on their domains. Here we claim that
the sheafification of 4], ,(R) is simply Ps(Et(%7)). By Proposition 7.1.29(i) we have
Ps(Et(¢],4(R))) = (¢.,4(R))". It is also clear that Et(%,,(R)) = Et(¢}) since the
restriction of a function being bounded does not restrict stalks, and so we have our
desired conclusion.

2. Let us determine the sheafification .% of the constant sheaf .7y over a topological
space (8, @) associated with a set X. As in Example 7.1.15 we have %y =~ § X X
and so, first of all, sections of .7} over U € & are identified with maps from U to
X. Let 0: U — X be a section of .#; under this identification and let x € U. By
definition of .7} there exists a neighbourhood V € U of x and s € Fx(V) such that
o(y) = s for every y € V. Thus o is locally constant. Since any section of Et(.%#x) is,
by our construction of the étalé topology on Et(.#x) in Example 7.1.15 and by our
definition of the constant étalé space .”x in Example 7.1.21, locally constant, the
sheafification of .#x is exactly Et(%x).

3. Here we consider the case of Example 7.1.8-1 where 8 = {0,1}. Here, because of
the discrete topology on § and because of the character of the restriction maps for
the presheaf .# under consideration, we have .%, = [0y ]p and .%; = [0}y)];. Thus the
sheafification .7 * has zero stalks. In this case the presheaf has to shrink to obtain
the sheafification, in order to account for the fact that the germs are trivial. .

Let r € Zso U {o0,w,hol}. Suppose that we have a presheaf & of %},-modules,
where M is a smooth, real analytic manifold or holomorphic manifold, as required.
In these cases, the sheafification of & is also a presheaf of ¢},-modules by virtue of
Proposition 7.1.29(iii).

7.1.6 Morphisms of presheaves and étalé spaces

Next we study maps between presheaves and étalé spaces.

Definition (Morphism of presheaves and étalé spaces) Let (S, ©) be a topological
space, let 4 = (G(U))uer and 77 = (H(U)ues be presheaves (of sets, rings, or modules)
over §, and let m: . — § and p: .7 — § be étalé spaces (of sets, rings, or modules)
over 8.

(i) (a) A morphism of the presheaves ¢ and .7# is an assignment toeach U € &' a
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mapping @y : G(U) — H(U) such that the diagram

Dy

G(U) —=H(W) (7.2)

r,v l lfu,\'

G(V) == H(V)

commutes forevery U, V € & withV C U. We shall often use the abbreviation
D = (Dy)yes. If 4 and 7 are sheaves, @ is called a morphism of sheaves.

(b) If ¥ = o/ and .# = # are presheaves of rings, we additionally require that
My is a homomorphism of rings.

(c) If¥Y = & and 7 = .7 are presheaves of Z-modules, we additionally require
that @, be a homomorphism of R(U)-modules.

(i) (a) Anétalé morphism of . and .7 is a continuous map ®: . — .7 such that
D) € T
(b) If ¥ = o/ and .7 = % are étalé spaces of rings, we additionally require that
®|.eZ is a homomorphism of rings for every x € 8.

(c) If ¥ = &and .7 = .7 are étalé spaces of Z-modules, we additionally require
that ®|%, is a homomorphism of #Z,-modules for every x € §. .

Let us show that the preceding notions are often in natural correspondence. To
do so, let us first indicate how to associate an étalé morphism to a morphism of
presheaves, and vice versa.

Let ® = (®y)yer be a morphism of presheaves (of sets, rings, or modules) .# and ¢
over (8, ©). Define a mapping Et(®): Et(.#) — Et(¥) by

Et(@)([s].) = [Pu(s)]x,

where U is such that s € F(U). We denote by Et(®), the restriction of Et(®) to Et(.%#),.

This construction is well-defined by virtue of the commuting of the diagram (7.2).

That Et(®) is a homomorphism of rings or modules when restricted to stalks follows

from the commuting of the diagram (7.2) and the definition of the ring or module

operations operation on stalks. Finally, the mapping Et(®) is verified to be continuous
formalise what's as the basic neighbourhood B(l, s) is mapped to the basic neighbourhood B(U, Py(s)).
e Let B € image(Et(®)) and write 8 = [®y(s)]y. Consider the open set B(U, ®y(s)) and

let

[t], € E{(@) " (B(U, Dy(s)))-

Write t € F(V). Thus [Oy(t)], = [Py]r and so Py(t) and Py(s) have equal restrict ion to
some W C UNYV. Thus

B(W, rv,w(h)) S BH®) ™ (B(U, Pu(s))),

showing that Et(®) (B (U, Dy (s))) is open.
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Conversely, if ®: . — .7 is an étalé morphism of étalé spaces (of sets, rings, or
modules) over (8, @), if U € &, and if o € I'(U;.7), then we define a presheaf morphism
Ps(®) from Ps(.¥) to Ps(.7) by requiring that Ps(®)y (o) € I'(U; .7) is given by

Ps(@)y (0)(x) = ©([o].).

This construction is well-defined since @ is continuous. It is also obvious that Ps(®)
commutes with restrictions. Moreover, it clearly defines a homomorphism of rings or
modules when the étalé space possess these structures.

Moreover, one readily verifies, merely by sorting through definitions, that the
diagram
Bz

Ps(Et(Z)) F (7.3)
Ps(Et(®)) \' (4]
Ps(EL()) —— 9

commutes when .7 and ¢ are sheaves, and where 8 > and f4 are the presheaf isomor-
phisms from Proposition 7.1.27. In like manner, the diagram

Et(Ps(.¥)) —Z— .7 (7.4)
Et(Ps(®)) j L]
Et(Ps(.7)) T

Qg

always commutes, where a» and a7 are the étalé isomorphisms from Proposi-
tion 7.1.26.
The following property of étalé morphisms is sometimes useful.

Proposition (Etalé morphisms are open) If (8, O) is a topological space, if m: ./ — §
and p: 7 — § are étalé spaces (of sets, rings, or modules) over 8, and if ®: . — .7 is an
étalé morphism, then ® is an open mapping.
Proof Let O C .7 be open and, for [c]y € O let U be a neighbourhood of x such that
the basic neighbourhood B(U, o|U) is contained in O. Note that, by continuity, ® maps
B(U, o|U) to B(U, D og|U). Thus this latter neighbourhood is contained in ®(0). Moreover,
®(0) is the union of these neighbourhood, showing that it is open. u

In closing, let us understand the morphisms of sheaves can be themselves organised
into a sheaf. Suppose that %# = (R(U))cs is a presheaf of rings over a topological space
(8,0) and let & = (E(U))uece and .# = (F(U))ucr be presheaves of Z-modules over 8.
For U € & we then have the restrictions &|U and .#|U which are presheaves of #|U-
modules. Let us define a presheaf Hom(&'; %) by assigning to U € ¢ the collection of
presheaf morphisms from &|U to .% |U. Thus a section of Hom(&; %) over U is a family
((DV)UQV open where Oy € HomR(V)(E(V); F(V)) IfU,ve ¢ Satisfy V C U, the restriction
map rqy,y maps the section (Py)swopen OVer U to the section (®yy)ysw open OVer V. We

formalise what's
above and below!
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render Hom(&';.7) a sheaf of Z-modules as follows. Let U € ¢, consider sections
(Py)ov open and (\I/V)UQVOPC,, over U, and let f € R(U). Then we define

(Pv)uzvopen + (Wyvuzvopen = (Pv + Wy)uovopens

f- (((DV)llQVopcn) = (ruv(f) - Pv)uzv open

One readily verifies that this does indeed provide the structure of an %#-module. Let
us give a useful property of the presheaf Hom(&'; 7).

7.1.34 Lemma (The presheaf of morphisms of sheaves is a sheaf) Let (S, &) be a topological
space, let Z# = (R(U))yeo be a sheaf of rings over 8, and let & = (E(U))yew and 7 = (F(U)yeo
be sheaves of %-modules over 8. Then Hom(&'; F) is a sheaf.

Proof LetU € ¢ and let (Ug)sca be an open cover of U. Let (Pyhiovopen and (Wy)uovopen
be sections over U whose restrictions to each of the open sets U,, a € A, agree. Let V C U
be open and let s € E(V). By hypothesis, ®yqy,(sa) = Wymy,(ss) for every a € A and
sa € E(VNU,). This implies that

Dy(rv vy, (8)) = Wy(rv,ye, (s)
for everya € A, and so
vy (Py(s)) = rvveu, (Wv(s)

for every a € A. Since .7 is separated, this implies that ®y(s) = Wy(s). We conclude,
therefore, that Hom(&'; ) is separated.

Now again let U € ¢ and let (U;).ca be an open cover for U. For each a € A let
(Pa,v )11, 2v open be a section of Hom(&'; F) over U, and suppose that the restrictions of the
sections over U, and U, agree on the intersection U, N U, for every a,b € A. Let V C U be
open and let s € E(V). By hypothesis

Dy, v, (Fvan, voun, (1, v, (8))) = @p vauame, (Fvnu,, voanu, (rv,vau, ()

for everya,b € A. Thus

v, vaume, (Pa,vent, (v, v, (5))) = rvau, vau, mu, (Pe,veu, (rv,veu, (5)))

for every a,b € A. Since .7 is has the gluing property, we infer the existence of t € F(V)
such that

rvyvou, (F) = Pa v, (rv,vae, ()

for every a € A. We define ®y by asking that ®y(s) = . One can check directly, if tediously,
that ®y € Homgy)(E(V); F(V)). Thus the section (®y)yovopen Of Hom(&; . F) over U so
defined has the property that it restricts to (g, v)i,ovopen for eacha € A. |

Let is give a few examples of morphisms of sheaves.

7.1.35 Examples (Sheaf morphisms)
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1. Let r € {oo,w} and let M be a smooth or real analytic manifold. Let us consider
the sheaf ,(f;'\,(T.M) of germs of sections of the bundle of k-forms. Since the exterior

derivative d commutes with restrictions to open sets, d induces a morphism of

sheaves:

. {pr {pr .

CIA T AR T
This is a morphism of sheaves of Abelian groups, but not a morphism of sheaves
of ¢};-modules, since d is not linear with respect to multiplication by C"-functions.

2. We let M be a holomorphic manifold and consider the sheaf ff/"\",,s(TtM) of germs of
sections of the bundles of forms of bidegree (r,s), s € Zs. Thisis a sheaf of
%*(M; C)-modules, of course. The mappings d and d of Section 4.4.4 commute
with restrictions to open sets, and so define morphisms of sheaves

. @™ @G . @ @G>
d: ’//\’VS(TmM) - ’/Ar*l,s(T.‘CM)/ . ’//\"S(T"L'M) - "/Ar,sn(-r.cM)'
These are morphisms of sheaves of Abelian groups, but neither of these are mor-
phisms of 47 C-modules, since neither d nor d are linear with respect to multipli-
cation by smooth functions.

3. If in the preceding example we instead regard ¥+, as sheaves of €},"-modules,

A ) 7
then, by Proposition 4.4.11(v) and because d annihilates holomorphic functions, d
is a morphism of ¢}"-modules. .

7.1.7 Subpresheaves and étalé subspaces

We wish to talk about some standard algebraic constructions in the sheaf setting,
and this requires that we know what a subsheaf is.

Definition (Subpresheaf, étalé subspace) Let (S, @) be a topological space, let .7 =
(F(U))er and 4 = (G(U))yepr be presheaves (of sets, rings, or modules) over §, and let
n: . — Sand p: .7 — § be étalé spaces (of sets, rings, or modules) over 8.
(i) The presheaf .7 is a subpresheaf of ¢ if, for each U € ¢, F(U) € G(U) and if the
inclusion maps iz: F(U) — G(U), U € €, define a morphism iz = (i7 1 )uecs Of
presheaves (of sets, rings, or modules). If .7 and ¢ are sheaves, we say that .7

is a subsheaf of ¢.
(i) The étalé space .” is a étalé subspace of .7 if ./, C .7, and if the inclusion map
from .# into .7 is a étalé morphism (of sets, rings, or modules). .

As with morphisms, we can often freely go between subpresheaves and étalé
subspaces. Let us spell this out. Suppose that .# is a subpresheaf of . The commuting
of the diagram (7.2) ensures that the mapping Et(i #): [s], = [izu(s)]; from Et(.#), to
Et(¢), is injective (and is a ring or module homomorphism, when appropriate), with
U being such that s € F(U). As we saw above, this injection of Et(.%) into Et(¥) is
an étalé morphism and so Et(.%) is a étalé subspace of Et(%). Conversely, if .7 is
a étalé subspace of .7 then we obviously have I'(l; ) € I'(l;.7"). We can see that
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(F(W; . Muee is asubpresheaf of (I'(U; .77) ues, using the definition of the ring or module
operations on sections of étalé spaces when appropriate.

As for the passing to and from these constructions, our observations above ensure
that, when .# and ¢ are sheaves, the presheaf Ps(Et(.%)) corresponds under the re-
striction of B4 to Ps(Et(.#)) to the subpresheaf .#. And conversely, the étalé space
Et(Ps(.#)) always corresponds, under the restriction of a - to Et(Ps(.%)), to ..

In order to illustrate that the preceding discussion has some content, let us give an
explicit example showing when one has to exercise some care.

Example (Distinct presubsheaves with the same stalks) Let us consider the
presheaf ¢} of functions of class C" on R. This is obviously a subpresheaf of itself.
Moreover, in Example 7.1.8-1 we considered the subpresheaf (ﬁb’fj 4(R) of bounded
functions of class C'. These étalé subspaces have the same stalks since the condition
of boundedness places no restrictions on the germs. However, the presheaves are
different. Thus the character of a presubsheaf is only ensured to be characterised by

its stalks when the presheaf and the presubsheaf are sheaves. .

The following characterisation of étalé subspaces is sometimes useful.

Proposition (Etalé subspaces are open sets) If (S, ¢) is a topological space, if p: 7 —
8 is an étalé space of sets, rings, or modules over 8, and if ¥ C .7 is such that ./ L2 INT +0
for each x € 8, then the following statements are equivalent:
(i) .7 is an étalé subspace of .7 ;
(i) . is an open subset of 7 and, when appropriate, .7y = ./ N 7 is a subring or
submodule of 7.
Proof The implication (i) = (ii) follows from Proposition 7.1.33. For the converse
implication, we need only show that the inclusion of . into .7 is continuous. Let [s], € .7
and let O be a neighbourhood of [s]y in .7. Let U be a neighbourhood of x such that
B(U,s) is contained in 0. Since B(U,s) is a neighbourhood of [s]y in . the continuity of
the inclusion follows. |

7.1.8 Kernel, image, etc., of morphisms

One can expect that it is possible to assign the usual algebraic constructions of
kernels, images, quotients, etc., to morphisms of presheaves and étalé spaces. The
story turns out to have some hidden dangers that one must carefully account for. In
this section we work with sheaves of modules over a prescribed sheaf of rings.

Definition (Kernel, image, quotient, cokernel, coimage presheaves) Let (S, &)be a
topological space, let #Z = (R(U))yc» be a presheaf of rings over §, and let & = (E(U))yes
and .%# = (F(U))yes be presheaves of Z-modules over 8. Let ® = (Py()yc» be a presheaf
morphism from & to .Z.

(i) The kernel presheaf of @ is the presheaf of Z-modules defined by
kerprc(q))(u) = ker(q)u)-
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(i) The image presheaf of @ is the presheaf of Z-modules defined by
image Prc(CID)(U) = image(®Dy).

(i) If & is a subpresheaf of .7#, the quotient presheaf of .7 by & is the presheaf of
Z#-modules defined by

F [pre&(U) = F(W)/ EU).
(iv) The cokernel presheaf of @ is the presheaf of Z-modules defined by
cokerp(P)(U) = coker(Py) = F(U)/ image(Py).
(v) The coimage presheaf of @ is the presheaf of Z-modules defined by

coimage

ore(P)(U) = coimage(Py) = E(U)/ ker(Py).

In all cases, the restriction maps are the obvious ones, induced by the restriction maps
ryy and r[,, for & and .7, respectively. Thus, for example, the restriction map for
ker(®) is _

kerpo(P)(U) 3 5 5 17 (5) € kerp(P)(V),

the restriction map for image_ (®) is

pre

image_ (P)(U) 3 t > [ (t) € image_ (P)(V),

pre pre

and the restriction map for .7 /& is
F [pre&(U) 35 + E(U) - r'{,v(s) +E(V) € F [peE (V). .

Using the properties of presheaf morphisms and subpresheaves, one readily veri-
fies that the given definitions of the restrictions maps make sense.
Let us first see that the stalks of the presheaves just defined are what one expects.

7.1.40 Proposition (Stalks of algebraic constructions are algebraic constructions of
stalks) Let (S, ©) be a topological space, let # = (R(U))uece be a presheaf of rings over 8, let
& = (E(W))eo and Z = (F(U))yee be presheaves of #-modules over 8, and let ® = (Oy)yeo
be a presheaf morphism from & to .%. Then the following statements hold:
(i) kerpre(P)x = ker(Et(®D),) for every x € §;

(i) image prc((I))x = image(Et(®P),) for every x € §;

(iii) if & is a subpresheaf of 7, then Et(F [pre&)x = Et(F)x/EH(E ) for every x € §;

(iv) cokerpre(P)« = coker(Et(D)y) for every x € §;

(v) coimage (®). = coimage(Et(D),) for every x € 8.

pre
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Proof (i) Note that & € kerpre(®), if and only if there exists a neighbourhood U of x
and s € ker(®y) such that a = ryy(s). Since Et(®@),(a) = r(Pu(s)) we conclude that
@ € kerpre(®P)y if and only if Et(®),(a) =

(ii) Note that f € image,,.(P)y if and only if there exists a neighbourhood U of x and
s € E(U) such that g = ry (D (s)). Leta = ry(s). Since Et(D) () = 1y (Py((s)) we conclude
that g € image,, . (P)x if and only if g € image(Et(Phi)y).

(i) We have B € Et(#/pre&)y if and only if there exists a neighbourhood U of x and
t € F(U) such that g = ry (t + E(U)). Since the restriction maps are group homomorphisms,
one directly verifies that

rux(t + E(U)) = rga(t) + ru(E(U))

and since r(E(U)) = Et(&), (again, this is directly verified), this part of the result follows.
(iv) and (v) follow from the first three assertions. |

As we are about to see, not all parts of the preceding definition are on an equal
footing. In fact, what we shall see is that the kernel presheaf is pretty nicely behaved,
while the other constructions need more care if one is to give them the interpretations
one normally gives to these sorts of algebraic constructions. Here is one good property
of the kernel.

Proposition (The kernel presheaf is often a sheaf) Let (S, &) be a topological space,
let # = (R(U))yees be a presheaf of rings over 8, let & = (E(U))hyep and .7 = (F(U))UE,, be
sheaves of Z%7-modules over S, and let @ = (Dy)ues be a presheaf morphism from & to #. Then

kerp(®P) is a sheaf.
Proof Let U € 0’ let (Uz)qea be an open cover for U, let s, € kerpre(P)(U), and suppose
that r{[ W, (s) = ru W, (t) foreverya € A. Since & is a sheaf, s = t, and so kerpre (D) is separated.
Next let U € &, let (Ua)sea be an open cover for U, let s, € kerpre(P)(Uy), a € A, satisty

y
u” Uy Ny (5a;) = r”(l(l,,z,lhzl Ly, (sa,) for every a € A. Since & is a sheaf, there exists s € E(U)

such that ru " (s) = s, for each a € A. Moreover,

u Uy ((I)u(S)) = (I)?.L, (sa) =0,
and since .7 is separated we have ®y(s) = 0 and so s € kerp(®)(U), as desired. |

By example, let us illustrate that the image presheaf is not generally a sheaf, even
when the domain and range are sheaves.

Example (The image of a presheaf morphism may not be a sheaf) Let § = S', let
r € Zso U {oo,w}, let & = YI, be the sheaf of functions of class C" on S!, and let .Z be
the presheaf of nowhere zero C-valued functions of class C" on S'. We consider both
& and .7 to be presheaves of Abelian groups, with the group structure being addition
in the former case and multiplication in the latter case. One may verify easﬂy that .7

is also a sheaf. Let us consider the presheaf morphism exp from & to .7 defined by
asking that

expy(H(x,y) =™, (x,y) e U



7.1.43

7.1.44

18/05/2012 7.1 Elementary sheaf theory 25

Let Uy and Us be the open subsets covering S' defined by
W={xyesly<d, lW=iwyes|y>-L)

Let f; € C'(U;) be defined by asking that f,(x, y) be the angle of the point (x, y) from
the positive x-axis; thus fi(x,y) € (—%”,% . In like manner, let f, € C'(U,) be the
function defined by asking that f(x, y) be the angle of the point (x, y) measured from
the positive x-axis; thus fo(x, y) € (-5, %). Note that exp, (fi) and exp, (f2) agree on
U; N U,. However, there exists no f € C'(S') such that exp.,(f) agrees with expy, ( f1
on U, and with exp, (f2) on U,. Thusi image  (exp) is not a sheaf.

The example shows that, in order to achieve a useful theory, we need to modify
our definitions to make sure we are dealing with objects where the stalks capture the
behaviour of the presheaf. The following definition illustrates how to do this.

Definition (Kernel, image, quotient, cokernel, coimage for presheaves) Let (S, ©)
be a topological space, let Z = (R(U))ycs» be a presheaf of rings over §, let & = (E(U))yco
and .# = (F(U))yes be presheaves of #Z-modules over 8, and let ® = (Oy)yes be a
presheaf morphism from & to .%.

(i) The kernel of @ is the sheaf ker(®) of sections of Et(kerp.(®)).

(i) The image of @ is the sheaf image(®) of sections of the sheafification of
imagepn(fl))
(i) If & is a subpresheaf of .7, the quotient of .7 by & is the sheaf .7 /& of sections

of the sheafification of .7 /e
(iv) The cokernel of @ is the sheaf coker(®) of sections of the sheafification of

cokerp. (D).
(v) The coimage of @ is the sheaf coimage(®) of sections of the sheafification of
coimage (D). .

pre

Note that ker(®) and kery,.(®) are in natural correspondence by Propositions 7.1.41
and 7.1.27. We think of ker(®) as the presheaf of sections of the étalé space of ker,.(P)
in order to be consistent with the other algebraic constructions. While these algebraic
constructions involve a distracting use of sheafification, it is important to note that, at
the stalk level, the constructions have the hoped for properties.

Proposition (Agreement of stalks of algebraic constructions) If (S, ©) is a topologi-
cal space, if # = (R(U))yes 1s a presheaf of rings over 8, if & = (E(U)hyep and .7 = (F(U)hyes
are presheaves of Z#-modules over 8, and if ® = (Dy ey is a presheaf morphism from & to .7,
then the following statements hold:
(i) kerpre(P)y = ker(d)y;
(i) image PrL(CI))x image(®),;
(iii) if & is a subpresheaf of 7, then (F [pre&)x = (F | &)x;

(iv) cokerpre(P)x =~ coker(d),;
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(v) coimage . (®)x =~ coimage(®P),.

pre
(In all cases, “=" stands for the isomorphism from a presheaf to its sheafification from part (iii)
of Proposition 7.1.29.)

Proof All of these assertions follow from Proposition 7.1.29(iii) and Proposition 7.1.40. R

While the presheaf image imagepw(CD) of a morphism of sheaves & and .7 is not
necessarily a sheaf, we can nonetheless naturally identity the image with a subpresheaf
of 7.

7.1.45 Proposition (The image presheaf is a subpresheaf of the codomain) If (S, ©) is
a topological space, if Z = (R(U))yes is a presheaf of rings over 8, if & = (E(U))yes and

F = (F(U))ues are sheaves of #-modules over S, and if ® = (Dy)ues is a presheaf morphism

from & to .F, then there exists a natural injective presheaf morphism from image(®) into 7.

Proof By Proposition 7.1.30, since we have an inclusion ig = (io(U))yes of imageprc((l)) in

7, we have a natural induced morphism ig, = (i(;,u Juee of presheaves from image(®) into

7. We need only show that this induced morphism is injective. To do this, we recall the

notation from the proof of Proposition 7.1.30. Thus we have i;:,u = 131_11 o i;l‘;lu, where fy is

as in Proposition 7.1.27 (for the presheaf .7) and where

ig([s]) = liou(s)l.

Since .7 is a sheaf, fy is an isomorphism, and so is injective. So we need only show that

i:;u is injective. Suppose that [ig((s)]; = 0. Thus there exists a neighbourhood V of x such
that

ruv(iou(s)) = iov(r,v(s)) = 0,
using the commuting diagram (7.2). Injectivity of igy gives ryy(s) = 0 and so [s], = 0,
which gives the desired injectivity of i:;u‘ u

We now turn our attention to algebraic constructions associated to étalé morphisms
of étalé spaces of modules.

7.1.46 Definition (Kernel, image, quotient, cokernel, coimage for étalé spaces) Let (S, ©)
be a topological space, let # be an étalé space of rings over §, let m: . — 8§ and
p: 7 — & be étalé spaces of #Z-modules over §, and let ®: . — .7 be an étalé
morphism.

(i) The kernel of @ is the étalé subspace ker(®) of . given by ker(®), = ker(d|.#).

(i) The image of @ is the étalé subspace image(®) of .7 given by image(®), =
image(®d|.7).

(iii) If .7 is a étalé subspace of .7, the quotient of .7 by .7 is the étalé space .7 /.
over 8 given by (7 /.%), = Z,/.%,, with the quotient topology induced by the
projection from .7 to .7 /..

(iv) The cokernel of @ is the étalé space coker(®) = .7 / image(D).

(v) The coimage of @ is the étalé space coimage(®) = .7/ ker(®D). .

Let us verify that the above étalé spaces are indeed étalé spaces.



18/05/2012 7.1 Elementary sheaf theory 27

7.1.47 Proposition (Kernels, images, and quotients of étalé spaces are étalé spaces)
If (8, ©) is a topological space, if # is an étalé space of rings over 8, if m: . — § and
p: 7 — 8 be étalé spaces of Z#-modules over 8, and if : . — 7 is an étalé morphism, then
the following statements hold:

(i) ker(D) is an étalé subspace of .;
(i) image(D) is an étalé subspace of .7,
(iii) if .7 is a étalé subspace of .7, then .7 |./ is an étalé space;
(iv) coker(®) is an étalé space;
(v) coimage(®) is an étalé space.

Proof (i) Let C: 8 — .7 be the zero section. Thus ((x) is the zero element in .#,. We
claim that C is continuous. Let O be a neighbourhood of {(x). Since the group operation is
continuous and since C(x) + C(x) = C(x), there exist neighbourhoods 01 and O3 of {(x) such
that

fa+B] (,f) €01 x02N. X .7} CO.

Let P = O N 02N Oz, noting that P is a neighbourhood of ((x). By shrinking O; and
Oy if necessary, we may suppose that n|P is a homeomorphism onto 7(P). Let a € P
and let y = n(a). Note that n(a + a) = n(a) = y, and since n|P is a homeomorphism
we have a + a = a, giving a = ((y). Thus P = {(n(P)), showing that {(P) € O, giving
the desired continuity of C. Since sections are local homeomorphisms (they are locally
inverses of the étalé projection), it follows that image(C) is open. Since @ is continuous,
ker(®) = (I)_l(image(C)) is open and by Proposition 7.1.38 it follows that ker(®) is a étalé
subspace.

(ii) This follows from Propositions 7.1.33 and 7.1.38.

(iii) Let us denote by m»: .7 — .7 /.7 the mapping which, when restricted to fibres, is
the canonical projection and let us denote by p»: .7 /. — § the canonical projection. We
must show that p » is a local homeomorphism. Since p» = p o7~ and since compositions
of local homeomorphisms are local homeomorphisms (this is directly verified), it suffices
to show that 7 » is a local homeomorphism. Clearly 7~ is continuous by the definition of
the quotient topology. We claim that 7t is also open. Let B(U, 7) be a basic neighbourhood
in .7. Note that

(B, 1)) = B(U, T +.7),

where 7 + .7 means the section (not necessarily continuous, since we are still trying to
understand this) of .7 /.7 over U given by (7 + .7)(x) = 7(x) + .. Thus a typical point in
njfl(n, #(B(U, 7)) has the form 7(x) + o(x) for x € U and where ¢ is a section of .# defined on
some neighbourhood V € U of x. Thus B(V, 7|V + 0) is a basic neighbourhood of 7(x) + o(x)
in n;}(n,y(B(u, 7))) showing that the latter set is open, and hence 7 ~(B(U, 7)) is open in
the quotient topology. This shows that basic open sets in .7 are mapped to open sets in
7|, showing that r » is open, as claimed. To complete this part of the proof it suffices
to show that 7 | B(U, 7) is a bijection. For injectivity, suppose that 7(x) + .7 = 1(y) + .7,
for x, y € U. Clearly this implies that x = y, giving injectivity. Surjectivity is equally clear.

Parts (iv) and (v) follow from the first three parts. |
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7.1.9 Exact sequences of presheaves and étalé spaces

We are interested in looking at exact sequences of presheaves and étalé spaces. Let
us give the definitions so that we first know what we are talking about.

Definition (Exact sequence of presheaves) Let (S, &) be a topological space, let
= (R(U))uesr be a presheaf of rings over 8, let | C Z be of one of the following forms:

J=10,1,...,n), [=Zs0, J=2,

let & = (Ej(U))yes, j € ], be a family of presheaves of Z-modules, and let ®; = (P )yeo
be a presheaf morphism from &; to &j,,, whenever j,j +1 € |. If j, € | is such that
jo—1,jo, jo +1 € ] then the sequence

. ®jy-1 . @j, . @jy+1
T éjju—] (5}0 (5}0+1
is exact at j, if ker(®;, ;) = image(®P;,_1 ) forevery U € 0. .

Definition (Exact sequence of étalé spaces) Let (S, ) be a topological space, let Z
be an étalé space of rings over §, let | C Z be of the form

I={Olll"'ln}/ ]=ZZO/ ]=ZI

let ./}, j € ], be a family of étalé spaces of #Z-modules, and let ®;: ./; — .}, be an
étalé morphlsrn whenever j,j +1 € |. If j, € ] is such that j, — 1, jo, jo + 1 € ] then the
sequence

10 1 y0+1
’ /[}0 /Ilo /()+1 e

is exact at j if ker(®;,) = image(®;,1). .

In order to investigate the relationships between the presheaf kernel and the kernel
étalé space, let us state the following result which essentially says that, for sheaves,
the two notions are equivalent.

Proposition (Characterisations of the kernel presheaf) If (S, ©) is a topological space,
if # = (R(W))uee is a presheaf of rings over 8, if & = (E(U))uew and F (F(U))uen are
presheaves of %-modules, and if ® = (Dy)uey is a presheaf morphism from & to ., then the
following statements are equivalent:

(i) kerpre(P)(W) is the zero section of E(U) for each U € O;
(if) Dy is injective for each U € 0.
Furthermore, the preceding conditions imply that
(iii) Et(D), is injective for every x € §,
and this last condition implies the first two if & is separated.
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Proof The equivalence of (i) and (ii) is an immediate consequence of the usual statement
that a morphism of modules is injective if and only if it has trivial kernel.

(i) = (iii) Let a € Et(&)y and suppose that Et(®),(«) = 0. Suppose that a = ry«(s) for
some neighbourhood U of x. It follows from Lemma 7.1.20 that there exists a neighbour-
hood V € U of x such that ry v(Py(s)) = 0. Using the commuting of the diagram (7.2) and
the hypothesis that @y is injective we conclude that ryy(s) = 0, giving a = 0.

(if) = (ii) Here we need to make the additional assumption that & is separated.
Suppose that s € E(U) is such that @y (s) is the zero section of F(U). Thus

Et(®),(rx(5)) = rx(Pu(s)) =0

for every x € U and so by hypothesis we have r ,(s) = 0 forevery x € U. By Lemma 7.1.20,
for each x € U there exists a neighbourhood U, € U of x such that ryy (s) = 0, and an
application of the fact that & is separated gives s = 0. [

The same sort of thing can be carried out for cokernels, but with one important
difference.

Proposition (Characterisations of the cokernel étalé space) If (S, ©) is a topological
space, if Z# = (R(U))yep is a presheaf of rings over 8, if & = (E(UW)hep and .F = (F(U)hes
are presheaves of %-modules, and if ® = (Py)yep is a presheaf morphism from & to %, then
the following statements are equivalent:

(i) cokerp.(®)(U) is the zero section of F(U) for each U € O
(i) Dy is surjective for each U € 6.
Furthermore, the preceding conditions imply that
(iii) Et(D), is surjective for every x € 8.

Proof The equivalence of (i) and (ii) follows from the usual assertion that a morphism of
modules is an epimorphism if and only if its cokernel is trivial. We shall prove that (ii)
implies (iii). Let p € Et(.#), and write = r«(t) for t € F(U). The hypothesised surjectivity
of @y ensures that t = ®y(s) for some s € E(U). Thus

B = rx(t) = rux(@u(s)) = Et(D)x(r«(s)),
which gives the result. [

The important distinction to make here, compared to the corresponding result for
kernels, is that the third assertion is not equivalent to the first two, even when & and
.7 are sheaves. Let us give an example to illustrate this.

Example (Surjectivity on stalks does not imply surjectivity) Let r{co, w}. We shall
work with the manifold S'. Note that we have a canonical one-form, which we denote
by dO, on S' arising from the trivialisation T'S' ~ §' x R. Moreover, any C"-one-form
a on an open subset U C S' can be written as @ = ¢gd6|U for some C'-function ¢ on
U, and so we identify C’-one-forms with C'-functions. We consider the sheaf ({I, of
functions of class C" on S'. For f € ¢/, (U) let df = f'dO[U. We let ® be the presheaf
morphism from %7, to ¢, defined by Dy ( f) = f' for f € C"(U). (Here we are thinking
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of ¢7, as being a sheaf of Abelian groups with the group operation of addition.) We
claim that the induced map on stalks is surjective. Indeed, if (x,y) € St if Uis a
connected and simply connected neighbourhood of (x, y) in !, and if ¢ € C'(U), we
can define f € C'(U) such that df = g by taking f to be the indefinite integral of
g, with the variable of integration being the usual angle variable. Since the germ
EX(¢7, ),y 1s determined by the value of functions on connected and simply connected
neighbourhoods of (x,y), it follows that Et(®), ) is surjective. However, ®g: is not
surjective since, for example, dO ¢ image(®Ds:). .

The preceding example notwithstanding, it is true that surjectivity on stalks, com-
bined with injectivity on stalks, does imply surjectivity globally.

7.1.53 Proposition (Correspondence of isomorphisms and stalk-wise isomorphisms) If
(8, O) is a topological space, if # = (R(U))uee is a presheaf of rings over 8, if & = (E(U))uece
and # = (F(U))uees are sheaves of %7-modules, and if ® = (Py)es is a presheaf morphism
from & to .Z, then the following statements are equivalent:

(i) Oy : E(U) — F(U) is an isomorphism for every U € O;

(i) Et(D)y: Et(&')x — Et(.F)y is an isomorphism for every x € 8.
Proof That (i) implies (ii) follows from Propositions 7.1.50 and 7.1.51. It follows from
Proposition 7.1.50 that injectivity of Et(®), for each x € 8§ implies injectivity of @y for
every U € &. So suppose that Et(®), is bijective for every x € 8. Let U € ¢ and let t € F(U).
For x € U let a € Et(&), be such that Et(®),(a) = ry ,(t). Let a = r,(sy) for some s, € E(U).

By Lemma 7.1.20 let U, € U be a neighbourhood of x such that ryy (f) = i (P (sy))-
Now let x, y € U and note that

Dy, g, (ruue, (5x)) = P, (g uen, (),

since both expressions are equal to .y, my, (f). By injectivity of @y, (Which follows since
we are assuming that Et(®), is injective for every x € §), it follows that

M, (Sx) = rug e, (Sy)-

Thus, since & is a sheaf, there exists s € E(U) such that ryy (s) = s¢ for every x € W
Finally, we claim that ¢(s) = t. This follows from separability of .7 since we have ryy (t) =
r, (Py(sy)) for every x € U. |

The preceding three results and example indicate that exactness of sequences of
presheaves and étalé spaces will not necessarily correspond. We will be interested
mainly in looking at thing at the level of stalks, so let us consider carefully the impli-
cations of properties holding at the stalk level.

7.1.54 Proposition (Characterisations of the kernel) If (S, ©) is a topological space, if # =
(R(W)ee is a presheaf of rings over 8, if & = (E(U)yes and .# = (F(U))yep are sheaves
of #-modules, and if ® = (Dy)yep is a presheaf morphism from & to .F, then the following
statements are equivalent:

(i) image(Et(®)) is the zero section of Et(F#) over §;



18/05/2012 7.1 Elementary sheaf theory 31

(ii) kerpre(P)x = 0 for every x € §;
(iii) ker(®), = 0 for every x € §;

(iv) Dy is injective for every U € O;
(v) Et(®), is injective for every x € §;
(vi) Et(®) is injective.

Proof These equivalences were either already proved, or follow immediately from defi-
nitions. u

The same sort of thing can be carried out for cokernels, but with one important
difference.

7.1.55 Proposition (Characterisations of cokernel) If (S, ©) is a topological space, if # =
(R(U))ee is a presheaf of rings over S, if & = (E(U))ues and .7 = (F(U))uee are presheaves
of #-modules, and if ® = (Py)ues is a presheaf morphism from & to .F, then the following
statements are equivalent:

(i) image(Et(®)) = Et(.%);
(i) cokerp.e(P), = 0 for every x € §;
(iii) coker(®), = 0 for every x € §;
(iv) Et(®D), is surjective for every x € §;
(v) Et(D) is surjective.
Proof As with the preceding result, these equivalences were either already proved, or
follow immediately from definitions. u

Once again, we point out the missing assertion from the statement about cokernels
as compared to the statement about kernels.

7.1.56 Punchline The above lengthy sequence of more or less elementary statements is
really meant to point out that exact sequences of presheaves are not the same as exact
sequences of the corresponding étalé spaces, even when the presheaves are sheaves.
This distinction is important, and essentially lies at the heart of some parts of sheaf
theory. We shall explore this further in Chapter 8. But, for the moment, let us
simply merely say that, when we use the words “exact sequence of sheaves,” we shall
always refer to the exact sequence of the étalé spaces, since it is these that are easy to
understand, since they can be understood stalk-wise. .

7.1.10 Direct sums, direct products, and tensor products of sheaves

In this section we give a few additional, more or less straightforward, constructions
with presheaves and sheaves.

7.1.57 Definition (Direct sums and direct products of presheaves) Let (S, ¢) be a topo-
logical space, let Z = (R(U))uce be a presheaf of rings over 8, and let &, = (E,(U))ues,
a € A, be a family of presheaves of Z-modules over 8.
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(i) The direct product presheaf of the presheaves &;, a € A, is the presheaf [[,.4 &
over § defined by

(H &)W = H Es(U) = {¢p: A = UeaEa(W) | §(a) € E,U) for alla € A}.

acA acA
If U,V € O satisfy V C U the restriction map ryy for &,.44; is defined by
ruv(P)(a) = ry ,($(a)), where r{ , is the restriction map for &, a € A.

(i) The direct sum presheaf of the presheaves &, a € A, is the presheaf ®,.,4, over
8 defined by

(@ucada)(W) = @4en Eo(U)
= {cp € H E.(U) | ¢(a) = 0 for all but finitely many a € A}.

agA
The restriction maps are the same as for the direct product. .

7.1.58 Definition (Direct sums and direct products of étalé spaces) Let (S, &) be a topo-
logical space, let # be an étalé space of rings over §, and let ,: ./, — §,a € A, be a
family of étalé spaces of #Z-modules over 8.

(i) The direct product of the étalé spaces ., a € A, is the set [[,., ., defined by

[[7={¢: 4> Vieas| d(@) € S forallae Aand

acA

T, (0(a1)) = T4,(0(a2)) for all ay, a; € A},

together with the étalé projection I'T defined by I'l(¢») = m,(¢p(a)) for some (and so

forall)a € A.
(i) The direct sum of the étalé spaces .7, a € A, is the subset @47, of [[,c4 7
defined by

Bpen- Sy = {(p € H Z | ¢(a) = {0} for all but finitely many a € A},

acA
and with the étalé projection being the restriction of that for the direct product. e

In order for the definition of the direct sum of étalé spaces to be itself an étalé space,
we need to assign an appropriate topology to the set. This is more or less easily done.
Recall that the product topology on [],., .7, is that topology generated by sets of the
form [[,.4 O,, where the set

lae Al 0, # 74}

is finite. The product topology is the initial topology associated with the family of
canonical projections pr,: [[,ca S — 7, i.e., the coarsest topology for which all of
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these projections is continuous (see below). The topology on ©.c4.7; is that induced by
the product topology on [],., -#;. One concludes that sections of [],., %, over U are
precisely the maps o: U — [],., -7, such that pr, <o is a section of ./, over U for each
a € A. Sections 0 of @,c4.7, over U have the property that there exists ay, ..., a4y € Aand
sections oy, ..., 0 of .7, ..., .7, respectively, such that

O'n!.(X), a= a}' € {a'l/ . '/ak}/
0, aélay,...,a

pr, co(x) = {
for each x € U.
As direct sums are of most interest to us, let us record some properties of these.

Proposition (Properties of the direct sum presheaf) Let (S, ©) be a topological space,
let Z# = (R(U)eo be a presheaf of rings over 8, and let &, = (E,(U))yes, a € A, be a family of
presheaves of %-modules over S. Then
(i) ®aeady is a sheaf if A is finite and if &, is a sheaf for eacha € A and
(") GBaEAEt(g)a) = Et(GBaEAé;)'
Proof (i) Let U € ¢ and let (Uj ), be an open cover for U. Suppose that ¢, ¢" € @yeaEa(U)
satisfy ryy, (¢) = ry,(¢’) for each b € B. Then r’{llub((p(a)) = r%/ub((/)’(a)) for eacha € A

and b € B. From this we deduce that ¢(a) = ¢’(a) for each a € A, giving separatedness of
@,eaés- Next suppose that we have ¢y, € @,c4 Eo(U;) for each b € B satisfying

MUy My, O, (Poy) = T2y, 105 0, (D)

for every by, by € B. This implies that
rt{lbl ,u,,l ﬂu[,z ((Pbl (ﬂ)) = "{11,2 ,‘u,,] n‘u,,z ((Pbl (ﬂ))
for everya € A and by, by € B. Thus, for each a € A, there exists ¢, € &, such that

7ﬂulub((f)n) = (Pb(a)

for each b € B. Now define ¢p: A — Uea&; by ¢(a) = ¢y, and note that ¢ € @gea &y since A
is finite.

(i) We need to show that (@,c46:)x = ®peadsx for each x € 8. First let [p]y € (Bpeada)x-
Then there exists a neighbourhood U of x and ay, .. ., a; € A such that ¢ is a section over U
and ¢(a) # 0if and only if a € {ay, ..., a;}. Thus [¢],, as a map from A to U,e4 &, 4, is given
by [¢]i(a) = [Pp(a)], and so is an element of @,c4&, . Conversely, if [P], € Bpend , then
there exists a neighbourhood U of x and a4, ..., ar € A such that ¢ is a section over U and
¢(a) # 0if and only ifa € {ay, ..., ax}. Thus [p]y € (Breadi)x- [ |

Note that in the first statement of the previous result, it is generally necessary that
A be finite as the following example shows. Note that this example also gives an
example of a presheaf of 4}-modules that is not a sheaf.
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Example (Infinite direct sums of sheaves are not generally sheaves) Letr € Z.,U
{00, w, hol}, let r" € {00, w, hol} be as required, and let F = R if r € Z>y U {00, w} and let
F = Cif r = hol. We take M = F and consider the presheaf &;.;_ ¢. Let

U=F\ Uiz, lxeF]| x| =}

L0

and let -
u; =D'(0, /) \D'(0,j - 1), J € Zso,

so that (U;)jez., is an open cover for U. Define ¢; € &z ,C'(U;) by

1, kefl,...,j},
0, otherwise.

dj(k)(x) = {

Note, however, that there is no section ¢ € &z ,C'(U) which restricts to ¢; for each
] € Zg since any such section ¢ has the property that, for any k € Z., ¢(k) is nonzero,
being nonzero restricted to U. .

Now we turn to tensor products.

Definition (Tensor products of presheaves) Let (S, &) be a topological space, let
H# = (R(U)her be a presheaf of rings over §, and let &, = (E,(U))es, a € {1,2}, be
presheaves of Z-modules over 8. The tensor product presheaf of the presheaves &;
and &; is the presheaf &1 ® &, = (E; ® E2(U))uer defined by

E; ® Ex(U) = E+(U) ® Ex(U).
If U,V € & satisfy V C U the restriction map ryy for &; ® &; is defined by
ryv(a ® az) = r‘%{,v(al) ® "ﬁ,v(az),
where My 18 the restriction map for &, a € {1,2}, and where a, € E,(U), a € {1,2}. .

Definition (Tensor products of étalé spaces) Let (8, ©) be a topological space, let
Z be an étalé space of rings over §, and let m,: ., — §, a € {1,2}, be étalé spaces of
Z#-modules over 8. The tensor product of the étalé spaces .1 and .3 is /1 ® %5 =
Et(Ps(.#1) ® Ps(.#2)). .

Taking tensor products does not preserve sheaves.

Example (Tensor products of sheaves may not be sheaves) Let X = [0,1] X Z and
define an equivalence relation ~; in X by declaring that (x, k) ~1 (x2, k) if either

1. (x1, k1) = (x2,kp) and xy, x5 ¢ {0, 1},
2. X1 = 0, Xy = 1, and k1 - —kz, or
3. X1 = 1, X2 = 0, and k1 = —kz.
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We also let A = [0,1] and define an equivalence relation ~y in A by declaring that
X1~ X2 if either

1. X1 = X2 and X1,X2 & {0,1},
2. xy=0and x, =1, or
3. X1 =1andx2=0.

We denote Y = X/ ~; and B = A/ ~¢ and denote by 71;: X — Y and np: A — B the
canonical projections. Define a projection 1t: Y — B by n([x,k]) = [x]. This can be
thought of as a discrete version of the Mdobius vector bundle. By & we denote the
presheaf over B whose sections over Ul C B are continuous sections of 7: Y — B. This

presheaf can be easily verified to be a sheaf.
Define ul, uz by

ul = T(O((%/ %))I uZ = T(O([OI };) U (%l 1])
Define sections sy, t; € E(U;) by s1([x]) = 1and t;([x]) = —1. Define sections s,, > € E(U>)
by
11, x€]0, %),
(i) = {—1, xe (1]

and

1
(lx]) = { Lo xells)

1, xe1]
On(%, }1) C U; NU; we have
S]®t1=1®—1=52®t7_

and on (;31, %) C Uy NU, we have

S]®t1=1®—1=—1®1=52®t2.

Note that U; U U, = B and that the only continuous section over B is the zero section.
Thus there can be no sections s, t € E(B) such that rgy,(s®t) =s1®t and rgp,(s®t) =
S2 ® tr. .

7.2 Vector bundles and sheaves

In this section we consider some relationships between vector bundles and sheaves
of ¢),-modules. The purpose of studying these relationships is twofold. On the one
hand, one gets some useful intuition about sheaves of modules by understanding how
they relate to vector bundles. On the other hand, the tools of sheaf theory provide a
means to say some useful, and sometimes nontrivial, things about vector bundles.
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7.2.1 From stalks of a sheaf to fibres

Let r € {00, w, hol} and let 7: E — M be a vector bundle of class C". As we have seen
in Example 7.1.5, this gives rise in a natural way to a sheaf, the sheaf ¢ of sections
of E. The stalk of this sheaf at x € M is the set ¢ of germs of sections which is a
module over the ring %7, of germs of functions. The stalk is not the same as the fibre
E., however, the fibre can be obtained from the stalk, and in this section we see how
this is done. We shall couch this in a brief general algebraic construction, just to add
colour.

Recall that if R is a commutative unit ring, if | C R is an ideal, and if A is a unital
R-module, |A is the submodule of A generated by elements of the form rv where r € |
and v € A.

Proposition (Vector spaces from modules over local rings) Let R be a commutative
unit ring that is local, i.e., possess a unique maximal ideal m, and let A be a unital R-module.
Then A/mA is a vector space over R/m. Moreover, this vector space is naturally isomorphic to
(R/m)®g A.
Proof We first prove that R/mis a field. Denote by 71,: R — R/m the canonical projection.
Let | € R/m be an ideal. We claim that

IT={reR| mu(r) el

is an ideal in R. Indeed, let r{, > € 1 and note that 7y (1] — 12) = (1) = Tm(r2) € | since 1ty
is a ring homomorphism and since | is an ideal. Thusr; —r; € I. NowletreTands € R
and note that 71,(s7) = 1,(5)71,(r) € |, again since 7, is a ring homomorphism and since |
is an ideal. Thus | is an ideal. Clearly m C Tso that either T = m or T = R. In the first case
| = {Og + m} and in the second case | = R/m. Thus the only ideals of R/m are {0g + m} and
R/m. To see that this implies that R/m is a field, let  + m € R/m be nonzero and consider
the ideal (r + m). Since (r + m) is nontrivial we must have (r + m) = R/m. In particular,
1= (r + m)(s + m) for some s + m € R/m, and so r + m is a unit.

Now we show that A/mA is a vector space over R/m. This amounts to showing that
the natural vector space operations

(u+mA)+ (v+mA)=u+v+mA, (r+m)(u+mA)=ru+mA
make sense. The only possible issue is with scalar multiplication, so suppose that
r+m=s+m, u+mA=0v+mA
sothats =r+afora € mand v = u + w for w € mA. Then
sv=(r+a)u+w)=ru+au+rw+aw,

and we observe that au,rw,aw € mA, and so the sensibility of scalar multiplication is
proved.
For the last assertion, note that we have the exact sequence

0 m R R/m 0
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By right exactness of the tensor product [Hungerford 1980, Proposition IV.5.4] this gives
the exact sequence
m®RA—A— (R/m)@g A——=0

noting that R®g A = A. By this isomorphism, the image of m®g A in A is simply generated
by elements of the form rv for r € m and v € A. That is to say, the image of m®g A in A is
simply mA. Thus we have the induced commutative diagram

with exact rows. We claim that there is an induced mapping as indicated by the dashed
arrow, and that this mapping is anisomorphism. To define the mapping, leta € (R/m)®gA
and let v € A project to a. The image of § is then taken to be v + mA. It is a straightforward
exercise to show that this mapping is well-defined and is an isomorphism, using exactness
of the diagram. |

With this simple algebraic construction as background, we can then indicate how
to recover the fibres of a vector bundle from the stalks of its sheaf of sections.

7.2.2 Proposition (From stalks to fibres) Lef r € {co, w, hol} and let F = R if r € {oo, w} and
let F = Cifr=hol Let m: E — M be a vector bundle of class C'. For x € M let m, denote
the unique maximal ideal in €,,. Then the following statements hold:

(i) the field 7\, /my is isomorphic to I via the isomorphism
[flx + my > f(x);
(ii) the C m/my-vector space G ¢ Jm Y] is isomorphic to E. via the isomorphism
[El + e > E(x);
(iii) the map from (€7 ,,/my) @ Y. ¢ to Ey defined by
([flx + my) ® [E]x P f(Xx)E(x)

is an isomorphism of F-vector spaces.

Proof (i) The map is clearly a homomorphism of fields. To show that it is surjective, if
a € T then a is the image of [f], + m, for any germ [f], for which f(x) = a. To show
injectivity, if [f], + m, maps to 0 then clearly f(x) = 0and so f € m,.

(if) The map is clearly linear, so we verify that it is an isomorphism. Let vy € Ey. Then
vy is the image of [&]y + mx%xi g for any germ [£]y for which &(x) = v,. Also suppose that
[E]¢ + mt‘ﬂ g maps to zero. Then {(x) = 0. Since ¥ is locally free (see the next section in
case the meaning here is not patently obvious), it follows that we can write

Ew) = AWM + -+ fiu(Wnm(y)
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for sections 11,..., 1, of class C" in a neighbourhood of x and for functions fi, ..., fi
of class C" in a neighbourhood of x. Moreover, the sections may be chosen such that
(m(y),---,nm(y)) is a basis for E, for every y in some suitably small neighbourhood of x.
Thus

&(x)=0 = fl(x) = =fm(x) =0,

giving & € mx%x’E, as desired.
(iif) The F-linearity of the stated map is clear, and the fact that the map is an isomor-
phism follows from the final assertion of Proposition 7.2.1. [

This result relates stalks to fibres. In the next section, specifically in Theorem 7.2.7,
we shall take a more global view towards relating vector bundles and sheaves.

In the preceding result we were able to rebuild the fibre of a vector bundle from
the germs of sections. There is nothing keeping one from making this construction for
a general sheaf.

Definition (Fibres for sheaves of ‘rf';-modules) Let r € {00, w,hol} and let F = R if

r € {oo,w}and let F = C if r = hol. Let M be a manifold of class C", and let .7 be a sheaf
of ¢}-modules. The fibre of .7 is the F-vector space E(.#), = %, /m,%,. .

This definition of fibre agrees (or more precisely is isomorphic to), of course, with
the usual notion of the fibre of a vector bundle 7: E - M when .% = @¢; this is the
content of the proof of Proposition 7.2.2. Let us look, therefore, at a case of a sheaf
which is not equivalent to a vector bundle in this sense.

Example (Fibres for a non-vector bundle sheaf) Let r € {00, w,hol} and let F = R
if r € {oo,w} and let F = C if r = hol. Let us take M = F and define a presheaf

T7 = (IH(U)hy open DY

_ o, 0gl,
L) = {{f eC’W | f(0)=0}, 0el

One directly verifies that .7 is a sheaf. Moreover, .7/ is a sheaf of 4 -modules; this
too is easily verified. Let us compute the fibres associated with this sheaf. The germs
of this sheaf at x € I are readily seen to be given by

7r (d:\'",]F' x:’tor
70 = Y = (Iflo € €, | fx) =0}, x=0.

Thus we have
%“;F/mx(@lyzF, x#0,
mo/mj = F, x=0.

E(%’)Y = {

Note that the fibre at 0 is “bigger” than we expect it to be. We shall address this shortly.
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Let us expand on this example a little further. Let us consider the morphism
D = (Py)y gpen Of €3-modules given by

Dy (f)(x) = xf(x),

i.e., @ is multiplication by the function “x.” Note that .7 is the image presheaf of ®
since, as we showed in the proof of Lemma 1 from the proof of Proposition 4.3.4, if f
is a function defined in a neighbourhood U of 0, we can write f(x) = xg(x) for some
g € C'(U). By Proposition 7.1.41 the kernel presheaf for @ is a sheaf. If ¢ € ker(dy)
then it is clear that g(x) = 0 for x # 0, and then continuity requires that g(x) = 0 for
x = 0. That is to say, ker(®) is the zero sheaf and so the fibres are also zero. .

7.2.2 Locally finitely generated and locally free sheaves

In this section we introduce a class of sheaves that correspond exactly with vector
bundles. We give an initial definition for general sheaves of modules since it adds a
little context to the discussion, a context that will be best appreciated in Section 7.3.

Definition (Locally finitely generated sheaf, locally free sheaf) Let (S, &) be a topo-
logical space, let # = (R(U)hcs be a sheaf of rings over §, and let .# = (F(U))ycs be a
sheaf of Z-modules. The sheaf .7 is

(i) locally finitely generated if, for each xy € S, there exists a neighbourhood U of x
and sections sy, ...,s € F(U) such that [s1]y, ..., [sc]« generate the Z-module .7,
for every x € U and is

(i) locally free if, for each x, € M, there exists a neighbourhood U of x; such that
F(U) is a free R(U)-module. .

The following elementary result shows that, in the locally finitely generated case,
the local generators can be selected from the generators for a particular stalk.

Lemma (Local generators for locally finitely generated sheaves) Let (S, ©) be a
topological space, let # = (R(U))es be a sheaf of rings over 8, and let F = (F(U))yes be a
locally finitely generated sheaf of %-modules. If, for xo € 8, [s1]x,, - - [Sk]xu are generators for
the %y,-module .7, , then there exists a neighbourhood U of X, such that [s1]y, ..., [sklx are

generators for .F, for each x € W.

Proof By hypothesis, there exists a neighbourhood V of x(; and sections t,...,t € F(V)
such that [t1]y, ..., [t,]; generate .%, for all x € V. Since [s],, . .., [sk]y, generate .7, ,

k
[tll.\’() = Z[a;]X()[Sj]X()I l € {11 .. -/nl}r
=1
for germs [aj lv, € €" ,,. By definition of germ, there exists a neighbourhood U such that
g 1440 .\’(),M y g g

k
t(x) = Za (x)sj(x), lef{l,...,m}, x €l
j=1
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Taking germs shows that the generators [t ]y, ..., [t]s of %, for x € U are linear combina-
tions of [s1]y, ..., [Sk]y, as desired. [ |

With some general definitions and a basic result under our belts, let us consider
locally free, locally finitely generated sheaves of ¢},-modules, as these are what are of
principle interest for us here.

7.2.7 Theorem (Correspondence between vector bundles and locally free, locally
finitely generated sheaves) Let r € {oo,w,hol} and let F = R if r € {oo,w} and let
F=Cifr=hol Let m: E — M be a vector bundle of class C". Then 4t is a locally free,
locally finitely generated sheaf of ¢},-modules.

Conwversely, if .7 is a locally free locally finitely generated sheaf of ‘€},-modules, then there
exists a vector bundle 7: E — M of class C" such that .7 is isomorphic to 4.

Proof First let m: E — M be a vector bundle of class C" and let xyp € M. Let (V, ) be a
vector bundle chart such that the corresponding chart (U, ¢) for M contains xy. Suppose
that (V) = p(U) X F" and let 1y, ..., nm € T"(E|U) satisty P (n;(x)) = (¢(x), e;) for x € U and
JE(L,... ,m}. Let us arrange the components rf;, Jk €{1,...,m}, of the sections 1, ..., Nm
in an m X m matrix:

q%(x) e 1],1"(x)
nw = : .
nye) o My (x)

Now let & € T"(E|U), let the components of & be &, k € {1,...,k}, and arrange the compo-

nents in a vector
&)

&(x) =

&n(x)
Now fix x € U. We wish to solve the equation
‘S(x) = fl(x)7]l(x) +---+ fm(x)']m(x)
for f1(x),..., f"(x) € F. Let us write
f! (X)
f =
f"l(x

Writing the equation we wish to solve as a matrix equation we have

&(x) = n(x) f(x).

Therefore,
f@) =7 (0)&),

noting that 7(x) is invertible since the vectors 1;(x), ..., 1,,(x) are linearly independent. By
Cramer’s Rule, or some such, the components of 1! are C’-functions of x € U, and so &
is a C'(U)-linear combination of 1y, ..., Ny, showing that I"(E|UW) is finitely generated. To
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show that this module is free, it suffices to show that (11,...,7y) is linearly independent
over C'(Ul). Suppose that there exists f1,..., f™ € C"(U) such that

f'm+--+ " = OpE).

Then, for every x € U,

FlOmE@ -+ + " @) =0 = fl@)=--=f"x)=0,

giving the desired linear independence.
Next suppose that .7 is a locally free, locally finitely generated sheaf of 4|;-modules.
Let us first define the total space of our vector bundle. For x € M define

Ex = Fy/myFs.

By Propositions 7.2.1 and 7.2.2, E; is a [F-vector space. We take E = Ugem Ex. Letx € M
and let Uy be a neighbourhood of x such that F(U,) is a free C'(Uy)-module. By shrinking
Uy if necessary, we suppose that it is the domain of a coordinate chart (Uy, ¢y). Let
S1,.-.,5m € F(Uy) be such that (sy, ..., s,) is a basis for F(Uy). Note that ([s1],...,[su]:) isa
basis for .7, for each y € U,. Itis straightforward to show that

([51]}/ + myr-?.yr ceey [Srn]y + my,_?v)
is then a basis for Ey. For y € U, the map

al([sl]y +my) + - +a"([su]y + my) - @,...,a")

is clearly an isomorphism. Now define V, = Lojyeul Ey and define iy: Vy — ¢y (Uy) X F™ by

Yx(@' ([s1]y +my) + - +a"([smly +my)) = @u(y), @', a").

Thisis clearly a vector bundle chart for E. Moreover, this construction furnishes a covering
of E by vector bundle charts.

It remains to show that two overlapping vector bundle charts satisfy the appropriate
overlap condition. Thus let x, y € M be such that U, N U, is nonempty. Let (sy,...,s,) and
(t1,...,ty) be bases for F(U,) and F(U,), respectively. (Note that the cardinality of these
bases agrees since, for z € U, NU,, ([s1], - - -, [sm)2) and ([t1)s, - -, [tw].) are both bases for
F, cf. [Hungerford 1980, Corollary IV.2.12].) Note that

m

k
MU, (S)) = Z fimu o (b
k=1

for fjk € C'(Uy NUy), jik € {1,...,m}. At the stalk level we have

m

[Sj]: = Z[f]k]z[tk]z;
k=1
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from which we conclude that

m

(5 +me2) = ) F @I +me72),
k=1

From this we conclude that the matrix

fi@) - f,},(z)
f= : -
lm(z) f;m

is invertible, being the change of basis matrix for the two bases for E.. Moreover, the
change of basis formula gives

m m

Pyovi(z @ dM) = (dyo0' @), ()@ ) df@))

}:1 j:]

for every z € Uy N Uy, where z = ¢,(z). Thus we see that the covering by vector bundle
charts has the proper overlap condition to define a vector bundle structure for E.
It remains to show that ¢ is isomorphic to .%#. Let U € M be open and define
Dy : F(U) — I"(EJU) by
Dy (s)(x) = [s]y + myFy.

For this definition to make sense, we must show that ®y(s) is of class C". Let y € U
and, using the above constructions, let (sy,...,sy) be a basis for F(U,). Let us abbreviate
V = UNU,. Note that (ryy(s1),...,r,v(sm)) is a basis for F(V). (To see that this is so,
one can identify F(U) with I'(1; Et(.#)) using Proposition 7.1.27, and having done this the
assertion is clear.) We thus write

1
ru(s) = frrg(st) + -+ g u(sm)-

In terms of stalks we thus have

[5]: = [fI]:[SI]z +---+ [fm]z[Srn]:

for each z € V. Therefore,

Dy (s)) = f1@)([s1): + moF) + -+ [ ([S): + Mo ),

which (recalling that U, and so also V, is a chart domain) gives the local representative of
Oy(s)on'Vas

2 (z,(f oy (@) [ oy (2))).

Since this local representative is of class C" and since this construction can be made for any
y € U, we conclude that ®y(s) is of class C'.

Now, to show that the family of mappings (Py)y open is an isomorphism, by Proposi-
tion 7.1.53 it suffices to show that the induced mapping on stalks is an isomorphism. Let
us denote the mapping of stalks at x by @,. We again use our constructions from the first
part of this part of the proof and let (s1,...,sy,) be a basis for F(lU). Let us show that @,
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is surjective. Let [{], € %;'M, supposing that & € I"(E|U). Let V = U N Uy. Let the local
representative of £ on V in the chart (Vy, {’x) be given by

y o (g, (f oo (), .., fMedl ()
for f1,..., f™ € C'(V). Then, if

[s]y = [fllx[SI]x +--- [fm]x[Sm]x,

we have @y([s]y) = [{]y. To prove injectivity of @y, suppose that @y([sy]) = 0,. This means
that @,([s]y) is the germ of a section of E over some neighbourhood U of x that is identically
zero. We may without loss of generality assume that U € U,. We also assume without loss
of generality (by restriction of necessary) that s € F(I[). We thus have

Dy(s)(y) =0, y €U

Since (ry (s1), - - -, ru,u(sm)) is a basis for F(U[) we write

1
s = fnguls) + -+ M u(Sm)-

for some uniquely defined f,..., f™ € C"(U). We have

Dy(s)(y) = fl(}/)([sl]y + mytyy) +- fm(}/)([smly + mytyy)

for each y € U. Since
([SI]]/ + myr?y, ceey [SIII]]] + m}l’%/)

is a basis for E,, we must have f(y) =--- = f"(y) = 0 for each y € U, giving [s], =0. W

7.2.3 Sheaf morphisms induced by vector bundle mappings

Having seen how sheaves and vector bundles are related, let us consider how
mappings of vector bundles give rise to morphisms of the corresponding sheaves.
We begin by considering the situation of morphisms of vector bundles. Thus we let
r € {00, w} and consider vector bundles 7: E - M and 7: F - M of class C'. We let
®: E — Fbea vector bundle mapping over idy. Thus ®(E,) C F, and ®|E, is linear for
each x € M. We do not require that the rank of ® be locally constant as some authors do.
We then define a morphism & of presheaves of the ¢},-modules % and 4’ by defining
dy: T'(E[U) — T"(FJU) by

DyE)(x) = Do&(x), xell.

Also, given amorphism W of the sheaves ¢ and ¢ of ¢},-modules, we can associate
a vector bundle mapping W: E — F over idy by

W(ey) = W(rux(s))(x),

where s € I"(E|U) is such that s(x) = e,. Such a local section s exists, for example, by
constructing it in a vector bundle chart about x. One can also easily verify that this
vector bundle mapping is well-defined, independently of the choice of s.
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7.3 Coherent holomorphic and real analytic sheaves

As we saw in Sections 2.3.2, 4.1.3, and 4.2.3, germs of holomorphic and real
analytic functions and sections of vector bundles are finitely generated. Moreover,
since these are also Noetherian, the ideals (resp. submodules) of the ring of germs
of holomorphic or real analytic functions (resp. module of germs of holomorphic or
real analytic sections) are also finitely generated. In this section we see that these
properties at the germ level can, in a certain sense, be extended to corresponding local
properties. As we shall see, this requires quite a lot of work, although at the core lies
the Weierstrass Preparation Theorem.

7.3.1 Motivation, definitions, and basic properties

As we stated above, the idea of this section is to extend properties of germs to
local properties. To show that this is meaningful, we must first suggest that there is
a problem to solve here. First we show that the Noetherian property is not one that
is global, even in the most structured situation, that of holomorphic or real analytic
functions.

Example (The Noetherian property of germs does not extend to a global prop-
erty!) Let r € {w,hol} and let F = R if r = w and F = C if r = hol. Note that Clz1sa
Noetherian ring by Theorem 2.3.4. We will show that C’(F) is not Noetherian. Recall
that sin € C'(FF) and also recall Euler’s product representation for sin:

b 2

sin(mtx) = mx H(l - %),

j=1

with convergence being uniform on compact subsets. (We refer to Chapter 6 of [Ullrich
2008] for a discussion of this formula.) Let f;, k € {1, ..., k}, be defined by

s 2

fi(x) = nx H(l - 7—2),

=k
and let I, be the ideal in C'(F) generated by fi. Thus
Lk =1{f fi | f€C(F)}

Note that )

fi®) = fin@(1 - 35,

showing that Iy C li1, k € Z.o. Note that if f € I, then f(k) = 0. Since fi1(k) # 0, we
conclude that fi;1 € lx and so we in fact have |y C 41, k € Z.o. Thus we have a chain

hclhc---

The author would like to thank Mike Roth for suggesting this example.
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that is not finite. Thus C'(F) is not Noetherian, as claimed. Note that the ideal
| = Ugez_, Ik is not finitely generated. Indeed, were | to be generated by analytic
functions g, ..., gm, there would necessarily be some k € Z., such that

I = (g1, cee /gm) C .
But this implies that |; = |; for all j > k, contradicting what we have already shown. e

The example is perhaps not as compelling as one would like, given its global nature.
The next example shows that the property of being locally finitely generated is not one
that can be extended from stalks to a local property.

Example (The finite generation property of germs does not extend to a local
property) Let r € {w,hol} and take F = R if r = w and F = C if r = hol. We consider
M = FF and let

S=1{j1j€Zs}u {0}

Consider the presheaf .75 = (Is(U))yopen given by
L(W={feC(UW]| f(x)=0forxeUNS}.

One can easily verify that .7 is a sheaf. We claim .5 is not locally finitely generated.
The easiest way to see this is through the following observation. Note that %5, = {0}
since any function of class C" in a neighbourhood of 0 and vanishing on S must be
zero by Proposition 1.1.18. However, note that if x # 0 then .5, # {0} and so, by
Lemma 7.2.6, it follows that .#s cannot be locally finitely generated. )

Said otherwise, the example suggests that, even for locally finitely generated
sheaves, one needs additional properties in order to ensure “Noetherian behaviour.”
In Definition 7.2.5 we provided the definition for a locally finitely generated sheaf.
Let us turn to the supplementary conditions needed to get the desired behaviour. Itis
convenient in the early stages of the discussion to work with sheaves of modules over
topological spaces. Thus we let (S, &) be a topological space, let Z = (R(U))ycs be a
sheaf of rings over §, and let & = (E(U)hs be a sheaf of Z-modules. Let U € ¢ and
let s1,...,5 € E(U0). We define a morphism ¢(s1, .. .,sx) of sheaves from (Z|U)* to &|U
by defining it stalkwise:

k
o150 f Lo [ 1) = ) [F Ll xel
j=1

The kernel ker(o(sy,...,sx)) of this morphism we call the sheaf of relations of the
sections s, ...,s; over U.
With the preceding construction, we now make the following definition.

Definition (Coherent sheaf) Let (S, ¢) be a topological space, let Z = (R(U))uce be a
sheaf of rings over §, and let & = (E(U))ucs be a sheaf of Z-modules. The sheaf & is
coherent
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(i) if it is locally finitely generated and

(i) if, for every U € & and s, ..., s, € E(U), ker(o(sy, . ..,sk)) is locally finitely gener-
ated.

The sheaf of rings # is coherent if it is coherent as a sheaf of Z-modules in the obvious
Way. L]

One might legitimately wonder whether coherent sheaves exist. We shall address
this in Section 7.3.2 where we prove Oka’s Coherence Theorem which gives a large
class of coherent sheaves. Another important class of sheaves will be developed in .
For the moment, however, let us prove some basic properties of coherent sheaves.

The following characterisation of coherent sheaves is insightful.

Proposition (Coherent modules are cokernels of morphisms) Let (S, &) be a topo-
logical space, let # = (R(U))yes be a sheaf of rings over 8, and let & = (E(U))yes be a sheaf
of Z-modules. If & is coherent then, for every x € 8, there exists a neighbourhood U of x,
nonnegative integers k, m, and a morphism \V of sheaves (Z|U)™ and (Z|U)* such that &|U
is isomorphic to coker(W). The converse holds if % is a coherent sheaf of rings.
Proof Since & is locally finitely generated, by [Hungerford 1980, Corollary 1V.2.2], for
every x € § there exists a neighbourhood U of x, k € Z.¢, and a morphism @ such that the
sequence

(2 2~ &1u 0

is exact. Letey, ..., ¢ € (Z|U)* be defined by

lejly = Oy, 1y, .., 0n).

Thus ey, ..., ey mimics the standard basis, as one would expect. In any case, if we define
S1,.--,5k € &[Uby [sj]x = Ox([ejly), then ® = o(sy, ..., si). If & is additionally coherent, then
ker(®) is finitely generated. Thus, again by [Hungerford 1980, Corollary IV.2.2], (possibly
by shrinking U) there exists m € Z.o and a morphism W’ such that the sequence

(Z )" —L~ ker(d) —= 0

is exact. If  denotes the inclusion of ker(®) in (Z|UW)* and if we define W = (oW, then we
have the commutative diagram

(@) L= (Z)F —2— £ 0

|
¥

(A" —5 (#NU)F — coker(W) —=0

with exact rows. One deduces the existence of an isomorphism as indicated by the dashed
arrow, cf. the final part of the proof of Proposition 7.2.1. Thus &|U is isomorphic to
coker(\W).
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For the proof of the converse, we rely on some results below that we have not
yet proved. Since Z|U is coherent, the sheaves (#|U)" and (ZIWY* are coherent by
Proposition 7.3.6(vi). Thus we have an exact sequence

(2" —2 (BN & 0

By Proposition 7.3.6(iii) it follows that &'|U is coherent. As this holds for a neighbourhood
of every pointin §, it follows that & is coherent. [

The following result was proved during the course of proving the proposition, and
provides a useful means of checking the coherence of a given sheaf.

7.3.5 Corollary (A characterisation of coherent sheaves) Let (S, &) be a topological space
and let # = (R(U))yep be a coherent sheaf of rings over 8. A sheaf & = (E(U)hes of
Z-modules is coherent if and only if

(i) for each x € 8, there exists k € Z.o, a neighbourhood U of x, and an Z|U-module
homomorphism ® for which the sequence

(ZIW)k 2~ & 0

is exact and

(ii) for x, k, W, and D as in (i), there exists m € Z., a neighbourhood V € U of X, and an
X|V-module homomorphism \V for which the sequence

(ZV)™ L (2 V) 2L £V — 0

1s exact.

The following result summarises some of the essential properties of coherent
sheaves.

7.3.6 Proposition (Properties of coherent sheaves) Let (S, &) be a topological space and

let # = (R(UW))ueo be a sheaf of rings over 8. If & = (E(Whes, F = (F(U))es, and
4 = (G(U))yep are sheaves of Z-modules over S, then the following statements hold:

(i) if & is coherent, every finitely generated subsheaf of & is coherent;

(ii) if & is a subsheaf of .7 and if .7 is coherent, then .7 | & is coherent;

(iii) if & and % are coherent and if ®: & — .F is morphism of %-modules, then ker(®P),

image(®) and coker(®P) are coherent;
(iv) if

0 2.z Y g 0

is an exact sequence of sheaves of %-modules and if any two of the sheaves &, .7, and 4
are coherent, then all three sheaves are coherent;
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(v) if & is coherent and if & and .7 are coherent subsheaves of ¢, then
&NF = EUNFWhesr, &+ F =(EMU)+ FU)es

are coherent sheaves.
(vi) if & and F are coherent, then & & .7 is coherent.

Proof (i) Let & = (E’'(U))yes be a finitely generated subsheaf of &, let U € & be open, and
lets],...,s; € E'(U). Let i be the inclusion of E'(U) in E(U). Then, since s},...,s; € E'(U) ©
E(W), ker(o(tu(s)), - -, wu(s;))) is a locally finitely generated subsheaf of (Z|WY. Since

k k
CCH I CA )N (7 W Vg DED Yy V2 N ARCA) NEpH O W IZINEA
j=1 =1

and since 1y is injective,
ker(o(n(sy), - ., wui(sy))) = ker(o(sy, - .., 5})),

and the result follows.

(iii) (for ker(®) and image(®)) We shall first prove that ker(®) and image(®) are coher-
ent. Note that image(®) is locally finitely generated, being the image of a locally finitely
generated sheaf. By part (i) it follows that image(®) is coherent. Let xo € S. Since & is
locally finitely generated, let U be a neighbourhood of xp and sy,...,s, € E(U) be such
that [s1]y, ..., [sk]x generate & for every x € U. Since .7 is coherent, there exists a neigh-
bourhood W C U of xg and a,...,am € (Z|W)* be such that [ai]y,..., [am]x generate
ker(o(®(s1), ..., D(sk)))x for every x € U'. Define ty,...,t, € E(U’') by

We claim that, for every x € W, [ti]y, ..., [tu]x generate ker(®),. Let x € U’. First of all,
since

k .
O[] = Y[l De(ls L),
j=1

it follows that [#] € ker(®y) for every [ € {1,...,m}. Moreover, if [s]; € ker(®y) then

k
[sle = ) [f/Lsils

=

for some [f'],,..., [fk]x € %y, and we additionally have

k
0= ®u(lsl) = ) [F1ePu(lsL)-
j=1
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Thus, taking [a], = ([fl]x, e, [fk]x), [ay] € ker(o(DP(s1), ..., P(sk)))x and so

m

[l = ) gl = [fl=) [¢'kla]l.
1=1 =1

Thus

n n

k
[sle = ) Y [8'1da]Llsjle = ) (&Lt

=1 1=1 1=1

as desired.

(iv) Suppose that .7 and % are coherent. Since & corresponds is isomorphic to
image(®) = ker(W), it is coherent by part (i) above.

Suppose that & and .# are coherent. Then ¥ is locally finitely generated since it
is the image of a locally finitely generated sheaf. To show coherence of ¢, let U € &, let
t,..., t € G(U), and let xy € U. By Proposition 7.1.51 there exist[s; ], - - ., [Skly, € F4, such
that Wy, ([s;lx,) = [tj]x, for each j € {1,...,k}. Thus there exists a neighbourhood U’ of xy
such that Wy([s;]y) = [t]x foreachx € U"and j € {1,...,k}. Since & is finitely generated, we
can (possibly after shrinking U’) find rq,...,ry € E(U’) such that [r1]y, ..., [ru]c generate &Y
forevery x € U’. Let pr: (ZIW)"E - (Z|U)* be the projection onto the last k components.
We claim that

ker(g(tll SRRV tk))x = Prx(ker(Q((D(rl )I R ,CD(T,” )lslr .- rsk))x)

for all x € U'. Let x € U’. First suppose that [a], € ker(o(ty, .. ., t))x. Thus

r k
0= Z[aj]x[t/]x = \IJX(Z[aj]x[Sj]x)/
j=1 j=1

which, by exactness, implies that

m

k
Y [@/Ldsike = Y 1B 10
j=1 1=1

for some [B]y € #'. Thus

([ﬁllx/ Ry [ﬁm]J(/ [[Y1]Xr Ry [ak]x) € ker(@(q’(fl)r seey (I)(rm)lsll cee /sk))x

and so
[a]x € Pfx(kef(()(q)(rl )/ <o ,(I)(T,,,),S1, <o tsk))x)-

For the converse inclusion, suppose that
[(Y]_\» € prx(ker(Q(Q(rl), cee ,CD(rn;), Sl, see ,sk))x)
so that there exists [B]y € #Z}' for which

m

k
Y [a/)sile = Y B LD
=1

=1
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By exactness this implies that

k k
0= Y [/l We(lsil) = Y [/LIt]s,
= =

giving the desired conclusion. This also shows that ker(o(ty, ..., t))x is locally finitely
generated and so ¢ is coherent.

Finally, suppose that & and ¢ are coherent. For xp € 8 let U be a neighbourhood
of xo for which there are ry,...,r, € E(U) and ty,...,t; € G(U) having the property that
[r1lx ..., [rmly and [H]y, ..., [t]c generate & and ¥, respectively, for each x € U. As in
the previous part of the proof, let U’ C U be a neighbourhood of x; such that there exist
$1,---,8k € F(W') for which W,([s;]y) = [t;], for each j € {1,...,k} and x € U'. We claim
that [D(r))]y, ..., [P(m)]x [51]s - - -, [Sk]x generate .7, for every x € U’. Indeed, let [s], € .%,.
suppose first that W, ([s]y) = 0. Exactness then gives [s], in the span of [D(r1)]y, ..., [P(7)]x.
On the other hand, if Wy([s]y) # 0 then W,([s],) is in the span of [t1], ..., [t]y, ie.,

k
W(Isl - ) [F/Lds 1) = 0.

j=1

By exactness we have [s]y in the span of [®(r1)]y, . .., [P(rm)]x, [S1]x, .. ., [Sk]x, as desired.
Now let V € & be open and let 01,...,0;4 € F(V). Let 1. = Wy(o.), c € {1,...,d|}.

Let xp € V. Coherence of ¢ implies that there exists a neighbourhood V' C 'V of xy and
aq,...,ap € (ZV') such that [a]y, ..., [ay]c generate ker(g(ty,...,74))x for every x € V'.
Define

F(V) 3, =

d
af,of, gell,...,pl,
=1

C

and note that . .
\Fx([ﬁq]x) = Z[a;]x\px([oc]x) = Z[a;]x[’rc]x =0,
c=1 c=1

and so by exactness [f,]; € image(®y) for each g € {1,...,p}. By coherence of & it fol-
lows that there exists neighbourhood V" € V' of xp and y1,...,) € (Z|V"”) such that
[1lx, - -, [yslx generate ker(o(B1, . . ., Bp))x for each x € V. Define

p
(V'Y 5= ) Viey,  aell,..b).
q=1
We claim that [k]y, ..., [xp]r generate ker(o(oy, ..., 04))x for each x € V”. First of all, note

that
d p P

d
Y [ldod = Y Y ildaghdocle = ) LB = 0,
c=1

c=1 g=1 g=1
and so [k.]x € ker(o(o1,...,04))x for eacha € {1,...,b} and x € V”. Now let x € V. If
[k]y € ker(o(oy, . ..,04))x then

d d
YiKhod=0 = Y [k =0.
c=1 c=1
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Thus [«]y € ker(o(71,...,7T4))x and so

p
[kle = ) [f L)

q=1
for some [fl]l,..., [fP]x € Zx. Thus
d p
Y Y [fhlaghdoc =0,
c=1 g=1

which shows that ([fl]x, o, [fPlx) € ker(o(B1, - .-, Bp))x- Thus

b
[ = ) 8" LyiL

a=1

and so ,
p
[l =) ) [ kil ],
q=1 a=1
as desired.
(if) We have the exact sequence
0 & F F|E——=0

and so the conclusion follows from part (iv).

(iii) (for coker(®)) This follows from part (ii).

(v) Here, one verifies that & N .% is the kernel of the composition of the inclusion of &
in ¢ and the projection of ¢ onto the quotient ¥ /.%. Since ¢ /.7 is coherent by part (ii),
the result follows from part (iii). For & + .# we note that this is a locally finitely generated
subsheaf of ¢ and so by part (i) is coherent.

(vi) In this case we have the exact sequence

0—8—E0.F —F —0

and from part (iv) it follows that the middle term in the sequence is coherent since the left
and right terms are. u

Let us now see how coherence allows stalkwise properties to be extended to local
properties. The first such result we consider is the following.

7.3.7 Proposition (For coherent sheaves, stalkwise exactness implies local exact-
ness) Let (8,0) be a topological space, let # = (R(U))yes be a sheaf of rings over S, let
E = (E(Whes, -F = (F(W)yes, and 4 = (G(U)hes be coherent sheaves of Z-modules over
8, and let x € 8. If the sequence



52 7 Sheaf theory 18/05/2012

of sheaves of %-modules is exact, then, for each x € 8, there exists a neighbourhood U of x
such that the sequence

EU -2z 2 g

is exact.
Proof Since W,o®, =0, &,/ ker(W,®d,) = 0. Note that the sheaf &/ ker(W o ®) is coherent
by Proposition 7.3.6(iii). Thus it is finitely generated, and so being zero at x it is zero in
a neighbourhood U of x by Lemma 7.2.6. This implies that image(®y) C ker(Wy). By
parts (i) and (ii) of Proposition 7.3.6, it follows that ker(W()/ image(®y) is a coherent sheaf
over U. Moreover, as we just argued for &/ ker(W - ®), since it is zero at x, it is zero in a
neighbourhood of x, giving the desired conclusion. [

Before we get to specific examples of coherent sheaves, let us present an important
example of a sheaf that is not coherent.

7.3.8 Proposition (The sheaf of smooth functions is not coherent) If M is a smooth
manifold whose connected components have positive dimension, then 6,y is not coherent.
Proof 1t is convenient to first make some general algebraic constructions. First let us

give a simple version of a more general result known as Nakayama’s Lemma, referring to
[Eisenbud 1995, §4.1] for further discussion.

1 Lemma If R is a local ring with maximal ideal m and if | C R is a finitely generated ideal for
which | = ml, then | = {0).
Proof Let .7 be the set of ideals of R that admit k generators. We prove by induction on
k that the lemma holds for ideals in .7. If | € %, then the lemma holds trivially. Suppose
that the lemma holds for all ideals in .% fork € {0,1,...,m—1}and let| € .%,,. Letry,...,ry
be generators for | and note that, by hypothesis, rs € | = ml so that

P =airy + -+ ayly

foray,...,ay, € m. Notethat1-a,, ¢ msince otherwise we would have (1-a,,)+a,, =1 € m.
Since R \ m is comprised of units (we showed this in the proof of Corollary 2.2.19), we
thus have

rm=(1- am)_l(alrl +o A1)

Thus | € .#,_1 and so | = {0} by the induction hypothesis. v

Let us say that a commutative unit ring R is coherent if every finitely generated ideal
of | is finitely presented. The following elementary observation is then useful.

2 Lemma If # is a coherent sheaf of rings over a topological space (S, ©) then the stalks % are
coherent rings.

Proof Suppose that | C %, is a finitely generated ideal. By [Hungerford 1980, Corol-
lary IV.2.2] we have an epimorphism

()]

. ay p—

of rings. Coherence of # ensures that ker(®) is finitely generated, and so %, is coherent,
as desired. v
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With these simple facts behind us, let us prove the proposition. By Lemma 2 the result
is local so we can take M = R" and show that the ring of germs %, is not coherent.
Let us first consider the case n = 1. First recall from Proposition 2.3.5 that 43, is a

local ring with maximal ideal

m=1{lflo| f0)=
Let f € C*(R) satisfy f(x) = 0 for x € Rgo and f(x) > 0 for x € R»o. Let my: %3”"3 — ‘60""q be
defined by m¢([glo) = [flo[glo and let | = ker(m ). Note that

lr =1{[glo € €z | g(x) =0 for x € Rxo).

To show that 47, is not coherent, it suffices to show that I is not finitely generated, for
then the flmtely generated ideal image(my) is not finitely presented. Suppose that If is
finitely generated. By Lemma 1 from the proof of Proposition 4.3.4 we have | = ml;. By
Lemma 1 above, this means that |, = {0}, which is a contradiction.

Finally, let us prove the result for general n. Given f € C*(R) define f € C*(R") by

f(xlr- . '/xﬂ) = f(xl)'

Now define ¢: ‘/""" ¢ o R by ¢([flo) = [ f]o It is immediate from the definition that ¢
is an injective ring homomorphlsm Thus ¢ maps ideals of €3, isomorphically to ideals
of ‘/0 R In partlcular since ‘/ OR contains a finitely generated ideal that is not finitely

presented, so too does % Corn: [
The preceding result effectively removes sheaves of %;;-modules from consider-

ation as coherent sheaves. This leaves us with the holomorphic and real analytic
case.

Definition (Holomorphic or real analytic sheaf) Let M be a holomorphic or real
analytic manifold. A holomorphic sheaf (resp. real analytic sheaf) over M is a sheaf
of ¢};°'-modules (resp. %,;-modules). We shall sometimes use the expression analytic
sheaf to stand for either “holomorphic sheaf” or “real analytic sheaf.” .

In the next section we shall show that there are important classes of holomorphic
and real analytic sheaves. Here we show that there are holomorphic and real analytic
sheaves that are not coherent.

Example (An analytic sheaf that is not coherent) We continue Example 7.3.2 from
above. Thus we let r € {w,hol} and take F = Rif r = w and F = C if r = hol. We
consider M = F and let

5={} | j € Zso} U {0}

Consider the presheaf .75 = (Is(U))yopen given by
(W) ={feC'(U)| f(x)=0forxeUNS}.

One can easily verify that .%; is a sheaf. In Example 7.3.2 we showed that .75 is not
locally finitely generated. We also claim that ©7/.7; is not coherent. First of all, for an
open set U C IF, we have the exact sequence

C1U) —= E1 W)/ IsU) —0
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By Corollary 7.3.5, if ¢7/.7s is coherent there exists k € Z., and a morphism W such
that the sequence

(G2 —— L) — G2 W)/ Is(U) —=0

is exact, possibly after shrinking U. However, by exactness this implies that .75(U) =
image (V) is finitely generated, which we just showed above is generally not true, e.g., if
0 el ]

We shall comprehensively develop the phenomenon of the example in , and we
shall see there that there are some interesting differences between the holomorphic
and real analytic cases.

For coherent real analytic sheaves, the ascending chain property of Noetherian
modules holds locally, not just for germs.

Theorem (Noetherian-like property for coherent real analytic sheaves) Let M be a
real analytic manifold, let & = (E(U))y open be a coherent real analytic sheaf over M, and let
= (Ej(U))u open j € Zso, be a sequence of coherent subsheaves of & satisfying & C &4 for
ever Y j € Zso. Then, for every compact set K C M there exists N € Z.q such that Ex = ENx
for every x € K and for every j > N.
Proof Since any compact set will intersect only finitely many connected components of
M, we can without loss of generality suppose that M is connected.

We first prove that if, for every x € M, there exists a neighbourhood U, of x and
Ny € Z.g such that &}, = &y, , for every y € U, and j > N,, then the conclusions of the
theorem follow if & and (€})jez., satisfy the hypotheses of the theorem. Indeed, let K € M
be compact. Let x1,...,x; € K be such that K C U’;: Uy, and take N = {Ny,, ..., Ny, }. Then
we clearly have &, = &y, for every x € Kand j > N.

We next prove that if the theorem holds for & = (¢ @)K for every k € Z, then it
holds for a general sheaf &. Let x € K and let U, be a nelghbourhood of x such that
there exists an epimorphism «,: (€7 )“ — &|U, for some k, € Z. (this being possible
by Proposition 7.3.4). If (&})jez., is as in the statement of the theorem, then the sequence
(K;l(é}))jeg,)o also satisfies the hypotheses of the theorem. Let V, C U, be a relatively
compact neighbourhood such that cl(Vy) € U,. Our assumption that the theorem holds
for (3 )’ implies that there exists Ny € Z. such that k;!(&}), = x;'(&\,)y for every y € Vs
and j > Ny. This directly implies that &}, = &y, for every y € Vy and j > N,. By the first
part of the proof, the theorem holds for (&7)cz.,-

Let us next prove by induction that if the theorem holds for & = %’ then it holds for
& = (63)" for any k € Z>o. Let K C M be compact. Consider the exact sequence

- g . r e e
0 —= 69— (W) T (€@} —=0

where ¢ is the inclusion of the first factor and pr is the projection onto the last k — 1 factors.
Let (&])jez., be a sequence of subsheaves of (4} )F as in the statement of the theorem. Then
(= ((‘ ))jez., and (pr(&))) ez, are sequences of subsheaves of € and (‘tfﬁ')k‘l, respectively,
that satlsfy the hypotheses of the theorem. By the induction hypothesis, there exists
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N € Z-q such that t_l(oﬁ,‘)x =1"1(&y)y and pr(&)x = pr(én)x for every x € Kand j > N. We
then directly verify that &, = &\ for every x € Kand j > N.
Finally we prove by induction on dim(M) that the theorem holds when & = €. In
this case, E;j(U) is an ideal of E(U) for every j € Z-p and open U C M. Let us also suppose
(since otherwise the theorem in this case is trivial) that & is not the zero sheaf for some
k € Z-o. By the identity principle, Theorem 4.1.5, it follows that & , # {0} for every x € M.
We consider first the case when dim(M) = 1. Let xp € M and let (U, ¢)) be a chart about
x such that ¢)(xp) = 0. As we saw in the proof of Theorem 2.3.4, & ,, is either equal to %;;'IM
or is generated by [x"], where x: U — F is the coordinate function and for some m € Z.y.
Now let B ocinien

7.3.2 The Oka Coherence Theorem

Having in the previous section introduced coherent sheaves and their basic prop-
erties, in this section we introduce a large class of coherent real analytic sheaves.
The result here was proved by Oka [1950], and our proof follows that of Hérmander
[1973].

7.3.12 Theorem (Oka Coherence Theorem) Let r € {w,hol} and let F = R if r = w and let
F =Cifr=hol If n: E — Mis a vector bundle of class C' then % is a coherent sheaf of
Gyy-modules.

Proof We can withoutloss of generality assume that E is a local vector bundle: E = UXF"™.
The base space is U and the vector bundle projection is 7t(x,v) = x. By considering only

principal parts, sections &: U — U X ™ become mappings f: U — F™. Thus we suppose
that we have f,,..., f, € CY(1; "), and we define

k
Relfro-r i) = ([0 € 62 ALF) | Y [@71F L = 0,
=1

To prove the theorem, we mustshow that, forany xy € U, there exists aneighbourhood Uy C
U of xp and @y, ..., D, € C¥(Up; F¥) such that Rx(fy,---, f}) is generated by [®4]y, ..., [D;]x
for each x € Up. For notational simplicity, we will sometimes denote germs by ¢, (and
similarly for germs of mappings) in order to not have to keep track of the name of specific
neighbourhoods. Also for notational simplicity we suppose that xp = 0.

By Proposition 7.3.6(vi) we observe that if, for fixed n, the theorem holds for m =1
it holds for arbitrary m. We observe that the theorem holds vacuously when n = 0. So
we assume that the theorem has been proved for arbitrary m and for n € {0,1,...,ny}, and
take m = 1 and n = ng + 1. In the usual way, we denote a point in o+l by (x,y), and
we suppose that the neighbourhood of F"*! in which we work is of the form U X V for a
neighbourhood U C ™ of 0 and a neighbourhood V C F of 0. We first suppose that all
components of fi,..., fi are Weierstrass polynomials, and denote f; = W;, j € {1,...,k}.
Thus W; € C*(U)[n], possible after shrinking U and V. We let d be the maximum of the
degrees of Wy, ..., Wy.

We wish to understand the character of Ry, (W1, ..., Wy) for (x, ) € UXV. To do this,
if [flixy) € %E;',y),F""xF we define [f"]o,0) € (623,0),F"()XF by taking f'(u,v) = f(x + u, y +v) for
(u,v) in a neighbourhood of (0,0). We can do this for germs of mappings taking values in
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Euclidean spaces as well, and, up to the end of the proof of thelemma we are about to state
and prove, we will use without comment the ’ to denote a germ at (0,0) corresponding
toa germ at (x, y). In particular, we let W/,..., W] € (7"";((6’,0),@"0 o correspond to Wi, ..., Wi.
Note, then, that

Roo(Wi, ..., W) ={[®]00 | [Plx,y) € Rayy(Wa, ..., Wil

Note also that W1, ..., W; are polynomials in v of degree the same as Wy,..., Wy arein y,
but are not necessarily Weierstrass polynomials.
The following lemma is now useful.

1 Lemma For each (x,y) € U XV the (t«f;‘” -module Rxy)(W1, ..., Wy) is generated by its

x,y),FY0XF
elements of the form ([P1](xy), - - -, [Pxlixy) where [Pjlixy) € € ans (), € {1,..., Kk}, are polynomial

functions of y of degree at most d.
Proof Without loss of generality, suppose that deg(W;) = d. By the Weierstrass Prepa-

ration Theorem, thinking of [W[]go) as an element of (6’2‘50) mosge Write [Wiloo) =
[E"](0,0)[W'](0,0) for a unit [E']g) € ‘5’(‘(‘,’ 0)F"oXF and a Weierstrass polynomial W’. Note

that W is a polynomial in v of degree d and so, by Lemma 2.1.4(i), E is a polynomial in o,
and its highest degree coefficient must therefore be 1. Let dr and dw» be the degrees of E’
and W', respectively, noting that dp + dw. = d.

For [@']0,0) € Ro,0(W], ..., W)), by the Weierstrass Preparation Theorem, write

[@7]0,0) = [Q’j](o,O)[WL](o,O) + R0, jell,...,.k=1},
where R/ is a polynomial of degree less than dyy.. Define
k=1
[R k](0,0) =[® k](0,0) + Z[Q / ](0,0)[W;](o,0)~
=1

We claim that ([R,l ](0[0), ceey [R,k](O,O)) € R(O,O)(w;r ceay Wi) Indeed,

k k-1
Z[R" ](0,0)[w;](0,0) = Z([(D” lio0) — Q7 ](0,0)[W,E](O,O))[W;](O,O)
=1 =1
=1
+ [P k](O,O)[W;](O,O) + Z[Q ’](0,0)[W}](o,O)[Wi.](o,O)
j=1

k
= Z[(D,’](O,O)[w;](O,O) =0.
=1

Thus we have
k-1

Z[R,j 100 [W/loo + [R*T00[E oo [W oo = 0.

j=1
The sum on the left is one whose terms are polynomial in v of degree less than dy + d
which implies that [R’k](o,O)[E'](o,O)[W'](o,O) is a polynomial in v of degree less than dw + d.
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Since [W'](0,0) is a Weierstrass polynomial of degree dy-, from Lemma 2.1.4(i) we have
that [R*]0,0)[E’](0,0) must be a polynomial, and so have degree less than d. Recalling that
[E’]0,0) is @ unit, we can write

[R*]00) = [E'](I,llo)[E'](o,O)[R’k](o,O),

showing that the polynomial degree of [R*]qp has degree less than d, as do
[Rll](o,o), ceey [R'(k_l)](olo). Now we write

(12 N0y - -, [P *l00)) = (Wi, ---.0, _[w;](O,O))[QII](O,O)
+-+([0,..., [Wi]o0), [Wi._l](0,0)[Q’(k_1)](o,0) +([R 0,0 - - -, [R N 0,0))-
Thus shows that elements of R(o,O)(W{, ..., W) are linear combinations of vectors whose

components are polynomials in v with degree at most d. By “unpriming” this equation we
get

([q)l](x,y)/ cnry [(Dk](x,y)) = (Wila,y, ---.0, _[Wll(x,y))[Qll(x,y)
+--+ ([0, seey [wk](x,y)r [wk—ll(x,y)[Qk_I](x,y) + ([Rll(x,y)/ RV [Rk](x,y)):

and the lemma follows. v

To complete the proof of the theorem in the case when fi,.. ., f; are Weierstrass poly-
nomials, let [W],,) € Rx,)(W1, ..., W) have the form of the lemma. Thus

d
ey = ) W LY leoy €L k),
a=0

for [1,1)/“']Jr € ‘6’;;‘%,,0 [nl,jefl,...,k},a€{0,1,...,d}. Note that we must have

k d
2 2V eV o Wiley =0, €L, K.

j=1 a=0

Since Wy, ..., Wy are polynomials with degree at most d, this preceding equation is a
polynomial equation in 1) of degree at most 2d. Let [C']y € ("':Li«‘"o' b e {0,1,...,2d}, be the
coefficient of y* for the expression on the left, noting that this will be a linear function of

the coefficients [/%]y, j € {1,...,k},a € {1,...,d). Thus we can write

k d
[Cl=) YLy =0, be(o1,...,2d) (7.5)

j=1 a=1
where c?n e CY(U),bef0,1,...,2d},a € {1,...,d}, j € {1,...,k}, are real analytic functions
on U determined from the coefficients of the polynomials Wi, ..., Wi. Thus the induction

hypotheses give a neighbourhood U, of (0,0) and functions (f){" € CYUp), s € {1,...,r},
a€ll,...,d}, jel,...,k}, such that every solution [{/], to (7.5) is given by

Y= ) 0ol jell,.. Kk, ael01,...,d),
s=1
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for some [a°], € ‘a";‘EF,,(,. Then, by the lemma above, if we define @, € C“(Uy X V; ]Fk),
sef{l,...,r}, by

d
Olx,y) =Y Sr@Y,  jell,.. K, sel,..n,
a=0

then [®1],y), - - -, [Prlx,y) generate Ry, (W1, ..., Wy) for every (x, y) € Up X V. This proves
the theorem in the case that f;,. .., fy are Weierstrass polynomials.

Now let us suppose that this is not necessarily the case. By Lemma 2.1.3 let
: Fo*l — [0l be an orthogonal transformation such that ¢ f, ..., ¢ f; are normalised.
Then, by the Weierstrass Preparation Theorem, write ¢*f; = E;W; for (x,y) in some
neighbourhood U’ x V' of (0,0), and where Wj, ..., W; are Weierstrass polynomials and
Ey, ..., Ex € C(UW x V') are nonzero at (0,0). Let us suppose that U’ x V' is sufficiently
small that E is nowhere zero. By the proof for Weierstrass polynomials above, there
exists a neighbourhood Uy X Vo € U x V" of (0,0) and @y,..., P, € C“(Up X Vo; F*)
such that [(Dll(x,y),...,[(l),](x,y) generate R(x,y)(Wl,...,Wk) for each (x,y) € Up X Vo. One
then directly sees that [yb,,(E'l(I)l)](x,_,,), e, [t,{),(E'l(Ib)](x,y) generate R, ,)(f1, ..., fi) for each
(x,y) € P(Up X Vo), where 1), = (i,b‘l)*. Since Y(Up X V) is a neighbourhood of (0,0), the
theorem follows. [
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