1. In (a)-(d) below, C_m denotes the cyclic group of size m. For each question, answer yes or no and explain your answer.
(a) Is $C_3 \times C_3$ isomorphic to C_9?
(b) Is $C_3 \times C_2$ isomorphic to C_6?
(c) Is $C_5 \times C_7$ isomorphic to C_{35}?
(d) Is $C_3 \times C_4$ isomorphic to $C_6 \times C_2$?

2. Let $G = D_4$. Let r be the element of order 4 that generates the rotations in G and let f (having order 2) be a flip. Recall that $frf = r^3$. For each subgroup H of G below, do the following: (i) state whether or not H is a normal subgroup of G, and (ii) if H is normal, write the factor group G/H as a product of cyclic groups. Explain your reasoning.
(a) $H = \{e, f\}$.
(b) $H = \{e, r, r^2, r^3\}$.
(c) $H = \{e, r^2\}$.

3. (a) Let G be a group. Let H be a subgroup of G, and let N be a normal subgroup of G. Show that the set $HN = \{hn \mid h \in H, n \in N\}$ is a subgroup of G.
(b) Give an example of a group G and two subgroups H and K of G such that the set $HK = \{hk \mid h \in H, k \in K\}$ is not a subgroup of G. [Hint: you will need to use two subgroups that are not normal]

4. Let G be a group. Recall that the commutator subgroup $C(G)$ is the subgroup of G generated by all elements of the form $xyx^{-1}y^{-1}$ where $x, y \in G$. Recall that $C(G)$ is a normal subgroup of G.
(a) Let N be any normal subgroup of G. Show that if the factor group G/N is abelian, then N must contain $C(G)$. [Hint: it suffices to show that $xyx^{-1}y^{-1} \in N$ for all $x, y \in G$]
(b) Use (a) to show that if G is a finite group and H is subgroup of G such that $|G| = 2|H|$, then H must contain $C(G)$.
(c) Use (b) to show that A_5 is $C(S_5)$. You may use the fact, proven in your homework, that A_5 is simple.

5. Let G be the subgroup of S_6 generated by $(135)(46)$, i.e. $G = \langle (135)(46) \rangle$. Let G act on the set $\{1, \ldots, 6\}$ in the usual way, e.g. $(135)(46) * 1 = 3$, etc.
(a) Write down all the orbits in $\{1, \ldots, 6\}$ under the action of G.
(b) What is the isotropy group G_3 of the element 3?
(b) What is the isotropy group G_1 of the element 4?
(b) What is the isotropy group G_2 of the element 2?
6. Let G be a group. Let φ_2 be the map from G to itself given by $\varphi_2(x) = x^2$ for each $x \in G$.
(a) Show that if G is abelian, then φ_2 is a homomorphism.
(b) Given an example of non-abelian group G for which φ_2 is not a homomorphism.

EXTRA CREDIT: Let A_4 act on a set X. Suppose that $x \in X$ has an orbit of size 3, that is $|\text{Orb}(x)| = 3$ (or, to use the book’s notation, $|Gx| = 3$). What is the isotropy group G_x of x?