1. Let R be a Noetherian domain with the property that every prime ideal is principal. Show that every ideal of R is principal. [Hint: You may want to begin by showing that R is Dedekind]

2. We will say that a ring R is unique factorization domain (UFD) if R is an integral domain and if

- every nonunit $a \in R$ can be written as $\prod_{i=1}^{n} \pi_i^{e_i}$, where $e_i \in \mathbb{Z}^+$ and $R\pi_i$ is a prime ideal in R; and
- given two factorizations

$$a = \prod_{i=1}^{n} \pi_i^{e_i} = \prod_{i=1}^{m} \gamma_i^{f_i},$$

where $e_i, f_i \in \mathbb{Z}^+$ and $R\pi_i, R\gamma_i$ are prime ideals in R, we must have $m = n$ and a reordering σ of $1, \ldots, n$ such that $R\pi_i = R\gamma_{\sigma(i)}$ and $e_i = f_{\sigma(i)}$.

Since a principal ideal domain is a Dedekind domain or a field, it follows from unique factorization for ideals in a Dedekind domain that a principal ideal domain is a UFD. Show the partial converse: any Noetherian UFD of dimension 1 is a principal ideal domain. [You may use Problem #1]

3. Let F_q be a finite field. Let \overline{F}_q be an algebraic closure of F_q. Show that $\text{Gal}(\overline{F}_q/F_q)$ is isomorphic to $\hat{\mathbb{Z}}$, where $\hat{\mathbb{Z}}$ is the inverse limit of the groups A_m where $A_m = \mathbb{Z}/m\mathbb{Z}$ where the maps μ_{ij} are the natural quotient maps from A_i to A_j.

AND