Recall from last time:

Let \(A \) be Dedekind. Let \(\mathcal{P} \) be a maximal ideal of \(A \) and let \(\alpha \) be an integral element of a finite separable extension of the field of fractions of \(A \). Suppose that \(G \) is the minimal monic for \(\alpha \) over \(A \) and that the reduction mod \(\mathcal{P} \) of \(G \), which we call \(\bar{G} \) factors as

\[
\bar{G} = \bar{g}_1^r \cdots \bar{g}_m^r
\]

with the \(\bar{g}_i \) distinct, irreducible, and monic.

Proposition 16.1. With notation as above, if \(r_i = 1 \) then the prime \(A[\alpha](\mathcal{P}, g_i(\alpha)) \) is invertible. If \(r_i > 1 \), then \(Q_i \) is invertible if and only if all the coefficients of the remainder mod \(g_i \) of \(G \) are not in \(\mathcal{P}^2 \), i.e. if writing

\[
G(x) = q(x)g_i(x) + r(x),
\]

we have \(r(x) \notin \mathcal{P}^2[x] \).

Proof. We did the \(r_i = 1 \) part last time. Now, for \(r_i > 1 \). We may as well work over \(A[\alpha] \) rather than \(A[\alpha] \) we write \(A[\alpha] \mathcal{P} = A[\alpha]\pi \).

Let \(\phi : A[\alpha][x] \rightarrow A[\alpha][\alpha] \) be the natural quotient map obtained by sending \(x \) to \(\alpha \). The kernel of this map is \(A[\alpha][x]G \). The prime \(Q_i \) in \(A[\alpha] \) is generated by \((\pi, g_i(\alpha)) \), so \(\phi^{-1}(Q_i) \) is generated by \((\pi, g_i(x)) \) since \(G(x) \) is in the ideal generated by \((\pi, g_i(x)) \) (since \(g_i(x) \) divides \(G \) modulo \(\mathcal{P} \)). Denote \(\phi^{-1}(Q_i) \) as \(J \). It is easy to see that

\[
\dim_{A_P/A_P^2} J/J^2 = 2d
\]

where \(d \) is the degree of \(g_i \) since

\[
\{\pi, \pi x, \ldots, \pi x^{d-1}, g_i, g_ix, \ldots, g_ix^{d-1}\}
\]

is a basis for \(J/J^2 \) as a \(A_P/A_P^2 \)-module. We see that \(\phi \) induces a map

\[
\bar{\phi} : J/J^2 \rightarrow Q_i/Q_i^2
\]

which has kernel \(A_P[x]G(x) \) (mod \(J^2 \)). From (1), this is generated by the remainder \(r(x) \). Since \(\deg r < \deg g \), we have \(r \in J^2 \) if and only if \(r \in \pi^2 A_P[x] \). Thus, we see that

\[
\dim_{A_P/A_P^2}(Q_i/Q_i^2) < 2d
\]

if and only if \(r \notin \pi^2 A_P[x] \). Since

\[
\dim_{A_P/A_P^2}(Q_i/Q_i^2) = d \dim_{A[\alpha][Q_i]/A[\alpha][Q_i]} (Q_i/Q_i^2)
\]

we thus have

\[
\dim_{A_P/A_P^2}(Q_i/Q_i^2) = 1
\]
if and only if \(r \notin \pi^2 A_P[x] \).

How can we tell which primes we have to worry about (by this, I mean those for which some \(r_i \) is greater than 1)? We can use something called the discriminant of a finitely generated integral extension of rings \(B \) over \(A \). We will work with several formulations, all of which are equivalent. Here’s the definition of the discriminant of a polynomial.

Definition 16.2. Let \(K \) be a field and let \(F \) be the monic polynomial

\[
F(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0.
\]

Then, writing

\[
F(x) = \prod_{i=1}^{n}(x - \alpha_i)
\]

where \(\alpha_i \) are the roots of \(F \) in some algebraic closure of \(K \), the discriminant \(\Delta(F) \) is defined to be

\[
\Delta(F) = (-1)^{n(n-1)/2} \prod_{i \neq j} (\alpha_i - \alpha_j) = \prod_{i < j} (\alpha_i - \alpha_j)^2.
\]

Why is this discriminant useful? Because of the following obvious fact:

\(\Delta(F) \neq 0 \iff F \) does not have multiple roots.

This is clear because an algebraic closure of \(K \) is certainly an integral domain.

What happens when we reduce a polynomial modulo a maximal ideal \(\mathcal{P} \) in a Dedekind domain \(A \).

Proposition 16.3. Let \(F \) be a polynomial in a Dedekind domain \(A \) and let \(\bar{F} \) be the reduction of \(F \) mod \(\mathcal{P} \). Let \(\bar{F} \) be the reduction of \(F \) modulo \(\mathcal{P} \) and let \(\bar{\Delta}(F) \) be the reduction of \(\Delta(F) \) modulo \(\mathcal{P} \). Then, we have \(\bar{\Delta}(F) = \Delta(\bar{F}) \).

Proof. Let \(F = \prod_{i=1}^{n}(X - \alpha_i) \) where the \(\alpha_i \). Let \(B = A[\alpha_1, \ldots, \alpha_n] \). Then there is a maximal \(\mathcal{Q} \) in \(\mathcal{P} \) such that \(\mathcal{Q} \cap A = \mathcal{P} \). Let \(\phi : B \to B/\mathcal{Q} \) be the polynomial \(\prod_{i=1}^{n}(X - \phi(\alpha_i)) \). Now, the \(i \)-th coefficient of \(h(x) \) is \((-1)^{n-i}S_{i+1}(\phi(\alpha_1), \ldots, \phi(\alpha_n)) \) where \(S_{i+1} \) is the \(i + 1 \)-st elementary symmetric polynomial in \(n \)-variables. Since \(\phi \) is homomorphism, \((-1)^{n-i}S_{i+1}(\phi(\alpha_1), \ldots, \phi(\alpha_n)) \) is also the \(i \)-th coefficient of \(\bar{F} \), so \(\bar{F} = h \) and it is clear that

\[
\Delta(h) = (-1)^{n(n-1)/2} \prod_{i \neq j} (\phi(\alpha_i) - \phi(\alpha_j)) = \prod_{i < j} (\phi(\alpha_i) - \phi(\alpha_j))^2 = \bar{\Delta}(F).
\]
This has the following corollary.

Corollary 16.4. Let A be a Dedekind domain with field of fractions K and let \mathcal{P} be a maximal prime in A and suppose that $A/\mathcal{P} = k$ is a perfect field. Then the reduction \bar{F} of F modulo \mathcal{P} has distinct roots in the algebraic closure of A/\mathcal{P} if and only if $\Delta(F) \notin \mathcal{P}$.