Math 531 Tom Tucker
NOTES FROM CLASS 11/10

We’ll need Minkowski’s theorem, which guarantees the existence of certain elements of a lattice. We’ll recall a lemma from last time.

Lemma 29.1. Let \(\mathcal{L} \) be a lattice in \(V (\mathbb{R}^n \) with a volume form) and let \(U \) be a measurable subset of \(V \) such that the translates \(U + \lambda \), where \(\lambda \in \mathcal{L} \) are disjoint. Then \(\text{Vol}(U) \leq \text{Vol}(\mathcal{L}) \).

Proof. Let \(T \) be a fundamental parallelepiped for some basis of \(\mathcal{L} \). For each \(\lambda \in \mathcal{L} \), let \(U_\lambda = T \cap (U - \lambda) \).

We then have \(U = \bigcup_{\lambda \in \mathcal{L}} (U_\lambda + \lambda) \).

Since the volume form is translate invariant, we see that

\[
\sum_{\lambda \in \mathcal{L}} \text{Vol}(U_\lambda) = \sum_{\lambda \in \mathcal{L}} \text{Vol}(U_\lambda + \lambda) = \text{Vol}(U).
\]

Since all the \(U_\lambda \) are disjoint and contained in \(T \), we see that

\[
\text{Vol}(\mathcal{L}) = \text{Vol}(T) \geq \text{Vol}(\bigcup_{\lambda \in \mathcal{L}} (U_\lambda)) = \sum_{\lambda \in \mathcal{L}} \text{Vol}(U_\lambda) = \text{Vol}(U).
\]

\[\square\]

Theorem 29.2. (Minkowski) Let \(\mathcal{L} \) be a full lattice in the volumed vector space \(V \) of dimension \(n \) and let \(U \) be a bounded, centrally symmetric, convex subset of \(V \). If \(\text{Vol}(U) > 2^n \text{Vol}(\mathcal{L}) \), then \(U \) contains a nonzero element \(\lambda \in \mathcal{L} \).

Proof. By the way, centrally symmetric means that for \(x \in U \), we have \(-x \in U \). Convex means that for \(x, y \in U \) and \(t \in [0, 1] \), we have \(tx + (1-t)y \in U \).

Now, let \(W = \frac{1}{2} U \). Then \(\text{Vol}(W) = \frac{1}{2^n} \text{Vol}(U) \), so \(\text{Vol}(W) > \text{Vol}(\mathcal{L}) \), so it follows from the Lemma, we just proved that not all of the translates \(W + \lambda \) are disjoint. Taking \(y \in (W + \lambda) \cap (W + \lambda') \), with \(\lambda \neq \lambda' \), we can write \(y = a + \lambda = b + \lambda' \), which gives us \(a, b \in W \) with \((a - b) \in \mathcal{L} \) and \((a - b) \neq 0 \). Since \(a, b \in W = \frac{1}{2} U \), we can write \(a = \frac{1}{2} x \) and \(b = \frac{1}{2} y \) for \(x, y \in U \). Since \(y \) is convex and centrally symmetric the element \(a - b = \frac{1}{2} x - \frac{1}{2} y = \frac{1}{2} x + \frac{1}{2}(-y) \in U \) and we are done. \[\square\]

We will want to apply this to a lattice \(h(I) \) for \(I \) a fractional ideal of \(\mathcal{O}_L \). The region \(U \) that we use should consist of elements of bounded norm. Recall though, that the most natural sort of region is something like a sphere \(\sqrt{x_1^2 + \cdots + x_n^2} \leq M \) and we are going to be interested in
something like the product \(x_1 \cdots x_n\), so we will need something relating these two. Also, we have messed around a bit at the complex places, to we’ll have to tinker with that a bit. Let’s label our coordinate system for \(V\) in the following way. We call the first \(r\)-coordinates corresponding to the real embeddings \(x_1, \ldots, x_r\). The remaining \(2s\) coordinates we label as \(y_1, z_1, \ldots, y_s, z_s\).

Let
\[
X_t = \{x_1, \ldots, x_r, y_1, z_1, \ldots, y_s, z_s \mid \sum_{i=1}^r |x_i| + \sum_{j=1}^s 2\sqrt{y_j^2 + z_j^2} \leq t\}
\]
from now on. It is easy to see that \(X_t\) is convex, bounded, and centrally symmetric, so we will be able to apply Minkowski’s theorem to it.

Proposition 29.3. Let \(y \in L\). If \(h(y) \in X_t\), then \(N_{L/Q}(y) \leq (t/n)^n\).

Proof. Let \(b_i = \sigma_i(y)\) for \(1 \leq i \leq r\) and let
\[
b_{r+1} = b_{r+2} = \sqrt{y_1^2 + z_1^2}, \ldots, b_{n-1} = b_n = \sqrt{y_s^2 + z_s^2}.
\]
Then
\[
N(y) = |\sigma_1(y)| \cdots |\sigma_r(y)| |\sigma_{r+1}(y)|^2 |\sigma_{r+3}(y)|^2 \cdots |\sigma_{n-1}(y)|^2 = |b_1| \cdots |b_n|.
\]
By the arithmetic/geometric mean inequality
\[
t/n = \sum_{i=1}^n \frac{|b_i|}{n} \geq \sqrt[n]{|b_1| \cdots |b_n|}.
\]
Taking \(n\)-th powers finishes the proof.

Lemma 29.4. Let \(b_1, \ldots, b_n\) be positive numbers. Then

\[
\sum_{i=1}^m \frac{b_i}{n} \geq \sqrt[n]{b_1 \cdots b_n}.
\]

Proof. Since the right and left-hand sides of (1) scale, we can assume that
\[
\sum_{i=1}^m \frac{b_i}{n} = 1.
\]
Thus, we need only show that
\[
b_1 \cdots b_n \leq 1.
\]
We can write \(b_i = (1 + a_i)\) with \(a_1 + \cdots + a_n = 0\). To show that
\[
(1 + a_1) \cdots (1 + a_n) \leq 1
\]
it will suffice to show that that the function
\[
F(t) = (1 + a_1 t) \cdots (1 + a_n t)
\]
is decreasing on the interval $[0, 1]$. This can be checked by simply taking the derivative of F. We find that

$$F'(t) = \sum_{i=1}^{n} a_i \prod_{j \neq i} (1 + a_i t).$$

If all of the a_i are 0, this is clearly 0. Otherwise, we can write

$$F'(t) = \sum_{a_i > 0} |a_i| \prod_{j \neq i} (1 + a_i t) - \sum_{a_i < 0} |a_i| \prod_{j \neq i} (1 + a_i t)$$

$$\leq \left(\sum_{a_i > 0} |a_i| \right) \max_{a_k > 0} \left(\prod_{j \neq k} (1 + a_j t) \right) - \left(\sum_{a_i < 0} |a_i| \right) \min_{a_k < 0} \left(\prod_{j \neq k} (1 + a_j t) \right).$$

Since

$$\sum_{a_i > 0} |a_i| = \sum_{a_i < 0} |a_i|$$

and

$$\max_{a_k > 0} \left(\prod_{j \neq k} (1 + a_j t) \right) < \min_{a_k < 0} \left(\prod_{j \neq k} (1 + a_j t) \right)$$

we must have $F'(t) < 0$ on the desired interval, so F must be decreasing on this interval. \qed