Next, we will show that $\ell(\mathcal{O}_x^*)$ is a sublattice in \mathbb{R}^{r+s}. We define a sublattice as a subgroup of \mathbb{R}^m that has \mathbb{Z}-rank equal to the \mathbb{R}-dimension of the vector space it generates.

We were in the middle of proving the following.

Proposition 33.1. Let \mathcal{L} be a finitely generated subgroup of \mathbb{R}^m. Then \mathcal{L} is a sublattice if and only if every bounded region in \mathbb{R}^m contains at most finitely many elements of \mathcal{L}.

Proof. Note, we already proved the “only if” part last week during our proof of the finiteness of the class group.

We will prove the “if” part by induction on m. If $m = 1$ and $\mathcal{L} \neq 0$ (0 is trivially a sublattice), then $\mathbb{R}^m = \mathbb{R}$, and we choose u to be the smallest positive number in \mathcal{L}. Then, for any $v \in \mathcal{L}$, we can write $v = tu + z$ where t is an integer and $0 \leq z < u$. But, since $z = v - tu$, we must have $z \in \mathcal{L}$, which means that $z = 0$ by the minimality of u. Thus, u must generate \mathcal{L} as a \mathbb{Z}-module, so the rank of \mathcal{L} as a group is equal to 1.

Now, we do the inductive step. Note that we may assume \mathcal{L} generates \mathbb{R}^m as a vector space, since otherwise it is contained in a vector space of dimension \mathbb{R}^{m-1} and we are done by the inductive hypothesis. Thus, we can choose \mathbb{R}-linearly independent elements v_1, \ldots, v_m of \mathcal{L}. By the inductive hypothesis, if V_0 is the \mathbb{R}-vector space generated by v_1, \ldots, v_{m-1}, then $\mathcal{L}_0 := V_0 \cap \mathcal{L}$ is a sublattice, and is a full lattice in V_0. Let w_1, \ldots, w_{m-1} be a basis for \mathcal{L}_0 (as a \mathbb{Z}-module). Then, $w_1, \ldots, w_{m-1}, v_m$ is a basis for \mathbb{R}^m, so any element of $\lambda \in \mathcal{L}$ can be written as

$$\lambda = \sum_{i=1}^{m-1} r_i w_i + r_m v_m$$

for real numbers r_i. Note that if $r_m = 0$, then $\lambda \in \mathcal{L}_0$, and we can choose all of the r_i to be integers. Note also that by subtracting off an appropriate element of \mathcal{L}_0, we obtain such a λ with all $0 \leq r_i < 1$ for $i \leq (m - 1)$. There are only finitely many such λ with r_m also smaller than a certain bound (since any bounded region in \mathbb{R}^m intersects \mathcal{L} in finitely many points). Thus, there is a nonzero element λ' with $0 \leq r_i < 1$, for $i = 1, \ldots, m - 1$ and $r_m > 0$ minimal (if $r_m = 0$, then the other r_i must be integers, we recall). I claim that $w_1, \ldots, w_{m-1}, \lambda'$ must be a \mathbb{Z}-basis for \mathcal{L}. Indeed, if we pick any element $\eta \in \mathcal{L}$ and
write
\[\eta = \sum_{i=1}^{m-1} a_i w_i + a_m v_m \]
with \(a_i \in \mathbb{R} \). Then by writing
\[a_m = tr_m + z \]
with \(t \in \mathbb{Z} \) and \(0 \leq z < r_m \) and subtracting
\[\sum_{i=1}^{m-1} ([a_i - r_i t]) w_i + t \lambda' \]
from \(\eta \) we obtain an element of \(\mathcal{L} \) written as
\[\sum_{i=1}^{m-1} ((a_i - r_i t) - [a_i - r_i t]) w_i + z v_m \]
with \(0 \leq z < a_m \). Thus, we must have \(z = 0 \) and
\[\eta - t \lambda' \in \mathcal{L}_O \]
and we are done. \(\square \)

Let’s define some notation now. For a finitely generated abelian group \(G \) we define \(\text{rk}(G) \) to be the free rank of \(G \). Let’s also define \(H \) to be the hyperplane \(x_1 + \ldots + x_{s+r} = 0 \) in \(\mathbb{R}^{s+r} \).

Proposition 33.2. \(\ell(\mathcal{O}_L^*) \) is a sublattice in \(H \).

Proof. Any bounded region in \(\mathbb{R}^{s+r} \) is contained in a set \(Y_C \) consisting of all \((x_1, \ldots, x_{s+r}) \) with \(|x_i| \leq C \) for \(C \geq 0 \). For \(b \in \mathcal{O}_L \), the absolute value of the \(i \)-th coordinate of \(\ell(b) \) is less than or equal to \(C \) only if \(|\sigma_i(b)| \leq e^C \) for all \(i \). There are only finitely many such \(b \) by a Lemma from last time. \(\square \)

Corollary 33.3.
\[\text{rk}(\mathcal{O}_L^*) \leq (r + s - 1) \]

Proof. Since the kernel of \(\ell \) is finite,
\[\text{rk}(\mathcal{O}_L^*) = \text{rk}(\ell(\mathcal{O}_L^*)). \]
From the previous Proposition we know that \(\ell(\mathcal{O}_L^*) \) is sublattice in a vector space of dimension \(s + r - 1 \), so it must have \(\mathbb{Z} \)-rank at most \(s + r - 1 \). \(\square \)
We’re going to want use another embedding of \mathcal{O}_L into an \mathbb{R}-vector space. This embedding, which we denote as h^* is almost exactly like the embedding h that we used earlier. It is

$$h^*(b) = (\sigma_1(b), \ldots, \sigma_r(b), \sigma_{r+1}(b), \ldots, \sigma_{r+s}(b)).$$

Note that is very similar to the embedding h used earlier. In fact, we can choose the \mathbb{R}-basis $x_1, \ldots, x_r, y_1, z_1, \ldots, y_s, z_1, \ldots, z_s$, where x_j is the element with j-th coordinate equal to 1 and all other coordinates equal to 0, y_j to be the the element with $(r + j)$-th element equal to 1 and all other coordinates equal to 0, and z_j to be the the element with $(r + j)$-th element equal to i and all other coordinates equal to 0. Then h is exactly the same with respect to its usual basis for V as h^* is with respect to the basis

$$x_1, \ldots, x_r, y_1, \ldots, y_s, z_1, \ldots, z_s.$$

If we give $\mathbb{R}^r \times \mathbb{C}^s$ the volume form associated to this basis, then

$$\text{Vol}(h^*(\mathcal{O}_L)) = \text{Vol}(h(\mathcal{O}_L)) = 2^{-s}\sqrt{\Delta(L/K)}.$$

In particular, $h^*(\mathcal{O}_L)$ is a full lattice in $\mathbb{R}^r \times \mathbb{C}^s$ (if it had \mathbb{R}-rank less than n, the volume would be 0).

The advantage of working with h^* is that ℓ is that if we denote as p_j projection onto the j-th coordinate (for $\mathbb{R}^r \times \mathbb{C}^s$). then

$$p_j(\ell(b)) = \log |p_j(h^*(b))|$$

for $1 \leq j \leq r$ and

$$p_j(\ell(b)) = 2\log |p_j(h^*(b))|$$

for $r + 1 \leq j \leq r + s$.

We have already established that $h^*(\mathcal{O}_L)$ is a lattice so we should be able to find elements in it with certain properties. The idea roughly is this: we want to find a family of units u_i in $h^*(\mathcal{O}_L)$ for which we can control the \pm sign of $\log |p_j(h^*(b))|$ for various j. We might hope that these units are linearly independent.

We will work with a region somewhat similar to the region we worked on when we were doing the finiteness of the class group. We define the region as follows. Let (t) be an $(r+s)$-tuple of positive numbers indexed as $(t)_i$. We define

$$Z_{(t)} := \{(x_1, \ldots, x_{r+s}) \in \mathbb{R}^r \times \mathbb{C}^s \mid |x_i| \leq (t)_i, 1 \leq i \leq r$$

and $|x_i|^2 \leq (t)_i$ for $r + 1 \leq i \leq r + s\}$$
The region $Z(t)$ is just a cross product of regions in \mathbb{R} and \mathbb{C}, specifically it is

$$[-(t)_1, (t)_1] \times \cdots \times [-t_r, (t)_r]$$

$$\times \{(x, y) \mid x^2 + y^2 \leq (t)_{r+1}^2\} \times \cdots \times \{(x, y) \mid x^2 + y^2 \leq (t)_{r+s}\}.$$

Thus,

$$\text{Vol}(Z(t)) = 2^r \pi^s t_1 \cdots t_{r+s}$$