Recall the definition of $Z(t)$ from last time...

Let (t) be an $(r+s)$-tuple of positive numbers indexed as $(t)_i$. We define

$$Z(t) := \{(x_1, \ldots, x_{s+r}) \in \mathbb{R}^r \times \mathbb{C}^s \mid |x_i| \leq (t)_i, 1 \leq i \leq r$$

and $|x_i|^2 \leq (t)_i$ for $r + 1 \leq i \leq r + s\}.$

The region $Z(t)$ is just a cross product of regions in \mathbb{R} and \mathbb{C}, specifically it is

$$[-(t)_1, (t)_1] \times \cdots \times [- (t)_r, (t)_r]$$

$$\times \{(x, y) \mid x^2 + y^2 \leq (t)_{r+1}\} \times \cdots \times \{(x, y) \mid x^2 + y^2 \leq (t)_{r+s}\}.$$

Thus,

$$\text{Vol}(Z(t)) = 2^r \pi^s t_1 \cdots t_{r+s}$$

And $Z(t)$ is convex and centrally symmetric. Now, let’s fix a constant T, for which

$$2^r \pi^s T^{r+s} > 2^n \text{Vol}(h^*(\mathcal{O}_L))$$

and let (γ) be any n-tuple of numbers for which

$$\gamma_1 \cdots \gamma_{r+s} = 1.$$

Then

$$\text{Vol}(Z(T\gamma)) = 2^r \pi^s T^n > 2^n \text{Vol}(h^*(\mathcal{O}_L)),$$

so there exists a nonzero $b \in Z(T\gamma) \cap h^*(\mathcal{O}_L)$, by Minkowski’s lemma proven earlier. As said earlier, we want to control the signs of the logs of our units, so we will pick a particular (γ) where $(\gamma_i) < 1$ for all but one i. Specifically, we pick a number ϵ and define

$$(\epsilon_i) = \begin{cases}
\epsilon & : j \neq i \\
1/\epsilon^{r+s-1} & : j = i
\end{cases}$$

As above, we know that there is a nonzero element of $h^*(\mathcal{O}_L)$ in $Z(T\epsilon_i)$, call it b_i. The following Lemma is obvious. We state it to organize our exposition.

Proposition 34.1. Let $b_i \in Z(T\epsilon_i) \cap h^*(\mathcal{O}_L)$ with $b_i \neq 0$. Then

$$|N(b_i)| \leq T^{r+s}.$$
Proof. Recall of course that \(p_j(h^*(b)) = \sigma_j(b) \), so if \(h^*(b) \in Z_{(T\epsilon_i)} \), then \(|\sigma_j(b)| \leq (T\epsilon_i)_j \) for \(1 \leq j \leq r \) and \(|\sigma_j(b)|^2 \leq (T\epsilon_i)_j \) for \(r + 1 \leq j \leq (s + r) \). Thus, for \(b_i \in Z_{(T\epsilon_i)} \), we have

\[
|N(b_i)| \leq \prod_{j=1}^{r} |\sigma_j(b)| \prod_{j=r+1}^{s+r} |\sigma_j(b)|^2 \leq \prod_{j=1}^{r+s} (T\epsilon_i)_j = T^{r+s}.
\]

\(\square \)

Unfortunately, the \(b_i \) are not units. However, we need only modify them slightly to obtain units. There are only finitely many nonzero principal ideals in \(\mathcal{O}_L \) with norm less than \(T^{r+s} \) (since there are finitely many ideals in \(\mathcal{O}_L \) of bounded norm). Let us number them as \(I_1, \ldots, I_N \), write \(I_k = \mathcal{O}_L a_k \), for \(a_k \in \mathcal{O}_L \) and pick \(\epsilon > 0 \) such that

\[
0 < \epsilon T < \min\{ |\sigma_i(a_k)|^{e_i}, i = 1, \ldots, r + s, k = 1, \ldots, N \},
\]

where \(e_i = 1 \) if \(\sigma_i \) is a real place and \(e_i = 2 \) is \(\sigma_i \) is complex place. Note that this \(\min \) cannot be zero because \(a_k \neq 0 \) and \(\sigma_i \) is injective. For each \(i = 1, \ldots, r + s \), let \(Z_{(T\epsilon_i)} \) and \(b_i \) be as in the Proposition above.

Since \(N(\mathcal{O}_L b_i) \leq T^{r+s} \), the ideal \(\mathcal{O}_L b_i \) is equal to some \(\mathcal{O}_L a_k(i) \). Let \(u_i = a_k(i)/b_i \). Then, \(u_i \) must be a unit since \(b_i \) divides \(a_k(i) \) and \(a_k(i) \) divides \(b_i \).

Proposition 34.2. Let \(u_i \) be as above. Then

1. \(\sum_{j=1}^{r} \log |\sigma_j(u_i)| + \sum_{j=r+1}^{r+s} 2 \log |\sigma_j(u_i)| = 0 \)
2. \(\log |\sigma_j(u_i)| < 0 \) for \(j \neq i \)
3. \(\log |\sigma_i(u_i)| > 0 \).

Proof. (1): This is easy since \(|N(u_i)| = 1 \), so

\[
0 = \log 1 = \log |N(u_i)| = \sum_{j=1}^{r} \log |\sigma_j(u_i)| + \sum_{j=r+1}^{r+s} 2 \log |\sigma_j(u_i)| = 0.
\]

(2): Recall that \(T\epsilon < |\sigma_j(a_{i(k)})| \), so

\[
\log |\sigma_j(u_i)^{e_i}| = \log |\sigma_j(b_i)^{e_i}/|\sigma_j(a_{i(k)})|^{e_i}| < \log \frac{T\epsilon}{|\sigma_j(a_{i(k)})|^{e_i}} < \log 1 = 0.
\]

Thus, \(\log |\sigma_j(u_i)| = \frac{1}{2} \log |\sigma_j(u_i)^{e_i}| < 0 \) as well.

(3): Follows immediately from (1) and (2) \(\square \)

Proposition 34.3. The elements \(\ell(u_i), i = 1, \ldots, r + s - 1 \) (note we don’t go up all the way to \(r + s \)) are linearly independent over \(\mathbb{R} \).
Proof. Let \(m_{ij} = \log |\sigma_j(u_i)| \) for \(1 \leq i \leq r \) and \(m_{ij} = 2 \log |\sigma_j(u_i)| \) for \(r+1 \leq i \leq r+s-1 \). Since
\[
\sum_{j=1}^{r} \log |\sigma_j(u_i)| + \sum_{j=r+1}^{r+s} 2 \log |\sigma_j(u_i)| = 0,
\]
the \(\log |\sigma_{r+s}(u_j)| \) is determined by the other \(\log |\sigma_j(u_i)| \); that is why we only go up to \(r+s-1 \). To show that the \(\ell(u_i) \) are linearly independent, it will suffice to show that the matrix \([m_{ij}]\) is nonsingular. It follows from Proposition 34.2 that for any \(i \), we have
\[
\sum_{j=1}^{r+s-1} m_{ij} > 0.
\]
It also follows that \(m_{ij} < 0 \) for \(i \neq j \) and \(m_{jj} > 0 \) for any \(j \).

The embeddings of a fixed \(u_i \) gives us the \(i \)-th row of \([m_{ij}]\); it will be easier to show that the columns are linearly independent over \(\mathbb{R} \). Suppose that we have a set \(a_1, \ldots, a_{r+s-1} \) of real numbers, not all of which are zero. We can show that there is some \(i \) such that
\[
\sum_{j=1}^{r+s-1} a_j m_{ij} \neq 0.
\]
Indeed, let us pick \(i \) so that \(|a_i| \geq |a_j| \) for for all \(j \); we may assume that \(a_i > 0 \) since multiplying everything though by \(-1\) will not affect whether or not a sum is nonzero. Then we \(a_i \geq a_j \) for every \(j \) and (since \(m_{ij} < 0 \) for \(i \neq j \)) we have
\[
\sum_{j=1}^{r+s-1} a_j m_{ij} \geq a_i m_{ii} + \sum_{j \neq i} a_i m_{ij} \geq a_i \sum_{j=1}^{r+s-1} m_{ij} > 0
\]
and we are done. \(\square \)

Corollary 34.4. \(\ell(\mathcal{O}_L^*) \) is a full lattice in \(H \).

Proof. We have already seen that \(\ell(\mathcal{O}_L^*) \) is a lattice in \(H \). It is a full lattice since it generates a \(\mathbb{R} \)-vector space of dimension \(r+s-1 \), which must be equal to \(H \) (since \(\dim_{\mathbb{R}} H = r+s-1 \)). \(\square \)

Theorem 34.5 (Dirichlet Unit Theorem). Let \(\mu_L \) be the roots of unity in \(L \). There exist elements \(v_1, \ldots, v_{r+s-1} \in \mathcal{O}_L^* \) such that every unit \(u \in \mathcal{O}_L^* \) can be written uniquely as
\[
u v_1^{m_1} \cdots v_{r+s-1}^{m_{r+s-1}}
\]
for \(v \in \mu_L \) and \(m_i \in \mathbb{Z} \).
Proof. Let v_1, \ldots, v_{r+s-1} have the property that $\ell(v_1), \ldots, \ell(v_{r+s-1})$ generate $\ell(O_L^*)$ as a \mathbb{Z}-module. Since $\ker \ell = \mu_L$, we know that every unit $u \in O_L^*$ can be written as vz, where z is in the subgroup generated by the v_1, \ldots, v_{r+s-1}. The element z is uniquely determined by $\ell(u)$ as
\[v_1^{m_1} \cdots v_{r+s-1}^{m_{r+s-1}} \]
for some integers m_i. Then $v = zu^{-1}$ and is therefore also uniquely determined. □