There is one important difference between the p-adic absolute values and the ones coming from embedding L in to \mathbb{C}, the so-called real absolute values. This difference lies in a stronger form of the triangle inequality satisfied by the p-adic absolute values. Recall that a valuation $v : K^* \rightarrow \mathbb{R}$ is a multiplicative map for which $v(x+y) \geq \min(v(x), v(y))$ for any $x, y \in K^*$. This last condition means that

$$|x+y| = e^{-(v(x)+v(y))} \leq e^{-\min(v(x), v(y))} \leq \max(|x|, |y|).$$

On the other hand, for the real valuation $|\cdot|$, we have, for example $|1+1| = 2 > \max(1, 1)$.

A valuation v is called a discrete valuation if $v : K^* \rightarrow \mathbb{Z} \subseteq \mathbb{R}$ surjectively. By convention, we set $v(0) = \infty$.

Definition 40.1. If $|x+y| \leq \max(|x|, |y|)$ for every $x, y \in K$, then $|\cdot|$ is called an nonarchimedean valuation. Otherwise, it is called an archimedean valuation.

Example 40.2. Let $L = k(x)$ for k any field. Since $B = k[x]$ is a PID, it is Dedekind. Thus, for any prime P of B, the localization B_P is a DVR. Hence, for any irreducible polynomial $P \in k[x]$, we have a discrete valuation v_P on L, where $v_P(Q)$ is the highest power of P dividing Q (which is taken to be ∞ when $Q = 0$) for $Q \in B$ and $v_P(Q/R) = v_P(Q) - v_P(R)$ for $Q, R \in B$ and $R \neq 0$.

The product formula.

Suppose that we normalize the p-adic absolute values; that is, we set $\|x\|_p = p^{-v_p(x)}$. Then for any x, we have

$$\prod_P \|x\|_P = \frac{1}{p_1^{e_1} \cdots p_m^{e_m}}$$

where $x = \pm p_1^{e_1} \cdots p_m^{e_m}$. Let $\|x\|_\infty$ denote the usual absolute value $|x|$. Let

$$M_Q = \{ \text{primes } p \} \cup \infty.$$

Then

$$\prod_{v \in M_Q} \|x\|_P = 1.$$

This is called the product formula.

Similarly, working over $K[x]$, we call $P \in K[X]$ if P is monic, irreducible, and has degree greater than 0. We let $\|x\|_P = e^{-v_P(x)(\deg P)}$.

1
Then letting \(\|x\|_\infty = e^{\deg x} \) (this measures the degree of the poll that \(x \) has at infinity), and letting
\[
M_{K[x]} = \{ \text{primes } P \in K[X] \} \cup \infty,
\]
we have
\[
\prod_{v \in M_{K[x]}} \|x\|_v = 1.
\]

Let \(K \) be a field with a discrete valuation \(v \) and let \(\hat{K} \) be the completion of \(K \) with respect to \(\cdot \) \(v \) where
\[
|x|_v = e^{-v(x)}.
\]
We define \(B_v \) to be the set of \(x \in \hat{K} \) with \(v(x) \geq 0 \) and let \(M_v \) be the maximal ideal in \(B_v \). We see below that \(B_v \) is indeed a DVR.

Proposition 40.3. With notation as above, \(v \) extends to a discrete valuation on \(\hat{K} \).

Proof. We take \(v(x) = -\log \lim |x_i| \) for \(x \neq 0 \) represented by \((x_i)^\infty \).
To see that this actually gives an integer, write \(\lim |x_i| = C \) and if \(-\log C \) is not an integer, we can pick \(\epsilon \) so that \(C - e^{-m} > \epsilon \) for all integers \(m \). Then for any \(x_i \), we have \(|x_i| - \lim |x_i| > \epsilon \), which is impossible. Checking that \(v(x) \) is multiplicative and \(v(x + y) \leq \max(v(x), v(y)) \) is simple. \(\square \)