NOTE: ALL RINGS IN THIS CLASS ARE COMMUTATIVE WITH MULTIPLICATIVE IDENTITY 1 (1 \cdot a = a for every \(a \in A \), where \(A \) is the ring) AND ADDITIVE IDENTITY 0 (0 + a = a for every \(a \in A \) where \(A \) is the ring)

Definition 2.1. A ring \(R \) is called a principal ideal domain if for any ideal \(I \subset R \) there is an element \(a \in I \), such that \(I = Ra \).

Later we’ll see that for the rings we work with in this class, principal ideal domains and unique factorization domains are the same thing.

Proposition 2.2 (Easy). Let \(A \subset B \). Then \(b \) is integral over \(A \) \(\iff \) \(A[b] \) is finitely generated as an \(A \)-module.

Proof. (\(\Rightarrow \)) Writing
\[
b^n + a_{n-1}b^{n-1} + \cdots + a_1b + a_0 = 0,
\]
we see that \(b^n \) is contained in the \(A \)-module generated by \(\{1, b, \ldots, b^{n-1} \} \).

Similarly, by induction on \(r > 0 \), we see that \(b^{n+r} \) is contained in the \(A \)-module generated by \(\{1, b, \ldots, b^{n-1} \} \), since
\[
b^{n+r} = (b^n + a_{n-1}b^{n-1} + \cdots + a_1b + a_0)b^r,
\]
and is therefore contained in \(A \)-module generated by \(\{1, b, \ldots, b^{n+(r-1)} \} \).

(\(\Leftarrow \)) Let \(\sum_{i=1}^{N_i} a_{ij}b^i \) generate \(A[b] \). Then for \(M \) larger than the largest \(N_i \), the element \(b^M \) can be written as \(A \)-linear combination of lower powers of \(b \). This yields an integral polynomial over \(A \) satisfied by \(b \). \(\square \)

Definition 2.3. We say that \(A \subset B \) is integral, or that \(B \) is integral over \(A \) if every \(b \in B \) is integral over \(A \).

Corollary 2.4. If \(A \subset B \) is integral and \(B \subset C \) is integral, then \(A \subset C \) is integral.

Proof. Exercise. \(\square \)

Example 2.5. The primitive \(n \)-th root of unity \(\xi_b \) is integral over \(\mathbb{Z} \) since it satisfies \(\xi^n - 1 = 0 \).

Example 2.6. \(i/2 \) is not integral over \(\mathbb{Z} \). Let’s look at the algebra \(B \) it generates over \(\mathbb{Z} \). Suppose it was finitely generated as an \(\mathbb{Z} \)-module. Then if \(M \) is the maximal power of 2 appearing in the denominator of a generator, then \(M \) is the maximal power of 2 appearing in the denominator of any element of \(B \). But there are arbitrarily high powers of 2 appearing in the denominator of elements in \(B \).
2

Theorem 2.7. (Cayley-Hamilton) Let $A \subset B$, where A and B are domains. Suppose that M is a finitely generated A-module with generators m_1, \ldots, m_n. Suppose that M is also a faithful $A[b]$-module (this means the only element that annihilates all of M is 0) and that b acts on the generators m_i in the following way

\[
 bm_i = \sum_{j=1}^{n} a_{ij}m_j.
\]

Then b satisfies the equation

\[
 \det \begin{pmatrix}
 b-a_{11} & -a_{12} & \cdots & -a_{1n} \\
 -a_{21} & b-a_{22} & \cdots & -a_{2n} \\
 \cdots & \cdots & \cdots & \cdots \\
 -a_{n2} & -a_{n1} & \cdots & b-a_{nn}
\end{pmatrix} = 0.
\]

Proof. Let T be the matrix $bI - [a_{ij}]$. The theorem then says that $\det T = 0$. Notice that we can consider T as an endomorphism of M^n by writing

\[
 \begin{pmatrix}
 b-a_{11} & -a_{12} & \cdots & -a_{1n} \\
 -a_{21} & b-a_{22} & \cdots & -a_{2n} \\
 \cdots & \cdots & \cdots & \cdots \\
 -a_{n2} & -a_{n1} & \cdots & b-a_{nn}
\end{pmatrix} \begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix} = \begin{pmatrix}
 b - \sum_{j=1}^{n} a_{1j}x_j \\
 \vdots \\
 b - \sum_{j=1}^{n} a_{nj}x_j
\end{pmatrix}
\]

where the x_i are elements of M. Let (x_1, \ldots, x_n) be (m_1, \ldots, m_n), we obtain

\[
 \begin{pmatrix}
 b-a_{11} & -a_{12} & \cdots & -a_{1n} \\
 -a_{21} & b-a_{22} & \cdots & -a_{2n} \\
 \cdots & \cdots & \cdots & \cdots \\
 -a_{n2} & -a_{n1} & \cdots & b-a_{nn}
\end{pmatrix} \begin{pmatrix}
 m_1 \\
 \vdots \\
 m_n
\end{pmatrix} = \begin{pmatrix}
 b - \sum_{j=1}^{n} a_{1j}m_j \\
 \vdots \\
 b - \sum_{j=1}^{n} a_{nj}m_j
\end{pmatrix} = \begin{pmatrix}
 0 \\
 \vdots \\
 0
\end{pmatrix}
\]

by equation (1). Now, recall from linear algebra (exercise) that there is a matrix U, called the adjoint of T, for which $UT = \det TI$. We obtain

\[
 \begin{pmatrix}
 \det T & 0 & \cdots & 0 \\
 0 & \det T & \cdots & 0 \\
 \cdots & \cdots & \cdots & \cdots \\
 0 & 0 & \cdots & \det T
\end{pmatrix} \begin{pmatrix}
 m_1 \\
 \vdots \\
 m_n
\end{pmatrix} = \begin{pmatrix}
 \det T \\
 \vdots \\
 \det T
\end{pmatrix} = \begin{pmatrix}
 0 \\
 \vdots \\
 0
\end{pmatrix}
\]
so \((\det T)m_i = 0\) for each \(m_i\). Hence \((\det T) = 0\), since \((\det T) \in A[b] \) and \(A[b]\) acts faithfully on \(M\).

\[\Box\]

Corollary 2.8. Let \(A \subset B\) and let \(b \in B\). If \(A[b] \subset B' \subset B\) for a ring \(B\) that is finitely generated as an \(A\)-module, then \(b\) is integral over \(A\).

Proof. Since \(b \in B'\), multiplication by \(b\) sends \(B'\) to \(B'\). Moreover, the resulting map is \(A\)-linear (by distributivity of multiplication). Let \(m_1, \ldots, m_n\) generated \(B'\) as an \(A\)-module. Then, for each \(i\) with \(1 \leq i \leq n\), we can write

\[bx_i = \sum_{j=1}^{i} a_{ij} x_j,\]

Clearly, the equation

\[
\begin{vmatrix}
 b - a_{11} & -a_{21} & \cdots & -a_{1n} \\
-a_{12} & b - a_{22} & \cdots & -a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
-a_{1n} & -a_{2n} & \cdots & b - a_{nn}
\end{vmatrix} = 0
\]

is integral.

\[\Box\]

For now, let’s note the following corollary.

Corollary 2.9. Let \(A \subset B\). Then the set of all elements in \(B\) that are integral over \(A\) is a ring.

Proof. We need only show that the elements in \(B\) that are integral over \(A\) forms a ring. If \(\alpha\) and \(\beta\) are integral over \(A\), then \(A[\alpha, \beta]\) is finitely generated as an \(A\)-module. Hence, \(-\alpha, \alpha + \beta, \) and \(\alpha\beta\) are all integral over \(A\) since they are contained in \(A[\alpha, \beta]\), by the Cayley-Hamilton theorem above.

\[\Box\]

The following is immediate.

Corollary 2.10. Let \(K\) be an extension of \(\mathbb{Q}\). Then the set of all elements in \(K\) that are integral over \(\mathbb{Z}\) is a ring.

Again let \(A \subset B\). The set \(B'\) of elements of \(B\) that are integral over \(A\) is a ring. We call this ring \(B'\) the integral closure of \(A\) in \(B\).

Definition 2.11. Let \(K\) be a number field (a finite extension of \(\mathbb{Q}\)). The ring of integers of \(K\) is integral closure of \(\mathbb{Z}\) in \(K\). We denote is as \(\mathcal{O}_K\).

Ask if people have seen localization.

Definition 2.12. We say that a domain \(B\) is integrally closed if it is integrally closed in its field of fractions.
Proposition 2.13. Let $A \subset B$, where A and B are domains. The ring B is integrally closed over A if and only if B is integrally closed in its field of fractions.

Proof. Exercise. \qed

Example 2.14. Any unique factorization domain is integrally closed.

Let’s do a preview of what properties we want rings of integers to have. First let’s recall some features of \mathbb{Z}:

1. \mathbb{Z} is Noetherian.
2. \mathbb{Z} is 1-dimensional.
3. \mathbb{Z} is a unique factorization domain.
4. \mathbb{Z} is a principal ideal domain.

Recall what a Noetherian ring is.

Definition 2.15. A ring R is Noetherian if every ideal is finitely generated as an R-module. Equivalently, R is if every ascending chain of ideals terminates.

Incidentally, we will later see that the conditions (1) and (2) are often equivalent in the situations we examine.

The rings \mathcal{O}_K will have the properties that

1. \mathcal{O}_K is Noetherian.
2. \mathcal{O}_K is 1-dimensional.
3. \mathcal{O}_K has unique factorization for ideals.
4. \mathcal{O}_K is locally a principal ideal domain.
5. It is possible that \mathcal{O}_K is not a unique factorization domain and that it is not a principal ideal domain.

In fact, any subring B of a number field K that is integral over \mathbb{Z} will be Noetherian and 1-dimensional. That is the Krull-Akizuki theorem which we will eventually prove.

We used the work “locally” above. Let’s define it.