Math 531

Notes from last time

- You do not need Zorn’s lemma in anything we did yesterday. You do need Zorn’s lemma to show that any ideal is contained in a maximal ideal.
- I made a slight error in the proof that the ascending chain condition implies that all ideals are finitely generated. I should have done this – let J be an ideal and let S be the set of all finitely generated ideals contained in J. Then this set has a maximal element and it must be J. Also, in general we will consider R to be an ideal of itself (we’ll need this later). However, R is not considered to be a prime ideal of R.
- It is more standard to say that R is **locally principal** if R_P is a principal ideal domain for every P. This is equivalent to the definition I gave when R is Noetherian.

Some theorems from the book about localization. A quick note on prime ideals: we do not consider the whole ring R to be a prime ideal.

Lemma 4.1. Let R be an integral domain. Let S be a multiplicative subset of R that does not contain 0. There is a bijection between the primes in R that do not intersect S and the primes in $S^{-1}R$.

Proof. The idea was that for any prime Q in $S^{-1}R$, we know that $Q \cap (R \cap S)$ is empty. Then, for any P, we have that $S^{-1}RP$ is a prime ideal in $S^{-1}R$. □

Notation $S^{-1}R$ is often denoted as R_S.

Forming $S^{-1}R$ is called localizing R. We define a local ring to be a ring with only one maximal ideal, e.g. $\mathbb{Z}_{(p)}$ is a local ring.

Let’s first show a weak unique factorization result that holds for all Noetherian rings.

Proposition 4.2. (*Poor man’s unique factorization*) Let R be a Noetherian ring and let I be an ideal in R. Then I has the property that there exist (not necessarily distinct) prime ideals $(P_i)_{i=1}^n$ such that

- $P_i \supset I$ for each i; and
- $\prod_{i=1}^n P_i \subset I$.

Proof. Let S be the set of ideals of R not having this property. Then S has a maximal element, call it I. We can assume I is not prime since prime ideals trivially have the desired property. Thus, there exist
\[a, b \notin I\] such that \(ab \in I\). The ideals \(I + Ra\) and \(I + Rb\) are larger than \(I\), so must have prime ideals \(P_i\) and \(Q_j\) such that
\[
\prod_{i=1}^{n} P_i \subset I + Ra
\]
with \(P_i \supset I + Ra \supset I\) and
\[
\prod_{i=1}^{n} Q_i \subset I + Rb
\]
with \(Q_i \supset I + Rb \supset I\). Also, \((I + Ra)(I + Rb) \subset I\) so
\[
\prod_{i=1}^{n} P_i \prod_{i=1}^{n} Q_i \subset I
\]
and \(I\) does have the desired property after all. \(\Box\)

There is no uniqueness at all here. Let’s get a very, very weak uniqueness result for local rings.

Proposition 4.3. Let \(R\) be a local integral domain with maximal ideal \(M\). Then \(M^n \neq M^{n+1}\) for \(n \geq 1\).

Proof. Since \(M^n \neq 0\) for any \(n\), we may apply Nakayama’s lemma below to \(M\) considered as an \(R\)-module. \(\Box\)

Lemma 4.4. (Nakayama’s lemma) Let \(R\) be a local ring with maximal ideal \(M\) and let \(M\) be a finitely generated \(R\)-module. Suppose that \(MM = M\). Then \(M = 0\).

Proof. The proof is similar to that of the Cayley-Hamilton theorem. Let \(m_1, \ldots, m_n\) generate \(M\). Then \(MM\) will be the set of all sums \(\sum_{j=1}^{n} a_jm_j\) where \(a_j \in M\). In particular, we can write
\[1 \cdot m_i = \sum_{j=1}^{n} a_{ij}m_j.\]

We form the matrix \(T := I - [a_{ij}]\) as \(n \times n\) matrix over \(A\) and treat as an endomorphism of \(M^n\) (as in Cayley-Hamilton). Then, as in Cayley-Hamilton \(T(m_1, \ldots, m_n)^t = 0\) (i.e., \(T\) times the column vector with entries \(m_i\)), which means that \(UT(m_1, \ldots, m_n)^t = 0\) which means that \((\det T)m_i = 0\) for each \(i\), so \((\det T)M = 0\). Expanding out \(\det T\), we note that all the \(a_{ij}\) are in \(M\) so we obtain
\[(1^n + 1^{n-1} + b_{n-1}1^{n-1} + \cdots + b_0)M = 0.\]
Now \(1 + b_{n-1} + \ldots + b_0\) is not in \(M\) so it must be a unit \(u\). Then we have \(uM = 0\), so \(u^{-1}uM = 0\), so \(1M = 0\), so \(M = 0\). \(\square\)

Earlier we said that we wanted to show that \(O_K\) had many of the same properties as \(\mathbb{Z}\). What we will in fact show is that \(O_K\) is something called a Dedekind domain. A Dedekind domain is a simple kind of ring. Let us first define an even simpler kind of ring, a discrete valuation ring, frequently called a DVR.

Definition 4.5. A discrete valuation on a field \(K\) is a surjective homomorphism from \(K^*\) onto the additive group of \(\mathbb{Z}\) such that

1. \(v(xy) = v(x) + v(y)\);
2. \(v(x + y) \geq \min(v(x), v(y))\).

By convention, we say that \(v(0) = \infty\).

Remark 4.6. Note that it follows from property 2 that if \(v(x) > v(y)\), then \(v(x + y) = v(y)\). To prove this we note that \(v(-x) = v(x)\) and \(v(y) = v(-y)\), so we have

\[
v(y) \geq \min(v(x + y), v(-x)) \geq v(x + y)
\]

since \(v(x) > v(y)\). Since \(v(x + y) \geq \min(v(x), v(y))\) also, we must have \(v(x + y) = v(y)\).

Example 4.7. Let \(v_p\) be the \(p\)-adic valuation on \(\mathbb{Q}\). That is to say that \(v_p(a)\) is the largest power dividing \(a\) for \(a \in \mathbb{Z}\) and \(v_p(a/b) = v_p(a) - v_p(b)\) for \(a, b \in \mathbb{Z}\).

Definition 4.8. A discrete valuation \(R\) ring is a set of the form

\[
\{a \in K \mid v(a) \geq 0\}
\]

Note that since we have assumed that \(v\) is surjective a field is not a DVR. This is different from the terminology used in the book. The key fact about DVR’s is that if we pick a \(\pi\) for which \(v(\pi) = 1\), then every element in \(a\) in \(R\) can be written as \(u\pi^n\) for some \(n \geq 0\). Indeed, this follows form the fact that \(a/\pi^{v(a)}\) must have valuation 1 and therefore be a unit. Thus, \(Ra\) is the only maximal ideal in \(R\).

Now, to define Dedekind domains.

Definition 4.9. A Dedekind domain is a domain \(R\) with the property that \(RP\) is a DVR for every prime \(P\).

Example 4.10. Take the ring \(\mathbb{Z}\). For any nonzero prime \((p)\), it is easy to check that \(\mathbb{Z}_p\) is the DVR corresponding the \(p\)-adic valuation.