Math 531 Tom Tucker

How can we identify a DVR? The following will help.

A couple remarks first:
1. If I and J are principal then so is IJ. In particular, any power of
a principal ideal is principal.
2. Notation: for any ideal I of R, we say $I^0 = R$.

Proposition 5.1. Let R be a Noetherian local domain of dimension 1
with maximal ideal \mathcal{M} and with $R/\mathcal{M} = k$ its residue field. Then the
following are equivalent

1. R is a DVR;
2. R is integrally closed;
3. \mathcal{M} is principal;
4. there is some $\pi \in R$ such that every element $a \in R$ can be written
 uniquely as $u \pi^n$ for some unit u and some integer $n \geq 0$.
5. every nonzero ideal is a power of \mathcal{M};

Proof. (1 \Rightarrow 2) Suppose that $b \in K \setminus R$. Then $v(b) < 0$, so for any
monic polynomial in b with coefficients in R, we have

$$v(b^n + a_n b^{n-1} + \cdots + a_0) = v(b^n) < 0,$$

which means that $b^n + a_n b^{n-1} + \cdots + a_0 \neq 0$.

(2 \Rightarrow 3) Let $a \in \mathcal{M}$. There is some n for which $\mathcal{M}^n \subset (a)$ (by “Poor
Man’s Factorization” in Noetherian rings) but \mathcal{M}^{n-1} is not contained
in (a) (note $n-1$ could be zero). Let $b \in \mathcal{M}^{n-1} \setminus (a)$ and let $x = a/b$. We
can show that $\mathcal{M} = Rx$. This is equivalent to showing that $x^{-1} \mathcal{M} = R$.

Note that since (b) is not in (a), $b/a = x^{-1}$ cannot be in R. Hence, it
cannot be integral over R. By Cayley-Hamilton, $x^{-1} \mathcal{M} \neq \mathcal{M}$ since \mathcal{M}
is finitely generated as an R-module and $x^{-1} \notin R$ and R is integrally
closed. Since $x^{-1} \mathcal{M}$ is an R-module and $x^{-1} \mathcal{M} \subset R$ (this follows from
the fact that $b \mathcal{M} \subset \mathcal{M}^n \subset (a)$), this means that $x^{-1} \mathcal{M}$ is an ideal of
R not contained in \mathcal{M}. So $x^{-1} \mathcal{M} = R$, as desired.

(3 \Rightarrow 4) Let π generate \mathcal{M}. Now, let $a \in R$. We define $w(a)$ to be
the smallest n for which $\mathcal{M}^n \subset Ra$; such an n exists by “Poor
Man’s Factorization” in Noetherian rings. We will show by induction that
that a can be written as $u \pi^{w(a)}$ for some unit u. The case $w(a) = 0$ is
trivial, since $w(a) = 0$ means a is a unit. If $w(a) \geq 1$, then $a \in \mathcal{M}$.

Then we can write $a = \pi b$ for some b. Since, any element in \mathcal{M}^n, which
is simply the set of $z \pi^n$ for $z \in R$, can be written as xa for some $x \in R$,
any element $z \pi^{w(a)-1}$ in $\mathcal{M}^{w(a)-1}$ can be written as xb for that same
x. Hence $w(b) \leq w(a) - 1$. By the same reasoning, $w(b) \geq w(a) - 1$.

Hence $w(b) = w(a) - 1$. So we can write b uniquely as $u \pi^{w(b)}$ for some
unit u, which gives $a = u \pi^{w(a)}$ uniquely.
(4 ⇒ 5) Let \(I \) be an ideal of \(R \). Since \(I \) is finitely generated, it has generators \(m_1, \ldots, m_n \) which can all be written as \(u_i \pi_i^{t_i} \). Then the \(i \) for which \(t_i \) is smallest will generate \(I \) from above.

(5 ⇒ 1) Let \(a \in R \). Then \(Ra = M^n \) for some unique \(n \). Letting \(v(a) = n \) gives the desired valuation.

\[\square \]

Example 5.2. The ideal \(P \) generated by 2 and \(\sqrt{5} - 5 \) in \(\mathbb{Z}[\sqrt{5}] \) is prime but \(\mathbb{Z}[\sqrt{5}] \setminus P \) is not a DVR. More on this later.

Recall, a Dedekind domain is a Noetherian domain \(R \) such that \(R \) is a DVR for every nonzero prime \(P \) of \(R \). The ideal structure is a bit more complicated than that of a DVR. Recall that in any noetherian ring \(R \) for every ideal \(I \) we can write \(\prod_{i=1}^{n} P_i \subset I \) with \(P_i \supset I \). We’ll prove that in a Dedekind domain we can write get an inequality and get it uniquely.

One more thing: we’ll want to work in Noetherian domains of (Krull) dimension 1 more generally, as you’ll see later. So we’ll try to state results for them when possible.

To understand how to factorize an ideal \(I \), we’ll want to understand \(R/I \). To help us with this we’ll want the Chinese remainder theorem.

The Chinese remainder theorem really consists of writing 1 in a lot of different ways. Let’s prove the following easy Lemma.

Lemma 5.3. Let \(I \) and \(J \) be ideals in \(R \). Suppose that \(I + J = 1 \). Then

1. \(I \cap J = IJ \); and
2. for any positive integers \(m, n \), we have \(I^m + J^n = 1 \).

Proof. Since \(I + J = 1 \), we can write \(a + b = 1 \) for \(a \in I \) and \(b \in J \). Now 1. follows from the fact that for if \(x \in I \cap J \), then \(x = (a + b)x = ax + bx \in IJ \), so \(I \cap J \subset IJ \). The reverse inclusion \(IJ \cup I \cap J \) is obvious. To prove 2., we simply write \((a + b)^2 = 1 \), and note that the expansion of \((a + b)^2(\text{m+n}) \) consists entirely of elements in either \(I^{m+n} \subset I^m \) or \(J^{m+n} \subset J^n \).

\[\square \]

Lemma 5.4. Let \(I \) and \(J \) be ideals of \(R \) and suppose that \(I + J = 1 \). Then the natural map

\[\phi : R \longrightarrow R/I \oplus R/J \]

is surjective with kernel \(IJ \).

Proof. The kernel is \(I \cap J \) which equals \(IJ \) from the Lemma above. Now, to see that it is surjective, write \(a + b = 1 \) with \(a \in I \) and \(b \in J \).
Then \(b = 1 - a \) and \(\phi(b) = (1, 0) \) and \(\phi(a) = (0, 1) \). Since \(\phi(R) \) is clearly a \(R/I \oplus R/J \) module and \(R/I \oplus R/J \) is generated by \((1, 0) \) and \((0, 1) \) as an \(R/I \oplus R/J \) module, \(\phi \) must be surjective. □

Lemma 5.5. If \(I + J_1 = 1 \) and \(I + J_2 = 1 \), then \(I + J_1J_2 = 1 \).

Proof. Writing \(a + b = 1 \) for \(a \in I \) and \(b \in J_1 \) and writing \(a' + b' = 1 \) for \(a \in I \) and \(b \in J_2 \), we see that
\[
1 = (a + b)(a' + b') = aa' + ab' + ba' + bb' \subseteq I + J_1J_2.
\]

□

Proposition 5.6. (*Chinese Remainder theorem*) Let \(R \) be a ring and let \(I_1, \ldots, I_n \) be a set of ideals of \(R \) such that \(I_j + I_k = 1 \) for \(j \neq k \). Then the natural map
\[
R \longrightarrow \bigoplus_{j=1}^{n} R/I_j
\]
is surjective with kernel \(I_1 \cdots I_n \).

Proof. We proceed by induction on \(n \). If \(n = 1 \), then the result is obvious. Otherwise, write \(I := I_1 \) and \(J := I_2 \cdots I_n \). Applying the lemmas above, \(I + J = 1 \) and the natural map
\[
R \longrightarrow R/I \oplus R/J
\]
is surjective with kernel \(IJ \). Since the natural map
\[
R \longrightarrow \bigoplus_{j=2}^{n} R/I_j
\]
is surjective with kernel \(I_2 \cdots I_n \) by the inductive hypothesis, we are done. □