Math 513 Tom Tucker
NOTES FROM CLASS 9/29

We were proving the following:

Theorem 12.1. Let \(L \supseteq K \) be a finite extension of fields. Then the bilinear form \((x, y) = T_{L/K}(xy)\) is nondegenerate \(\iff\) \(L\) is separable over \(K\).

Proof. \((\Rightarrow)\) We did last time.

\((\Leftarrow)\) We will denote \(T_{L/K}(xy)\) as \((x, y)\). Recall the following: Choosing a basis \(m_1, \ldots, m_n\) and writing \(x\) and \(y\) as vectors in terms of the \(m_i\) we can write

\[x A y^T \]

for some matrix \(A\). The matrix \(A\) is given by \([a_{ij}]\) where \(a_{ij} = (m_i, m_j)\) since we want

\[
\sum_{i=1}^{n} r_i a_i, \sum_{j=1}^{n} s_j a_j = \sum_{i=1}^{n} \sum_{j=1}^{n} r_i s_j (a_i, a_j).
\]

It is easy to see that that the form will be nondegenerate if and only if \(A\) is invertible, since \(Ay = 0\) if and only \((x, y) = 0\) for every \(y \in L\).

Now, since \(L\) is separable over \(K\), we can write \(L = K(\theta)\) for \(\theta \in L\) and use \(1, \theta, \ldots, \theta^{n-1}\) as a basis for \(L\) over \(K\). Then we can write the matrix \(A = [a_{ij}]\) above with

\[a_{ij} = (\theta^i, \theta^j) = T_{L/K}(\theta^{i+j}). \]

It isn’t too hard to calculate these coefficients explicitly. In fact, if \(\theta_1, \ldots, \theta_n\) are the roots of the minimal polynomial of \(\theta\), then

\[T_{L/K}(\theta) = \sum_{\ell=1}^{n} \theta_\ell, \]

from what we proved earlier. Similarly, we have

\[T_{L/K}(\theta^{i+j}) = \sum_{\ell=1}^{n} \theta^{i+j}_\ell. \]

There is a trick to finding the determinant of such a matrix. Recall the van der Monde matrix in \(V := V(\theta_1, \ldots, \theta_n)\). It is the matrix

\[
\begin{pmatrix}
1 & \cdots & 1 \\
\theta_1 & \cdots & \theta_n \\
\vdots & \cdots & \vdots \\
\theta_n & \cdots & \theta_n \\
1 & \cdots & 1
\end{pmatrix}
\]
The determinant of this matrix is
\[
\det(V) = \prod_{i<j} (\theta_i - \theta_j).
\]

It is easy to check that \(VV^T = A \) (a messy but easy calculation). Thus,
\[
\det(A) = \det(V) \det(V^T) = \det(V)^2 = \left(\prod_{i<j} (\theta_i - \theta_j) \right)^2 \neq 0,
\]
since \(\theta_i \neq \theta_j \) for \(i \neq j \) and we are done.
\[\square\]

Now, given a bilinear form \((x, y)\) on a vector space \(W\), we get a map from \(\psi : W \rightarrow W^*\), where \(W^*\) is the dual of \(W\) by sending \(x \in W\) to the map \(f(y) = (x, y)\). When the form is nondegenerate this map is injective. Thus, by dimension counting, when \(W\) is finite dimensional and the form is nondegenerate, we get an isomorphism of vector spaces. In particular, we can do the following. Let \(u_1, \ldots, u_n\) be a basis for \(W\) over \(V\). Then for each \(u_i\), there is a map \(f_i \in W^*\) such that \(f_i(u_j) = \delta_{ij}\), where \(\delta_{ij}\) is the Kronecker delta, which means that \(\delta_{ij} = 0\) if \(i \neq j\) and \(\delta_{ij} = 1\) if \(i = j\). Since \(f_i(x) = (v_j, x)\) for some \(v_j \in W\), we obtain a dual basis \(v_1, \ldots, v_n\) with the property that \((v_i, u_j) = \delta_{ij}\).

Thus, we have the following.

Theorem 12.2. (Dual basis theorem) Let \(L \supseteq K\) be a finite, separable extension of fields. Let \(u_1, \ldots, u_n\) be basis for \(L\) as a \(K\)-vector space. Then there is a basis \(v_1, \ldots, v_n\) for \(L\) as a \(K\)-vector space such that \(T_{L/K}(v_i, u_j) = \delta_{ij}\).

Proof. Since \((x, y) = T_{L/K}(xy)\) is a nondegenerate bilinear form on \(L\) (considered as a \(K\)-vector space), we may apply the discussion above. \[\square\]

Definition 12.3. Let \(L \supseteq K\) be a separable field extension. Let \(M\) be a submodule of \(L\). We define \(M^\dagger\) to be set
\[
\{ x \in L \mid T_{L/K}(xy) \in A \text{ for every } y \in M \}
\]

Remark 12.4. It is clear that \(M \subseteq N \Rightarrow M^\dagger \supseteq N^\dagger\), by definition of the dual module.

Lemma 12.5. Let \(M\) be an \(A\)-submodule of \(L\) for which
\[
M = Bu_1 + \cdots + Bu_n
\]
for \(u_1, \ldots, u_n \) a basis for \(L \) over \(K \). Then \(M^\dagger \) is equal to \(Bv_1 + \cdots + Bv_n \) for \(v_1, \ldots, v_n \) a dual basis for \(u_1, \ldots, u_n \) with respect to the bilinear form induced by the trace.

Proof. Let \(x \in L \). Then \(x \in M^\dagger \) if and only if \(T_{L/K}(xu_i) \in A \) for each \(u_i \). Writing \(x \) as \(\sum_{i=1}^n \alpha_i v_i \) with \(\alpha_i \in K \), we see that \(T_{L/K}(xu_i) = \alpha_i \), so \(T_{L/K}(xu_i) \in R \) if and only if \(\alpha_i \in R \). This completes our proof. \(\square \)

Theorem 12.6. Let \(A \) be a Dedekind domain with field of fractions \(K \) and let \(L \supseteq K \) be a finite, separable extension of fields. Let \(B \) be the integral closure of \(A \) in \(L \). Then \(B \) is Dedekind.

Proof. We already know that \(B \) is 1-dimensional, integrally closed, and an integral domain. We need only show that it is Noetherian.

Then \(B \subseteq B^\dagger \) since \(B \) is integral over \(A \) (recall \(B \) integral over \(A \) means that the coefficients of the minimal polynomial for \(B \) over \(A \) are all in \(A \)). Now, we choose a basis \(u_1, \ldots, u_n \) for \(L \) over \(K \). I claim that we can choose the \(u_i \) to be in \(B \). This is because for any \(u \in L \) we have

\[
\frac{u^m + \frac{x_{m-1}}{y_{m-1}}u^{m-1} + \cdots + \frac{x_0}{y_0}}{y_{m-1}} = 0
\]

with \(x_i \) and \(y_i \) in \(A \). Replacing \(u \) with \(u' = \prod_{i=1}^m y_i \) and multiplying through by \((\prod_{i=1}^m y_i)^m \) converts this into an integral monic equation in \(u' \) as we’ve seen before. Thus, we can take our basis \(u_i \), replace each \(u_i \) with a multiple of \(u_i \) and still have a basis. Let \(v_1, \ldots, v_n \) be a dual basis for \(u_1, \ldots, u_n \) with respect to the trace form. Then the \(A \)-module generated by the \(v_i \) contains \(B^\dagger \). So we have

\[
B \subseteq B^\dagger \supseteq \sum_{i=1}^n Av_i
\]

which implies that \(B \) is contained in a finitely generated \(A \)-module, which in turn implies that \(B \) is Noetherian as an \(A \)-module. Hence, \(B \) is Noetherian as a \(B \)-module and is a Noetherian ring. \(\square \)