Math 531 Problem Set #1 Due 9/8/01

1. For an element $u + vi$ of $\mathbb{Z}[i]$, define $N(u + vi) := u^2 + v^2$.
(a) Show that for any $c, d \in \mathbb{Z}[i]$, we have $N(c)N(d) = N(cd)$.
(b) Show that for any elements $a, b \in \mathbb{Z}[i]$, it is possible to write

 $$a = qb + r,$$

 where $q, r \in \mathbb{Z}[i]$ and $N(r) < N(b)$.
(c) Conclude that $\mathbb{Z}[i]$ is a principal ideal domain.

2. Use the Euclidean algorithm to show that $\mathbb{Z}[\frac{1+i\sqrt{-3}}{2}]$ is a principal ideal domain.

3. Answer each of the following yes or no and explain your answer.
(a) Is $11\sqrt{7}$ integral over \mathbb{Z}?
(b) Is $\frac{1+i\sqrt{3}}{2}$ integral over \mathbb{Z}?
(c) Is $\frac{1+i\sqrt{5}}{2}$ integral over \mathbb{Z}?
(d) Is $\mathbb{Z}[\sqrt{-19}]$ integrally closed in $\mathbb{Q}[\sqrt{-19}]$?

4. Show that ± 1 are the only units in the ring $\mathbb{Z}[\frac{1+i\sqrt{-19}}{2}]$.

5. It turns out that $\mathbb{Z}[\frac{1+i\sqrt{-19}}{2}]$ is a unique factorization domain (we will prove this later). Given this fact, find all integer pairs (x, y) such that $x^2 + 19 = y^3$ and justify your answers with a proof.