Math 531 Problem Set #2 Due 9/15/04

1. (a) Suppose that α is integral of degree 2 over \mathbb{Z} and that there is a basis m_1, m_2 for $\mathbb{Z}[\alpha]$ over \mathbb{Z} such that

\[
\begin{align*}
\alpha m_1 &= m_2 \\
\alpha m_2 &= -m_1 + m_2.
\end{align*}
\]

Find the quadratic integral equation satisfied by α.

(b) Suppose that β is integral of degree 2 over \mathbb{Z} and that there is a basis m_1, m_2 for $\mathbb{Z}[\beta]$ over \mathbb{Z} such that

\[
\begin{align*}
\beta m_1 &= m_2 \\
\beta m_2 &= 5m_1.
\end{align*}
\]

Find the quadratic integral equation satisfied by β.

2. Let T be an $n \times n$ matrix with coefficients in a ring A. Show that there is a matrix U for which $UT = (\det T)I$.

3. Let $A, B,$ and C be rings with $A \subset B \subset C$. Show that if B is integral over A and C is integral over B, then C is integral over A.

4. (Ex. 4, p. 7) Let d be a squarefree integer. Show that the integral closure of \mathbb{Z} in $\mathbb{Q}[\sqrt{d}]$ is

\[
\begin{align*}
\mathbb{Z}[\sqrt{d}] & \quad \text{if } d \equiv 2, 3 \pmod{4}, \\
\mathbb{Z} \left[\frac{1 + \sqrt{d}}{2}\right] & \quad \text{if } d \equiv 1 \pmod{4}.
\end{align*}
\]

5. (a) Let $\phi : A \to B$ be a mapping of rings. Show that for any prime ideal \mathcal{P} in B, the ideal $\phi^{-1}(\mathcal{P})$ is a prime ideal in A.

(b) Give an example of a surjective ring homomorphism $\phi : A \to B$ for which there is a prime ideal \mathcal{P} of A such that $\phi(\mathcal{P})$ is not a prime ideal.

6. (a) Give an example of a mapping of rings $\phi : A \to B$ for which there is an ideal I of A such that $\phi(I)$ is not an ideal.

(b) Let $\phi : A \to B$ be a surjective mapping of rings. Show that for any ideal I of A, the set $\phi(I)$ forms an ideal in B.

(c) Let $\phi : A \to B$ be any mapping of rings. Show that for any ideal J of B, the set $\phi^{-1}(J)$ forms an ideal in A.

7. Let $A \subset B$ where A and B are domains and let K be the field of fractions of B. Show that if B is integrally closed over A in K, then B is integrally closed over itself in K.

8. (Ex. 4, p.3) Show that if S is a multiplicative set not containing 0 in a Noetherian integral domain \mathcal{R}, then $S^{-1} \mathcal{R}$ is also a Noetherian integral domain.