1. Let \(R \) be an integral domain, let \(\mathcal{M} \) be a maximal ideal of \(R \), and let \(S \) be a multiplicative subset of \(R \) contained in \(R \setminus \mathcal{M} \). Show that
\[
R/\mathcal{M} \cong S^{-1}R/(S^{-1}R\mathcal{M}^n).
\]

2. Let \(\theta = \sqrt{3} \) and let \(R = \mathbb{Z} [\theta] \).
 (a) Write down a dual basis for the basis \(1, \theta \) for \(\mathbb{Q}(\theta) \) over \(\mathbb{Q} \) with respect to the bilinear form \((x, y) = \mathbb{T}_{\mathbb{Q}(\theta)/\mathbb{Q}}(xy) \).
 (b) Letting \(R^\dagger \) denote the \(\mathbb{Z} \)-module generated by the dual basis above, find the order of the abelian group \(R^\dagger / R \).

3. Let \(\theta = \frac{1 + \sqrt{5}}{2} \) and let \(R = \mathbb{Z} [\theta] \).
 (a) Write down a dual basis for the basis \(1, \theta \) for \(\mathbb{Q}(\theta) \) over \(\mathbb{Q} \) with respect to the bilinear form \((x, y) = \mathbb{T}_{\mathbb{Q}(\theta)/\mathbb{Q}}(xy) \).
 (b) Letting \(R^\dagger \) denote the \(\mathbb{Z} \)-module generated by the dual basis above, find the order of the abelian group \(R^\dagger / R \).

4. Let \(K \) be a field. We define the resultant \(\text{Res}(f, g) \) as follows. Write
\[
f(x) = b \prod_{i=1}^{m} (x - \alpha_i), \quad g(x) = c \prod_{j=1}^{n} (x - \beta_j),
\]
with \(b, c \in K^* \) and \(\alpha_i, \gamma_j \) in some algebraic closure of \(K \). Then
\[
\text{Res}(f, g) := b^n c^m \prod_{i=1}^{m} \prod_{j=1}^{n} (\alpha_i - \beta_j).
\]
 (a) Let \(h(x) = x^2 - 3 \). Calculate \(\text{Res}(h(x), h'(x)) \).
 (b) Let \(t(x) = x^2 - x - 1 \). Calculate \(\text{Res}(t(x), t'(x)) \).
 (c) Compare your answers to 2(b) and 3(b).

5. Let \(f \) and \(g \) be as above and suppose that \(g \) is nonconstant. Show that
\[
\text{Res}(f(x), g(x)) = b^n \prod_{i=1}^{m} g(\alpha_i).
\]

6. Let \(f \) be as above and assume that its leading coefficient \(b \) is 1 and that the degree of \(f \) is at least 2. Show that
\[
\text{Res}(f(x), f'(x)) = \prod_{1 \leq i, j \leq m, i \neq j} (\alpha_i - \alpha_j).
\]

7. Let \(K \subseteq L \) be a separable field extension with \(L = K(\theta) \) for an algebraic \(\theta \) with minimal monic polynomial \(f(x) \) over \(K \). Show that for \(a \in K \), we have \(N_{L/K}(a - \theta) = f(a) \).
 (b) Let \(\xi_p \) be a primitive \(p \)-th root of unity for a prime number \(p \). Show that \(N_{\mathbb{Q}(\xi_p)/\mathbb{Q}}(1 - \xi_p) = p \).