The purpose of this homework is to see what approximation has to do with solutions to polynomial equations in two variables.

Theorem 0.1 (Thue’s Theorem). Let α be any algebraic number in \mathbb{C} and let $\epsilon > 0$ and let $d = [\mathbb{Q}(\alpha) : \mathbb{Q}]$. We call d the **degree** of α. Then there are finitely many $x/y \in \mathbb{Q}$ such that

$$|\alpha - x/y| < \frac{1}{|y|(d/2+1)+\epsilon}.$$

Now, we introduce a polynomial...

Let $F(x, y)$ be a homogeneous polynomial of degree d with coefficients in \mathbb{Z}. This means that we have

$$F(x, y) = \sum_{i=0}^{d} a_i x^i y^{d-i},$$

where $a_i \in \mathbb{Z}$. Suppose that F factors as

$$F(x, y) = \gamma \sum_{i=1}^{d} (x - \alpha_i y),$$

where γ and all of the α_i are in $\overline{\mathbb{Q}}$.

In each of the following exercises, $F(x, y)$ is as defined above.

1. Suppose that $d \geq 3$ and that all of the α_i in equation (1) are distinct. Let m be any nonzero integer. Use Thue’s theorem to show that there are finitely many integer pairs (x, y) for which

$$F(x, y) = m.$$

2. Give an example of a polynomial F as above with degree $d \geq 3$ for which there is a nonzero integer m such that there are infinitely many integer pairs (x, y) for which

$$F(x, y) = m.$$

3. Give an example of a polynomial F of degree $d = 2$ such that

 (a) the α_i in (1) are distinct; and

 (b) there is a nonzero integer m such that there are infinitely many integer pairs (x, y) for which

$$F(x, y) = m.$$