Linear forms in logarithms and integral points on varieties

Aaron Levin

Michigan State University

Second Annual Upstate Number Theory Conference
Faltings’ and Siegel’s Theorem
Basic object of interest: The set of solutions to a system of polynomial equations over a number field k,

\[f_1(x_1, \ldots, x_n) = 0, \]
\[\vdots \]
\[f_m(x_1, \ldots, x_n) = 0, \]

where the solutions are taken in one of the following rings:

- $x_1, \ldots, x_n \in k$ (rational solutions)
- $x_1, \ldots, x_n \in \mathcal{O}_k$, the ring of integers of k (integral solutions)
- More generally, $x_1, \ldots, x_n \in \mathcal{O}_{k,S}$, the ring of S-integers (S-integral solutions).

Geometric viewpoint: The system of polynomial equations defines a geometric object in affine space or projective space (if the polynomials are homogeneous).
Philosophy: Geometry determines arithmetic.

Let $X \subset \mathbb{A}^n$ be an affine variety over a number field k. Then we’re interested in the set of (S)-integral points $X(O_k, S) = \{(x_1, \ldots, x_n) \in X \mid x_1, \ldots, x_n \in O_k, S\}$.

Note: This set depends not just on X, but on the embedding of X in \mathbb{A}^n.

Similarly, we can study the set of rational points $X(k)$.
If $X = C$ is a nonsingular projective curve, there is a fundamental geometric invariant: the genus. This is the number of "holes" in the corresponding Riemann surface.

For curves, this single invariant, the genus, controls the qualitative behavior of rational points.

Theorem (Faltings, formerly the Mordell Conjecture)

Let C be a curve defined over a number field k. If the (geometric) genus g of C satisfies $g \geq 2$ then $C(k)$ is finite.

Conversely, curves of genus 0 and genus 1 may have infinitely many rational points (rational and elliptic curves).
Siegel’s Theorem

- For affine curves, there is an additional geometric invariant: the number of points of the curve “at infinity"
- The fundamental finiteness result for integral points on affine curves is the 1929 theorem of Siegel.

Theorem (Siegel)

Let $C \subset \mathbb{A}^n$ be an affine curve defined over k. Let \tilde{C} be a projective closure of C. If either

- \tilde{C} has positive genus

or

- C is rational with more than two points at infinity ($\#\tilde{C} \setminus C \geq 3$)

then the set of integral points $C(\mathcal{O}_{k,S})$ is finite (for any S).

- The hypothesis that $\#\tilde{C} \setminus C \geq 3$ when C is rational is necessary.
Consider the rational affine curve C defined by $x^2 - 3y^2 = 1$.

We have $C \subset \tilde{C}$, where \tilde{C} is the projective plane curve $\tilde{C} : x^2 - 3y^2 = z^2$.

The points at infinity $\tilde{C} \setminus C$ correspond to the points on \tilde{C} with $z = 0$. There are two such points $[x : y : z] = [\pm \sqrt{3} : 1 : 0]$.

So Siegel’s theorem does not apply.

C does in fact have infinitely many \mathbb{Z}-integral points. C is defined by a so-called Pell equation. If $n \in \mathbb{N}$,

$$x + \sqrt{3}y = (2 + \sqrt{3})^n,$$

then (x, y) will be an integral point on C.

Aaron Levin Linear forms in logarithms and integral points on varieties
Faltings’ theorem and Siegel’s theorem both have one major defect: all of the known proofs of these theorems are ineffective.

No known algorithm which, in general, can provably find the finitely many points in either theorem.

This would typically be done by bounding the height of the points.

For curves with certain special properties there do exist effective techniques for finding the finitely many rational/integral points.
Linear Forms in Logarithms
By far, the most powerful and widely used effective technique for integral points comes from Baker’s theory of linear forms in logarithms.

Theorem (Baker)

Let $\alpha_1, \ldots, \alpha_m$ be nonzero algebraic numbers, b_1, \ldots, b_m integers, and $\epsilon > 0$. Suppose that

$$0 < |b_1 \log \alpha_1 + \cdots + b_m \log \alpha_m| < e^{-\epsilon B},$$

where $B = \max\{|b_1|, \ldots, |b_m|\}$. Then $B \leq B_0$, where B_0 is an effectively computable constant depending on $\alpha_1, \ldots, \alpha_m, \epsilon$.

In fact, one can replace $e^{-\epsilon B}$ on the right-hand side by B^{-C} for some effective constant C.
An alternative formulation avoiding logarithms and with arbitrary absolute values (van der Poorten, Yu) is the following:

Theorem

Let $\alpha_1, \ldots, \alpha_m$ be algebraic numbers, b_1, \ldots, b_m integers, and $\epsilon > 0$. Let v be a place of k. Suppose that

$$0 < |\alpha_1^{b_1} \cdots \alpha_m^{b_m} - 1|_v < e^{-\epsilon B},$$

where $B = \max\{|b_1|, \ldots, |b_m|\}$. Then $B \leq B_0$, where B_0 is an effectively computable constant depending on $\alpha_1, \ldots, \alpha_m, v, \epsilon$.

Aaron Levin
Linear forms in logarithms and integral points on varieties
Heights

- Denote the absolute logarithmic height by \(h(x) \).
- Recall that for a rational number \(\frac{a}{b} \in \mathbb{Q} \), \((a, b) = 1\), the height is given by
 \[
 h \left(\frac{a}{b} \right) = \log \max \{|a|, |b|\}.
 \]
- We can also define local heights. For \(k \) a number field, \(\alpha \in k \), and \(v \) a place of \(k \), define the local height (or local Weil function) with respect to \(\alpha \) by
 \[
 h_{\alpha, v}(x) = \frac{[k_v : \mathbb{Q}_v]}{[k : \mathbb{Q}]} \log \max \{|x|_v, 1\} \log \frac{\max \{|x|_v, 1\}}{|x - \alpha|_v}, \quad \forall x \in k, x \neq \alpha.
 \]
- This measures how \(v \)-adically close \(x \) is to \(\alpha \) (being large when \(x \) is close to \(\alpha \)).
In terms of heights, we can reformulate Baker’s theorem as

Theorem

Let k be a number field, S a finite set of places of k containing the archimedean places, $v \in S$, $\alpha \in k^*$, and $\epsilon > 0$. Then there exists an effective constant C such that

$$h_{\alpha,v}(x) \leq \epsilon h(x) + C$$

for all $x \in \mathcal{O}_{k,S}^*$, $x \neq \alpha$.
Applications to curves

Baker’s method allows one to effectively solve, for instance, the following:

- The *S*-unit equation: for fixed $a, b, c \in k^*$,

 \[au + bv = c, \quad u, v \in \mathcal{O}_k^*, S. \]

- The Thue-Mahler equation:

 \[F(x, y) \in \mathcal{O}_k^*, S, \quad x, y \in \mathcal{O}_k, S, \]

 where $F(x, y) \in k[x, y]$ is a binary form such that $F(x, 1)$ has at least 3 distinct roots in \bar{k}.

- The hyperelliptic equation:

 \[y^2 = f(x), \quad x, y \in \mathcal{O}_k, S, \]

 where $f(x) \in k[x]$ has no repeated roots and degree ≥ 3.

All of these equations correspond to integral points on certain curves (e.g., the unit equation corresponds to integral points on \mathbb{P}^1 minus three points).
Effective Results in Higher Dimensions
The general unit equation

- The (two-variable) unit equation can be generalized to sums of more units:

Theorem (Evertse, van der Poorten and Schlickewei)

All but finitely many solutions of the equation

\[a_0 u_0 + a_1 u_1 + \ldots + a_n u_n = a_{n+1} \quad \text{in } u_0, \ldots, u_n \in \mathcal{O}_{k,S}^*, \]

where \(a_0, \ldots, a_{n+1} \in k^* \), satisfy an equation of the form

\[\sum_{i \in I} a_i u_i = 0, \text{ where } I \subset \{0, \ldots, n\}. \]

- Solutions to this equation yield integral points on \(\mathbb{P}^n \) minus \(n + 2 \) hyperplanes in general position (the coordinate hyperplanes and the hyperplane \(a_0 x_0 + \cdots + a_n x_n = 0 \)).
- For \(n \geq 2 \), the proofs of the theorem aren’t effective.
- There is a bound for the number of nondegenerate solutions, however, and this bound depends only on \(|S| \) and \(n! \).
Vojta’s Theorem

- In his thesis, Vojta proved:

Theorem (Vojta)

Let k be a number field and S a finite set of places of k containing the archimedean places. Suppose that $|S| \leq 3$. Let $a_1, a_2, a_3, a_4 \in k^*$. Then there exists an effectively computable constant C such that every solution to

$$a_1 u_1 + a_2 u_2 + a_3 u_3 = a_4, \quad u_1, u_2, u_3 \in \mathcal{O}_{k,S}^*$$

with $a_i u_i + a_j u_j \neq 0, 1 \leq i < j \leq 3$, satisfies $h(u_i) \leq C$, $i = 1, 2, 3$.

- If $p, q \in \mathbb{Z}$ are fixed primes, an example $(k = \mathbb{Q}, S = \{\infty, p, q\})$ of such an equation is

$$p^x q^y - p^z - q^w = 1, \quad w, x, y, z \in \mathbb{Z}.$$
Versions of this result were subsequently rediscovered by Skinner and by Mo and Tijdeman.

Geometrically: S-integral points on $\mathbb{P}^2 \setminus 4$ lines in general position, $|S| < 4$. Here is a generalization:

Theorem (L.)

Let C_1, \ldots, C_r be distinct curves in \mathbb{P}^2, defined over a number field k. Let S a finite set of places of k containing the archimedean places. Suppose that

1. For any point $P \in \mathbb{P}^2(\overline{k})$ there are at least two curves C_i, C_j, not containing P.
2. $|S| < r$.

Take an affine embedding of $X = \mathbb{P}^2 \setminus \bigcup_{i=1}^r C_i$ in some \mathbb{A}^N. Then the set of S-integral points $X(\mathcal{O}_k, S) \subset \mathbb{A}^N(\mathcal{O}_k, S)$ is contained in an effectively computable finite union of curves in \mathbb{P}^2.
Theorem (L.)

Let D_1, \ldots, D_r be distinct hypersurfaces in \mathbb{P}^n, defined over a number field k. Let m be a positive integer. Suppose that

1. The intersection of any m distinct hypersurfaces D_i consists of a finite number of points.

2. For any point $P \in \mathbb{P}^n(\overline{k})$ there are at least two hypersurfaces D_i, D_j, not containing P.

3. $(m - 1)|S| < r$.

Take an affine embedding of $X = \mathbb{P}^n \setminus \bigcup_{i=1}^r D_i$ in some \mathbb{A}^N. Then the set of S-integral points $X(O_k,S) \subset \mathbb{A}^N(O_k,S)$ is contained in an effectively computable proper closed subset of X.

More generally: effective result for integral points on $V \setminus \bigcup \text{Supp } D_i$, where V is a projective variety and the D_i are effective divisors that have linearly equivalent multiples.
An application

Corollary

Let \(f \in k[x, y] \) be a polynomial of degree \(d \) such that \(f(0, 0) \neq 0 \) and \(x^d \) and \(y^d \) appear nontrivially in \(f \). Let \(S \) be a finite set of places of \(k \) containing the archimedean places with \(|S| \leq 3 \). Then the set of solutions to

\[
f(u, v) = w, \quad u, v, w \in O_{k,S}^*,
\]

can be effectively determined.

- This corresponds to applying the theorem to three lines in \(\mathbb{P}^2 \) \((x = 0, y = 0, z = 0)\) and the curve defined by \(f(x, y) = 0 \). The conditions on \(f(x, y) \) are equivalent to a general position assumption on the lines and the curve.
- Taking linear functions of the form \(f(x, y) = a_1 x + a_2 y + a_3, \) \(a_1, a_2, a_3 \in k^* \), yields Vojta’s effective unit theorem.
Another application

Corollary

Let S be a finite set of places of a number field k containing the archimedean places with $|S| \leq 3$. Let $a, b, c, d \in k^*$. Then the set of solutions to

$$a uv + bu + cv + d = w, \quad u, v, w \in \mathcal{O}_{k,S}^*,$$

with $u \not\in \left\{-\frac{d}{b}, -\frac{c}{a}\right\}$, $v \not\in \left\{-\frac{d}{c}, -\frac{b}{a}\right\}$, is finite and effectively computable.

This case wasn’t covered by the last corollary. For this, one looks at integral points on

$$\mathbb{P}^1 \times \mathbb{P}^1 \setminus \{x_1 x_2 y_1 y_2 (ax_1 x_2 + bx_1 y_2 + cy_1 x_2 + dy_1 y_2) = 0\},$$

where the coordinates are $(x_1, y_1) \times (x_2, y_2)$.
Runge’s method

- An old (1887) result of Runge proves the effective finiteness of the set of integral points on certain affine curves.
- Here’s a modern formulation:

Theorem

Let k be a number field and S a set of places of k containing the archimedean places. Let $C \subset \mathbb{A}^n$ be an affine curve over k and \tilde{C} a projective closure of C. Suppose that $\tilde{C} \setminus C$ contains r irreducible components over k. If $|S| < r$ then $C(\mathcal{O}_k, S)$ is finite and effectively computable.

- Remarkably, Bombieri showed that one could prove a uniform version of Runge’s theorem, allowing the number field k and set of places S to vary: $\bigcup_{k, |S| < r} C(\mathcal{O}_k, S)$ is finite.
Generalized to higher dimensions appropriately, Runge’s method gives:

Theorem (L.)

Let \tilde{X} be a nonsingular projective variety and $D = \sum_{i=1}^{r} D_i$ a sum of ample effective divisors on X defined over k. Let m be a positive integer and S a finite set of places of k containing the archimedean places. Suppose that

1. The intersection of the supports of any $m + 1$ distinct divisors D_i is empty.

2. $m|S| < r$

If $X = \tilde{X} \setminus D \subset \mathbb{A}^n$ then the set of integral points $X(\mathcal{O}_{k,S})$ is finite and effectively computable.
A quick comparison of the higher-dimensional Runge theorem with higher-dimensional results based on Baker’s theorem.

Runge’s method:
- No linear equivalence requirement.
- Effective bounds much smaller.
- Result is actually *uniform* in $|S|$ (finiteness even as S and k vary, subject to the key inequality $m|S| < r$).

Our main theorem:
- Weak intersection condition (especially on surfaces).
- Needed inequality on $|S|$ is superior.
Proofs
Result on the projective plane

Theorem

Let C_1, \ldots, C_r be distinct curves in \mathbb{P}^2, defined over a number field k. Let S a finite set of places of k containing the archimedean places. Suppose that

1. For any point $P \in \mathbb{P}^2(\overline{k})$ there are at least two curves C_i, C_j, not containing P.
2. $|S| < r$.

Take an affine embedding of $X = \mathbb{P}^2 \setminus \bigcup_{i=1}^{r} C_i$ in some \mathbb{A}^N. Then the set of S-integral points $X(O_k, S) \subset \mathbb{A}^N(O_k, S)$ is contained in an effectively computable finite union of curves in \mathbb{P}^2.
Using the pigeonhole principle

Throughout, the implicit constant in $O(1)$ will always be an effective constant.

Proof.

Let $d_i = \deg C_i$. We have

$$
\sum_{v \in S} h_{C_i,v}(P) = d_i h(P) + O(1), \quad i = 1, \ldots, r,
$$

for all $P \in X(\mathcal{O}_{k,S})$, where $h_{C_i,v}$ is a local Weil function for C. Let $P \in X(\mathcal{O}_{k,S})$. Then for each i, there exists a place $v \in S$ such that $h_{C_i,v}(P) \geq \frac{1}{|S|} h(P) + O(1)$. Since $|S| < r$, there exists a place $v \in S$ and distinct elements $i, j \in \{1, \ldots, r\}$ such that

$$
\min\{h_{C_i,v}(P), h_{C_j,v}(P)\} \geq \frac{1}{|S|} h(P) + O(1).
$$
The theorem is then a consequence of the following lemma.

Lemma

Let k be a number field and let $C_1, \ldots, C_r \subset \mathbb{P}^2$, $r \geq 4$, be distinct curves over k such that at most $r - 2$ of the curves C_i intersect at any point of $\mathbb{P}^2(\bar{k})$. Let S be a finite set of places of k containing the archimedean places. Let $\epsilon > 0$, $i, j \in \{1, \ldots, r\}$, $i \neq j$, and $v \in S$. Let $X = \mathbb{P}^2 \setminus \bigcup_{i=1}^{r} C_i \subset \mathbb{A}^n$. Then the set of points

\[
\{ P \in X(\mathcal{O}_{k,S}) \mid \min\{ h_{C_i,v}(P), h_{C_j,v}(P) \} > \epsilon h(P) \}
\]

is effectively computable.
Local heights associated to closed subschemes

(Silverman):
Let Y and Z be closed subschemes of a projective variety X.
To Y and Z we can associate local heights $h_{Y,v}$, $h_{Z,v}$, $v \in M_k$, such that (up to $O(1)$):
- If Y and Z are (Cartier) divisors on X then the local heights are the usual ones.
- We have the following properties:
 \[
 h_{Y \cap Z,v} = \min\{h_{Y,v}, h_{Z,v}\}
 \]
 \[
 h_{Y+Z,v} = h_{Y,v} + h_{Z,v}
 \]
 \[
 h_{Y,v} \leq h_{Z,v}, \quad \text{if } Y \subset Z.
 \]
- If $\phi : W \to X$ is a morphism, $Y \subset X$, then
 \[
 h_{Y,v}(\phi(P)) = h_{\phi^* Y,v}(P), \quad \forall P \in W(k).
 \]
Proof of the Lemma

By extending k and enlarging S, we easily reduce to the case where every point in $C_i \cap C_j$ is k-rational.

We have

$$\min\{h_{C_i,v}(P), h_{C_j,v}(P)\} = h_{C_i \cap C_j,v}(P).$$

Let N be an integer such that $C_i \cap C_j \subset N \text{Supp}(C_i \cap C_j)$. Then

$$h_{C_i \cap C_j,v}(P) \leq h_{N \text{Supp}(C_i \cap C_j),v}(P) + O(1)$$

$$\leq N \sum_{Q \in (C_i \cap C_j)(k)} h_{Q,v}(P) + O(1)$$

for all $P \in \mathbb{P}^2(k) \setminus (C_i \cap C_j)$.\qed
The proof is completed using another lemma.

Lemma

Let $Q \in (C_i \cap C_j)(k)$. Let $\epsilon' > 0$. Then

$$h_{Q,v}(P) < \epsilon' h(P) + O(1)$$

for all $P \in X(O_{k,S}) \setminus Z_Q$, where Z_Q is some effectively computable proper closed subset of \mathbb{P}^2.

Assuming the lemma, we proceed as follows:
Proof.

Summing over all points Q in $C_i \cap C_j$, we obtain

$$\min\{h_{C_i}, v(P), h_{C_j}, v(P)\} \leq N \sum_{Q \in (C_i \cap C_j)} h_Q, v(P) + O(1) < \frac{\epsilon}{2} h(P) + C$$

for all $P \in X(O_k, S) \setminus Z$, where $Z = \bigcup_{Q \in (C_i \cap C_j)(k)} Z_Q$ and C is an effectively computable constant. So if $P \in X(O_k, S) \setminus Z$ satisfies

$$\min\{h_{C_i}, v(P), h_{C_j}, v(P)\} > \epsilon h(P),$$

then $h(P) < \frac{2}{\epsilon} C$. It follows that we have

$$\left\{ P \in X(O_k, S) \mid \min\{h_{C_i}, v(P), h_{C_j}, v(P)\} > \epsilon h(P) \right\} \subset Z \cup \left\{ P \in \mathbb{P}^2(k) \mid h(P) < \frac{2}{\epsilon} C \right\},$$

and the latter set yields a proper closed subset of X. \hfill \square
Proof of the final lemma.

Let $Q \in (C_i \cap C_j)(k)$. Then there exists $l, m \in \{1, \ldots, r\}$ such that $Q \notin C_l \cup C_m$. If C_l is defined by $f_l \in k[x, y]$ and C_m by $f_m \in k[x, y]$, let $\phi = \frac{f_l^{dm}}{f_m^{dl}}$. So $\text{div}(\phi) = d_mC_l - d_lC_m$. Let $\phi : \mathbb{P}^2 \to \mathbb{P}^1$ also denote the associated rational map. Let $R = \phi(Q)$. Since ϕ has its zeros and poles in $C_l \cup C_m$, without loss of generality, after enlarging S we can assume that $\phi(P) \in \mathcal{O}_{k,S}^*$ for all $P \in X(\mathcal{O}_{k,S})$. Now by Baker’s theorem (1st inequality) and properties of heights (note: This isn’t technically correct; we should really work on a blow-up of \mathbb{P}^2 so that ϕ lifts to a morphism, but nothing really essential changes below).

$$
\begin{align*}
 h_{R,v}(\phi(P)) &< \epsilon h(\phi(P)) + O(1), & \forall P \in X(\mathcal{O}_{k,S}), \phi(P) \neq R, \\
 h_{\phi^*R,v}(P) &< \epsilon h_{\phi^*\infty}(P) + O(1), & \forall P \in X(\mathcal{O}_{k,S}), \phi(P) \neq R, \\
 h_Q,v(P) &< h_{\phi^*R,v}(P) + O(1), & \forall P \in X(k), \phi(P) \neq R, \\
 \epsilon h_{\phi^*\infty}(P) &< d_l d_m \epsilon h(P) + O(1), & \forall P \in X(k).
\end{align*}
$$
Proof.

Combining the above inequalities yields

$$h_{Q,v}(P) < \epsilon h(P) + O(1)$$

for all $P \in X(O_k,S)$ with $\phi(P) \neq \phi(Q)$. So in fact Z_Q is just the closure of $\phi^{-1}(Q)$.

\[\square\]