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Diophantine Equations

Basic object of interest: The set of solutions to a system of
polynomial equations over a number field k ,

f1(x1, . . ., xn) = 0,
...

fm(x1, . . ., xn) = 0,

where the solutions are taken in one of the following rings:
x1, . . . , xn ∈ k (rational solutions)
x1, . . . , xn ∈ Ok , the ring of integers of k (integral solutions)
More generally, x1, . . . , xn ∈ Ok,S, the ring of S-integers
(S-integral solutions).

Geometric viewpoint: The system of polynomial equations
defines a geometric object in affine space or projective
space (if the polynomials are homogeneous).
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Affine and Projective Varieties

Philosophy: Geometry determines arithmetic.
Let X ⊂ An be an affine variety over a number field k .
Then we’re interested in the set of (S-)integral points

X (Ok ,S) = {(x1, . . . , xn) ∈ X | x1, . . . , xn ∈ Ok ,S}.

Note: This set depends not just on X , but on the
embedding of X in An.
Similarly, we can study the set of rational points X (k).
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Faltings’ Theorem

If X = C is a nonsingular projective curve, there is a
fundamental geometric invariant: the genus. This is the
number of "holes" in the corresponding Riemann surface.
For curves, this single invariant, the genus, controls the
qualitative behavior of rational points.

Theorem (Faltings, formerly the Mordell Conjecture)

Let C be a curve defined over a number field k. If the
(geometric) genus g of C satisfies g ≥ 2 then C(k) is finite.

Conversely, curves of genus 0 and genus 1 may have
infinitely many rational points (rational and elliptic curves).
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Siegel’s Theorem

For affine curves, there is an additional geometric
invariant: the number of points of the curve “at infinity"
The fundamental finiteness result for integral points on
affine curves is the 1929 theorem of Siegel.

Theorem (Siegel)

Let C ⊂ An be an affine curve defined over k. Let C̃ be a
projective closure of C. If either

C̃ has positive genus
or

C is rational with more than two points at infinity
(#C̃ \ C ≥ 3)

then the set of integral points C(Ok ,S) is finite (for any S).

The hypothesis that #C̃ \ C ≥ 3 when C is rational is
necessary.
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An example

Consider the rational affine curve C defined by
x2 − 3y2 = 1.
We have C ⊂ C̃, where C̃ is the projective plane curve
C̃ : x2 − 3y2 = z2.
The points at infinity C̃ \ C correspond to the points on C̃
with z = 0. There are two such points
[x : y : z] = [±

√
3 : 1 : 0].

So Siegel’s theorem does not apply.
C does in fact have infinitely many Z-integral points. C is
defined by a so-called Pell equation. If n ∈ N ,

x +
√

3y = (2 +
√

3)n,

then (x , y) will be an integral point on C.
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Effectivity

Faltings’ theorem and Siegel’s theorem both have one
major defect: all of the known proofs of these theorems are
ineffective.
No known algorithm which, in general, can provably find
the finitely many points in either theorem
This would typically be done by bounding the height of the
points.
For curves with certain special properties there do exist
effective techniques for finding the finitely many
rational/integral points.
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Linear Forms in Logarithms
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Baker’s theorem

By far, the most powerful and widely used effective
technique for integral points comes from Baker’s theory of
linear forms in logarithms.

Theorem (Baker)
Let α1, . . . , αm be nonzero algebraic numbers, b1, . . . ,bm
integers, and ε > 0. Suppose that

0 < |b1 logα1 + · · ·+ bm logαm| < e−εB,

where B = max{|b1|, . . . , |bm|}. Then B ≤ B0, where B0 is an
effectively computable constant depending on α1, . . . , αm, ε.

In fact, one can replace e−εB on the right-hand side by
B−C for some effective constant C.
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Alternative formulations

An alternative formulation avoiding logarithms and with
arbitrary absolute values (van der Poorten, Yu) is the
following:

Theorem
Let α1, . . . , αm be algebraic numbers, b1, . . . ,bm integers, and
ε > 0. Let v be a place of k. Suppose that

0 < |αb1
1 · · ·α

bm
m − 1|v < e−εB,

where B = max{|b1|, . . . , |bm|}. Then B ≤ B0, where B0 is an
effectively computable constant depending on α1, . . . , αm, v , ε.
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Heights

Denote the absolute logarithmic height by h(x).
Recall that for a rational number a

b ∈ Q, (a,b) = 1, the
height is given by

h
(a

b

)
= log max{|a|, |b|}.

We can also define local heights. For k a number field,
α ∈ k , and v a place of k , define the local height (or local
Weil function) with respect to α by

hα,v (x) =
[kv : Qv ]

[k : Q]
log

max{|x |v ,1}
|x − α|v

, ∀x ∈ k , x 6= α.

This measures how v -adically close x is to α (being large
when x is close to α).
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Height formulation

In terms of heights, we can reformulate Baker’s theorem as

Theorem
Let k be a number field, S a finite set of places of k containing
the archimedean places, v ∈ S, α ∈ k∗, and ε > 0. Then there
exists an effective constant C such that

hα,v (x) ≤ εh(x) + C

for all x ∈ O∗k ,S, x 6= α.
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Applications to curves

Baker’s method allows one to effectively solve, for
instance, the following:

The S-unit equation: for fixed a,b, c ∈ k∗,

au + bv = c, u, v ∈ O∗k,S.

The Thue-Mahler equation:

F (x , y) ∈ O∗k,S, x , y ∈ Ok,S,

where F (x , y) ∈ k [x , y ] is a binary form such that F (x ,1)
has at least 3 distinct roots in k̄ .
The hyperelliptic equation:

y2 = f (x), x , y ∈ Ok,S,

where f (x) ∈ k [x ] has no repeated roots and degree ≥ 3.

All of these equations correspond to integral points on
certain curves (e.g., the unit equation corresponds to
integral points on P1 minus three points).
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Effective Results in Higher Dimensions
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The general unit equation

The (two-variable) unit equation can be generalized to
sums of more units:

Theorem (Evertse, van der Poorten and Schlickewei)
All but finitely many solutions of the equation

a0u0 + a1u1 + . . .+ anun = an+1 in u0, . . . ,un ∈ O∗k ,S,

where a0, . . . ,an+1 ∈ k∗, satisfy an equation of the form∑
i∈I aiui = 0, where I ⊂ {0, . . . ,n}.

Solutions to this equation yield integral points on Pn minus
n + 2 hyperplanes in general position (the coordinate
hyperplanes and the hyperplane a0x0 + · · ·+ anxn = 0).
For n ≥ 2, the proofs of the theorem aren’t effective.
There is a bound for the number of nondegenerate
solutions, however, and this bound depends only on |S|
and n!
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Vojta’s Theorem

In his thesis, Vojta proved:

Theorem (Vojta)
Let k be a number field and S a finite set of places of k
containing the archimedean places. Suppose that |S| ≤ 3. Let
a1,a2,a3,a4 ∈ k∗. Then there exists an effectively computable
constant C such that every solution to

a1u1 + a2u2 + a3u3 = a4, u1,u2,u3 ∈ O∗k ,S

with aiui + ajuj 6= 0, 1 ≤ i < j ≤ 3, satisfies h(ui) ≤ C,
i = 1,2,3.

If p,q ∈ Z are fixed primes, an example
(k = Q,S = {∞,p,q}) of such an equation is

pxqy − pz − qw = 1, w , x , y , z ∈ Z.
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The projective plane

Versions of this result were subsequently rediscovered by
Skinner and by Mo and Tijdeman.
Geometrically: S-integral points on P2 \ 4 lines in general
position, |S| < 4. Here is a generalization:

Theorem (L.)

Let C1, . . . ,Cr be distinct curves in P2, defined over a number
field k. Let S a finite set of places of k containing the
archimedean places. Suppose that

1 For any point P ∈ P2(k̄) there are at least two curves Ci , Cj , not
containing P.

2 |S| < r .

Take an affine embedding of X = P2 \ ∪r
i=1Ci in some AN . Then

the set of S-integral points X (Ok ,S) ⊂ AN(Ok ,S) is contained in
an effectively computable finite union of curves in P2.
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Higher Dimensions

Theorem (L.)

Let D1, . . . ,Dr be distinct hypersurfaces in Pn, defined over a
number field k. Let m be a positive integer. Suppose that

1 The intersection of any m distinct hypersurfaces Di
consists of a finite number of points.

2 For any point P ∈ Pn(k̄) there are at least two
hypersurfaces Di , Dj , not containing P.

3 (m − 1)|S| < r .
Take an affine embedding of X = Pn \ ∪r

i=1Di in some AN . Then
the set of S-integral points X (Ok ,S) ⊂ AN(Ok ,S) is contained in
an effectively computable proper closed subset of X .

More generally: effective result for integral points on
V \ ∪Supp Di , where V is a projective variety and the Di
are effective divisors that have linearly equivalent multiples.
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An application

Corollary

Let f ∈ k [x , y ] be a polynomial of degree d such that f (0,0) 6= 0
and xd and yd appear nontrivially in f . Let S be a finite set of
places of k containing the archimedean places with |S| ≤ 3.
Then the set of solutions to

f (u, v) = w , u, v ,w ∈ O∗k ,S,

can be effectively determined.

This corresponds to applying the theorem to three lines in
P2 (x = 0, y = 0, z = 0) and the curve defined by
f (x , y) = 0. The conditions on f (x , y) are equivalent to a
general position assumption on the lines and the curve.
Taking linear functions of the form f (x , y) = a1x + a2y + a3,
a1,a2,a3 ∈ k∗, yields Vojta’s effective unit theorem.
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Another application

Corollary
Let S be a finite set of places of a number field k containing the
archimedean places with |S| ≤ 3. Let a,b, c,d ∈ k∗. Then the
set of solutions to

auv + bu + cv + d = w , u, v ,w ∈ O∗k ,S,

with u 6∈ {−d
b ,−

c
a}, v 6∈ {−

d
c ,−

b
a}, is finite and effectively

computable.

This case wasn’t covered by the last corollary. For this, one
looks at integral points on

P1 × P1 \ {x1x2y1y2(ax1x2 + bx1y2 + cy1x2 + dy1y2) = 0},

where the coordinates are (x1, y1)× (x2, y2).
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Runge’s method
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Runge’s method

An old (1887) result of Runge proves the effective
finiteness of the set of integral points on certain affine
curves.
Here’s a modern formulation:

Theorem
Let k be a number field and S a set of places of k containing
the archimedean places. Let C ⊂ An be an affine curve over k
and C̃ a projective closure of C. Suppose that C̃ \ C contains r
irreducible components over k. If |S| < r then C(Ok ,S) is finite
and effectively computable.

Remarkably, Bombieri showed that one could prove a
uniform version of Runge’s theorem, allowing the number
field k and set of places S to vary: ∪k ,|S|<r C(Ok ,S) is finite.
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Runge’s method in higher dimensions

Generalized to higher dimensions appropriately, Runge’s
method gives:

Theorem (L.)

Let X̃ be a nonsingular projective variety and D =
∑r

i=1 Di a
sum of ample effective divisors on X defined over k. Let m be a
positive integer and S a finite set of places of k containing the
archimedean places. Suppose that

1 The intersection of the supports of any m + 1 distinct divisors Di
is empty.

2 m|S| < r

If X = X̃ \ D ⊂ An then the set of integral points X (Ok ,S) is
finite and effectively computable.
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Comparison with Runge’s method

A quick comparison of the higher-dimensional Runge
theorem with higher-dimensional results based on Baker’s
theorem.
Runge’s method:

No linear equivalence requirement.
Effective bounds much smaller.
Result is actually uniform in |S| (finiteness even as S and k
vary, subject to the key inequality m|S| < r ).

Our main theorem:
Weak intersection condition (especially on surfaces).
Needed inequality on |S| is superior.
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Proofs
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Result on the projective plane

Theorem

Let C1, . . . ,Cr be distinct curves in P2, defined over a number
field k. Let S a finite set of places of k containing the
archimedean places. Suppose that

1 For any point P ∈ P2(k̄) there are at least two curves Ci ,
Cj , not containing P.

2 |S| < r .
Take an affine embedding of X = P2 \ ∪r

i=1Ci in some AN . Then
the set of S-integral points X (Ok ,S) ⊂ AN(Ok ,S) is contained in
an effectively computable finite union of curves in P2.
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Using the pigeonhole principle

Throughout, the implicit constant in O(1) will always be an
effective constant.

Proof.
Let di = deg Ci . We have∑

v∈S

hCi ,v (P) = dih(P) + O(1), i = 1, . . . , r ,

for all P ∈ X (Ok ,S), where hCi ,v is a local Weil function for C.
Let P ∈ X (Ok ,S). Then for each i , there exists a place v ∈ S
such that hCi ,v (P) ≥ 1

|S|h(P) + O(1). Since |S| < r , there exists
a place v ∈ S and distinct elements i , j ∈ {1, . . . , r} such that

min{hCi ,v (P),hCj ,v (P)} ≥ 1
|S|

h(P) + O(1).
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A Lemma

The theorem is then a consequence of the following
lemma.

Lemma

Let k be a number field and let C1, . . . ,Cr ⊂ P2, r ≥ 4, be
distinct curves over k such that at most r − 2 of the curves Ci
intersect at any point of P2(k̄). Let S be a finite set of places of
k containing the archimedean places. Let ε > 0,
i , j ∈ {1, . . . , r}, i 6= j , and v ∈ S. Let X = P2 \ ∪r

i=1Ci ⊂ An.
Then the set of points

{P ∈ X (Ok ,S) | min{hCi ,v (P),hCj ,v (P)} > εh(P)}

is effectively computable.
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Local heights associated to closed subschemes

Local heights associated to closed subschemes
(Silverman):
Let Y and Z be closed subschemes of a projective variety
X .
To Y and Z we can associate local heights hY ,v , hZ ,v ,
v ∈ Mk , such that (up to O(1)):

If Y and Z are (Cartier) divisors on X then the local heights
are the usual ones.
We have the following properties:

hY∩Z ,v = min{hY ,v ,hZ ,v}
hY+Z ,v = hY ,v + hZ ,v

hY ,v ≤ hZ ,v , if Y ⊂ Z .

If φ : W → X is a morphism, Y ⊂ X , then

hY ,v (φ(P)) = hφ∗Y ,v (P), ∀P ∈W (k).
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Proof of the Lemma

Proof of the lemma.
By extending k and enlarging S, we easily reduce to the case
where every point in Ci ∩ Cj is k -rational.
We have

min{hCi ,v (P),hCj ,v (P)} = hCi∩Cj ,v (P).

Let N be an integer such that Ci ∩ Cj ⊂ N Supp(Ci ∩ Cj). Then

hCi∩Cj ,v (P) ≤ hN Supp(Ci∩Cj ),v (P) + O(1)

≤ N
∑

Q∈(Ci∩Cj )(k)

hQ,v (P) + O(1)

for all P ∈ P2(k) \ (Ci ∩ Cj).
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Proof continued

The proof is completed using another lemma.

Lemma
Let Q ∈ (Ci ∩ Cj)(k). Let ε′ > 0. Then

hQ,v (P) < ε′h(P) + O(1)

for all P ∈ X (Ok ,S) \ ZQ, where ZQ is some effectively
computable proper closed subset of P2.

Assuming the lemma, we proceed as follows:
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Proof.
Summing over all points Q in Ci ∩ Cj , we obtain

min{hCi ,v (P),hCj ,v (P)} ≤ N
∑

Q∈(Ci∩Cj )

hQ,v (P)+O(1) <
ε

2
h(P)+C

for all P ∈ X (Ok ,S) \ Z , where Z = ∪Q∈(Ci∩Cj )(k)ZQ and C is an
effectively computable constant. So if P ∈ X (Ok ,S) \ Z satisfies

min{hCi ,v (P),hCj ,v (P)} > εh(P),

then h(P) < 2
εC. It follows that we have{

P ∈ X (Ok ,S) | min{hCi ,v (P),hCj ,v (P) > εh(P)
}

⊂ Z ∪
{

P ∈ P2(k) | h(P) <
2
ε

C
}
,

and the latter set yields a proper closed subset of X .
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Proof of the final lemma.
Let Q ∈ (Ci ∩ Cj)(k). Then there exists l ,m ∈ {1, . . . , r} such
that Q 6∈ Cl ∪ Cm. If Cl is defined by fl ∈ k [x , y ] and Cm by

fm ∈ k [x , y ], let φ =
f dm
l

f
dl
m

. So div(φ) = dmCl − dlCm. Let

φ : P2 → P1 also denote the associated rational map. Let
R = φ(Q). Since φ has its zeros and poles in Cl ∪ Cm, without
loss of generality, after enlarging S we can assume that
φ(P) ∈ O∗k ,S for all P ∈ X (Ok ,S). Now by Baker’s theorem (1st
inequality) and properties of heights (note: This isn’t technically
correct; we should really work on a blow-up of P2 so that φ lifts
to a morphism, but nothing really essential changes below).

hR,v (φ(P)) < εh(φ(P)) + O(1), ∀P ∈ X (Ok ,S), φ(P) 6= R,
hφ∗R,v (P) < εhφ∗∞(P) + O(1), ∀P ∈ X (Ok ,S), φ(P) 6= R,

hQ,v (P) < hφ∗R,v (P) + O(1), ∀P ∈ X (k), φ(P) 6= R,
εhφ∗∞(P) < dldmεh(P) + O(1), ∀P ∈ X (k).
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End of proof

Proof.
Combining the above inequalities yields

hQ,v (P) < εh(P) + O(1)

for all P ∈ X (Ok ,S) with φ(P) 6= φ(Q). So in fact ZQ is just the
closure of φ−1(Q).
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