Exercise 8.2

Prove the converse of Hölder’s inequality for \(p = 1 \) and \(p = \infty \). Show also that for real-valued \(f \not\in L^p(E) \), there exists a function \(g \in L^{p'}(E) \), \(\frac{1}{p} + \frac{1}{p'} = 1 \), such that \(fg \not\in L^1(E) \).

Solution.

Consider the case where \(p = 1 \) so that \(p' = \infty \). Then, by Hölder’s inequality, we certainly have the left-hand side majorizes the right-hand side, and we have equality if we let \(g = \text{sgn}(f) \). For then we have

\[
\int_E fg = \int_E |f| = \|f\|_1.
\]

By definition, \(\|g\|_\infty \leq 1 \), hence it is clear that for \(p = 1 \), there exists a \(g \in L^{p'}(E) \) such that

\[
\|f\|_p = \sup_{\|g\|_\infty \leq 1} \int_E fg.
\]

Alternatively, consider the case where \(p = \infty \). Then we have three cases. If \(\|f\|_\infty = 0 \), we have \(f = 0 \) a.e. which implies \(fg = 0 \) a.e., i.e. \(\int_E fg = 0 \) for all \(g \). Now, if \(\|f\|_\infty \) is positive and finite, we may assume that \(\|f\|_\infty = 1 \) without loss of generality. Then define the set \(E_n = \{ x \in E : |f(x)| > 1 - \frac{1}{n} \text{ and } |x| < n \} \) and note that \(0 < |E_n| < \infty \) for each integer \(n \). Define

\[
g_n(x) = \begin{cases}
\frac{1}{|E_n|} & : x \in E_n \\
0 & : x \not\in E_n
\end{cases}.
\]

Clearly \(\int_{E_n} g_n = 1 \). Now observe that

\[
\int_E |f| g_n = \int_{E_n} |f| g \geq \left(1 - \frac{1}{n}\right) \int_{E_n} g_n = 1 - \frac{1}{n}.
\]

Thus, taking the supremum over all such \(g \) with \(\|g\|_1 \leq 1 \), we have the desired equality. When \(\|f\|_\infty = \infty \), apply the same argument just used on the set \(F_n = \{ x \in E : |f(x)| > n \} \). This gives us a lower bound of \(n \), and taking the supremum over all positive integers yields the equality.

To show that for \(f \not\in L^p(E) \), there exists a \(g \in L^{p'}(E) \) such that \(fg \not\in L^1(E) \), consider the following. Without loss of generality, we can assume all functions are nonnegative. Now, suppose there is a sequence \(\{g_k\}_{k=1}^\infty \subseteq L^{p'}(E) \) with \(\|g_k\|_{p'} = 1 \) and

\[
\int_E f g_k > 3^k.
\]

Set

\[
g = \sum_{k=1}^\infty 2^{-k} g_k
\]

and observe that, by Minkowski’s inequality, \(\|g\|_{p'} \leq 1 \). Note that

\[
\int_E fg = \int_E f \sum_{k=1}^\infty 2^{-k} g_k > \int_E \sum_{k=1}^\infty \left(\frac{3}{2}\right)^k = \infty.
\]
Thus, \(g \in L^{p'}(E) \) but \(fg \notin L^1(E) \).

Hence, we have reduced the problem to showing that such a sequence exists. First note that if \(f = \infty \) on any set \(A \) of positive measure, then we can simply take

\[
g = \begin{cases}
\frac{1}{|B|^{1/p'}} & : x \in B \\
0 & : x \notin B
\end{cases},
\]

where \(B \subseteq A \) has positive, finite measure. Thus \(g \) has the desired properties. This implies we can assume \(f \) is finite a.e., and in particular, for any positive real number \(c \), we can find a set \(F \) with finite measure such that \(\int_F f = c \). With this in mind, we can find a nested sequence of sets \(\{E_k\}_{k=1}^{\infty} \), each with finite measure, such that \(\bigcup_{k=1}^{\infty} E_k = E \) and \(\int_{E_k} f > 3^k \).

Now, take

\[
g_k = \begin{cases}
\frac{1}{|E_k|^{1/p'}} & : x \in E_k \\
0 & : x \notin E_k
\end{cases}.
\]

By construction, \(\|g_k\|_{p'} = 1 \), and it is easy to check that \(\int fg_k \to \infty \) as \(k \to \infty \). Hence, we have the existence of the sequence, and we’ve demonstrated the existence of such functions \(g \).

\[\text{Q.E.D.}\]
Exercise 8.3

Prove Theorems (8.12) and (8.13). Show that Minkowski’s inequality for series fails when \(p < 1 \).

Solution.

Let us recall Theorem 8.12 and Theorem 8.13. Theorem 8.12, i.e., Hölder’s inequality for series, states the following:

Suppose that \(1 \leq p \leq \infty \), \(\frac{1}{p} + \frac{1}{p'} = 1 \), \(a = \{a_k\}_{k=1}^{\infty} \), \(b = \{b_k\}_{k=1}^{\infty} \), and \(ab = \{a_kb_k\}_{k=1}^{\infty} \). Then

\[
\sum_{k=1}^{\infty} |a_kb_k| \leq \left(\sum_{k=1}^{\infty} |a_k|^p \right)^{\frac{1}{p}} \left(\sum_{k=1}^{\infty} |b_k|^{p'} \right)^{\frac{1}{p'}} \quad \text{when } 1 < p < \infty
\]

\[
\sum_{k=1}^{\infty} |a_kb_k| \leq \left(\sup_{k \in \mathbb{N}} |a_k| \right) \left(\sum_{k=1}^{\infty} |b_k| \right) \quad \text{when } p = 1, \infty.
\]

The result is clear as the proof for the integral version goes through. For argument’s sake, we present it here. The second inequality is trivial since

\[
\sum_{k=1}^{\infty} |a_kb_k| \leq \sum_{k=1}^{\infty} \left(\sup_{k \in \mathbb{N}} |a_k| \right) |b_k| = \left(\sup_{k \in \mathbb{N}} |a_k| \right) \sum_{k=1}^{\infty} |b_k|.
\]

By symmetry of argument, this proves the inequality for the cases \(p = 1, \infty \). Now suppose \(1 < p < \infty \). Then by Young’s inequality, we have

\[
\sum_{k=1}^{\infty} |a_kb_k| \leq \sum_{k=1}^{\infty} \left(\frac{|a_k|^p}{p} + \frac{|b_k|^{p'}}{p'} \right) = \frac{1}{p} \sum_{k=1}^{\infty} |a_k|^p + \frac{1}{p'} \sum_{k=1}^{\infty} |b_k|^{p'} = \frac{1}{p} \|a\|_p^p + \frac{1}{p'} \|b\|_{p'}^{p'} = \frac{1}{p} + \frac{1}{p'} = 1,
\]

where we have assumed \(\|a\|_p = \|b\|_{p'} = 1 \). Observe this is enough as we can set \(A = \frac{a}{\|a\|_p} \) and \(B = \frac{b}{\|b\|_{p'}} \) and check that \(\|A\|_p = 1 = \|B\|_{p'} \). Thus, Hölder’s inequality for series holds as stated for \(1 \leq p \leq \infty \).

Theorem 8.13, i.e., Minkowski’s inequality for series, states the following:

Suppose that \(1 \leq p \leq \infty \), \(a = \{a_k\}_{k=1}^{\infty} \), \(b = \{b_k\}_{k=1}^{\infty} \), and \(a + b = \{a_k + b_k\}_{k=1}^{\infty} \). Then

\[
\left(\sum_{k=1}^{\infty} |a_k + b_k|^p \right)^{\frac{1}{p}} \leq \left(\sum_{k=1}^{\infty} |a_k|^p \right)^{\frac{1}{p}} + \left(\sum_{k=1}^{\infty} |b_k|^p \right)^{\frac{1}{p}} \quad \text{when } 1 \leq p < \infty
\]

\[
\sup_{k \in \mathbb{N}} |a_k + b_k| \leq \sup_{k \in \mathbb{N}} |a_k| + \sup_{k \in \mathbb{N}} |b_k| \quad \text{when } p = \infty.
\]
Again, the proof for the integral version goes through, but for argument’s sake, we’ll present it here. Observe that case $p = 1$ is just the standard triangle inequality for real numbers, so that case is finished. When $p = \infty$, note that by the triangle inequality, we always have $|a_k + b_k| \leq |a_k| + |b_k|$. By the definition of supremum, we must have $|a_k| \leq \sup_{k \in \mathbb{N}} |a_k|$ and $|b_k| \leq \sup_{k \in \mathbb{N}} |b_k|$. Thus

$$|a_k + b_k| \leq \sup_{k \in \mathbb{N}} |a_k| + \sup_{k \in \mathbb{N}} |b_k|.$$

Since the right-hand side is an upper bound, it must be at least as great as the least upper bound, in particular,

$$\sup_{k \in \mathbb{N}} |a_k + b_k| \leq \sup_{k \in \mathbb{N}} |a_k| + \sup_{k \in \mathbb{N}} |b_k|,$$

as desired. Now, suppose $1 < p < \infty$. Then,

$$\|a + b\|_p^p = \sum_{k=1}^{\infty} |a_k + b_k|^{p-1} |a_k + b_k|$$

$$\leq \sum_{k=1}^{\infty} |a_k + b_k|^{p-1} |a_k| + \sum_{k=1}^{\infty} |a_k + b_k|^{p-1} |b_k|$$

$$\leq \left(\sum_{k=1}^{\infty} |a_k + b_k|^p \right)^{\frac{p-1}{p}} \left(\sum_{k=1}^{\infty} |a_k|^p \right)^{\frac{1}{p}}$$

$$+ \left(\sum_{k=1}^{\infty} |a_k + b_k|^p \right)^{\frac{p-1}{p}} \left(\sum_{k=1}^{\infty} |b_k|^p \right)^{\frac{1}{p}}$$

$$= \|a + b\|_p^{p-1} \|a\|_p + \|a + b\|_p^{p-1} \|b\|_p.$$

Now, to show the inequality cannot be improved upon, simply consider the sequences given by

$$a_k = \begin{cases} 1 & : k = 1 \\ 0 & : k > 1 \end{cases} \quad \text{and} \quad b_k = \begin{cases} 1 & : k = 2 \\ 0 & : k \neq 2 \end{cases}.$$

It is not hard to see Minkowski’s inequality is not true for any $0 < p < 1$ for these sequences, for observe

$$\left(\sum_{k=1}^{\infty} |a_k + b_k|^p \right)^{\frac{1}{p}} = 2^{\frac{1}{p}}.$$

Since $0 < p < 1$, we know $1 < \frac{1}{p} < \infty$, hence

$$2^{\frac{1}{p}} > 2 = 1 + 1 = \left(\sum_{k=1}^{\infty} |a_k|^p \right)^{\frac{1}{p}} + \left(\sum_{k=1}^{\infty} |b_k|^p \right)^{\frac{1}{p}}.$$

Q.E.D.
Exercise 8.6

Prove the following generalization of Hölder’s inequality. If \(\sum_{i=1}^{k} \frac{1}{r_i} = 1 \) with \(p_i, r \geq 1 \), then
\[
\|f_1 \cdots f_k\|_r \leq \|f_1\|_{p_1} \cdots \|f_k\|_{p_k}.
\]

Solution.

We’ll proceed by induction by first showing the inequality to be true when \(k = 2 \). To this end, consider
\[
\|fg\|_r^r = \int |fg|^r \leq \left(\int |f|^{r \cdot \frac{p_1}{r}} \right)^{\frac{r}{p_1}} \left(\int |g|^{r \cdot \frac{p_2}{r}} \right)^{\frac{r}{p_2}} = \|f\|_{p_1} \|g\|_{p_2},
\]
where
\[
\frac{1}{p_1} + \frac{1}{p_2} = 1,
\]
or equivalently,
\[
\frac{1}{p_1} + \frac{1}{p_2} = \frac{1}{r}.
\]
Thus, the generalization holds when \(k = 2 \). Assume the inequality is true for some \(n \in \mathbb{N} \). Then, applying the inequality above with \(f = f_1 \cdots f_n \) and \(g = f_{n+1} \), we have
\[
\|f_1 \cdots f_{n+1}\|_r^r \leq \|f_1 \cdots f_n\|_{p}^r \|f_{n+1}\|_{p_{n+1}}^r.
\]
Now, by the induction hypothesis, taking \(p = \left(\sum_{i=1}^{n} \frac{1}{p_i} \right)^{-1} \), we have the inequality for the norm of \(\|f_1 \cdots f_n\|_{p}^r \), and the generalization follows as desired.

Q.E.D.
Exercise 8.8

Prove the following integral version of Minkowski’s inequality for $1 \leq p < \infty$:

$$\left[\int \left| \int f(x,y) \, dx \right|^p \, dy \right]^{\frac{1}{p}} \leq \int \left[\int |f(x,y)|^p \, dy \right]^{\frac{1}{p}} \, dx.$$

Solution.

Suppose first that $p = 1$. Then,

$$\int \left| \int f(x,y) \, dx \right| \, dy \leq \int \int |f(x,y)| \, dx \, dy = \int \int |f(x,y)| \, dy \, dx,$$

where the last equality is achieved using Fubini’s theorem for nonnegative measurable functions.

Now, let $1 < p < \infty$. If the left-hand side is zero, we have nothing more to prove. Now, define $F(y) = \int |f(z,y)| \, dz$ and observe

$$\int \left| \int f(x,y) \, dx \right|^p \, dy \leq \int \int (F(y))^{p-1} |f(x,y)| \, dx \, dy$$

$$= \int \int (F(y))^{p-1} |f(x,y)| \, dy \, dx$$

$$\leq \int \left(\int |f(x,y)|^p \, dy \right)^{\frac{1}{p}} \cdot \left(\int (F(y))^p \, dy \right)^{\frac{p-1}{p}} \, dx.$$

Notice that $\int (F(y))^p \, dy$ is, in fact, a constant (so any powers of it doesn’t change the fact that it is a constant), so we can pull it out of the integral by the integral’s linearity, divide by it since we observed above that it is positive, and we get

$$\left[\int \left| \int f(x,y) \, dx \right|^p \, dy \right]^{\frac{1}{p}} \leq \int \left[\int |f(x,y)|^p \, dy \right]^{\frac{1}{p}} \, dx,$$

as was to be shown.

Q.E.D.