Problem Set #7
Math 471 – Real Analysis
Assignment: Chapter 4 #15, 16, 17

Clayton J. Lungstrum

October 22, 2012
Exercise 4.15

Let \(\{f_k\}_{k=1}^{\infty} \) be a sequence of measurable functions defined on a measurable set \(E \) with \(|E| < \infty \). If \(|f_k(x)| \leq M_x < \infty \) for all \(k \) for each \(x \in E \), show that given \(\varepsilon > 0 \), there is a closed set \(F \subseteq E \) and a finite \(M \) such that \(|E - F| < \varepsilon \) and \(|f_k(x)| \leq M \) for all \(k \) and all \(x \in E \).

Solution.

Let \(\varepsilon > 0 \) and \(f(x) = \sup_{k \in \mathbb{N}} f_k(x) \). We know that since each \(f_k \) is measurable, \(f \) is measurable, and we know that \(f(x) \leq M_x \) for all \(x \in E \). Thus, we can use Lusin’s Theorem to get a closed set \(F \subseteq E \) such that \(f|_F \) is continuous and \(|E - F| < \varepsilon \). Since \(|E| < \infty \), we can find a compact set \(F^* \subseteq F \) such that \(|E - F^*| < \varepsilon \) (to see this, we can simply take a closed ball of radius \(R \) such that \(|E - B_R(0)| < \varepsilon \) and take the intersection with \(F \)). Then, since \(f \) is continuous relative to \(F \), it is continuous relative to \(F^* \), hence attains its maximum, i.e., there is a constant \(M \) such that \(f(x) \leq M \) for all \(x \in E \).

Q.E.D.
Exercise 4.16

Prove that \(f_k \to f \) in measure on \(E \) if and only if given \(\varepsilon > 0 \), there exists a \(K \) such that \(|\{|f - f_k| > \varepsilon\}| < \varepsilon \) if \(k > K \). Give an analogous Cauchy criterion.

Solution.

Let \(f_k \xrightarrow{m} f \). Then let \(\delta, \varepsilon > 0 \). By definition, we have \(|\{|x \in E : |f(x) - f_k(x)| > \delta\}| < \varepsilon \). Letting \(\delta = \varepsilon \) gives us the desired result, thus proving one direction.

Conversely, suppose given \(\delta, \varepsilon > 0 \), there exists a \(K_\delta \) and \(K_\varepsilon \) such that \(|\{|f - f_k| > \delta\}| < \delta \) if \(k > K_\delta \) and \(||f - f_k| > \varepsilon| < \varepsilon \) if \(k > K_\varepsilon \). Let \(\gamma = \min\{\delta, \varepsilon\} \) and \(k > \max\{K_\delta, K_\varepsilon\} \). Then,

\[
\{x \in E : |f(x) - f_k(x)| > \varepsilon\} \subseteq \{x \in E : |f(x) - f_k(x)| > \gamma\},
\]

which implies

\[
|\{|f - f_k| > \varepsilon\}| \leq |\{|f - f_k| > \gamma\}| < \gamma \leq \delta,
\]

thus, \(f_k \xrightarrow{m} f \).

An analogous Cauchy criterion is as follows; \(f_k \xrightarrow{m} f \) if and only if for every \(\varepsilon > 0 \) there exists an \(N \in \mathbb{N} \) such that \(m, n > N \) implies \(|\{|f_n - f_m| > \varepsilon\}| < \varepsilon \).

Q.E.D.
Exercise 4.17

Suppose that \(f_k \xrightarrow{m} f \) and \(g_k \xrightarrow{m} g \) on \(E \). Show that \(f_k + g_k \xrightarrow{m} f + g \) on \(E \) and, if \(|E| < \infty \), that \(f_k g_k \xrightarrow{m} fg \) on \(E \). If, in addition, \(g_k \to g \) on \(E \), \(g \neq 0 \) a.e., and \(|E| < \infty \), show that \(\frac{f_k}{g_k} \xrightarrow{m} \frac{f}{g} \) on \(E \).

Solution.

Let \(f_k \xrightarrow{m} f \) and \(g_k \xrightarrow{m} g \). Then,

\[
|\{x \in E : |(f + g)(x) - (f_k + g_k)(x)|\}| = |\{x \in E : |f(x) - f_k(x) + g(x) - g_k(x)| > \varepsilon \}| \\
\leq |\{x \in E : |f(x) - f_k(x)| + |g(x) - g_k(x)| > \varepsilon \}| \\
\leq |\{x \in E : |f(x) - f_k(x)| > \frac{\varepsilon}{2}\}| \\
+ |\{x \in E : |g(x) - g_k(x)| > \frac{\varepsilon}{2}\}| \\
< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\
= \varepsilon.
\]

Note that we get the second inequality from observing

\[
\{x \in E : |f(x) - f_k(x)| + |g(x) - g_k(x)| > \varepsilon \} \\
\subseteq \left\{ x \in E : |f_k(x) - f(x)| > \frac{\varepsilon}{2} \right\} \cup \left\{ x \in E : |f_k(x) - g(x)| > \frac{\varepsilon}{2} \right\}.
\]

Now, let \(|E| < \infty \). Similar to the above, note that

\[
\{x \in E : |f(x) - f_k(x)||g_k(x) - g(x)| < \varepsilon \} \\
\subseteq \left\{ x \in E : |f(x) - f_k(x)| < \sqrt{\frac{\varepsilon}{3}} \right\} \cup \left\{ x \in E : |g(x) - g_k(x)| < \sqrt{\frac{\varepsilon}{3}} \right\}.
\]

Then, from the hint, note that \(f \) and \(g \) are bounded on sets whose complements relative to \(E \) have small measure, thus, we can fix \(M \) such that \(|\{x \in E : |f(x)| > M\}| < \frac{\varepsilon}{6} \) and similarly for \(g \). Now we can choose \(K \) large enough so that, for \(k > K \), we have

\[
\left| \left\{ f_k - f \right\} \right| < \frac{\varepsilon}{3} \quad \text{and} \quad \left| \left\{ g_k - g \right\} \right| < \frac{\varepsilon}{3}
\]

and

\[
\left| \left\{ f_k - f \right\} \right| < \frac{\varepsilon}{3M} \quad \text{and} \quad \left| \left\{ g_k - g \right\} \right| < \frac{\varepsilon}{3M}.
\]
Then we have

\[
|\{ |f_k g_k - f g| > \varepsilon \}| \leq \left| \left\{ |f - f_k||g - g_k| > \frac{\varepsilon}{3} \right\} \right| + \left| \left\{ ||f||g - g_k| > \frac{\varepsilon}{3} \right\} \right| + \left| \left\{ |g||f - f_k| > \frac{\varepsilon}{3} \right\} \right|
\]

\[
\leq \left| \left\{ |f - f_k| > \frac{\varepsilon}{3} \right\} \cup \left\{ |g - g_k| > \frac{\varepsilon}{3} \right\} \right| + \left| \left\{ |f| > M \right\} \cup \left\{ |g - g_k| > \frac{\varepsilon}{3M} \right\} \right|
\]

\[
+ \left| \left\{ |g| > N \right\} \cup \left\{ |f - f_k| > \frac{\varepsilon}{3N} \right\} \right|
\]

\[
< \frac{\varepsilon}{6} + \frac{\varepsilon}{6} + \frac{\varepsilon}{6} + \frac{\varepsilon}{6} + \frac{\varepsilon}{6} = \varepsilon
\]

For the last part, simply observe that \(\frac{f_k}{g_k} = f_k \frac{1}{g_k} \), hence, if we set \(h_k = \frac{1}{g_k} \), we see that \(h_k \to \frac{1}{g} \) a.e. as \(k \to \infty \). By Proposition 4.21, this implies \(h_k \overset{m}{\to} \frac{1}{g} \), then we see \(\frac{f_k}{g_k} \overset{m}{\to} \frac{f}{g} \) follows as desired from the previous result regarding products.

Q.E.D.