Preface

The wave map problem is one of the most beautiful and challenging nonlinear hyperbolic problems, which has kept the attention of mathematicians for more than thirty years now. The study of the problem involves diverse issues, e.g., well-posedness, regularity, formation of singularities, and stability of solitons, and combines intricate tools from analysis, geometry, and topology. Moreover, the wave map system has a natural formulation as the Euler-Lagrange system for a map between manifolds, a special case being the nonlinear sigma model, which is one of the fundamental objects in classical field theory. One of the goals of this book is to offer an up-to-date and self-contained overview of the main regularity theory for wave maps. Another goal is to introduce, to a wide mathematical audience, physically motivated generalizations of the wave map system (e.g., the Skyrme model), which are extremely interesting and pose challenging new questions in their own right.

The topic of wave maps has experienced an incredible advancement in the past ten years. This is precisely the time passed from the moment when the last monograph (i.e., Tao [171]) which tried to give a state-of-the-art for this topic appeared. Our book tries to fill this gap by presenting the most recent developments in the field, e.g., the resolution of the large data global regularity theory for wave maps. These results are very technical, being accessible only to experts in their current format. Our goal is to try to explain them to a wider group, which includes advanced graduate students, in the hope of stimulating new research ideas. Moreover, this book is the first one which discusses, from a mathematical point of view, the time evolution for the models which are extensions of the nonlinear sigma model: the Skyrme, Faddeev, and Adkins-Nappi theories.

Our book starts by introducing the reader to the physical motivation...
and the mathematical formulation of the wave map problem and its generalizations. This is followed by developing the analytic background needed in the investigation of these problems, which include Strichartz estimates and hyperbolic Sobolev spaces. The third chapter is devoted to the study of the local and small data global well-posedness theories for the wave map equation, where one can see the motivation for the emergence of more and more powerful analytic techniques needed in handling the challenging nature of these topics. This chapter also includes detailed expositions for two results, due to Tao [169] and Shatah-Struwe [146], respectively, which make the case for the important role played by the intrinsic geometric aspect of the wave map problem. Next, we discuss the resolution of the large data regularity theory for wave maps in the energy-critical case by Sterbenz-Tataru’s program [160, 161]. We focus on the second part (i.e., [161]) of this work, which provides a complete description of the regimes when a large data, finite energy wave map blows up and when it is global-in-time. Our presentation of this topic reworks Sterbenz-Tataru’s argument, including a significant number of refinements and extra details. The fifth chapter addresses well-posedness questions for the classical Skyrme model and its extensions. There, we present Wong’s result [191] on the Skyrme model using Christodoulou’s regular hyperbolicity framework and Lei-Lin-Zhou’s global regularity theorem [103] for the 2 + 1-dimensional Faddeev problem, which relies on an adaptation of Klainerman’s vector field method. Following this, we discuss equivariant results for all the equations considered in this book, which include non-concentration of energy, small data global well-posedness in critical Besov spaces, and global regularity for sufficiently smooth large data. Finally, we turn our attention to the phenomenon of collapse for wave maps and examine Raphaël-Rodnianski’s result [136] on the topic. We put forth a novel approach relying on the associated Hodge system, which makes the structure of the problem more transparent. The book also includes an appendix detailing the basic differential geometry concepts needed for following the presentation of the material.

Dan-Andrei Geba and Manoussos Georgios Grillakis
Contents

Preface

Acknowledgments

List of Figures

1. *Introduction*
 1.1 **Physical description and motivation**
 1.1.1 Nonlinear sigma models
 1.1.2 Skyrme and Skyrme-like models
 1.2 **Mathematical formulation and basic properties**
 1.2.1 The wave map problem: initial formulation and the Euler-Lagrange equations
 1.2.2 The wave map problem: symmetries of the base and the energy-momentum tensor
 1.2.3 The wave map problem: energy conservation and the finite speed of propagation property
 1.2.4 The wave map problem: scaling invariance and energy criticality
 1.2.5 The wave map problem: general discussion of symmetries on the target
 1.2.6 The wave map problem: discussion of symmetries on the target when $N = S^2$ or $N = H^2$
 1.2.7 The wave map problem: initial considerations on the associated Hodge system
 1.2.8 The wave map problem: the Hodge system in the general case of a parallelizable target manifold

vii

ix

xvii

1

1

4

9

10

12

18

22

23

24

26

32
Wave Maps and Related Geometric Problems

1.2.9 The wave map problem: static solutions for the 2 + 1-dimensional case 36
1.2.10 The wave map problem: the completely integrable 1 + 1-dimensional case 39
1.2.11 The Skyrme model: its energy-momentum tensor and associated Hodge system 39
1.2.12 The Einstein vacuum equations: a symmetry reduction to a system containing wave map type problems 43

2. Analytic tools 57

2.1 Preliminaries 57
2.1.1 Littlewood-Paley theory 58
2.1.2 Function spaces 59
2.2 Strichartz estimates 64
2.2.1 Homogeneous bounds 72
2.2.2 Inhomogeneous bounds 75
2.3 Hyperbolic Sobolev spaces 80
2.4 Tataru’s F-spaces 106

3. Local and small data global well-posedness theory for wave maps 123

3.1 The Cauchy problem, the concept of well-posedness, and scaling heuristics 123
3.2 Abstract existence theory 126
3.3 Local well-posedness results 128
3.3.1 Energy arguments 129
3.3.2 Strichartz-type arguments 130
3.3.3 Hyperbolic Sobolev spaces approach 132
3.4 Small data global well-posedness results 134
3.4.1 Semilinear approach 134
3.4.2 Fully nonlinear approach 137
3.4.3 Tao’s result 142
3.4.4 Shatah-Struwe’s result 170

4. Large data regularity and scattering for 2+1-dimensional wave maps 191

4.1 Introduction 191
Contents

4.2 Informal discussion of Sterbenz-Tataru’s results 193
4.3 Basic setup of the problem 201
4.4 Outline of the argument proving Theorems 4.4 and 4.7 205
 4.4.1 Extension and scaling (first step) 205
 4.4.2 Energy-type estimates (second step) 206
 4.4.3 Elimination of the null concentration scenario (third step) 208
 4.4.4 Uniform time propagation of nontrivial energy (fourth step) 209
 4.4.5 Final rescaling (fifth step) 210
 4.4.6 Isolating concentration scales (sixth step) 210
 4.4.7 The compactness argument (final step) 211
4.5 The extension procedure 212
 4.5.1 The extension procedure for the blow-up result 213
 4.5.2 The extension procedure for the scattering result 214
4.6 Generalized energy estimates and applications 216
 4.6.1 Energy-type integral identity on hyperboloids 217
 4.6.2 The hyperbolic projection 220
 4.6.3 Partial non-concentration of energy and time decay estimates I 223
 4.6.4 Partial non-concentration of energy and time decay estimates II 228
 4.6.5 Propagation of energy concentration 235
 4.6.6 Energy concentration scenarios 240
4.7 Energy dispersion and non-concentration of energy 242
 4.7.1 Preliminaries and formulation of the main goal 243
 4.7.2 A reduction step and initial gauge construction 245
 4.7.3 The low frequency case 248
 4.7.4 The high frequency case 249
4.8 The concentration of energy scenario 254
 4.8.1 Initial considerations and final rescaling 254
 4.8.2 Refined concentration scenarios 257
4.9 The final compactness argument 266
 4.9.1 Analysis of scenario (ii) in Lemma 4.7 269
 4.9.2 Analysis of scenario (i) in Lemma 4.7 271

5. General well-posedness issues for Skyrme and Skyrme-like models 273
 5.1 Relevant results 273
5.2 Wong’s result .. 274
 5.2.1 Preliminaries ... 275
 5.2.2 Dominant energy condition 276
 5.2.3 Regular hyperbolicity 282
5.3 Lei-Lin-Zhou’s result 291
 5.3.1 Preliminaries ... 296
 5.3.2 Proof of (5.45) .. 301
 5.3.3 Proof of (5.47) .. 309

6. Equivariant results 315
 6.1 Prologue .. 315
 6.2 Non-concentration of energy for classical equivariant wave
 maps .. 317
 6.2.1 Differential identities 318
 6.2.2 Standard energy estimates and applications 322
 6.2.3 Conditional regularity 327
 6.3 Small data global well-posedness for Skyrme and Skyrme-
 like models ... 337
 6.3.1 Preliminaries ... 337
 6.3.2 Main analysis for the Adkins-Nappi problem 347
 6.3.3 The analysis for the pure power nonlinearities in
 the Faddeev problem 348
 6.3.4 The analysis for the null-form nonlinearity in the
 Skyrme and Faddeev problems 354
 6.4 Large data global regularity for the 2 + 1-dimensional Fad-
 deev model .. 360
 6.4.1 Statement of the main result and initial reductions 360
 6.4.2 Motivation for the construction of the auxiliary
 function .. 363
 6.4.3 Analysis of \(\Phi \) based on energy-type arguments .. 367
 6.4.4 Analysis of \(\Phi \) based on Strichartz estimates 369
 6.4.5 Confirmation of the continuation criterion 373

7. The question of collapse for wave maps 375
 7.1 Introduction .. 377
 7.2 The associated Hodge system in complex coordinates . . 386
 7.3 The equivariant reduction 388
 7.4 Differential identities and applications 391
Contents

7.4.1 The second-order energy .. 392
7.4.2 Conformal identity and other conservation laws 394
7.5 Initial setup, key energy facts, and stability issues 395
 7.5.1 Notational conventions and initial considerations 395
 7.5.2 Energy formulas ... 398
 7.5.3 A differential equation for the speed 401
 7.5.4 Preliminary assumptions on the initial data and
 the stability argument 404
7.6 Operator estimates and comparison estimates 409
7.7 Estimating the second-order energy and the acceleration 422
7.8 The last step in the argument for collapse 430

Appendix A Tools from geometry: invariance, symmetry,
and curvature .. 435
 A.1 Background in differential geometry 436
 A.2 Calculus on manifolds 438
 A.3 The wave operator and the Lagrangian of a scalar field .. 441
 A.4 The concept of Lie derivative 441
 A.5 The energy-momentum tensor 444
 A.6 Maxwell’s equations .. 446
 A.7 The Riemann curvature tensor 448
 A.8 The energy-momentum tensor for Maxwell’s equations 451
 A.9 The Ricci tensor and general relativity 453

Bibliography .. 459

Index ... 471