1. (18 points)
Suppose that X is a random variable such that

$$X = \begin{cases}
5 & \text{with probability } \frac{1}{4} \\
2 & \text{with probability } \frac{1}{2} \\
-1 & \text{with probability } \frac{1}{4}
\end{cases}$$

(a) Find EX.
(b) Find $E[X^2]$.
(c) Find $\text{Var}(X)$.

Solution:
(a) Since the expectation is a sum of the outcomes, weighted by the probabilities, we get

$$EX = 5 \cdot \frac{1}{4} + 2 \cdot \frac{1}{2} - 1 \cdot \frac{1}{4} = 2$$

(b) $E[X^2] = 5^2 \cdot \frac{1}{4} + 2^2 \cdot \frac{1}{2} + (-1)^2 \cdot \frac{1}{4} = \frac{25}{4} + \frac{4}{2} + \frac{1}{4} = \frac{17}{2}$

(c) Using parts (a) and (b), we get

$$\text{Var}(X) = E[X^2] - (EX)^2 = \frac{17}{2} - 2^2 = \frac{9}{2}$$

2. (20 points) Suppose that interest rates are not constant. Today is the beginning of the year, and you know that

(i) You can buy or sell an annuity paying $20,000 at the end of each year, ending after 10 payments, for $V_1 = $180,000 (today’s value).

(ii) You can buy or sell an annuity paying $10,000 at the end of each 6-month period, ending after 20 payments, for $V_2 = $190,000 (today’s value).

What is the price (today) of an annuity paying $30,000 at the end of each odd-numbered 6-month period, that is, at the end of the 1st, 3rd, 5th, and so on, and ending after 10 years? Justify your answer.

Solution: We can use the first two annuities to replicate the third one. To be specific, we can buy 3 shares of the second annuity, and short sell 3/2 shares of the first annuity. The price would be

$$3 \cdot V_2 - \frac{3}{2} \cdot V_1 = 3 \times $190,000 - \frac{3}{2} \times $180,000$$

$$= $570,000 - $270,000$$

$$= $300,000$$
3. (20 points) Suppose that t is the current time, and you enter a contract which costs $V(t)$ at the current time. But at a future time T, you must exchange a share of stock A for two shares of stock B. Call the prices of the two stocks at time t as S^A_t and S^B_t respectively. Find $V(t)$ in terms of information that would be known at time t,

(a) assuming that neither stock pays income.
(b) assuming that stock A pays no income, but stock B pays income I^B per share at time T_1, assuming $t < T_1 < T$.

Solution:
(a) We use the replicating portfolio method.

<table>
<thead>
<tr>
<th>Portfolio A</th>
<th>Asset</th>
<th>Value at t</th>
<th>Value at T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 long share contract</td>
<td>$V(t)$</td>
<td>$2S^B_T - S^A_t$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Portfolio B</th>
<th>Asset</th>
<th>Value at t</th>
<th>Value at T</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 shares stock B</td>
<td>$2S^B_t$</td>
<td>$2S^B_T$</td>
<td></td>
</tr>
<tr>
<td>-1 shares stock A</td>
<td>$-S^A_t$</td>
<td>$-S^A_T$</td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>$2S^B_t - S^A_t$</td>
<td>$2S^B_T - S^A_T$</td>
<td></td>
</tr>
</tbody>
</table>

By the replicating portfolio principle, we find

$$V(t) = 2S^B_t - S^A_t$$

(b) We again use the replicating portfolio method. At time T_1, we use a negative ZCB payment to cancel out the income from stock B.

<table>
<thead>
<tr>
<th>Portfolio A</th>
<th>Asset</th>
<th>Value at t</th>
<th>Value at T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 long share contract</td>
<td>$V(t)$</td>
<td>$2S^B_T - S^A_t$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Portfolio B</th>
<th>Asset</th>
<th>Value at t</th>
<th>Value at T_1</th>
<th>Value at T</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 shares stock B</td>
<td>$2S^B_t$</td>
<td>$2S^B_{T_1} + 2I^B$</td>
<td>$2S^B_T$</td>
<td></td>
</tr>
<tr>
<td>-2I^B shares ZCB, maturity T_1</td>
<td>$-2I^B Z(t,T_1)$</td>
<td>$-2I^B$</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>-1 shares stock A</td>
<td>$-S^A_t$</td>
<td>$-S^A_{T_1}$</td>
<td>$-S^A_T$</td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>$2S^B_t - S^A_t$</td>
<td>$2S^B_{T_1} - S^A_{T_1}$</td>
<td>$2S^B_T - S^A_T$</td>
<td></td>
</tr>
</tbody>
</table>

By the replicating portfolio principle, we find

$$V(t) = 2S^B_t - S^A_t - 2I^B Z(t,T_1)$$

4. (21 points) Recall that we discussed forward currency contracts, assuming a fixed dollar interest rate r_d and a euro interest rate r_e. Both rates are for continuous compounding. As usual, t is the current time and T is some future time. We discussed a forward contract on one euro, with maturity T.
Assuming that the contract has price 0 at the current time \(t \), we found that the forward price (in dollars) for one euro is

\[
F(t, T) = X_t e^{(r_d - r_e)(T-t)}.
\]

Suppose that instead of constant interest rates \(r_d, r_e \) we have zero coupon bond prices \(Z_d(t, T) \), \(Z_e(t, T) \). Find a new formula for \(F(t, T) \) and justify it using the portfolio replication principle.

Solution: We use the replication principle. Note that at the current time \(t \), one euro ZCB costs \(Z_e(t, T) \) euros, or \(Z_e(t, T)X_t \) dollars.

<table>
<thead>
<tr>
<th>Portfolio A</th>
<th>Value at (t)</th>
<th>Value at (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 long share contract</td>
<td>0</td>
<td>1 euro -(K) dollars</td>
</tr>
<tr>
<td>(K) shares ZCB in dollars, maturity (T)</td>
<td>(KZ_d(t, T)) dollars</td>
<td>(K) dollars</td>
</tr>
<tr>
<td>total</td>
<td>(KZ_d(t, T)) dollars</td>
<td>1 euro</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Portfolio B</th>
<th>Value at (t)</th>
<th>Value at (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One euro ZCB</td>
<td>(Z_e(t, T)X_t) dollars</td>
<td>1 euro</td>
</tr>
</tbody>
</table>

By the replication principle,

\[
KZ_d(t, T) = Z_e(t, T)X_t
\]

and so

\[
F(t, T) = K = \frac{Z_e(t, T)}{Z_d(t, T)}X_t.
\]

5. (21 points) In problem 4, we wrote \(F(t, T) \) for the forward price (in dollars) at the current time \(t \), of one euro at time \(T \). Suppose we are thinking of a swap, and we have times \(t < T_0 < T_1 < \cdots < T_n \). Consider a swap at rate \(K \), where at each time \(T_1, \ldots, T_n \), you pay \(K \) dollars and receive 1 euro. Note that the time \(T_0 \) is not included.

In the following, express your answers in terms of \(K \), \(Z_e(t, T) \) and \(Z_d(t, T) \). You can also use \(F(t, T) \) without giving a formula for it, to avoid carrying over errors from problem 4. Remember that your answers must only use information known at the current time \(t \). You may express your answers in terms of a sum.

(a) The dollar leg is the stream of dollar payments you make. Find the value \(V^d(t) \) of the dollar leg at time \(t \).

(b) Find the value \(V^e(t) \) of the Euro leg at time \(t \), that is, the stream of euros that you receive. The value must be given in dollars.

(c) If the contract is worth 0 at time \(t \), find the swap rate \(K \).

Solution:

(a) Using zero coupon bond prices, we find

\[
V^d(t) = \sum_{i=1}^{n} KZ_d(t, T_i)
\]
(b) One euro received at time T can be priced at time t using the forward rate $F(t, T)$. These prices must also be brought into present value by multiplication by $Z(t, T_i)$. So we get

$$V^e(t) = \sum_{i=1}^{n} F(t, T_i) Z_d(t, T_i)$$

We could also use a euro ZCB, and then convert to dollars. That would give

$$V^e(t) = X_t \sum_{i=1}^{n} Z_e(t, T_i)$$

which is the same answer if we use our solution for $F(t, T)$.

(c) If the contract is worth 0 at time t, the value of the two legs must be equal at time t. We conclude that

$$\sum_{i=1}^{n} K Z_d(t, T_i) = \sum_{i=1}^{n} F(t, T_i) Z_d(t, T_i)$$

and so

$$K = \frac{\sum_{i=1}^{n} F(t, T_i) Z_d(t, T_i)}{\sum_{i=1}^{n} Z_d(t, T_i)}$$

Using the second method from part (b) would give us

$$K = X_t \frac{\sum_{i=1}^{n} Z_e(t, T_i)}{\sum_{i=1}^{n} Z_d(t, T_i)}$$

These two answers are the same, if we expand $F(t, T)$.