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Abstract

We study the asymptotic speed of a random front for solutions ut(x) to stochastic reaction-
diffusion equations of the form

∂tu =
1

2
∂2xu+ f(u) + σ

√
u(1− u)Ẇ (t, x), t ≥ 0, x ∈ R,

arising in population genetics. Here, f is a continuous function with f(0) = f(1) = 0, and such
that |f(u)| ≤ K|u(1− u)|γ with γ ≥ 1/2, and Ẇ (t, x) is a space-time Gaussian white noise. We
assume that the initial condition u0(x) satisfies 0 ≤ u0(x) ≤ 1 for all x ∈ R, u0(x) = 1 for x < L0

and u0(x) = 0 for x > R0. We show that when σ > 0, for each t > 0 there exist R(ut) < +∞
and L(ut) < −∞ such that ut(x) = 0 for x > R(ut) and ut(x) = 1 for x < L(ut) even if f is
not Lipschitz. We also show that for all σ > 0 there exists a finite deterministic speed V (σ) ∈ R
so that R(ut)/t → V (σ) as t → +∞, almost surely. This is in dramatic contrast with the
deterministic case σ = 0 for nonlinearities of the type f(u) = um(1 − u) with 0 < m < 1 when
solutions converge to 1 uniformly on R as t → +∞. Finally, we prove that when γ > 1/2 there
exists cf ∈ R, so that σ2V (σ) → cf as σ → +∞ and give a characterization of cf . The last
result complements a lower bound obtained by Conlon and Doering [CD05] for the special case
of f(u) = u(1− u) where a duality argument is available.

1 Introduction

Reaction-diffusion equations of the form

∂tu =
1

2
∂2
xu+ f(u), (1.1)

with f(0) = f(1) = 0, are often used to model biological invasions and other spreading phenomena,
with one steady state, say, u ≡ 1 invading another, u ≡ 0, or vice versa. Under very mild assumptions
on f(u), such as, for instance, that f(u) is Lipschitz on [0, 1] and either f(u) > 0 for u ∈ (0, 1), or
there exists θ ∈ (0, 1) so that f(u) ≤ 0 for u ∈ (0, θ) and f(u) > 0 for u ∈ (θ, 1), such equations
admit traveling wave solutions of the form ut(x) = U(x− ct) such that

−cU ′ = 1

2
U ′′ + f(U), U(−∞) = 1, U(+∞) = 0. (1.2)
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Note that, in the probabilistic spirit of the present paper, the subscript t denotes the time dependence
of the function ut(x) rather than a time derivative, common to the PDE literature. It is easy to see
that

c

∫
R
|U ′(x)|2dx =

∫ 1

0
f(z)dz, (1.3)

thus c has the same sign as

I[f ] :=

∫ 1

0
f(u)du, (1.4)

so that if I[f ] > 0 then the steady state u ≡ 1 is more stable, and invades the ”less stable” steady
state u ≡ 0, and if I[f ] < 0 then the opposite happens, while if I[f ] = 0 then (1.1) has a time-
independent solution. It is also well-known that traveling wave solutions to (1.1) determine the
spreading speed for the solutions of the Cauchy problem. More precisely, let ut(x) be the solution
to (1.1) with an initial condition u0(x) such that 0 ≤ u0(x) ≤ 1 for all x ∈ R, and there exist L0 ≤ R0

so that u0(x) = 1 for x < L0 and u0(x) = 0 for x > R0. There exists a function m(t) such that

|m(t)− c∗t| = o(t) as t→ +∞, (1.5)

so that
|ut(x+m(t))− Uc∗(x)| = o(1) as t→ +∞. (1.6)

Here, depending on the nature of the nonlinearity f(u), the spreading speed c∗ may be either the
speed of the unique traveling wave, or the minimal speed of a traveling wave if traveling waves
are not unique. The latter happens for the class of the Fisher-KPP nonlinearities, such that f is
Lipschitz, f(0) = f(1) = 0, f(u) > 0 for all u ∈ (0, 1), and f(u) ≤ f ′(0)u for all u ∈ [0, 1]. In that
case, we have

c∗ =
√

2f ′(0). (1.7)

Much more precise results than (1.5)-(1.6) on the convergence of the solutions to the Cauchy problem
to traveling waves are available, and we refer to the classical papers [AW78, Bra78, Bra83] for the
basic results, and to [NRR18, Rob13] and references therein for more recent developments. We also
point out the relation

c∗ = lim
t→+∞

∫
R
f(ut(x))dx =

∫
R
f(Uc∗(x))dx, (1.8)

that can be obtained simply by integrating (1.1) and (1.2) in space.
Note that if f ′(0) blows up, then the speed of propagation may also tend to infinity, as can be

seen from (1.7). For Hölder nonlinearities such that f(u) ∼ up with p ∈ (0, 1), it was shown in [AE86]
that solutions become instantaneously strictly positive everywhere: u(t, x) ≥ ct1/(1−p) for t� 1. In
particular, if we approximate such nonlinearity by a sequence of Lipschitz nonlinearities fn, then

the corresponding spreading speeds c
(n)
∗ blow up as n→ +∞.

Reaction-diffusion equations with noise

The physical and biological systems modeled by reaction-diffusion equations are often subject to
noise. In this paper, we study solutions ut(x), to the stochastic reaction-diffusion equations of the
form

∂tu =
1

2
∂2
xu+ f(u) + σ

√
u(1− u)Ẇ (t, x) (1.9)

where Ẇ (t, x) is a space-time Gaussian white noise, and σ > 0 measures its strength. Our interest is
in the effect of the noise term on the spreading speed. Since traveling waves will no longer maintain
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a fixed shape due to the noise, we will refer instead to the speed of the random front, which is defined
below.

Let us give an motivation for the noise term in (1.9) similar to that given by Fisher in his
pioneering work [Fis37]. See also [Shi88]. Imagine that two populations, type A and type B, move
in a Brownian way along R, and let ut(x) is the proportion of the population of type A at time t at
position x. When an individual of type A meets an individual of type B, it can be converted into
type B, and vice versa, and the outcome is partially random. The function f(u) in (1.9) describes
the deterministic evolution of the population of type A, due to these interactions, and it is natural
to assume that f(0) = f(1) = 0 since there are no interactions when one type is absent. The random
term in (1.9) accounts for the stochastic aspect of the interactions. We assume that for each such
meeting we have a mean-zero random variable affecting the outcome, and these random variables
are i.i.d. By the central limit theorem, the sum of such variables would be approximately Gaussian.
The independence of the variables means that the random input should be independent for different
values of t and x, giving rise to the space-time noise Ẇ (t, x). The rate of such meetings at a given
site x and time t would be proportional to ut(x)(1−ut(x)), which is the variance of the noise at (t, x).
Thus we should multiply the white noise Ẇ (t, x) by the standard deviation

√
ut(1− ut). This leads

to the noise term in (1.9).
As we have mentioned, we are interested in the long time speed of a random front for the

solutions to (1.9). To this end, we define the left and the right edge of the solution as follows. Given
a function h(x) such that 0 ≤ h(x) ≤ 1 for all x ∈ R, with h(x) → 1 as x → −∞ and h(x) → 0
as x→ +∞, we set

L(h) = inf {x ∈ R : h(x) < 1} (1.10)

R(h) = sup {x ∈ R : h(x) > 0} .

In the absence of the noise, when σ = 0, and for Lipschitz nonlinearities f(u), we have L(ut) = −∞
and R(ut) = +∞ for all t > 0. This, however, is not necessarily the case in the presence of the noise.
In order to make this claim precise, we assume that

f is continuous on [0, 1] and there exists Kf > 0 such that f(u) ≤ Kf

√
|u(1− u)|. (1.11)

As for the initial condition u0(x), we will assume that

0 ≤ u0(x) ≤ 1 for all x ∈ R, and both L(u0) and R(u0) are finite. (1.12)

We will denote by CI the set of continuous functions satisfying (1.12). In addition B̂I will denote the
space of functions on R taking values in [0, 1] and ĈI will denote the space of continuous functions
on R taking values in [0, 1].

We say that ut has a speed V (σ) if the following limit exists:

V (σ) = lim
t→∞

R(ut)

t
.

We prove the following theorem in Section 2.

Theorem 1.1. Let f(u) satisfy (1.11) and u0(x) be as in (1.12), then (1.9) with an initial condi-
tion u0(x) has a solution ut(x) taking values in ĈI for t > 0. The solution is unique in law. More-
over, L(ut) and R(ut) are almost surely finite for all t ≥ 0 and the solution has a speed V (σ) ∈ R.

We see that the noise has a very strong slowdown effect: V (σ) is finite for all σ > 0 even if f(u)
is Hölder with an exponent m ≥ 1/2, and not Lipschitz, such as, for instance f(u) = um(1− u), for
which, as we have mentioned, the speed of the front is infinite when σ = 0.
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Most of the papers dealing with (1.9), such as Mueller and Sowers [MS95] have treated the Fisher-
KPP nonlinearity f(u) = u(1 − u), and small noise, where σ is close to 0. Mueller, Mytnik, and
Quastel [MMQ11] studied the behavior of V (σ) as σ ↓ 0 and verified some conjectures of Brunet and
Derrida [BD97] and [BD00]. Less attention has been devoted to V (σ) for large or intermediate values
of σ, but Conlon and Doering [CD05] proved that for f(u) = u(1 − u) there exists an asymptotic
velocity V (σ) > 0 for solutions u to (1.9) for all σ > 0, and that

lim inf
σ→∞

σ2V (σ) ≥ 1. (1.13)

Note that (1.13) differs from (1.7) in [CD05] because the diffusivity in that paper is taken to be 1
rather than 1/2 as chosen here. To formulate our main result, we note that a rescaling of (1.9),
discussed in Section 2 allows us to move the noise coefficient into the nonlinearity, and obtain the
rescaled equation

∂tv =
1

2
∂2
xv + σ−4f(v) +

√
v(1− v)Ẇ (t, x). (1.14)

Here v is a rescaling of u which we specify later. Later we will use the results of Tribe [Tri95], and
Mueller and Tribe [MT97] for (1.14) with f = 0, a version of a continuous voter model, or a stepping
stone model in population genetics:

∂tw =
1

2
∂2
xw +

√
w(1− w)Ẇ (t, x). (1.15)

By Theorem 1 of [MT97], we know that wt(x−R(wt)) converges weakly to a stationary distribution
as t → ∞. We denote the expectation with respect to the stationary distribution of w by Ew,st,
where ”st” is an abbreviation for ”stationary”. For the next theorem we need an assumption on f
which is slightly stronger than (1.11): we assume

f is continuous on [0, 1] and there exists K̃f > 0 s.t. f(u) ≤ K̃f |u(1− u)|γ for some γ ∈ (1/2, 1].
(1.16)

Theorem 1.2. Suppose that u0 satisfies (1.12) and f satisfies (1.16). Then we have, almost surely,

lim
σ→∞

σ2V (σ) = cf , (1.17)

where

cf ≡ Ew,st
[∫

R
f(w(x)) dx

]
(1.18)

and
|cf | <∞. (1.19)

Note that Lemma 2.1 of [Tri95] shows that

lim
t→∞

Ew
[∫

R
wt(x)(1− wt(x)) dx

]
= 1. (1.20)

This immediately implies that |cf | < ∞ for f satisfying (1.16) with γ = 1. In particular, as a
consequence of Theorem 1.2, we get that for the Fisher-KPP nonlinearity f(u) = u(1− u), we have

lim
σ→∞

σ2V (σ) = 1,

giving a matching upper bound to the lower bound (1.13) of Conlon and Doering in [CD05], after
adjusting for the different diffusivities adopted in the present paper and in [CD05]. For the general f
satisfying (1.16), we show that (1.19) holds in Lemma 3.4.
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We also see the slowdown due to strong noise in Theorem 1.2 even for Lipschitz nonlinearities.
The large noise asymptotics in (1.17) corresponds to the speed of the front for solutions of (1.14)
that is V (v)(σ) ∼ cf/σ4. However, solutions of the corresponding equation without the noise

∂tv =
1

2
∂2
xv + σ−4f(v) (1.21)

spread with the speed V̄ (σ) = c∗/σ
2, where c∗ is the speed of the traveling wave for (1.21) with σ = 1,

so that V (v)(σ)� V̄ (σ) for σ � 1, and the noise slows down the propagation.
Let us also point out that expression (1.17)-(1.18) for the front speed V (σ) is a direct analog

of (1.8) except now the role of the traveling wave is played by the invariant measure of wt(x).
One may conjecture that instead of the convergence to a traveling wave in shape, as in (1.6) that
happens in the deterministic case, here, in the limit σ → +∞, the law of ut(x) after rescaling
converges, as t → +∞, in the frame moving with the speed V (σ), to the invariant distribution
of wt(x).

Another interesting observation is that the noise, despite its symmetry with respect to u = 0
and u = 1 can change the direction of the invasion. One may construct a nonlinearity f such that I(f)
given by (1.4) has a different sign than cf , meaning that that the speed of propagation for σ = 0, in
the absence of the noise, may have a different sign than V (σ) for large σ � 1, changing the direction
of the invasion, because of the noise.

The paper is organized as follows. The proof of Theorem 1.1 is in Section 2. Section 3 contains
some auxiliary results on solutions to (1.15). They are used later in the proof of Theorem 1.2,
presented in Sections 4 for the upper bound, and in Section 5 for the matching lower bound on the
speed V (σ) for σ � 1.

Acknowledgement. The work of LM and LR was supported by a US-Israel BSF grant. LR was
supported by NSF grant DMS-1613603 and ONR grant N00014-17-1-2145, and CM was supported
by a Simons Grant.

2 The proof of Theorem 1.1

In this section, we prove Theorem 1.1. Existence of a solution to (1.9) follows by a rather standard
argument. To prove the uniqueness, we use Girsanov’s theorem. In order to be able to apply this
theorem, we need to have an a priori bound showing that for any solutions to (1.9) taking values
in B̂I for all t ≥ 0 with R(u0) < +∞, L(u0) > −∞, we have −∞ < L(ut) < R(ut) < +∞ for
all t ≥ 0, almost surely.

2.1 Existence of a solution

We first show that (1.9) has a mild solution. The notion of a mild solution to (1.9) follows the
standard definition, see Walsh [Wal86]. We interpret (1.9) as a shorthand for the mild form,

ut(x) =

∫
R
Gt(x− y)u0(y)dy +

∫ t

0

∫
R
Gt−s(x− y)f(us(y))dyds

+

∫ t

0

∫
R
Gt−s(x− y)

√
us(y)(1− us(y))W (dyds), (2.1)

where u0(x) is the given initial condition. Here,

Gt(x) = (2πt)−1/2 exp
(
−x2/(2t)

)
,
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is the fundamental solution of the heat equation

∂tG =
1

2
∂2
xG.

In what follows, with some abuse of notation {Gt , t ≥ 0} will also denote the corresponding semi-
group, that is,

Gtφ(x) =

∫
R
Gt(x− y)φ(y) , dy, t > 0, (2.2)

for any function φ for which the above integral is well-defined.
Almost sure existence and uniqueness of mild solutions to SPDEs of the form

∂tu =
1

2
∂2
xu+ f(u) + a(u)Ẇ (t, x) (2.3)

is standard [Wal86] when the coefficients are Lipschitz continuous functions of u. Because in our
case f(u) may be not Lipschitz, and a(u) =

√
u(1− u) is not Lipschitz, one needs to be slightly

more careful. Solutions to (1.9) are constructed as follows. Let the initial condition u0 satisfy (1.12).
We approximate f(u) and a(u) by Lipschitz functions fn(u) and an(u) such that

fn(0) = fn(1) = an(0) = an(1) = 0,

and construct the corresponding solutions unt (x) using the standard theory. The comparison principle
implies that unt (x) take values in [0, 1], see [Shi94] and [Mue91]. The proof of Theorem 2.6 of [Shi94],
on pp. 436-437 of that paper, shows that the sequence unt (x) is tight. Passing to the limit n→ +∞
we obtain a mild solution ut(x) to (1.9) taking values in [0, 1]. This proves existence of a solution.

2.2 Uniqueness via the Girsanov theorem

In order to prove uniqueness in law of the solution to (1.9), we will use a version of the Girsanov
theorem that will allow us to compare the laws of the solution ut(x) to (1.9) and wt(x), the solution
to (1.15), which corresponds to f = 0 in (1.9), with the same initial condition w0(x) = u0(x). Recall
that we have set σ = 1, including in (1.15). Let Pt,u be the measure induced on the canonical path
space up to time t by u, and Pt,w be the measure induced by w, also up to time t. We also define
the corresponding expectations Et,u and Et,w, and write Pu for P∞,u, and likewise Pw for P∞,w. We
will not use the subscripts in the situations when it is clear which probability measure is used.

In [Daw78], Dawson gives a version of Girsanov’s theorem which applies to Pt,u and Pt,w. We
will use its variant, Theorem IV.1.6 in [Per02]. In such theorems, the change of measure always
involves an exponential term which must be a martingale. In our situation, let

Zt =

∫ t

0

∫
R

f(ws(x))√
ws(x)(1− ws(x))

W (dx, ds)− 1

2

∫ t

0

∫
R

f(ws(x))2

ws((x)1− ws(x))
dxds. (2.4)

Here, and elsewhere we adopt the convention in the integrands that

f(u)√
u(1− u)

= 0 if u = 0 or u = 1.

Then Girsanov’s theorem for stochastic PDE [Daw78, Per02] says that

dPt,u
dPt,w

= eZt , (2.5)
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as long as ∫ t

0

∫
R

f(us(x))2

us(x)(1− us(x))
dxds < +∞, Pu-almost surely. (2.6)

In particular, if (2.6) holds then (2.5) implies immediately that the solution to (1.9) is unique in
law. For the moment, as we do not have any information on the support of f(us(x)), we can not
conclude that (2.6) holds. The bulk of the rest of this section is to show that (2.6) holds for any
solution to (1.9) taking values in B̂I for all t ≥ 0 and such that R(u0) < +∞ and L(u0) > −∞.

First, we make a much simpler observation that allows us to use Girsanov’s theorem to eliminate
the drift on a finite interval. Fix and arbitrary b > 0 and let vb denote a solution to a modified
version of (1.9), with the nonlinearity set to zero on the interval [−10b, 10b]:

∂tv
b
t (x) =

1

2
∂2
xv
b
t (x) + f(vbt (x))1{x∈(−∞,−10b)∪(10b,∞)} +

√
vbt (x)(1− vbt (x))Ẇ (t, x). (2.7)

We again write this equation in the mild form:

vbt (x) = Gtv
b
0(x) +

∫ t

0

∫
R
Gt−s(x− z)f(vbs(z))1{z∈(−∞,−10b)∪(10b,∞)} dz +N b

t (x), (2.8)

where

N b
t (x) =

∫ t

0

∫
R
Gt−s(x− z)

√
vbs(z)(1− vbs(z))W (ds, dz). (2.9)

Let Pt,vb be the measure induced on the canonical path space up to time t by vb, with the corre-
sponding expectation Et,vb , and P∞,vb be Pvb . Note that by (1.11) we have∫ t

0

∫
R

f(us(x))21{x∈(−10b,10b)}

us(x)(1− us(x))
dxds ≤ 20bK2

f t < +∞, Pu-almost surely. (2.10)

Thus we can use Girsanov’s theorem for stochastic PDE [Daw78, Per02] to get

dPt,u
dPt,vb

= eZ
b
t , (2.11)

where

Zbt =

∫ t

0

∫
R

f(vbs(x))1{x∈(−10b,10b)}√
vbs(x)(1− vbs(x))

W (dx, ds)− 1

2

∫ t

0

∫
R

f(vbs(x))21{x∈(−10b,10b)}

vbs((x)1− vbs(x))
dxds. (2.12)

2.3 A bound on the front speed

The next step is to get the following bound on the speed of the front of u.

Lemma 2.1. Let ut(x) be a solution to (1.9) taking values in B̂I for all t ≥ 0 such that the
initial condition u0(x) satisfies (1.12) with R(u0) ≤ 0. Then, for all T > 0, both supt≤T R(ut)
and supt≤T L(ut) are almost surely finite. Moreover, for all T ≥ 0 there exists CT > 0 so that for

all b ≥ 4
√
T (T‖f‖∞ ∨ 1) we have

P
(

sup
0≤t≤T

|R(ut)−R0| > b
)

+ P
(

sup
0≤t≤T

|L(ut)− L0| > b
)
≤ CT exp

(
− b2

100T

)
. (2.13)

An immediate consequence is

Corollary 2.2. We have, for each T ≥ 0:

E
[

sup
0≤t≤T

|R(ut)− L(ut)|
]
< +∞. (2.14)

In other words, any solution to (1.9) has an interface that has a finite length almost surely.
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Bounds on the martingale with the cut-off

The proof of Lemma 2.1 relies on a priori bounds on the propagation of vb, solution to (2.7). First,
we need to control the modulus of continuity of the martingale N b

t (·) defined in (2.9).

Lemma 2.3. Let vbt (x) be a solution to (2.7) taking values in B̂I for all t ≥ 0, such that the initial
condition vb0(x) satisfies (1.12) with R(vb0) ≤ 0. Then, for all p ≥ 1, there exists C(p) > 0 so that
for all t ≥ 0, and x, y ∈ [b/2, 9b] we have

E
[
|N b

t (x)−N b
t (y)|2p

]
≤ C(p)(|x− y| ∧ t1/2)p−1t1/2 (2.15)

×
∫
R

(Gt(x− z) +Gt(y − z))(vb0(z) + t‖f‖∞1{z∈(−∞,−10b)∪(10b,∞)}) dz,

E
[
|N b

t (x)−N b
s (x)|2p

]
≤ C(p)|t− s|(p−1)/2t1/2 (2.16)

×
∫
R

(Gt(x− z) +Gs(x− z))(vb0(z) + t‖f‖∞1{z∈(−∞,−10b)∪(10b,∞)}) dz.

Proof. The proof follows the lines of the proof of Lemma 3.1 in [Tri95]. We only verify (2.15). Note
that ∫ t

0

∫
R

(Gt−s(x− z)−Gt−s(y − z))2 dz ds ≤ C(|x− y| ∧ t1/2) ∀t > 0, x, y ∈ R. (2.17)

Burkholder’s and Hölder’s inequalities give

E
[
|N b

t (x)−N b
t (y)|2p

]
≤ C(p)E

[(∫ t

0

∫
R

(Gt−s(x− z)−Gt−s(y − z))2vbs(z)(1− vbs(z)) dz ds
)p]

≤ C(p)(|x− y| ∧ t1/2)p−1E
[∫ t

0

∫
R

(Gt−s(x− z)−Gt−s(y − z))2
(
vbs(z)(1− vbs(z))

)p
dz ds

]
≤ C(p)(|x− y| ∧ t1/2)p−1E

[∫ t

0

∫
R

(Gt−s(x− z)−Gt−s(y − z))2vbs(z) dz ds

]
≤ C(p)(|x− y| ∧ t1/2)p−1E

[∫ t

0
(t− s)−1/2

∫
R

(Gt−s(x− z) +Gt−s(y − z))vbs(z) dz ds
]
.

(2.18)
We used the fact that 0 ≤ vb ≤ 1 in the third inequality above. Note that

E[vbs(x)] = Gsv
b
0(x) + E

[ ∫ s

0

∫
R
Gs−r(x− z)f(vbr(z))1{z∈(−∞,−10b)∪(10b,∞)} dz dr

]
≤ Gsvb0(x) + ‖f‖∞

∫ s

0

∫
R
Gs−r(x− z)1{z∈(−∞,−10b)∪(10b,∞)}) dz dr.

(2.19)

We substitute this bound into the right side of (2.18) and use the semi-group property of Gt to get

E
[
|N b

t (x)−N b
t (y)|2p

]
≤ C(p)(|x− y| ∧ t1/2)p−1

{∫ t

0
(t− s)−1/2

(∫
R

(Gt(x− z) +Gt(y − z))vb0(z) dz

+

∫ s

0
‖f‖∞

∫
R

(Gt−r(x− z) +Gt−r(y − z))1{z∈(−∞,−10b)∪(10b,∞)}) dz dr
)
ds
}

≤ C(p)(|x− y| ∧ t1/2)p−1t1/2
(∫

R
(Gt(x− z) +Gt(y − z))vb0(z) dz

+‖f‖∞
∫ t

0

∫
R

(Gt−r(x− z) +Gt−r(y − z))1{z∈(−∞,−10b)∪(10b,∞)}) dz dr

)
.
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Since x, y ∈ (b/2, 9b) and z ≥ 10b we have∫
z≥10b

Gr(x− z) dz ≤
∫
z≥10b

Gt(x− z) dz, ∀x ∈ (b/2, 9b), 0 ≤ r ≤ t, (2.20)

and thus we get

E
[
|N b

t (x)−N b
t (y)|2p

]
≤ C(p)(|x− y| ∧ |t− s|1/2)p−1

× t1/2
∫
R

(Gt(x− z) +Gt(y − z))
(
vb0(z) + t‖f‖∞1{z∈(−∞,−10b)∪(10b,∞)}

)
dz,

(2.21)
which is (2.15). The proof of (2.16) goes along similar lines.

A corollary of Lemma 2.3 is a bound on the size of N s
b (x).

Lemma 2.4. Let vbt (x) be a solution to (2.7), taking values in B̂I for all t ≥ 0, and the initial
condition vb0(x) satisfies (1.12) with R(vb0) ≤ 0. Then, for all t > 0, there exists C such that

P
(
|N b

s (x)| ≥ ε for some x ∈ (b/2, 9b), s ∈ [0, t]
)

(2.22)

≤ Cε−20(t ∨ t22)

∫
R

∫
R
Gt(x− z)

(
vb0(z) + t‖f‖∞1{z∈(−∞,−10b)∪(10b,∞)}) dz1{x∈(b/2,9b)}

)
dx.

Proof. The proof goes exactly as the second part of the proof of Lemma 3.1 in [Tri95] (on p. 295) while
taking vb0(z) + t‖f‖∞1{z∈(−∞,−10b)∪(10b,∞)} instead of f and (b/2, 9b) instead of (A,∞) there.

The support of the solution with a cut-off

Now, we prove the following lemma.

Lemma 2.5. Let vbt (x) be a solution to (2.7) taking values in B̂I for all t ≥ 0 such that the initial
condition vb0(x) satisfies (1.12) with R(vb0) ≤ 0. Then, for all t > 0 there exists Ct > 0 so that for
all b ≥ 4

√
t(t‖f‖∞ ∨ 1) we have

P
(

sup
0≤s≤t

sup
x∈[b,2b]

vbs(x) > 0
)
≤ C(t, ‖f‖∞) exp

(
− b2

50t

)
. (2.23)

Proof. We will follow the proof of Proposition 3.2 in [Tri95]. Let us take a function ψ ∈ L1(R)∩C(R)
such that 0 ≤ ψ(x) ≤ 1 for all x ∈ R and {x : ψ(x) > 0} = (0, b), and set ψb(x) = ψ(x − b). For
simplicity of notation, we define

〈h, g〉 =

∫
R
h(x)g(x) dx

for any functions h, g such that the integral above exists.
Fix t > 0 and let φλs (x), 0 ≤ s ≤ t, x ∈ R be the unique non-negative bounded solution to the

backward in time problem

−∂sφλs =
1

2
∆φλs −

1

4
(φλs )2 + λψb, (2.24)

with the terminal condition φλt (x) ≡ 0. A similar equation to (2.24) but with different function ψb
in the right side appears in the proof of Proposition 3.2 in [Tri95]. As ψb(x) ≥ 0 for all x ∈ R, the
maximum principle implies existence of the solution to (2.24) and that φλs (x) ≥ 0 for all 0 ≤ s ≤ t
and x ∈ R. The maximum principle also implies that

φλs (x) ≤ λ
∫ t−s

0

∫
Gr(x− y)ψb(y)dy dr, s ≤ t,

9



and thus φλs (x) is integrable for all 0 ≤ s ≤ t. Next, note that the function

ζt(x) =

{
α

(x−b)2 , x < b,
α

(x−2b)2 , x > 2b,

satisfies, in the region x < b, where ψb(x) ≡ 0:

∂tζ −
1

2
∆ζ +

1

4
ζ2 − λψb = −1

2

2 · 3α
(x− b)4

+
α2

4(x− b)4
=
α(α− 12)

(x− b)4
≥ 0,

provided that we take α ≥ 12. As ζt(x) = +∞ at x = b, the maximum principle implies that, for α
sufficiently large, we have

φλs (x) ≤ α

(b− x)2
, for all x < b, s ≤ t, and λ > 0. (2.25)

Similarly, again for α large enough, we get

φλs (x) ≤ α

(2b− x)2
, for all x > 2b, s ≤ t, and λ > 0. (2.26)

Now, given any b ≥ 4t1/2, we may use the fundamental solution for the heat equation on the half-
lines x < b − t1/2, x > 2b + t1/2 together with the upper bound in (2.25) on φλs (x) at x = b − t1/2,
and x = 2b+ t1/2 to conclude that there exists α1 > 0 such that

φλs (x) ≤ α1

t
exp

(
− (b− x)2

20t

)
, for all b ≥ 4t1/2, x < b− 2t1/2, s ≤ t, and λ > 0, (2.27)

and

φλs (x) ≤ α1

t
exp

(
− (2b− x)2

20t

)
, for all b ≥ 4t1/2, x > 2b+ 2t1/2, s ≤ t, and λ > 0. (2.28)

Next, by Itô’s formula, we get, for any 0 ≤ s ≤ t:

exp
(
− 〈vbs , φλs 〉 − λ

∫ s

0
〈vbs′ , ψb〉 ds′

)
= exp

(
− 〈vb0 , φλ0〉

)
+

∫ s

0
exp

(
− 〈vbs′ , φλs′〉 − λ

∫ s′

0
〈vbr , ψb〉 dr

)
×
(
〈vbs′ ,−∂sφλs′ −

1

2
∆φλs′ − λψb〉 − 〈f(vbs′)1(−∞,−10b)∪(10b,∞), φ

λ
s′〉+

1

2
〈vbs′(1− vbs′), (φλs′)2〉

)
ds′

+Mφλ,ψb
s ,

where s 7→ Mφλ,ψb
s , s ≤ t, is a local martingale. In fact, Mφλ,ψb is a square integrable martingale:

this follows easily from integrability of (φλ)2. Then we get

exp
(
− 〈vbs , φλs 〉 − λ

∫ s

0
〈vbs′ , ψb〉 ds′

)
= exp(−〈vb0 , φλ0〉) +

∫ s

0
exp

(
− 〈vbs′ , φλs′〉 − λ

∫ s′

0
〈vbr , ψb〉 dr

)
×
(
〈−f(vbs′)1(−∞,−10b)∪(10b,∞), φ

λ
s′〉+ 〈−1

4
vbs′ +

1

2
vbs′(1− vbs′), (φλs′)2〉

)
ds′ +Mφλ,ψb

s . (2.29)

Note that (2.25) implies that for b > R0 we have a uniform bound

|〈vb0 , φλ0〉| ≤ c0, (2.30)
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with a constant c0 that does not depend on λ. Now we define the stopping times

τb = inf
{
t ≥ 0 : ∃x ∈ [b/2, 3b] s.t. vbt (x) ≥ 1

2

}
, ρb = inf{t ≥ 0 : 〈vbt , ψb〉 > 0}.

Note that we have

〈vbt∧τb , φ
λ
t∧τb〉+ λ

∫ t∧τb

0
〈vbs , ψb〉 ds→ +∞ as λ→ +∞, (2.31)

almost surely on the event {ρb < t ∧ τb), thus

P(ρb < t ∧ τb) ≤ lim
λ→+∞

E
[
1− exp

(
− 〈vt∧τb , φ

λ
t∧τb〉 − λ

∫ t∧τb

0
〈vs , ψb〉 ds

)]
(2.32)

On the other hand, taking the expectation in (2.29) with s = t ∧ τb, we get

E
[
1− exp

(
− 〈vbt∧τb , φ

λ
t∧τb〉 − λ

∫ t∧τb

0
〈us , ψb〉 ds

)]
≤ E

[
1− exp

(
− 〈vb0 , φλ0〉

)]
+ E

[ ∫ t

0

(
‖f‖∞〈1(−∞,−10b)∪(10b,∞), φ

λ
s 〉+ 〈1

4
vbs1(−∞,b/2)∪(3b,∞), (φ

λ
s )2〉

)
ds
]
. (2.33)

Note that for each 0 ≤ s ≤ t and x ∈ R the family φλs (x) is increasing in λ. Moreover, for s < t
and x > b we have φλs (x) → +∞ as λ → +∞, while for x < b, the limit φ∞s (x) is finite because
of (2.25). Passing to the limit λ→ +∞ in (2.33), using the bound in (2.32) and since vbs(x) ≤ 1 for
all s ≥ 0, x ∈ R, we get

P(ρb < t ∧ τb) ≤ E
[
1− exp

(
− 〈vb0 , φ∞0 〉

)]
(2.34)

+

∫ t

0

(
‖f‖∞〈1(−∞,−10b)∪(10b,∞), φ

∞
s 〉+

1

4
〈1(−∞,b/2)∪(3b,∞), (φ

∞
s )2〉

)
ds.

Recalling (2.27)-(2.28), we have

P(ρb < t ∧ τb) ≤
C

t

∫ 0

−∞
e−(b−x)2/(20t)dx (2.35)

+
‖f‖∞
t

∫ t

0

(∫ ∞
10b

e−(2b−x)2/(20t) dx+

∫ −10b

−∞
e−(b−x)2/(20t) dx

)
ds

+
C

t2

∫ t

0

(∫ b/2

−∞
e−(b−x)2/(10t)dx+

∫ ∞
3b

e−(2b−x)2/(10t) dx

)
ds

≤ C

b
exp

(
− b2

40t

)
+
C‖f‖∞

b
exp

(
− b2

t

)
≤ C(‖f‖∞ + 1)

t1/2
exp

(
− b2

40t

)
.

We used the assumption that R0 = 0 in the first term in the right side above. To estimate the
integrals in (2.35), we used the standard Gaussian estimate∫ ∞

y
exp(−x2/2)dx ≤ y−1 exp(−y2/2)

along with a few changes of variables.
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Now we need to estimate

P(τb ≤ t) = P
(
∃x ∈ [b/2, 3b], s ≤ t : Gsv

b
0(x) +

∫ s

0

(∫ ∞
10b

+

∫ −10b

−∞

)
Gs−r(x− z)f(vbr(z)) dz dr

+N b
s (x) ≥ 1/2

)
. (2.36)

It is easy to check that since b ≥ 4
√
t(t‖f‖∞ ∨ 1)

Gsv
b
0(x) ≤

∫ 0

−∞
Gs(x− z) dz ≤

∫ 0

−∞
Gt(x− z) dz ≤

∫ 0

−∞
Gt(b/2− z) dz (2.37)

≤
∫ 0

−∞
G1(2− z) dz ≤ 1/10, ∀s ≤ t, x ∈ [b/2, 3b].

Similarly, we have

t

∫ ∞
10b

Gs−r(z − x)f(vbr(z) dz ≤ t‖f‖∞
∫ ∞

10b
Gt(z − 3b) dz ≤ t‖f‖∞

∫ ∞
7b√
t

G1(z) dz, (2.38)

≤ t‖f‖∞
∫ ∞

28(t‖f‖∞∨1)
G1(z) dz ≤ 0.05, ∀r ≤ s ≤ t, x ∈ [b/2, 3b].

and

t

∫ −10b

−∞
Gs−r(z − x)f(vbr(z) dz ≤ t‖f‖∞

∫ −10b

−∞
Gt(z − b/2) dz ≤ t‖f‖∞

∫ ∞
10b√
t

G1(z) dz, (2.39)

≤ t‖f‖∞
∫ ∞

40(t|f‖∞∨1)
G1(z) dz ≤ 0.05, ∀r ≤ s ≤ t, x ∈ [b/2, 3b].

Altogether substituting the last inequalities into (2.36) we get

P(τb ≤ t) ≤ P
(
∃x ∈ [b/2, 3b], s ≤ t : N b

s (x) ≥ 0.3
)

(2.40)

≤ C · (t ∨ t22)

∫
R

∫
R
Gt(x− z)(vb0(z) + t‖f‖∞1{z∈(−∞,−10b)∪(10b,∞)}) dz1{x∈(b/2,9b)}) dx

≤ C(t, ‖f‖∞) exp
(
− b2

50t

)
, ∀t > 0, x ∈ [b/2, 3b],

where the second inequality follows by Lemma 2.4 and in the last one we used simple Gaussian
bounds. By combining (2.40) with (2.35) we are done.

The proof of Lemma 2.1

Now we are ready to prove Lemma 2.1. Note that Lemma 2.5 implies a similar result for ut(x).

Lemma 2.6. Let ut(x) be a solution to (1.9) taking values in B̂I for all t ≥ 0 such that the initial
condition u0(x) satisfies (1.12) with R(u0) ≤ 0. Then, for all T > 0 there exists CT > 0 so that for
all b ≥ 4

√
T (T‖f‖∞ ∨ 1) we have

P
(

sup
0≤t≤T

sup
x∈[b,2b]

ut(x) > 0
)
≤ C(T, ‖f‖∞) exp

(
− b2

50T

)
. (2.41)
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Proof. By Girsanov’s theorem we have

Pu
(

sup
0≤t≤T

sup
x∈[b,2b]

ut(x) > 0
)
≤ Evb

[
eZ

b
T 1{sup0≤t≤T supx∈[b,2b] v

b
t (x)>0}

]
≤ Evb

[
e2ZbT

]
Pvb
(

sup
0≤t≤T

sup
x∈[b,2b]

vbt (x) > 0
)
, (2.42)

where Zb was defined in (2.12). Note that (2.10) holds also Pvb-a.s., thus from (2.12) we can easily
get

Evb
[
e2ZbT

]
≤ e40bK2

fT , (2.43)

and combining this with (2.42) and Lemma 2.5 we obtain (2.41).

Now, the conclusions of Lemma 2.1 follow essentially immediately. The bound (2.13) on

P
(

sup
0≤t≤T

|R(ut)−R0| > b
)

in Lemma 2.1 is a simple consequence of Lemma 2.6. The finiteness of supt≤T R(ut) follows
from (2.13). The corresponding bounds on L(ut) follow by repeating the arguments used in the
proof of Lemmas 2.3–2.6 for 1− u(−x) instead of u(x).

Uniqueness of the solution

So far, we have shown that both R(ut) and L(ut) are Pu-a.s. finite for any solution to (1.9) taking
values in B̂I for all t ≥ 0 such that the initial condition u0(x) satisfies (1.12). As a consequence,
(2.6) holds for any such solution to (1.9). As we have discussed in Section 2.2, it follows that we
may apply Girsanov’s theorem to immediately deduce uniqueness in law of the solution to (1.9) that
satisfies the above conditions.

2.4 Existence of the speed

The last ingredient in the proof of Theorem 1.1 is the existence of the speed.

Lemma 2.7. There exists a deterministic constant V (σ) ∈ (−∞,+∞) so that the limit

V (σ) = lim
t→+∞

R(ut)

t
(2.44)

exists almost surely.

Proof. The proof goes along the lines of the proof of the corresponding result in [CD05]. First, we
show that the limit V (σ) in (2.44) exists and V (σ) <∞. Let us set b(m) = R(um), for m = 0, 1, 2, . . .,
and note that by Corollary 2.2 we have

E [(b(1)− b(0))+] <∞. (2.45)

Then, as in the proof of Lemma 5.1 in [CD05] we can use the subadditive ergodic theorem to deduce
that there exists a constant c(σ) ∈ [−∞,∞), such that

lim
m→+∞

b(m)

m
= c(σ). (2.46)
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Using Lemma 2.1, we get (see Lemma 5.3 in [CD05] for the same argument) that for all m = 1, 2, . . .

P
(

sup
0≤s≤1

{b(s+m)− b(m), b(m+ 1)− b(s+m)} >
√
m
)
≤ C(σ) exp(−m/50). (2.47)

Then by the Borel-Cantelli lemma we get that in fact,

lim
t→+∞

b(t)

t
= c(σ). (2.48)

and thus V (σ) = c(σ) <∞.
To show that V (σ) > −∞, one needs to consider equation for 1− ut(−x) and repeat the above

argument.

3 The interface in the voter model

Girsanov’s theorem connecting solutions to the rescaled equation (1.14) and to the voter model (1.15)
not only allows us to deduce uniqueness in the law for the solutions to the former problem but also
obtain the asymptotics on their front speed in Theorem 1.2. As a preliminary step, in this section,
we make some observations about the latter. To begin, we rephrase Lemma 4.2(a) of [Tri95], putting
it into a form more directly useful for our purposes. Let wt(x) be the solution to (1.15) with an
initial condition w0(x) satisfying (1.12). Recall that we denote by Pw the measure induced on the
canonical path space C([0,+∞);C(R)) by w, and by Ew we denote the corresponding expectation.
Recall that two random processes Xt and Yt are said to be coupled if they can be defined on the same
probability space. We assume throughout the rest of the paper that f satisfies assumption (1.16).

Lemma 3.1. Given ε > 0, there exists Tε > 0 such that for all T ≥ Tε there is a coupling of
processes (wt, Bt : t ≥ 0) where B a standard Brownian motion started at 0, such that

Pw
(

sup
0≤t≤T

∣∣R(wt)−Bt
∣∣ ∨ ∣∣L(wt)−Bt

∣∣ ≥ T 1/2ε
)
≤ ε.

The following lemma shows that another good measure of the location of the interface is

Mt :=

∫ t

0

∫
R

√
ws(x)(1− ws(x))W (dx, ds). (3.1)

Lemma 3.2. Let B be the Brownian motion from Lemma 3.1. Given ε > 0, there exists Tε > 0
such that for all T ≥ Tε we have

Pw
(

sup
0≤t≤T

∣∣Mt −Bt
∣∣ ≥ 4T 1/2ε

)
≤ ε.

Proof. By Lemma 3.1,

Ξ(wt) :=

∫ 0

−∞

[
wt(x)− 1

]
dx+

∫ ∞
0

wt(x)dx. (3.2)

is an almost surely finite functional of wt. As wt(x) = 1 for x < L(wt) and wt(x) = 0 for x > R(wt),
we have

Ξ(wt) =

∫ 0

L(wt)∧0
[wt(x)− 1]dx+

∫ R(wt)∨0

0
wt(x)dx,
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thus

L(wt) =

∫ 0

L(wt)∧0
[−1]dx+

∫ L(wt)∨0

0
dx ≤

∫ 0

L(wt)∧0
[wt(x)− 1]dx+

∫ R(wt)∨0

0
wt(x)dx = Ξ(wt),

and likewise

R(wt) =

∫ 0

R(wt)∧0
[−1]dx+

∫ R(wt)∨0

0
dx ≥

∫ 0

L(wt)∧0
[wt(x)− 1]dx+

∫ R(wt)∨0

0
wt(x)dx = Ξ(wt).

We conclude that
L(wt)) ≤ Ξ(wt) ≤ R(wt). (3.3)

Next, let θ(x) be a smooth monotonically decreasing function such that θ(x) = 1 for x < −2
and θ(x) = 0 for x > −1, and set θn(x) = θ(nx). Then for

ζn(x) := wt(x)− θn(x)

we have

Ξ(wt) = lim
n→∞

Ξn(t), Ξn(t) =

∫ ∞
−∞

ζn(x)dx.

The function ζn(t, x) satisfies

∂tζn =
1

2
∂2
xζn +

1

2
∂2
xθn +

√
w(1− w)Ẇ (t, x). (3.4)

Integrating in t and x gives

Ξn(wt) = Ξn(w0) +

∫ t

0

∫
R

√
ws(y)(1− ws(y))W (dyds). (3.5)

Passing to the limit n→ +∞, we arrive at

Ξ(wt) = Ξ(w0) +

∫ t

0

∫
R

√
ws(y)(1− ws(y))W (dyds) = Ξ(w0) +Mt. (3.6)

As Ξ(w0) < +∞ and is not random, the conclusion of the present lemma follows from Lemma 3.1
by taking Tε sufficiently large.

For any metric space E, we denote by DE the space of càdlàg functions [0,∞) → E equipped
with the Skorohod topology. Define the rescaled functionals

Lat =
1

a
L(wa2t), R

a
t =

1

a
R(wa2t), Ma

t =
1

a
Ma2t .

As a consequence of Lemmas 3.1 and 3.2, we conclude that

(La, Ra,Ma)⇒ (B,B,B) in DR3 , as a→∞,

where B is a standard Brownian motion starting at 0 and ⇒ denotes convergence in law.
As in the application of the Girsanov theorem in the proof of Theorem 1.1, we will make use of

the functionals

Aft :=

∫ t

0

∫
R

f(ws(x))2

ws(x)(1− ws(x))
dx ds, (3.7)

Mf
t :=

∫ t

0

∫
R

f(ws(x))√
ws(x)(1− ws(x))

W (dx, ds), (3.8)
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and their rescaled versions

Mf,a
t =

1

a
Ma2t, Af,at =

1

a2
Af
a2t
, a > 0.

The difference in the scaling of these two functionals comes from the fact that Mt is, roughly, a
Brownian motion on large time scales, and At is deterministic to the leading order on large time
scales. Note that both At and Mt are almost surely finite if f satisfies assumption (1.11), since the
interface of wt has a finite length almost surely. However, we will need the stronger assumption (1.16)
in Lemma 3.5 below.

Let us now recall Theorem 1 of [MT97].

Theorem 3.3 ([MT97]). There exists a unique stationary measure µ on CI for (1.15). Furthermore,
for each u0 ∈ CI , the law of wt(x + Lt) converges in total variation to µ as t → ∞. In addition,
the moment of the width of the interface Ew,st[R(f)−L(f)]pµ(df) is finite if 0 ≤ p < 1, and infinite
for p ≥ 1.

The following estimate is a consequence of the second part of Theorem 3.3.

Lemma 3.4. For any η ∈ (0, 1], we have

Ew,st
[∫

R
(w(x)(1− w(x)))η dx

]
<∞. (3.9)

Note that this result fails at η = 0: according to Theorem 3.3, the length of the interface has an
infinite expectation under the stationary distribution of w.

Proof. For η = 1 the result is known (see Lemma 2.1(a) in [Tri95]), so we assume that η ∈ (0, 1).
Let ` be the length of the interface of w under the stationary distribution. By applying Hölder’s
and Young’s inequalities we get

Ew,st
[ ∫

R
(w(x)(1− w(x)))η dx

]
≤ Ew,st

[( ∫
R

(w(x)(1− w(x))) dx
)η
`1−η

]
≤ CαEw,st

[( ∫
R

(w(x)(1− w(x))) dx
)αη]

+ CαEw,st
[
`
α(1−η)
α−1

]
,

for any α > 1. We take α = 2/η and get

Ew,st
[ ∫

R
(w(x)(1− w(x)))η dx

]
≤ CαEw,st

[( ∫
R

(w(x)(1− w(x))) dx
)2]

+ CαEw,st
[
`γ
]
,

with γ = (1− η)/(1− η/2). Since γ < 1, by Theorem 3.3 we get Ew,st[`γ ] < ∞. In addition,
Lemma 2.1(d) in [Tri95] implies that

Ew,st
[( ∫

R
(w(x)(1− w(x))) dx

)2]
<∞,

and we are done.

Lemma 3.5. Let f satisfy assumption (1.16), then we have convergence in law

(Mf,a, Af,a)⇒ {Bf
t , Dt), t ≥ 0}, (3.10)

in DR2, as a→∞. Here {Bf
t , t ≥ 0} is a Brownian motion with variance D

D = Ew,st
[∫

R

f(w(x))2

w(x)(1− w(x))
dx

]
<∞. (3.11)
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Note that D < +∞ because of Lemma 3.4 and assumption (1.16) on f .

Proof. Since w has a unique stationary distribution on the space CI of continuous functions h such
that −∞ < L(h) < R(h) < +∞, by the ergodic theorem we have

lim
a→∞

a−2Af
a2t

= tEw,st
[∫

R

f(w(x))2

w(1− w(x))
dx

]
= Dt, (3.12)

uniformly on compact sets in t. Recall that Ew,st denotes the expectation with respect to the
stationary measure of w on CI . Since

Mf,a
t = B̃

Af,at
, t ≥ 0, (3.13)

for some standard Brownian motion B̃, it follows from (3.12) that

Mf,a
· ⇒ {Bf

t , t ≥ 0} := {B̃Dt, t ≥ 0}, (3.14)

where B̃Dt is a Brownian motion with variance D.

Define

At :=

∫ t

0

∫
R
ws(x)(1− ws(x)) dx ds, (3.15)

and its rescaled version

Aat =
1

a2
Aa2t, a > 0.

Corollary 3.6. We have convergence in law

(La, Ra,Ma, Aa,Mf,a, Af,a)⇒ {(Bt, Bt, Bt, t, Bf
t , Dt), t ≥ 0}, (3.16)

in DR5, as a → ∞. Here, Bt is a standard Brownian motion, Bf
t is a Brownian motion with

variance D and their correlation is given by

〈B·, Bf
· 〉t = cf t, t ≥ 0, (3.17)

with cf as in (1.18).

Proof. It only remains to check the correlation:

〈Mf,a
· ,Ma

· 〉t = a−2

∫ a2t

0

∫
R
f(ws(x)) dx ds⇒ tEw,st

[ ∫
R
f(w(x)) dx

]
= cf t, t ≥ 0,

as a→∞, exactly as in (3.12).

4 The proof of Theorem 1.2: the upper bound on the speed

We assume till the end of the paper, without loss of generality, that cf > 0. In this section, we prove
the upper bound on the front speed in Theorem 1.2.

Proposition 4.1. Suppose that u0 satisfies (1.12) and f satisfies (1.16). Then with probability 1,
we have

lim sup
σ→∞

σ2V (σ) ≤ cf .
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4.1 Rescaling

First, we show via a rescaling how to pass from (1.9) to (1.14). Consider the rescaled function

vt(x) = uσ−4t(σ
−2x).

To get an equation for vt(x), we use the mild form (2.1) and the relations

Ga2t(bx) = b−1G(a2t/b2)(x) (4.1)

W a,b(dyds) := a−1b−1/2W (bdy, a2ds)
D
= W (dyds)

ab1/2W a,b(dyds) = W (bdy, a2ds),

that hold for any a, b > 0. Here,
D
= means equality in distribution. From (2.1), for any a, b > 0, we

get

u(a2t)(bx) =

∫
R
Ga2t(bx− y)u0(y)dy +

∫ a2t

0

∫
R
Ga2t−s(bx− y)f(us(y))dyds

+ σ

∫ a2t

0

∫
R
Ga2t−s(bx− y)

√
us(y)(1− us(y))W (dyds) =: I + II + III.

We make the change of variables s = a2s′, y = by′ and use (4.1). For the term I we have

I = b

∫
R
Ga2t(bx− by′)u0(by′)dy′ =

∫
R
Ga2t/b2(x− y′)u0(by′)dy′. (4.2)

The second term can be rewritten as

II =

∫ a2t

0

∫
R
Ga2t−s(bx− y)f(us(y))dyds =

∫ t

0

∫
R
Ga2t−a2s′(bx− by′)f(ua2s′(by

′))ba2dy′ds′

= a2

∫ t

0

∫
R
Ga2(t−s′)/b2(x− y′)f(ua2s′(by

′))dy′ds′, (4.3)

and changing variables, the last term is

III = σ

∫ a2t

0

∫
R
Ga2t−s(bx− y)

√
us(y)(1− us(y))W (dyds) (4.4)

= σ

∫ t

0

∫
R
Ga2t−a2s′(bx− by′)

√
ua2s′(by

′)(1− ua2s′(by
′))W (bdy′, a2ds′)

= σ

∫ t

0

∫
R
b−1Ga2(t−s′)/b2(x− y′)

√
ua2s′(by

′)(1− ua2s′(by
′))ab1/2W a,b(dy′ds′).

= ab−1/2σ

∫ t

0

∫
R
Ga2(t−s′)/b2(x− y′)

√
ua2s′(by

′)(1− ua2s′(by
′))W a,b(dy′ds′).

We take
a = σ−2, b = σ−2,

so that ab−1/2σ = 1 and a2/b2 = 1. Defining vt(x) := u(a2t)(bx) and putting together the above
terms, we see that vt(x) satisfies

vt(x) =

∫
R
Gt(x− y)u0(y)dy + σ−4

∫ t

0

∫
R
Gt−s(x− y)f(vs(y))dyds (4.5)

+

∫ t

0

∫
R
Gt−s(x− y)

√
vs(y)(1− vs(y))W a,b(dyds).

18



Since the solution v to (4.5) is unique in law, and since W and W a,b are equal in law, we see that v
is the unique weak solution to (1.14) with the initial condition v0(x) = u0(σ−2x). Thus in general
our scaling changes the initial data. However, if u0(x) = 1(x ≤ 0), then clearly v0(x) = u0(x).

Now it is clear that the conclusion of Proposition 4.1 would follow if we show that

lim sup
σ→∞

σ4V (v)(σ) ≤ cf , (4.6)

where

V (v)(σ) = lim
t→+∞

R(vt)

t
.

Let us also note that the rescaled Girsanov functional (2.4) takes the form

Zt = σ−4

∫ t

0

∫
R

f(ws(x))√
ws(x)(1− ws(x))

W (dx, ds)− 1

2
σ−8

∫ t

0

∫
R

f(ws(x))2

ws((x)1− ws(x))
dxds (4.7)

= σ−4Mf
t −

1

2
σ−8Aft .

4.2 Time steps for the upper bound

Note that for the upper bound on V (σ) and V (v)(σ), we may assume without loss of generality
that the initial condition u0(x) = v0(x) = 1(x ≤ 0), by the comparison principle and translation
invariance in law. We will define a sequence of stopping times 0 = τ0 ≤ τ1 ≤ · · · , and a sequence

v
(m)
t (x) of solutions to (1.14) for t ≥ τm, with the initial conditions v

(m)
τm (x) ≥ vτm(x) at t = τm. The

comparison principle will imply that v
(m)
t (x) ≥ vt(x) for t ≥ τm. Moreover, we will choose v

(m)
t so

that for each m = 0, 1, 2, . . . the following conditions hold almost surely:

vt(x) ≤ v(m)
t (x), for t ≥ τm, x ∈ R (4.8)

R
(
v(m)
τm

)
= mλ1σ

4, (4.9)

v(m−1)
τm (x) ≤ v(m)

τm (x), for x ∈ R, (4.10)

with the constant λ1 to be specified later. It follows from (4.8), that for all m = 0, 1, 2, . . . and for
all t ≥ τm, we have

R(vt) ≤ R
(
v

(m)
t

)
, (4.11)

almost surely. Thus, to bound R(vt) from above, it suffices to bound R(v
(m)
t ).

Let us inductively construct τk and v
(k)
t (x) for k = 0, 1, . . .. For convenience in (4.10), we define

v
(−1)
t (x) = 0. Fix T0 > 0 and N ∈ N, to be specified later, and start with τ0 = 0 and v

(0)
t (x) = vt(x),

so that (4.8), (4.9), and (4.10) hold for m = 0 automatically. Suppose that we have defined τm and

v
(m)
t for t ≥ τm and 0 ≤ m ≤ k, and assume that (4.8), (4.9) and (4.10) hold for 0 ≤ m ≤ k. Given

v
(k)
t (x), defined for t ≥ τk and x ∈ R, we set

Mf,v,k
t : =

∫ t

τk

∫
R

f
(
v

(k)
s (x)

)√
v

(k)
s (x)(1− v(k)

s (x))

W (dx, ds), (4.12)

and

τk+1 = inf
{
t ∈ [τk, τk + T0σ

8] : R
(
v

(k)
t

)
= (k + 1)λ1σ

4 or
1

σ4
Mf,v,k
t ≥ N

}
, (4.13)
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with τk+1 = τk + T0σ
8 if the above set is empty. Then, we define v

(k+1)
t (x) for t ≥ τk+1, and x ∈ R

as the solution to (1.14) with the initial condition

v(k+1)
τk+1

(x) = 1(x ≤ (k + 1)λ1σ
4).

Note that for m = k+ 1, (4.8) and (4.10) hold by the comparison principle. (4.9) holds by construc-
tion.

For convenience, we write
∆τm = τm+1 − τm

and note that {∆τm} are i.i.d. random variables for m ≥ 0.

4.3 A good event and its consequences (for the upper bound)

To get an upper bound on V
(v)
f (σ), it suffices to get an appropriate lower bound on τm as m→∞.

Let us define the event
Gm = {∆τm = T0σ

8}, m ≥ 0. (4.14)

Proposition 4.1 is a consequence of the following lemma.

Lemma 4.2. Let ε ∈ (0,min(10−1, c−2
f )) be arbitrary and set δε = ε/10. There exist T̄ε, Nε, and σε

such that for T0 = T̄ε, N = Nε and any σ ≥ σε0, m ≥ 0, and

λ1 = (cf + δε)T̄ε, (4.15)

we have
λ2 := Pv

(
Gm
)
≥ 1− δε. (4.16)

Note that λ2 does not depend on m since ∆τm are i.i.d for m ≥ 1. We will prove Lemma 4.2 in
the next section. Now we are ready to give

Proof of Proposition 4.1. Given ε ∈ (0, 1/10), let T̄ε, Nε and σε be as in Lemma 4.2, and take an
arbitrary σ ≥ σε. Then by Lemma 4.2, we have

λ2 ≥ 1− δε, (4.17)

and by (4.16) and the definition of G(m) with T0 = T̄ε, we get

Ev[∆τm] ≥ T̄ελ2σ
8.

The strong law of large numbers implies that we have, Pv almost surely,

lim
m→∞

τm
m
≥ T̄ελ2σ

8. (4.18)

Since R(v
(m)
τm ) = mλ1σ

4, we have that, also Pv almost surely,

lim sup
m→∞

R(v
(m)
τm )

τm
= lim sup

m→∞

mλ1σ
4

τm
≤ λ1σ

4

T̄ελ2σ8
=

λ1

T̄ελ2
σ−4. (4.19)

Furthermore, since by definition, for τm ≤ t ≤ τm+1 we have

R
(
v

(m)
t

)
≤ (m+ 1)λ1σ

4.
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Hence, we get that, Pv almost surely, we have, using (4.17) and (4.18),

V (v)(σ) ≤ lim sup
m→∞

sup
τm≤t≤τm+1

≤
R
(
v

(m)
t

)
t

≤ lim sup
m→∞

λ1(m+ 1)σ4

τm
(4.20)

≤ λ1σ
4

λ2T̄εσ8
≤

(cf + δε)

(1− δε)
σ−4 ≤ (cf +

√
ε)σ−4.

Note that (4.20) holds for any σ ≥ σε0, and, since ε is arbitrary small, we are done. This finishes the
proof of Proposition 4.1.

4.4 Proof of Lemma 4.2

As Gm are i.i.d., it suffices to set m = 0. We fix ε ∈ (0, 1/10), let δε = ε/10, take T̄ε sufficiently
large, so that

2 exp
(
− δ2

ε T̄ε
2

)
≤ ε

100
, (4.21)

set λ1 = (cf + δε)T̄ε, and let Nε > (2 + δε)T̄εD be sufficiently large (its value will be determined
later in the proof). We define the stopping time

ξε = inf{t ≥ 0 : Mf,σ4

t ≥ Nε}. (4.22)

Then by Girsanov’s theorem, we have, with Zt as in (4.7):

Pv(Gc0) = Ew
[
exp

(
Zσ8(T̄ε∧ξε)

)
1Gc0

]
= Ew

[
exp

(
σ−4

(
Mf
σ8(T̄ε∧ξε)

− 1

2
σ−4Af

σ8(T̄ε∧ξε)

))
× 1
(
R(wt) ≥ λ1σ

4 for some t ≤ σ8T̄ε or σ−4Mf
t ≥ Nε for some t ≤ σ8T̄ε

)]
= Ew

[
exp

(
Mf,σ4

T̄ε∧ξε
− 1

2
Af,σ

4

T̄ε∧ξε

)
× 1

(
Rσ

4

t ≥ (cf + δε)T̄ε for some t ≤ T̄ε or ξε ≤ T̄ε
)]

≤ Ew
[

exp

(
Mf,σ4

T̄ε∧ξε
− 1

2
Af,σ

4

T̄ε∧ξε

)
1
(
ξε ≤ T̄ε

) ]
+ Ew

[
exp

(
Mσ4

T̄ε∧ξN,σ −
1

2
Af,σ

4

T̄ε∧ξN,σ

)
× 1

(
Rσ

4

t ≥ (cf + δε)T̄ε for some t ≤ T̄ε
)

1 (ξε > Tε)
]

=: Iε1 + Iε2 .

We first bound Iε1 :

Iε1 = Ew
[
exp

(
Mf,σ4

ξε∧T̄ε
− 1

2
Af,σ

4

ξε∧T̄ε

)
1
(
ξε ≤ T̄ε

)]
≤ eNεPw

(
sup

0≤t≤T̄ε
Mf,σ4

t ≥ Nε

)
. (4.23)

Let PB and PBf be the measures induced on the canonical path space by the standard Brownian
motion B and by the Brownian motion with variance D, respectively, and EB and EBf be the
corresponding expectations. Then by Lemma 3.5 we have

lim sup
σ→∞

Iε1 ≤ eNεPB
f
(

sup
0≤t≤T̄ε

Bf
t ≥ Nε

)
≤ eNε2PB

(√
DBT̄ε ≥ Nε

)
≤ 2eNεe−N

2
ε /(2T̄εD), (4.24)
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where the second inequality follows by the reflection principle and the last inequality follows by a
simple bound on Gaussian tail probabilities. By choosing Nε sufficiently large, we get

lim sup
σ→∞

Iε1 ≤ ε/100.

Thus, there exists σε, such that for all σ ≥ σε we have

Iε1 ≤ ε/50. (4.25)

Next, we bound Iε2 . Let PBf ,B be the measure induced on the canonical path space by the zero-
mean Brownian motions Bf , B, such that Bf has variance D, B has variance 1, and the covariance
of Bf and B is cf , and let EBf ,B be the corresponding expectation. We use again Corollary 3.6,
properties of weak convergence, the dominated convergence theorem (we can switch to the Skorohod
space if needed) to get

lim sup
σ→∞

Iε2 = lim sup
σ→∞

Ew
[

exp
(
Mf,σ4

T̄ε
− 1

2
Af,σ

4

T̄ε

)
1( sup

0≤t≤T̄ε
Rσ

4

t ≥ (cf + δε)T̄ε)1( sup
0≤t≤T̄ε

Mf,σ4

t < Nε)
]

≤ EB
f ,B
[
e
Bf
T̄ε
− 1

2
DT̄ε)1

(
sup

0≤t≤T̄ε
Bt ≥ (cf + δε)T̄ε

)
1
(

sup
0≤t≤T̄ε

Bf
t ≤ Nε

)]
(4.26)

≤ EB
f ,B
[
e
Bf
T̄ε
− 1

2
DT̄ε1( sup

0≤t≤T̄ε
Bt ≥ (cf + δε)T̄ε)

]
= PB

(
sup

0≤t≤T̄ε
(Bt + cf t) ≥ (cf + δε)T̄ε

)
.

In the last equality we used the Girsanov theorem, since under the exp(Bf
T̄ε
− 1

2DT̄ε) change of

measure, B is a Brownian motion with the drift 2cf (recall that the covariance of Bf and B is cf ).
Now it is easy to get

PB
(

sup
0≤t≤T̄ε

(Bt + cf t) ≥ (cf + δε)T̄ε

)
≤ PB

(
sup

0≤t≤T̄ε
Bt ≥ δεT̄ε

)
≤ 2e−δ

2
ε T̄ε/2 ≤ ε/100, (4.27)

where in the second inequality we again used reflection principle and a bound on Gaussian tail, and
the last inequality follows from (4.21). Hence, there is σε such that for all σ ≥ σε, we have

Iε2 ≤ ε/50.

Combining the above estimates, we get that for σ ≥ σε we have

Pv(Gc0) ≤ 2ε/50 ≤ ε/10, (4.28)

so that
Pv(G0) ≥ 1− ε/10. (4.29)

This finishes the proof of Lemma 4.2.

5 Proof of Theorem 1.2: the lower bound on the speed

We now prove the lower bound on V (σ).

Proposition 5.1. Suppose that u0 satisfies (1.12) and f satisfies (1.16). Then with probability 1,
we have

lim inf
σ→∞

σ2V (σ) ≥ cf .

The proof of Proposition 5.1 follows a similar strategy to that of Proposition 4.1. As in the proof
of the upper bound, using the comparison principle and shift invariance in law, we may assume
without loss of generality that u0(x) = v0(x) = 1(x ≤ 0).
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5.1 Time steps for the lower bound

We start with the definition of the time steps. The main difference with the proof of the upper
bound is that we will sometimes update “backwards”, and that the ”good events” will be when the
stopping time happens before a fixed time length rather than when the stopping times happen at
a deterministic time steps, as in (4.14) in the proof of the upper bound. We will define stopping

times 0 = τ0 ≤ τ1 ≤ · · · , and a sequence v
(m)
t (x) of random processes, which will be solutions

to (1.14), for t ≥ τm, such that for each m = 0, 1, 2, . . . the following conditions will hold almost
surely:

vt(x) ≥ v(m)
t (x), for t ≥ τm, x ∈ R (5.1)

v(m−1)
τm (x) ≥ v(m)

τm (x), for x ∈ R. (5.2)

Given (5.1) and (5.2), it would follow almost surely for all m = 0, 1, 2, . . . and for all t ≥ τm, that

L(vt) ≥ L(v
(m)
t ). (5.3)

Thus, to bound L(vt) from below, it would suffice to bound L(v
(m)
t ).

We now describe the induction, starting with τ0 = 0, and v
(0)
t (x) = vt(x), so that (5.1) holds

for m = 0. Also define v
(−1)
t (x) = 1, so that (5.2) holds. Let us fix some constants λ̃1, T̃0, N > 0,

to be specified later. Suppose that we have defined τm for 0 ≤ m ≤ k and v
(m)
t for t ≥ τm and

0 ≤ m ≤ k, and that (5.1) and (5.2) hold for 0 ≤ m ≤ k. To define τk+1, we consider, as in (4.12),

Mf,v,k
t : =

∫ t

τk

∫
R

f(v
(k)
s (x))√

v
(k)
s (x)(1− v(k)

s (x))

W (dx, ds), (5.4)

and set

τk+1 = inf
{
t ∈ [τk, τk + T̃0σ

8] : |L
(
v

(k)
t

)
− L

(
v(k)
τk

)
| ≥ λ1σ

4 or
1

σ4
Mf,v,k
t ≥ N

}
(5.5)

with the convention τk+1 = τk + T̃0σ
8 if the above set is empty.

We then let v
(k+1)
t (x) for t ≥ τk+1, x ∈ R be the solution to (1.14) with the initial condition

v(k+1)
τk+1

(x) =

{
1(x ≤ L(v

(k)
τk+1)), if τk+1 < τk + T̃0σ

8,

1(x ≤ L(v
(k)
τk )− λ1σ

4), if τk+1 = τk + T̃0σ
8.

Then for m = k + 1, the comparison principle gives (5.1), and (5.2) is true by definition.
As before, we write

∆τk = τk+1 − τk
and

∆Lk = L
(
v(k)
τk+1

)
− L

(
v(k)
τk

)
(5.6)

Note that {(∆τm,∆Lk)} are i.i.d. random variables.
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5.2 A good event and its consequences for lower bound

We define the ”good” events

G̃
(m)
0 = {∆τm < T̃0σ

8}.

and

G̃
(1,m)
0 =

{
∆τm < T̃0σ

8, ∆Lk = λ̃1σ
4, sup
τm≤t≤τm+1

1

σ4
Mf,v,k
t < N

}
,

G̃
(2,m)
0 =

{
∆τm < T̃0σ

8, ∆Lk = −λ̃1σ
4, sup
τm≤t≤τm+1

1

σ4
Mf,v,k
t < N

}
,

G̃
(3,m)
0 =

{
∆τm < T̃0σ

8, sup
τm≤t≤τm+1

1

σ4
Mf,v,k
t = N

}
.

To get a lower bound on V (v)(σ) we need a lower bound on ∆Lm as m → ∞. To this end the
following lemma will be helpful.

Lemma 5.2. Let ε ∈ (0, 1/10) be arbitrary and δε = ε/10. There exist T ∗ε , Nε and σε so that for
all σ ≥ σε, m ≥ 0, T̃0 = T ∗ε , N = Nε and

λ̃1 = (cf − δε)T ∗ε , (5.7)

we have

Pv
(
G̃

(1,m)
0

)
≥ 1− ε/50, (5.8)

Pv
(
G̃

(2,m)
0

)
≤ ε/20, (5.9)

Pv
(
G̃

(3,m)
0

)
≤ ε/50. (5.10)

We postpone the proof of this lemma and first give

Proof of Proposition 5.1. Let us take ε ∈ (0,min(10−1, c−2
f )), and choose T ∗ε , Nε and σε as in

Lemma 5.2, and consider an arbitrary σ ≥ σε. Lemma 5.2 implies that

Pv(G̃
(1,m)
0 )− Pv(G̃

(2,m)
0 )− Pv(G̃

(3,m)
0 )−

(
1− Pv(G̃

(m)
0 )

)
≥ 1− ε/5, (5.11)

for all σ ≥ σε, so that for all m ≥ 0 we have

Ev[∆Lm] ≥ λ̃1σ
4
(
Pv(G̃

(1,m)
0 )− Pv(G̃

(2,m)
0 )− Pv(G̃(3,m)

0 )−
(
1− Pv(G̃(m)

0 )
))

≥ λ̃1σ
4(1− ε/5). (5.12)

Then using the strong law of large numbers, we have that Pv almost surely,

lim
m→∞

L(v
(m)
τm )

m
≥ λ̃1(1− ε/5)σ4,

for all σ ≥ σε. Since τm ≤ mT ∗ε σ8, we have that Pv almost surely,

lim inf
m→∞

L(v
(m)
τm )

τm
= lim inf

m→∞

L(v
(m)
τm )

m

m

τm
≥ λ̃1(1− ε/5)σ4

T ∗ε σ
8

=
λ̃1(1− ε/5)

T ∗ε
σ−4. (5.13)
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Furthermore, since for τm ≤ t ≤ τm+1 we have

L
(
v

(m)
t

)
≥ L

(
v(m)
τm

)
− λ̃1σ

4,

and ∆τm ≤ T ∗ε σ8, it follows that, Pv almost surely and since ε < 10−1,

V (v)(σ) ≥ lim inf
m→∞

inf
τm≤t≤τm+1

L
(
v

(m)
t

)
t

≥ lim inf
m→∞

L
(
v

(m)
τm

)
− λ̃1σ

4

τm + T ∗ε σ
8
≥ λ̃1(1− ε/5)

T ∗ε
σ−4

=
(cf − ε/10)T ∗ε (1− ε/5)

T ∗ε
σ−4 ≥

(
cf −

ε

5
(cf + 1)

)
σ−4

≥ (cf −
√
ε)σ−4.

In the second inequality above we used (5.13) and the fact that τm →∞, Pv-a.s. since ∆τm ≥ 0,
not identically zero and i.i.d. Since ε was chosen to be arbitrary small we are done.

5.3 Proof of Lemma 5.2

As (∆τm ,∆Lm) are i.i.d., the events G
(m)
0 are also i.i.d., hence we only need to prove (5.8)-(5.10)

for m = 0 and write
G̃0 = G̃

(0)
0 , G̃

(i)
0 = G̃

(i,0)
0 , i = 1, 2, 3.

Fix ε ∈ (0, 10−1), let δε = ε/10, and let T ∗ε be sufficiently large so that

PB
(
B1 ≥ −δε

√
T , inf

0≤t≤1
Bt > −(cf − δε)

√
T
)
≥ 1− ε/100, ∀T ≥ T ∗ε . (5.14)

We consider Nε > (2+δε)T
∗
εD sufficiently large, with a precise value to be specified later, and define

the stopping time

ξε = inf{t ≥ 0 : Mf,σ4

t ≥ Nε}.

Then by Girsanov’s theorem, and since{
sup

0≤t≤∆τ0

1

σ4
Mf
t < Nε

}
⊃
{

sup
0≤t≤T ∗ε σ8

1

σ4
Mf
t < Nε

}
= {ξε > T ∗ε },

we have

Pv
(
G̃

(1)
0

)
= Ew

[
exp

(
Zσ8(T ∗ε ∧ξε)

)
1
G̃

(1)
0

]
≥ Ew

[
exp

(
σ−4(Mf

σ8(T ∗ε ∧ξε)
− 1

2
σ−4Af

σ8(T ∗ε ∧ξε)
)

)
× 1

(
L(w(t)) ≥ λ̃1σ

4 for some 0 ≤ t ≤ σ8(T ∗ε ∧ ξε)
)

× 1
(
L(w(t)) > −λ̃1σ

4 for all 0 ≤ t ≤ σ8(T ∗ε ∧ ξε)
)

×1

(
1

σ4
Mf
t < Nε for all 0 ≤ t ≤ σ8(T ∗ε ∧ ξε)

)]
(5.15)

≥ Ew
[
exp

(
Mf,σ4

T ∗ε
− 1

2
Af,σ

4

T ∗ε

)
1
(
Lσ

4

t > λ̃1 for some 0 ≤ t ≤ T ∗ε
)

× 1
(
Lσ

4

t > −λ̃1 for all 0 ≤ t ≤ T ∗ε
)
× 1
(

sup
0≤t≤T ∗ε

Mf,σ4
< Nε

)]
=: Jε1 .
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Next, passing to the limit σ → +∞, we obtain, using the weak convergence in Corollary 3.6:

lim inf
σ→∞

Jε1 = lim inf
σ→∞

Ew
[
exp

(
Mf,σ4

T ∗ε
− 1

2
Af,σ

4

T ∗ε

)
× 1

(
Lσ

4

t > (cf − δε)T ∗ε for some 0 ≤ t ≤ T ∗ε
)

× 1
(
Lσ

4

t > −(cf − δε)T ∗ε for all 0 ≤ t ≤ T ∗ε
)
× 1
(

sup
0≤t≤T ∗ε

Mf,σ4
< Nε

)]
≥ EB

f ,B
[
e
Bf
T∗ε
− 1

2
DT ∗ε 1

(
sup

0≤t≤T ∗ε
Bt > (cf − δε)T ∗ε

)
1
(

inf
0≤t≤T ∗ε

Bt > −(cf − δε)T ∗ε
)

× 1
(

sup
0≤t≤T ∗ε

Bf
t < Nε

)]
. (5.16)

We rewrite this, using Girsanov’s theorem for correlated Brownian motions with a drift, as

lim inf
σ→∞

Jε1 ≥ EB
f ,B
[
e
Bf
T∗ε
− 1

2
DT ∗ε 1

(
sup

0≤t≤T ∗ε
Bt > (cf − δε)T ∗ε

)
× 1
(

inf
0≤t≤T ∗ε

Bt > −(cf − δε)T ∗ε
)]

− EB
f ,B
[
e
Bf
T∗ε
− 1

2
DT ∗ε 1

(
sup

0≤t≤T ∗ε
Bf
t ≥ Nε

)]
= PB

(
sup

0≤t≤T ∗ε
(Bt + cf t) ≥ (cf − δε)T ∗ε , inf

0≤t≤T ∗ε
(Bt + cf t) > −(cf − δε)T ∗ε

)
− PB

f
(

sup
0≤t≤T ∗ε

Bf
t +Dt ≥ Nε

)
. (5.17)

The first term in the right side can be bounded as

PB
(

sup
0≤t≤T ∗ε

(Bt + cf t) ≥ (cf − δε)T ∗ε , inf
0≤t≤T ∗ε

(Bt + cf t) > −(cf − δε)T ∗ε
)

≥ PB
(
BT ∗ε + cfT

∗
ε ≥ (cf − δε)T ∗ε , inf

0≤t≤T ∗ε
Bt > −(cf − δε)T ∗ε

)
= PB

(
BT ∗ε ≥ −δεT

∗
ε , inf

0≤t≤T ∗ε
Bt > −(cf − δε)T ∗ε

)
= PB

(
B1 ≥ −δε

√
T ∗ε , inf

0≤t≤1
Bt > −(cf − δε)

√
T ∗ε

)
≥ 1− ε/100, (5.18)

where the last inequality follows by (5.14). The second term in the right side of (5.17) can be bounded
using the reflection principle for Brownian motion, bounds on tails of Gaussian probabilities and by
choosing Nε ≥ (2 + δε)T

∗
εD sufficiently large, so that

PB
f
(

sup
0≤t≤T ∗ε

Bf
t +Dt ≥ Nε

)
≤ PB

f
(

sup
0≤t≤T ∗ε

Bf
t ≥ Nε −DT ∗ε

)
≤ 2PB

(√
DBT ∗ε ≥ Nε −DT ∗ε

)
≤ 2 exp

(
− (Nε −DT ∗ε )2

2T ∗εD

)
≤ ε/100. (5.19)

Combining (5.15)-(5.19) we get that for Nε sufficiently large we have

Pv
(
G̃

(1)
0

)
≥ 1− ε/50, (5.20)

which is (5.8).
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Next, we bound Pv(G̃
(2)
0 ). Again, using Girsanov’s theorem we write

Pv(G̃
(2)
0 ) = Ew

[
exp

(
Zσ8(T ∗ε ∧ξε)

)
1
G̃

(2)
0

]
≤ Ew

[
exp

(
σ−4(Mf

σ8(T ∗ε ∧ξε)
− 1

2
σ−4Af

σ8(T ∗ε ∧ξε)

)
× 1

(
L(wt) ≤ −λ̃1σ

4 for some 0 ≤ t ≤ σ8(T ∗ε ∧ ξε)
)

× 1
( 1

σ4
Mf
t < Nε for all 0 ≤ t ≤ σ8T ∗ε

)]
+ Ew

[
exp

(
σ−4(Mf

σ8(T ∗ε ∧ξε)
− 1

2
σ−4Af

σ8(T ∗ε ∧ξε)
)

)
× 1
(

sup
0≤t≤σ8T ∗ε

1

σ4
Mf
t ≥ Nε

)]
≤ Ew

[
exp

(
Mf,σ4

T ∗ε
− 1

2
Af,σ

4

T ∗ε

)
× 1
(

inf
0≤t≤T ∗ε

Lσ
4

t ≤ −λ̃1

)
× 1
(

sup
0≤t≤T ∗ε

Mf,σ4
< Nε

)]
+ Ew

[
exp

(
σ−4(Mf

σ8(T ∗ε ∧ξε)
− 1

2
σ−4Af

σ8(T ∗ε ∧ξε)

)
× 1
(

sup
0≤t≤σ8T ∗ε

1

σ4
Mf
t ≥ Nε

)]
=: Jε2,1 + Jε2,2 .

The term Jε2,2 is exactly as Iε1 in (4.23), thus, as in (4.25) we have, by choosing Nε sufficiently large:

Jε2,2 ≤ ε/50, (5.21)

for all σ sufficiently large. As for Jε2,1, proceeding similarly to (5.16), we obtain

lim sup
σ→∞

Jε2,1 ≤ EB
f ,B
[
e
Bf
T∗ε
− 1

2
DT ∗ε 1

(
inf

0≤t≤T ∗ε
Bt ≤ −(cf − δε)T ∗ε

)
× 1
(

sup
0≤t≤T ∗ε

Bf
t ≤ Nε

)]
≤ PB

(
inf

0≤t≤T ∗ε
(Bt + cf t) ≤ −(cf − δε)T ∗ε

)
≤ PB

(
inf

0≤t≤1
Bt ≤ −(cf − δε)

√
T ∗ε

)
≤ ε/100. (5.22)

Here, the last inequality follows from (5.14). Combining (5.21) and (5.22) we see that for Nε

sufficiently large we have

lim inf
σ→∞

Jε2 ≤ 3ε/100, (5.23)

and (5.9) follows.

To bound G̃
(3)
0 , once again by Girsanov’s theorem and recalling the definition of Jε2,2, we obtain

Pv(G̃
(3)
0 ) = Ew

[
exp

(
Zσ8(T ∗ε ∧ξε)

)
1
G̃

(3)
0

]
≤ Ew

[
exp

(
σ−4(Mf

σ8(T ∗ε ∧ξε)
− 1

2
σ−4Af

σ8(T ∗ε ∧ξε)
)

)
× 1
(

sup
0≤t≤T ∗ε

Mf,σ4 ≥ Nε

)]
= Jε2,2 ≤ ε/50,

where the last inequality follows from (5.21) for Nε sufficiently large and all σ sufficiently large.
Thus (5.10) follows, and the proof of Lemma 5.2 is complete.
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