
SCALING PROPERTIES OF A MOVING POLYMER

CARL MUELLER AND EYAL NEUMAN

Abstract. We set up an SPDE model for a moving, weakly self-
avoiding polymer with intrinsic length J taking values in (0,∞).
Our main result states that the effective radius of the polymer is
approximately J5/3; evidently for large J the polymer undergoes
stretching. This contrasts with the equilibrium situation without
the time variable, where many earlier results show that the effective
radius is approximately J .

For such a moving polymer taking values in R2, we offer a con-
jecture that the effective radius is approximately J5/4.

1. Introduction

Because of their widespread presence in the physical world, polymers
have been intensively studied in chemistry, statistical mechanics, prob-
ability, and other fields. See Doi and Edwards [8] for a wide-ranging
treatment from the physical point of view, and den Hollander [7], Gi-
acomin [10], and Bauerschmidt et. al. [1] for rigorous mathematical
results. König and van der Hofstad [17] discuss the one-dimensional
case.

From the mathematical point of view, the study of polymers is ham-
pered by the many complicated factors influencing their shapes. The
simplest model for a polymer is a random walk where the time parame-
ter of the walk represents the distance along the polymer. In this model
we assume that new segments are attached to the end of the polymer
with a random orientation. Perhaps the most important modification
of this model is to penalize self-intersection; clearly two segments of
the polymer cannot occupy the same position at the same time. If self
intersection is prohibited, then we are led to study self-avoiding ran-
dom walks. There is a large literature on this subject, see Madras and
Slade [14]. One feature of interest is the macroscopic extension of the
polymer, and there are various ways to quantify this notion. We give
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our own definition later, which we call the effective radius or simply
the radius. The extension is often measured by the variance of the
end-to-end distance, E[|Sn|2], where Sn is the location of the polymer
at n units from its beginning S0. From now on we will also assume
that S0 = 0.

A famous problem is to show that when (Sn)n∈N0 is the simple ran-
dom walk on Zd with self-avoiding paths, we have E[|Sn|2] ≈ Cn2ν

where

(1.1) ν =


1 if d = 1

3/4 if d = 2

0.588 . . . if d = 3

1/2 if d ≥ 4

and there should be a logarithmic correction for d = 4. The case of
d = 1 is obvious and for d ≥ 5 the result has been verified by Hara
and Slade [13, 12]. The other cases are open except for partial results
in the d = 4 case, see page 400 of [1] and also [2] and the references
therein. The same results should hold for weakly self-avoiding random
walks, that is, when the probability of a path of length n is penalized
by an exponential term involving the number of self-intersections.

The case d = 1 is the simplest, but it still presents some challenging
problems. For example, consider weakly self-avoiding one-dimensional
simple random walks (Sn)n∈N0 . With S0 = 0, one could try to charac-
terize the limiting speed,

lim
n→∞

1

n

(
E
[
S2
n

])1/2
and there is a fairly complete answer, see Greven and den Hollan-
der [11]. Here the key observation was that the occupation measure
for simple random walk obeys a Markov property similar to the Ray-
Knight theorem for Brownian motion. There has also been work on
the continuous-time situation, see van der Hofstad, den Hollander, and
König [16].

One limitation of the above models is that they do not take time
into account. Of course a real polymer changes its shape over time.
On page 5 of [7] den Hollander comments:

“We will not (!) consider models where the length or
the configuration of the polymer changes with time (e.g.
due to growing or shrinking, or to a Metropolis dynam-
ics associated with the Hamiltonian for an appropriate
choice of allowed transitions). These non-equilibrium
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situations are very interesting and challenging indeed,
but so far the available mathematics is very thin.”

The goal of this paper is to make a contribution in this direction, for
the continuous case and in one dimension. We would also like to point
out that in our situation, it is not clear that the occupation measure
has a Markov property as in the time-independent case.

1.1. Setup. In this section we motivate and define our weakly self-
avoiding polymer model, and define the radius. The Rouse model is
commonly used to study moving polymers without self-avoidance; the
polymer is modeled as a sequence of balls connected by springs, with
friction due to an ambient fluid. Doi and Edwards [8], in equation
(4.9) on page 92 explain how to take a limit and obtain the following
stochastic partial differential equation (SPDE), which is also called the
Edwards-Wilkinson model in the context of surface growth (see Funaki
[9] for a rigorous derivation),

(1.2)
∂tu = ∂2xu+ Ẇ (t, x),

u(0, x) = u0(x),

where (Ẇ (t, x))t≥0,x∈[0,J ] is a two-parameter white noise. We assume
that the intrinsic length of the polymer is J , by which we mean that
x ∈ [0, J ]. Since the ends of the polymer are not fixed, we impose
Neumann boundary conditions

(1.3) ∂xu(t, 0) = ∂xu(t, J) = 0.

We also assume that u0 is continuous on [0, J ].
As is well-known, we do not expect solutions (u(t, x))t≥0,x∈[0,J ] to be

differentiable in either variable, so we must regard (1.2) as shorthand
for an integral equation, usually called the mild form:

(1.4) u(t, x) = Gt(u0)(x) +

∫ t

0

∫ J

0

Gt−s(x, y)W (dyds),

where

Gt(f)(x) =

∫ J

0

Gt(x, y)f(y)dy

and Gt(x, y) = GJ
t (x, y) is the Neumann heat kernel on x, y ∈ [0, J ]

which solves

∂tGt(x, y) = ∂2xGt(x, y),

∂xGt(0, y) = ∂xGt(J, y) = 0,

G0(x, y) = δ(x− y).
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Writing

GR
t (x) =

1√
4πt

exp

(
−x

2

4t

)
,

for the heat kernel on R, we have

(1.5) Gt(x, y) =
∑
k∈Z

GR
t (x− y − 2kJ) +

∑
k∈Z

GR
t (x+ y − (2k + 1)J).

It is well-known that for t > 0 the process x→ u(t, x) is a Brownian
motion plus a smooth function, see Exercise 3.10 in Chapter III.4 of
Walsh [19] and also Proposition 1 in Mueller and Tribe [15]. Therefore
we may define an occupation measure and a local time as follows, where
m(·) is Lebesgue measure,

(1.6)

Lt(A) = m{x ∈ [0, J ] : u(t, x) ∈ A}

ℓt(y) =
Lt(dy)

dy
.

Now we define a weakly self-avoiding process. For continuous processes,
the usual way of doing this is to weight the original probability measure
by the exponential of the integral of local time squared, see [7] Section
3.1. One might think that instead of the fixed-time occupation measure
Lt(A) defined above, we should consider the overall occupation measure
m{(t, x) ∈ [0, T ] × [0, J ] : u(t, x) ∈ A}. However, at different times
there is no reason that two parts of the polymer cannot be in the same
position, so we study Lt as defined above. Then ℓt(y) represents the
density of values of x for which u(t, x) ∈ dy, for t fixed.

If PT,J denotes the original probability measure of (u(t, x))t∈[0,T ],x∈[0,J ],
we define the probability QT,J,β as follows. For clarity, we will let
EPT,J , EQT,J,β denote the expectations with respect to PT,J and QT,J,β

respectively. We write E for EPT,J . Let

(1.7)
ET,J,β = exp

(
−β
∫ T

0

∫ ∞

−∞
ℓt(y)

2dydt

)
,

ZT,J,β = E[ET,J,β] = EPT,J [ET,J,β].

where β is a parameter representing inverse temperature, following the
usual convention in statistical mechanics. Then we define

(1.8) QT,J,β(A) =
1

ZT,J,β

E
[
ET,J,β1A

]
.

For ease of notation, we will usually drop the subscripts except for T
and write

PT = PT,J , QT = QT,J,β, ET = ET,J,β, ZT = ZT,J,β.
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Finally, we define the radius of the polymer u. The most common
definition of the radius of a polymer (p(x))x∈[0,J ] involves the end-to-
end distance |p(J)− p(0)|, but we find it more convenient to study the
standard deviation of the distance from the center of mass. Define

(1.9) ū(t) =
1

J

∫ J

0

u(t, x)dx

and define the radius of (u(t, x))t∈[0,T ],x∈[0,J ] to be

R(T, J) =

[
1

TJ

∫ T

0

∫ J

0

(
u(t, x)− ū(t)

)2
dxdt

]1/2
.

1.2. Statement of the main result. For any β, J > 0 we define

(1.10) h(β, J) =

{
1, for 0 ≤ βJ7/2 ≤ e,

log(βJ7/2), for βJ7/2 > e.

Here is our main result.

Theorem 1.1. There are constants ε0, K0, K1 > 0 not depending on
β, J such that the following hold.

(i) For all J > 0 and β ≥ eJ−7/2 we have

lim
T→∞

QT

[
ε0h(β, J)

−1β1/3J5/3 ≤ R(T, J) ≤ K0h(β, J)
1/2β1/3J5/3

]
= 1.

(ii) For all J ≥ 1 and 0 < β < eJ−7/2 we have

lim
T→∞

QT

[
ε0β

1/3J5/3 ≤ R(T, J) ≤ K1J
5/3
]
= 1.

Remark 1.2. There is a barrier to sharpening the second inequality in
(ii) with respect to dependence on β, see Remark 4.3 and the explana-
tion after (4.6). So there is a gap in the upper bound of (ii) regarding
β. But we would like to point out that most results for weakly self-
avoiding polymers do not give end-to-end distance depending on β (or
its analogue) either.

Remark 1.3. We give an intuitive justification for Theorem 1.1 in the
Appendix.

1.3. Outline of the proof. The following strategy for bounding the
right side of (1.8) was already used in Bolthausen [4].

In view of statements (i) and (ii) of Theorem 1.1, we define

(1.11) K2 =

{
β1/3h(β, J)1/2K0 if β ≥ eJ−7/2

K0 if β < eJ−7/2
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and choose K0 > 0 later. Define the following events.

(1.12)
A

(1)
T = {R(T, J) < ε0h(β, J)

−1β1/3J5/3},

A
(2)
T = {R(T, J) > K2β

1/3J5/3}.

It suffices to show that for i = 1, 2 we have

lim
T→∞

QT

(
A

(i)
T

)
= 0.

From (1.8) we see that it is enough to find:

(1) a lower bound on ZT , derived in Section 2,
(2) and an upper bound on EPT

[
ET1A

(i)
T

]
for i = 1, 2, obtained in

Sections 3 and 4, respectively.

Finally, the upper bounds divided by the lower bound should vanish as
T → ∞.

As mentioned above, Greven and den Hollander [11] give a precise
result for the length of the growing polymer in the case without an
extra time parameter. Their argument depends on special properties
of the local time or occupation measure, which are not available in our
case. Bolthausen’s argument [4] starts from first principles and gives a
less precise result, but does not depend on these special properties, so
we carry over some of his ideas.

1.4. A conjecture about two dimensions. We build on the physical
reasoning of Flory (see Madras and Slade [14], subsection 2.2) and offer
a conjecture about the case in which the polymer takes values in R2.
The reasoning is given in the Appendix.

Here we assume that u = (u1, u2) is a vector-valued solution to (1.2),
where u0 is also vector valued, and the Neumann boundary conditions
(1.3) still hold. Also, we assume that Ẇ = (Ẇ1, Ẇ2) is a vector of
independent white noises.

Since we believe that x → u(t, x) behaves like a two-dimensional
Brownian motion, the local time will not exist. Instead, we should use
either

(1) Varadhan’s renormalized self-intersection local time [18], or
(2) A mollified version of local time such as

ℓϕt (y) =

∫ J

0

ϕ(u(t, x)− y)dx

where y ∈ R2 and ϕ : R2 → [0,∞) is compactly supported in a
neighborhood of 0.
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Replacing ℓ by one of these alternatives, we define R(T, J) as before.
We do not state our conjecture as precisely as Theorem 1.1, nor do we
speculate about the dependence of R(T, J) on β.

Conjecture 1.1. With high probability,

R(T, J) ≈ J5/4.

2. Lower Bound on the Partition Function

In this section we derive a lower bound on the partition function
ZT which was defined in (1.7). This bound is given in the following
proposition. Recall that h was defined in (1.10).

Proposition 2.1. For any β > 0 and J > 0 we have

lim inf
T→∞

1

T
logZT ≥ −CJ1/3h(β, J)β2/3,

where C > 0 is a constant independent from J and β.

The proof of Proposition 2.1 is delayed to the end of this section as
we will need additional ingredients in order to derive this result.

We first define the radius Ru and then derive the scaling properties of
Ru(T, J), ET,J,β and ZT,J,β in J . We therefore introduce some additional
definitions and notation, which will be used later on. Let

(2.1) θu(t, J) :=

[
1

J

∫ J

0

(
u(t, x)− ū(t)

)2
dx

]1/2
, 0 ≤ t ≤ T.

We also write θφ(J) when φ is a function which may not depend on t;
the definition is the same as for θu.
Define

(2.2) Rφ(T, J) =

(
1

T

∫ T

0

θφ(t, J)
2dt

)1/2

.

Let (w(t, x))t≥0,x∈D be a double-indexed stochastic process, where
D ⊂ R is a compact set. In analogy to the local time of u which was
defined in (1.6), we define ℓwt = (ℓwt (y))y∈R as the local time of w(t, ·),
whenever it exists. Moreover we define Ew

T,J,β (Zw
T,J,β) as exponential

of the squared local time of w (partition function), which corresponds
to ET,J,β (ZT,J,β) in (1.7). Recall that QT,J,β was defined in (1.8). In
similar way we define Qw

T,J,β when we refer to the process w.

Finally, recall that u satisfies (1.2) on x ∈ [0, J ], with boundary con-
ditions (1.3). In the following lemma we establish the scaling properties
of Ru(T, J), Eu

T,J,β and Qu
T,J,β(·) in J .
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Lemma 2.2. Let T, J > 0. Define

(2.3) v(t, x) := J−1/2u(J2t, Jx).

Then the following holds:

(i) v satisfies (1.2) on x ∈ [0, 1], with a different white noise.
(ii) For any constant β > 0 we have

Eu
T,J,β

D
= Ev

TJ−2,1,βJ7/2 , Qu
T,J,β(·) = Qv

TJ−2,1,βJ7/2(·).

(iii)

Ru(T, J)
D
= J1/2Rv(J

−2T, 1).

The proof of Lemma 2.2 is postponed to Section 5.
From Lemma 2.2(ii) it follows that we can prove Proposition 2.1 for

J = 1 and then use the scaling properties of ZT to generalize the result
for any J > 0. Therefore in the remainder of the section we assume
that J = 1.

Next we state a few useful facts on the Fourier decomposition of
the solution to (1.2), which are taken from Chapter III.4 of [19]. Note
that the stochastic heat equation in Chapter III.4 of [19] includes also
a linear drift term, however this only changes the eigenvalues of the
equation and does not affect the eigenfunctions.

Let (φn(·),−λn)n≥0 be the sequence of orthonormal Neumann eigen-
functions and eigenvalues of the Laplacian on [0, 1], with (λn)n≥0 in
increasing order. Then

(2.4) φ0(x) = 1, λ0 = 0

and for n ≥ 1,

(2.5) φn(x) =
√
2 cos(nπx), λn = n2π2.

Recall that the mild form of (1.2) was defined in (1.4). Define

(2.6) N(t, x) =

∫ t

0

∫ J

0

Gt−s(x, y)W (dyds), t ≥ 0, x ∈ [0, J ].

It follows that for J = 1,

(2.7) N(t, x) =
∞∑
n=0

X
(n)
t φn(x),

where

(2.8)
dX

(n)
t = −λnX(n)

t dt+ dB
(n)
t ,

X
(n)
0 = 0
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and (B
(n)
· )n≥0 is a collection of independent Brownian motions.

As in Section 3 of [4] we define a measure P̂
(a)
T = P̂

(a)
T,1,β that adds a

drift to the process. In our situation, it would be logical to simply add
a constant drift to the white noise. However, adding such drift would
just shift the solution to (1.2) to the right (or left). So we would like
to add a drift which increases or decreases with x.

In order to do that, we take the noise Ẇ and add a drift aφ1(·). In
what what follows we fix T > 0. Recall that

(2.9)

∫ 1

0

φ2
1(x)dx = 1.

Then the Cameron-Martin formula for spacetime white noise (see Daw-
son [6], Theorem 5.1) gives
(2.10)

dP̂
(a)
T

dPT

= exp

(∫ T

0

∫ 1

0

aφ1(x)W (dxdt)− 1

2

∫ T

0

∫ 1

0

a2φ2
1(x)dxdt

)
= exp

(∫ T

0

∫ 1

0

aφ1(x)W (dxdt)

)/
ζ̂(T, a),

where

(2.11) ζ̂(T, a) = exp

(
Ta2

2

)
.

We write Ê for the expectation EP̂
(a)
T with respect to P̂

(a)
T . Let β > 0,

and recall that ℓt(·) is the local time of the process x → u(t, x). Now
using Jensen’s inequality, we get

(2.12)

logZT = log Ê

[
exp

(
−β
∫ T

0

∫ ∞

−∞
ℓt(y)

2dydt− log
dP̂

(a)
T

dPT

)]

≥ −βÊ
[∫ T

0

∫ ∞

−∞
ℓt(y)

2dydt

]
− Ê

[
log

dP̂
(a)
T

dPT

]
=: −βI1(T )− I2(T ).

In what follows we derive the asymptotic behaviour of Ii(T ) for i = 1, 2
when T → ∞, which will help us to prove Proposition 2.1.

Proposition 2.3. There exist positive constants C1, C2 > 0 not de-
pending on J, T, a such that:

(i) for any 0 < a ≤ 1 we have

lim
T→∞

I1(T )

T
=
C1

a
,
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(ii) for any a > 1 we have

lim
T→∞

I1(T )

T
= C2

log a

a
.

Proof. From (1.4) it follows that for any continuous initial condition
u0, as t→ ∞, Gt(u0)(x) converges to a constant uniformly in x. Since
adding a constant does not change the radius of the solution, we can
ignore the influence of the initial data and start with u(0, ·) which is

a pinned stationary distribution with respect to P̂ (see e.g. equation
(2.1) in [15]). Let t0 ≥ 0 and x0 ∈ [0, 1]. For t0 ≤ t and x ∈ [0, 1] define

(2.13)

ut0,x0(t, x) :=

∫ t

t0

∫ 1

0

Gt−r(x, y)W̃ (dydr)

+

∫ t0

−∞

∫ 1

0

[
Gt−r(x, y)−Gt0−r(x0, y)

]
W̃ (dydr)

+ a

∫ 0

−∞

∫ 1

0

[
Gt−r(x, y)−Gt0−r(x0, y)

]
φ1(y)dydr,

where W̃ is a space-time white noise.

We first study the solution u to (2.13) under a P̂
(a)
T , which adds drift

aφ1(y) to the noise W̃ (dyds) for s ∈ [0, T ].

Therefore, we replace W̃ (dyds) with Ŵ (dyds) + aφ1(y)dyds for s ∈
[0, T ], y ∈ [0, 1]. So from (1.4) we get that ut0,x0 satisfies the following

equation under P̂
(a)
T , for t0 ≤ t ≤ T and x ∈ [0, 1],

(2.14)

ut0,x0(t, x) :=

∫ t

t0

∫ 1

0

Gt−r(x, y)Ŵ (dydr)

+ a

∫ t

t0

∫ 1

0

Gt−r(x, y)φ1(y)dydr

+

∫ t0

−∞

∫ 1

0

[
Gt−r(x, y)−Gt0−r(x0, y)

]
Ŵ (dydr)

+ a

∫ t0

−∞

∫ 1

0

[
Gt−r(x, y)−Gt0−r(x0, y)

]
φ1(y)dydr

=: (A) + a · (B) + (C) + a · (D).

Recall that (φn, λn) were defined in (2.5). We will use the L2-eigenfunction
expansion of the heat kernel

(2.15) Gt(x, y) =
∞∑
n=0

e−λntφn(x)φn(y).



SCALING PROPERTIES OF A MOVING POLYMER 11

Since λn is the eigenvalue corresponding to φn, we have for every n ≥ 1,
(2.16)∫ 1

0

φn(y)Gt−s(x, y)dy = e−λn(t−s)φn(x) = exp
(
−π2n2(t− s)

)
φn(y).

In the following lemma we verify that the integrals (C) and (D)
converge. Note that (C) and (D) depend on (t, t0, x, x0) so we often
abbreviate (C)(t, t0, x, x0) and (D)(t, t0, x, x0).

Lemma 2.4. For any T ≥ 0 the following holds:

(i)

sup
t0≤t≤T

sup
x,x0∈[0,1]

E[(C)(t, t0, x, x0)
2] <∞,

(ii)

sup
t0≤t≤T

sup
x,x0∈[0,1]

|(D)(t, t0, x, x0)| <∞.

The proof of Lemma 2.4 is postponed to Section 6.

In the following two lemmas, which will be proved in Section 6, we
derive two essential properties of the pinned string.

Assume now that t0 and x0 are fixed. For any t > 0, let ĝt,x1,x2 be

the density function for ut0,x0(t, x2)− ut0,x0(t, x1) with respect to P̂
(a)
T .

First, we reformulate the expected local time integral in terms of an
integral over ĝt,x1,x2(0).

Lemma 2.5 (Rephrasing the local time integral). For any 0 ≤ t ≤ T
we have

(2.17) Ê

[∫ ∞

−∞
ℓt(y)

2dy

]
=

∫ 1

0

∫ 1

0

ĝt,x1,x2(0)dx2dx1.

Next we derive the shift invariance property of the pinned string.

Lemma 2.6 (Shift invariance of the pinned string). Let 0 ≤ t0 ≤ T

and x0 ∈ [0, 1]. Then under the measure P̂
(a)
T the random field

Ut0,x0(t, x1, x2) := ut0,x0(t, x1)− ut0,x0(t, x2), t ∈ [0, T ], x1, x2 ∈ [0, 1],

is stationary in t. That is, for any t0 < t1 < t2 ≤ T we have(
Ut0,x0(t1, x1, x2)

)
x1,x2∈[0,1]

D
=
(
Ut0,x0(t2, x1, x2)

)
x1,x2∈[0,1]

.

From Lemmas 2.5 and 2.6, it follows that in order to bound I1(T ), we
can restrict our discussion to the case where t = t0 = 0 and x0 = 1/2



12 CARL MUELLER AND EYAL NEUMAN

in (2.14). Then we have

(2.18)

u0,1/2(0, x) =

∫ ∞

0

∫ 1

0

[
Gr(x, y)−Gr(1/2, y)

]
Ŵ (dydr)

+ a

∫ ∞

0

∫ 1

0

[
Gr(x, y)−Gr(1/2, y)

]
φ1(y)dydr

=: (E)(x) + a · (F )(x).
Recall that {ℓt(y)}y∈R is the local time of u0,1/2(t, ·). From (2.12) and
Lemmas 2.5 and 2.6, we therefore have

(2.19) I1(T ) = TÊ

[∫ ∞

−∞
ℓ0(y)

2dy

]
= T

∫ 1

0

∫ 1

0

ĝ0,x1,x2(0)dx2dx1.

From (2.19) we conclude that the scaling properties of I1(T ) are given
by ĝ0,x1,x2 .
Notation. In order to simplify the notation we write ĝx1,x2 instead

of ĝ0,x1,x2 for the rest of this section. We also use the notation u(t, x)
instead of u0,1/2(t, x) where there is no ambiguity.
In the following lemma we derive some essential bounds on the sec-

ond moment for the increments of u0,1/2, in the drift-less case, that is
when a = 0 in (2.18). Since u0,1/2 is a Gaussian process, this bound
also applies to the variance of its increments for any a > 0.

Lemma 2.7. Assume that a = 0 in (2.18). Then there exist constants
C1, C2 > 0 such that for all x1, x2 ∈ [0, 1] and t ∈ [0, T ],

C1|x1 − x2| ≤ E
[
(u(t, x1)− u(t, x2))

2] ≤ C2|x1 − x2|.

The proof of Lemma 2.7 is given in Section 7.
In order to study ĝx1,x2 , we need analyze the drift term (F) in (2.18).

Since φ1(1/2) = 0 we get from (2.16) that

(F )(x) =

∫ ∞

0

e−λ1t [φ1(x)− φ1(1/2)] dt

=

∫ ∞

0

e−λ1tφ1(x)dt

=

√
2

π2
cos(πx),

where we used (2.5) in the last equality.
Define

D(x1, x2) := (F )(x1)− (F )(x2), 0 ≤ x1, x2 ≤ 1.

In the following lemma we derive a lower bound on D(x1, x2).
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Lemma 2.8. For all 0 ≤ x1 ≤ x2 ≤ 1 we have

D(x1, x2) ≥

{ √
2

8π2 (x2 − x1)(x2 + x1), for x1 + x2 ≤ 1,
√
2

2π2 (x2 − x1)
(
1− x2+x1

2

)
, for 1 < x1 + x2 ≤ 2.

The proof of Lemma 2.8 is given in Section 7.
We define gx1,x2 as the density function for u(0, x2) − u(0, x1) in

(2.18) when a = 0. From Lemmas 2.7 and 2.8 we get that there exist
constants C1, C2 > 0 such that

(2.20)

∫ 1

0

∫ 1

0

ĝx1,x2(0)dx2dx1 = 2

∫ 1

0

∫ 1

x1

ĝx1,x2(0)dx2dx1

= 2

∫ 1

0

∫ 1

x1

gx1,x2(D(x1, x2))dx2dx1

≤ C1

∫ 1

0

∫ 1

x1

(x2 − x1)
−1/2 exp

(
−C2a

2D(x1, x2)
2

x2 − x1

)
dx2dx1

≤ C1

∫ 1

0

∫ 1

x1

1{x1+x2≤1}(x2 − x1)
−1/2

× exp
(
−C3a

2(x1 + x2)
2(x2 − x1)

)
dx1dx2

+ C1

∫ 1

0

∫ 1

x1

1{x1+x2>1}(x2 − x1)
−1/2

× exp

(
−C4a

2

(
1− x1 + x2

2

)2

(x2 − x1)

)
dx1dx2

=: C1

(
I1(a) + I2(a)

)
.

The result then follows from following lemma, which is proved in Sec-
tion 7.

Lemma 2.9. There exist constants C1, C2 > 0 not depending on a,
such that for i = 1, 2 we have:

(i) for all 0 < a ≤ 1,

Ii(a) ≤
C1

a
,

(ii) for all a > 1,

Ii(a) ≤ C2
log a

a
.

□

Next we analyze I2(T ) from (2.12).
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Lemma 2.10. For any J, T, a > 0 we have

I2(T ) =
a2T

2
.

Proof. From (2.11) and (2.12) it follows that

(2.21)

I2(T ) = Ê

[
log

dP̂
(a)
T

dPT

]

= Ê

[∫ T

0

∫ J

0

aφ1(x)W (dxdt)

]
− log ζ̂(T, a)

= Ê [W (T, aφ1)]−
a2T

2
,

where we write

W (T, aφ1) =

∫ T

0

∫ J

0

aφ1(x)W (dxdt)

Using (2.10) we get

(2.22)

Ê [W (T, aφ1)] = E

[
W (T, aφ1)

dP̂
(a)
T

dPT

]
=

a

ζ̂(T, a)
E [W (T, φ1) exp (aW (T, φ1))]

=
a

ζ̂(T, a)

d

da
E [exp (aW (T, φ1))] .

In the preceding line we have the derivative of a moment generating
function. Let

X = W (T, φ1),

and

ψ(a) = E [exp (aX)] .

Note that X ∼ N(0, σ2) and from (2.9) we conclude that

σ2 =

∫ T

0

∫ 1

0

φ1(y)
2dy = T.

It follows that

ψ(a) = exp

(
a2T

2

)
,

d

da
ψ(a) = aT exp

(
a2T

2

)
.
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Using this moment generating function computation in (2.22) and using
(2.11), we get

(2.23) Ê [W (T, aφ1)] =
1

ζ̂(T, a)
a2T exp

(
a2T

2

)
= a2T.

Pulling together (2.21) and (2.23), we have

I2(T ) = Ê [W (T, aφ1)]− log ζ̂(T, a) = a2T − a2

2
T =

1

2
a2T.

□

Now we are ready to prove Proposition 2.1.

Proof of Proposition 2.1. We first prove the proposition for J = 1, that
is for a solution v to (1.2) on x ∈ [0, 1].

From (2.12), Proposition 2.3(i), and Lemma 2.10 we get for any
0 ≤ β ≤ e and 0 ≤ a ≤ 1,

lim inf
T→∞

1

T
logZT,1,β ≥ lim

T→∞

1

T

(
− βI1(T )− I2(T )

)
= −Cβ

a
− a2

2
.

Next we choose a = (β/e)1/3, and get that there exists a constant C̃ > 0
such that

(2.24) lim inf
T→∞

1

T
logZT,1,β ≥ −C̃β2/3.

Again from (2.12), Proposition 2.3(ii) and Lemma 2.10 we get for
any β > e and a > 1,

lim inf
T→∞

1

T
logZT,1,β ≥ lim

T→∞

1

T

(
− βI1(T )− I2(T )

)
= −Cβ log a

a
− a2

2
.

As before we choose a = (β/e)1/3, and get that there exists a constant

Ĉ > 0 such that

(2.25) lim inf
T→∞

1

T
logZT,1,β ≥ −Ĉβ2/3 log β.

Let J > 0 and let u be the solution to (1.2) on x ∈ [0, J ]. Now
we use Lemma 2.2(ii) and (1.7) to get Zu

T,J,β = Zv
TJ−2,1,βJ7/2 . Together
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with (2.24) we have for 0 ≤ βJ7/2 ≤ e,

lim inf
T→∞

1

T
logZu

T,J,β = J−2 lim inf
T→∞

1

TJ−2
logZv

TJ−2,1,βJ7/2

≥ −J−2β2/3J7/3C

≥ −β2/3J1/3C.

Similarly using (2.25) we get for all βJ7/2 ≥ e,

lim inf
T→∞

1

T
logZu

T,J,β = J−2 lim inf
T→∞

1

TJ−2
logZv

TJ−2,1,βJ7/2

≥ −CJ−2β2/3J7/3 log(βJ2/7).

By the definition of h(β, J) from (1.10), the result follows. □

3. Small distance tail estimate

In this section we derive an upper bound for the tail behaviour of
R(T, J), which is given in the following proposition. Recall that QT

and A
(1)
T were defined in (1.8) and (1.12), respectively, and that A

(1)
T

depends on ε0.

Proposition 3.1. We can choose ε0 > 0 small enough so that

lim
T→∞

QT

(
A

(1)
T

)
= 0.

Proof. We first prove the proposition for J = 1, that is, for a solution
v to (1.2) on x ∈ [0, 1].

We first define the event AK,T = {R(T, 1) ≤ K}. Recall that θv was
defined in (2.1). From (2.2) we get

R(T, 1)2 =
1

T

∫ T

0

θv(t, 1)
2dt.

Hence we have on AK,T

(3.1) |{t ∈ [0, T ] : θv(t, 1)
2 ≤ 2K2}| ≥ T/2,

where | · | denotes the Lebesgue measure. From (2.1) it follows that if
θv(t, 1)

2 ≤ 2K2 then

(3.2) |{x ∈ [0, 1] : v(t, x) ∈ [v̄(t)− 2K, v̄(t) + 2K]}| ≥ 1/2.

Let d±t = v̄(t) ± 2K, and note that d+t − d−t = 4K. Then from (1.6),
(3.1) and (3.2) it follows that on AK,T we have

(3.3)

∣∣∣∣∣
{
t ∈ [0, T ] :

∫ d+k

d−k

ℓvt (x)dx ≥ 1/2

}∣∣∣∣∣ ≥ T/2.
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Using Jensen’s inequality and (3.3), we get on AT,K

(3.4)

∫ T

0

∫ ∞

−∞
ℓvt (y)

2dydt ≥ 4K

∫ ∞

−∞

(∫ d+K

d−K

ℓt(y)
2 dy

4K

)
dt

≥ 4K

∫ T

0

(∫ d+K

d−K

ℓt(y)
dy

4K

)2

dt

≥ T

32K
.

Note that on the event A
(1)
T in (1.12) we have

(3.5) R(T, 1) < ε0h(β, 1)
−1β1/3.

Hence from (3.4) we get that on A
(1)
T ,∫ T

0

∫ ∞

−∞
ℓt(x)

2dxdt ≥ T

32ε0h(β, 1)−1β1/3
.

Recall the definition of ET in (1.7). Thus for any ε0 > 0 we have
(3.6)

E
[
ET1

(
R(T, 1) < ε0h(β, 1)

−1β1/3
)]

≤ exp

(
−β T

32ε0h(β, 1)−1β1/3

)
.

Using Proposition 2.1 with J = 1 and (3.6) we get

(3.7)

lim
T→∞

1

T
logQT

(
R(T, 1) < ε0h(β, 1)

−1β1/3
)

≤ lim
T→∞

1

T
logE

[
ET1

(
R(T, 1) < ε0h(β, 1)

−1β1/3
) ]

− lim inf
T→∞

1

T
logZT

≤ −β2/3h(β, 1)

(
1

32ε0
− C

)
.

Hence by choosing ε0 small enough we get the result for J = 1.
Let J > 0 and let u be the solution to (1.2) on x ∈ [0, J ]. Define

βu = J−7/2βv.

Now we use Lemma 2.2(ii) and (iii) together with (3.7) and

(3.8) h(βu, J) = h(βv, 1),
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to get

(3.9)

1

T
QT,J,βu

(
Ru(T, J) ≤ ε0h(βu, J)

−1β1/3
u J5/3

)
=

1

T
QTJ−2,1,βv

(
J1/2Rv(TJ

−2, 1) ≤ ε0h(βv, 1)
−1J−7/6β1/3

v J5/3
)

= J−2 1

TJ−2
QTJ−2,1,βv

(
Rv(TJ

−2, 1) ≤ ε0h(βv, 1)
−1β1/3

v

)
.

It follows that

lim
T→∞

1

T
QT,J,βu

(
Ru(T, J) ≤ ε0h(βu, J)

−1β1/3
u J5/3

)
≥ −J−2β2/3

v h(βu, J)

(
1

32ε0
− C

)
= −β2/3

u J1/3h(βu, J)

(
1

32ε0
− C

)
.

Hence by choosing ε0 small enough we get the result for any J > 0. □

4. Large distance tail estimate

In this section we derive an upper bound for tail probability of
R(T, J), which is given in the following proposition. Recall that QT

and A
(2)
T were defined in (1.8) and (1.12), respectively, and that K2 was

a constant appearing in the definition of A2.

Proposition 4.1. We can choose K2 so large that

lim
T→∞

QT

(
A

(2)
T

)
= 0.

Before we start with the proof of Proposition 4.1 we introduce the
following large deviation result. Let γ > 0 and define (Xt)t≥0 to be an
Ornstein-Uhlenbeck process satisfying

dXt = −γXtdt+ dWt,

X0 = 0
(4.1)

and let

ST :=

∫ T

0

X2
t dt.

Lemma 3.1 of Bercu and Rouault [3], which relies on Bryc and Dembo
[5], states the following.
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Lemma 4.2. T−1ST satisfies a large deviation principle with good rate
function

(4.2) I(c) =

{
(2γc−1)2

8c
if c > 0,

+∞ otherwise.

Remark 4.3. In fact I(c) = 0 if c = (2γ)−1. As noted in (1.5) of
Bercu and Rouault [3],

lim
T→∞

ST

T
=

1

2γ

almost surely. So this lemma is only useful to us when c > (2γ)−1.

Proof of Proposition 4.1. Once again we first prove the proposition for
J = 1, that is for a solution v to (1.2) on x ∈ [0, 1].

Observe that since Gt(u0)(x) tends to a constant uniformly in x as
t → ∞, we need only deal with N(·, ·). So for the purposes of this
proof, we will assume that u0 is identically 0 and thus u(t, x) = N(t, x)
for t ≥ 0, x ∈ [0, J ].

Also recall that θu was defined in (2.1) and that we use θφ for a

function φ which may not depend on t. Recall that (X
(n)
· )n≥0 was

defined in (2.8). We also define

S
(n)
T =

∫ T

0

(
X

(n)
t

)2
dt.

Recall that N was defined in (2.6), and that (2.7) states

N(t, x) =
∞∑
n=0

X
(n)
t φn(x).

We define N̄(t) =
∫ 1

0
N(t, x)dx, as we defined ū. Since φ0(x) = 1

for x ∈ [0, 1] and since the (φn)n≥0 are orthogonal, we have N̄(t) =

X
(0)
t φ0(x), for all x ∈ [0, 1]. Therefore

N(t, x)− N̄(t, x) =
∞∑
n=1

X
(n)
t φn(x).

Again using the fact that (φn)n≥1 are orthonormal, we get

(4.3) RN(T, 1)
2 =

∞∑
n=1

1

T

∫ T

0

(X
(n)
t )2dt =

∞∑
n=1

1

T
S
(n)
T .

We bound the final term in (4.3) using the following lemma . We
first observe that for a family of events (AT )T>0 that satisfies a large
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deviations principle with rate function I > 0 we have

lim sup
T→∞

1

T
logP (AT ) ≤ −I.

Then, for all κ > 1 there exists Tκ such that for T > Tκ we have

1

T
logP (AT ) ≤ −I

κ
.

and so for T > Tκ

(4.4) P (AT ) ≤ exp

(
−TI
κ

)
.

In our case, we have a family of events (A
(n)
T )n≥1,T≥0 where

A
(n)
T :=

{
1

T
S
(n)
T > Kn−2

}
.

So in principle we would have different times T
(n)
κ in (4.4). In the proof

of the following lemma we use the fact that our processes X
(n)
t are

related in law and by scaling to a single Ornstein-Uhlenbeck process,
so we can choose a single Tκ which works for all n. For the next lemma,
we choose κ = 2.

Lemma 4.4. There exists T > 0 such that if T > T then for all n ≥ 1
we have

P

(
1

T
S
(n)
T > Kn−2

)
≤ exp

(
−TnI(K)

2

)
,

where I(·) was defined in (4.2).

Before proving this lemma, we use it to finish the proof of Proposition
4.1 in the case J = 1.

Let β > 0 be a fixed constant. Recall that for every K0 > 0, K2 was
defined in (1.11). Define

(4.5) c0 =

(
∞∑
n=1

1

n2

)−1

=
6

π2
.

Now taking cn = 2−3c0K
2
2n

−2 and γ = λn = n2π2 in (4.2), we find that
cnγ = 2−3c0π

2K2
2 . Following Remark 4.3, in order to use Lemma 4.2,

we need to show that

(4.6) 2cnγ = 2−2π2c0K
2
2 > 1, for all n ≥ 1.

We show that this requirement is satisfied in the following two cases.
Case 1: for β ≥ e, K2

2 = β2/3 log βK2
0 ≥ K2

0 . Note that we need
β > e here since log β could be arbitrarily small near β = 1. Choosing
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K2
2 > 4

π2c0
will be sufficient for (4.6). Case 2: when 0 < β < e,

K2
2 = K2

0 , and again K2
2 >

4
π2c0

will be sufficient for (4.6). From (4.2),

(4.5) and (4.6) it follows that for K0 (and therefore K2) large enough,

(4.7)

I(cn) =
(2γcn − 1)2

8cn

=
(2−2π2c0K

2
2 − 1)2

c0K2
2n

−2

≥ 1

2
n2K2

2 , for all n ≥ 1.

From (4.3) we get

P (RN(T, 1) ≥ K2) = P
(
RN(T, 1)

2 ≥ K2
2

)
≤

∞∑
n=1

P

(
1

T
S
(n)
T > c0K

2
2n

−2

)
,

(4.8)

where we have used (4.5) in the last inequality. Using this (4.8) together
with Lemma 4.4 and (4.7) give us that

lim sup
T→∞

P (RN(T, 1) ≥ K2) ≤ lim sup
T→∞

∞∑
n=1

exp
(
−TI(c0K2n

−2)/2
)
= 0.

Proof of Lemma 4.4. Let (Yt)t≥0 satisfy (4.1) with γ = 1, that is Y0 = 0
and dY = −Y dt+ dB. For a, b > 0 let

Z
(a,b)
t = aYbt

B
(a,b)
t = aBbt.

Then we find

dZ
(a,b)
t = d(aYbt)

= −aYbtd(bt) + adBbt

= −bZ(a,b)
t + dB

(a,b)
t

and also Z
(a,b)
0 = 0.

Choosing b = λn = π2n2 and a = (πn)−1 and writing Y (n) = Z(a,b),
we see that B(n) := B(a,b) is a standard Brownian motion. So for t ≥ 0

dY
(n)
t = −λnY (n)dt+ dB

(n)
t
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and (X
(n)
t )t≥0 and (Y

(n)
t )t≥0 are equal in distribution. Then Lemma 4.2

implies that

P

(
1

T
S
(n)
T > Kn−2

)
= P

(
1

T

∫ T

0

(X
(n)
t )2dt > Kn−2

)
= P

(
1

T

∫ T

0

(Y
(n)
t )2dt > Kn−2

)
= P

(
1

T

∫ T

0

(
(πn)−1Yπ2n2t

)2
dt > Kn−2

)
= P

(
1

π2n2T

∫ π2n2T

0

(Ys)
2 ds > π2K

)
,

where we have used the change of variable s = π2n2t.
Then Lemma 4.2 finishes the proof of Lemma 4.4. As we remarked,

this also finishes the proof of Lemma 4.1 when J = 1. □

Now use scaling to finish the proof of Lemma 4.1 for all J > 0. Let
u be the solution to (1.2) on x ∈ [0, J ]. Recall that v is the solution to
(1.2) on x ∈ [0, 1]. Now we use Lemma 2.2(ii) and (iii) together with
(3.8) to get along the same lines as (3.9) that

QTJ−2,1,βv

(
Rv(TJ

−2, 1) ≤ K0h(βv, 1)
1/2β1/3

v

)
= QT,J,βu

(
Ru(T, J) ≤ K0h(βu, J)

1/2β1/3
u J5/3

)
,

where βu = J−7/2βv. From (1.11), (1.12) and Proposition 4.1(i) with
J = 1 we get that there exists K0 > 0 such that for any βv ≥ e we
have,

lim
T→∞

QT,1,βv

(
Rv(T, 1) ≤ K0h(βv, 1)

1/2β1/3
v

)
= 1.

It follows that

lim
T→∞

QT,J,βu

(
Ru(T, J) ≤ K0β

1/3
u h(βu, J)

1/2J5/3
)
= 1,

for βu = J−7/2βv ≥ eJ−7/2, so we get (i) for all J > 0.

From Lemma 4.4 with J = 1, we get that there exists K0 > 0 such
that for any 0 < βv ≤ e we have,

lim
T→∞

QT,1,βv

(
Rv(T, 1) ≤ K0

)
= 1.

Therefore, using the same scaling argument, for any J ≥ 1 and βu ≤
eJ−7/2 we have

lim
T→∞

QT,J,βu

(
Ru(T, J) ≤ K̃0J

5/3
)
= 1,

where K̃0 = K0J
−7/6 ≤ K0. Then we get (i) for all J ≥ 1.
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This finishes the proof of Proposition 4.1. □

5. Scaling of the Polymer

This section is dedicated to the proof of Lemma 2.2. Throughout
this section we assume that u(t, x) satisfies equation (1.2) on x ∈ [0, J ]
and that v is defined as in (2.3).

Proof of Lemma 2.2. (i) This is a well known property of the stochastic
heat equation, but we give a short derivation for completeness. First,
recall that (GJ

t (x))t≥0,x∈[0,J ] is the Neumann heat kernel on [0, J ], and
that the following scaling equalities hold.

G1
J−2t(J

−1x, J−1y) = J ·GJ
t (x, y),

W J2,J(dy ds) := J−3/2W (Jdy, J2ds)
D
= W (dyds),

where
D
=means equality in distribution. The first equality above follows

from (1.5) and the scaling properties of the heat kernel on R. Then by
the definition (2.3) of v(t, x),

v(t, z) = J−1/2u(J2t, Jz)

= J−1/2

∫ J

0

GJ(J
2t, Jz − y)u0(y)dy

+ J−1/2

∫ J2t

0

∫ J

0

GJ(J
2t− s, Jz − y)W (dyds)

= J−3/2

∫ J

0

G1(t, z − J−1y)u0(y)dy

+ J−3/2

∫ J2t

0

∫ J

0

G1(t− J−2s, z − J−1y)W (dyds)

=

∫ 1

0

G1(t, z − w)v0(w)dw

+

∫ t

0

∫ 1

0

G1(t− r, z − w)W J2,J(dwdr),

This proves part (i).
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(ii) We first derive the relation between ℓut and ℓvt . From (1.6) and
(2.3) we get

ℓvt (y) = ∂y

∫ 1

0

1(−∞,y](v(t, x))dx

= ∂y

∫ 1

0

1(−∞,y](J
−1/2u(J2t, Jx))dx

= ∂y

∫ 1

0

1(−∞,J1/2y](u(J
2t, Jx))dx.

Changing variables to z = Jx, w = J1/2y we get

ℓvt (y) = J1/2∂w

∫ J

0

1(−∞,w](u(J
2t, z))J−1dz

= J−1/2ℓuJ2t(w).

It follows that

ℓut (w) = J1/2ℓvJ−2t(y) = J1/2ℓvJ−2t(J
−1/2w).

Thus, ∫ T

0

∫ ∞

−∞
ℓut (w)

2dwdt = J

∫ T

0

∫ ∞

−∞
ℓvJ−2t(J

−1/2w)2dwdt.

Making the change of variable s = J−2t and going back to the original
variable w = J1/2y, we get

(5.1)

∫ T

0

∫ ∞

−∞
ℓut (w)

2dwdt = J

∫ J−2T

0

∫ ∞

−∞
ℓvs(y)

2J1/2dyJ2ds

= J7/2

∫ J−2T

0

∫ ∞

−∞
ℓvs(w)

2dyds.

Let β > 0. From (1.7) and (5.1) we get

Eu
T,J,βu

= exp

(
−β
∫ T

0

∫ ∞

−∞
ℓut (y)

2dydt

)
= exp

(
−βJ7/2

∫ J−2T

0

∫ ∞

−∞
ℓvs(w)

2dyds

)
= Ev

J−2T,1,βJ7/2 .

From the above equation together with (1.8) we get

Qu
T,J,β(·) = Qv

TJ−2,1,βJ7/2(·),

and we have proved (ii).



SCALING PROPERTIES OF A MOVING POLYMER 25

(iii) Recall the definitions of Rv(T, 1) and Ru(J
2T, J) from (2.2).

From (1.9) and (2.3) we get

(5.2)

v̄(t) =

∫ 1

0

v(t, x)dx

= J−1/2

∫ 1

0

u(J2t, Jx)dx

= J−3/2

∫ J

0

u(J2t, x)dx

= J−1/2ū(J2t, x).

Using (2.3), (5.2) and making the change of variables s = J2t, y =
Jx, we get

Rv(T, 1)
2 =

1

T

∫ T

0

∫ 1

0

(
v(t, x)− v̄(t)

)2
dxdt

=
1

TJ

∫ T

0

∫ 1

0

(
u(J2t, Jx)− ū(J2t)

)2
dxdt

=
1

TJ4

∫ TJ2

0

∫ J

0

(
u(s, y)− ū(s)

)2
dydt

= J−1Ru(J
2T, J)2.

Taking the square root and defining T̃ = TJ−2, we have

Ru(T̃ , J) = J1/2Rv(J
−2T̃ , 1),

and we get (iii). □

6. Properties of the pinned string

This section we prove Lemmas 2.4, 2.5 and 2.6.

Proof of Lemmas 2.4. (i) Recall that (C) was defined in (2.14). Using
Ito’s isometry, (2.5), (2.15), Fubini’s theorem and the fact that {φn}n≥0
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is an orthonormal basis, we get

(6.1)

Ê[(C)2] =

∫ t0

−∞

∫ 1

0

[
Gt−r(x, y)−Gt0−r(x0, y)

]2
dydr

=

∫ t0

−∞

∞∑
n=0

∞∑
j=0

[
e−(t−r)λnφn(x)− e−(t0−r)λnφn(x0)

]
×
[
e−(t−r)λjφj(x)− e−(t0−r)λjφj(x0)

] ∫ 1

0

φn(y)φj(y)dydr

=

∫ t0

−∞

∞∑
n=0

[
e−(t−r)λnφn(x)− e−(t0−r)λnφn(x0)

]2
dr

≤ 2

∫ ∞

0

∞∑
n=1

[
e−(t−t0+r)λn + e−rλn

]2
dr,

where we dropped the n = 0 term because λ0 = 0 and φ0 ≡ 1, so the
difference in the brackets is zero. Also, we used the fact that ∥φn∥2∞ ≤ 2
for all n ≥ 1, which follows from (2.5). It follows that

Ê[(C)2] ≤ 2
∞∑
n=0

∫ ∞

0

[
2e−rλn

]2
dr ≤ 8

∞∑
n=0

(2λn)
−1 <∞,

where we used (2.5) in the last inequality.

(ii) From (2.16), we get

|(D)| =
∣∣∣∣∫ t0

−∞

∫ 1

0

[
Gt−r(x, y)−Gt0−r(x0, y)

]
φ1(y)dydr

∣∣∣∣
=

∣∣∣∣∫ ∞

0

∫ 1

0

[
Gt−t0+r(x, y)−Gr(x0, y)

]
φ1(y)dydr

∣∣∣∣
≤
∫ ∞

0

[
e−λ1(t−t0+r) + e−λ1r

]
|φ1(x)|dr

<∞.

□

Proof of Lemma 2.5. Let f̂t,x1,x2 be the joint probability density of

(u(t, x1), u(t, x2)) under P̂
(a)
T .
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Let S1, S2 ⊂ R. Then from (1.6) we have∫ ∞

−∞

∫ ∞

−∞
1S1(y1)1S2(y2)ℓt(y1)ℓt(y2)dy2dy1

=

∫ 1

0

∫ 1

0

1S1(u(t, x1))1S2(u(t, x2))dx2dx1.

Therefore

Ê

[ ∫ ∞

−∞

∫ ∞

−∞
1S1(y1)1S2(y2)ℓt(y1)ℓt(y2)dy2dy1

]
=

∫ 1

0

∫ 1

0

∫ ∞

−∞

∫ ∞

−∞
1S1(y1)1S2(y2)f̂t,x1,x2(y1, y2)dy2dy1dx2dx1.

By using Dynkin’s monotone class theorem we can move from indicator
functions to simple functions to nonnegative measurable functions to
bounded measurable functions (h(y1, y2))y1,y2∈R, we get

Ê

[ ∫ ∞

−∞

∫ ∞

−∞
h(y1, y2)ℓt(y1)ℓt(y2)dy2dy1

]
=

∫ 1

0

∫ 1

0

∫ ∞

−∞

∫ ∞

−∞
h(y1, y2)f̂t,x1,x2(y1, y2)dy2dy1dx2dx1.

Finally, replacing h(y1, y2) by an approximate identity a(y1 − y2) and
taking a limit, we get

Ê

[ ∫ ∞

−∞
ℓt(y)

2dy

]
=

∫ 1

0

∫ 1

0

∫ ∞

−∞
f̂t,x1,x2(y, y)dydx2dx1.

Recall that ĝt,x1,x2 is the probability density function of u(t, x2) −
u(t, x1) under P̂

(a)
T . Then by elementary probability,

ĝt,x1,x2(z) =

∫ ∞

−∞
f̂t,x1,x2(y, z + y)dy

and we get that

Ê

[ ∫ ∞

−∞
ℓt(y)

2dy

]
=

∫ 1

0

∫ 1

0

ĝt,x1,x2(0)dx2dx1.

□
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Proof of Lemma 2.6. Let 0 ≤ t0 ≤ T and x0 ∈ [0, 1]. From (2.14) we
have for any t0 ≤ t ≤ T and x1, x2 ∈ [0, 1],

ut0,x0(t, x1)− ut0,x0(t, x2)

=

∫ t

t0

∫ 1

0

(
Gt−r(x1, y)−Gt−r(x2, y)

)
Ŵ (dydr)

+ a

∫ t

t0

∫ 1

0

(
Gt−r(x1, y)−Gt−r(x2, y)

)
φ1(y)dydr

+

∫ t0

−∞

∫ 1

0

(
Gt−r(x1, y)−Gt−r(x2, y)

)
Ŵ (dydr)

+ a

∫ t0

−∞

∫ 1

0

(
Gt−r(x1, y)−Gt−r(x2, y)

)
φ1(y)dydr

=

∫ t

−∞

∫ 1

0

(
Gt−r(x1, y)−Gt−r(x2, y)

)
Ŵ (dydr)

+ a

∫ t

−∞

∫ 1

0

(
Gt−r(x1, y)−Gt−r(x2, y)

)
φ1(y)dydr

=: J1(t, x1, x1) + aJ2(t, x1, x1).

Note that J1(t, ·, ·) is a centered Gaussian random field with the
following covariance functional

Ct(x1, x2) := E

[∫ t

−∞

∫ 1

0

(Gt−r(x1, y)−Gt−r(x2, y))
2dydr

]
.

By a change of variable s = t− r we get

(6.2)
Ct(x1, x2) = E

[∫ ∞

0

∫ 1

0

(Gs(x1, y)−Gs(x2, y))
2dyds

]
= C0(x1, x2).

So we have

J1(t, ·, ·)
D
= J1(0, ·, ·).

We also get by the change of variable s = t− r that

J2(t, x1, x2) = a

∫ t

−∞

∫ 1

0

[
Gt−r(x1, y)−Gt−r(x2, y)

]
φ1(y)dydr

= a

∫ ∞

0

∫ 1

0

[
Gs(x1, y)−Gs(x2, y)

]
φ1(y)dydr

= J2(0, x1, x2),

and Lemma 2.6 follows. □
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7. Proofs of Lemmas 2.7–2.9

Proof of Lemma 2.7. The proof of the upper bound is standard (see
e.g. Proposition 3.7 in Chapter III.4 of [19]).

Next we prove the lower bound for

E
[
(u(t, x1)− u(t, x2))

2] = ∫ ∞

0

∫ 1

0

[Gt(x1, y)−Gt(x2, y)]
2 dydt.

From (2.4), (2.5) and (2.15) we have

(7.1) Gt(x, y) = 1 + 2
∞∑
n=1

e−π2n2t cos(πnx) cos(πny).

By repeating similar steps as in (6.1) and using the orthogonality of
(φn)n≥1 we get

J :=

∫ ∞

0

∫ 1

0

[Gt(x1, y)−Gt(x2, y)]
2 dydt

= 2
∞∑
n=1

∫ ∞

0

e−2π2n2t [cos(πnx1)− cos(πnx2)]
2 dt

=
1

π2

∞∑
n=1

1

n2
[cos(πnx1)− cos(πnx2)]

2 .

(7.2)

Let x = (x1 + x2)/2 and h = x2 − x1. It suffices to prove our estimate
for h < δ0 where δ0 > 0 is some small number to be chosen later.
By symmetry we may assume x ∈ [0, 1/2], otherwise we reflect the
configuration about 1/2. Also note that 0 ≤ x1 = x− h/2 so x ≥ h/2.
Let δ1 > 0 be a small number to be chosen later, and letM = [2h−1(1−
δ1)] where [·] denotes the greatest integer function.
Recall the following trigonometric identities.

cos(a)− cos(b) = −2 sin

(
a− b

2

)
sin

(
a+ b

2

)
M∑
n=1

sin2(nx) =
1

4

[
2M + 1− sin((2M + 1)x)

sin(x)

]
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Continuing to estimate the above integral J , we get (since h < 1/4)
and using the above trigonometric identities,

J =
4

π2

∞∑
n=1

1

n2
sin2

(
nπ2−1h

)
sin2 (nπx)

≥ 4

π2

M∑
n=1

1

n2
sin2

(
nπ2−1h

)
sin2 (nπx)

≥ Ch2
M∑
n=1

sin2 (nπx)

= Ch2
[
2M + 1− sin((2M + 1)πx)

sin(πx)

]
For the second to the third line, we require

(7.3) π(1− δ1)− 1 ≤Mπ2−1h ≤ π(1− δ1)

which holds by the definition of M . This implies that for 1 ≤ n ≤ M
we have sin(nπ2−1h) ≥ cnh for some c > 0 not depending on n.
Now we wish to show that the term in square brackets above is of

order M . We need to show that for some small number δ2 > 0 to be
chosen later,

(7.4)
sin((2M + 1)πx)

sin(πx)
≤ 2M(1− δ2).

First, sin((2M + 1)πx) ≤ 1. We also want a lower bound on sin(πx).
Recall that h/2 ≤ x ≤ 1/2 and h < δ0. Since sin(x) is increasing on
x ∈ [h/2, 1/2], if δ3 > 0 then we can choose δ0 small enough so that

sin(πx) ≥ sin(π2−1h) ≥ π2−1h(1− δ3).

Thus if we assume equality holds in (7.3) then we have

sin((2M + 1)πx)

sin(πx)
≤ 1

π2−1h(1− δ3)

=M · 1

(Mπ2−1h)(1− δ3)

≤M · 1

[π(1− δ1)− 1](1− δ3)
,

which verifies (7.4), provided δ1, δ2, δ3 are small enough.

The end result is that for δ2 small enough, there exists C̃ > 0 such
that,

J ≥ Ch2Mδ2 ≥ 2C̃hδ2 = 2C̃|x1 − x2|δ2, for all |x1 − x2| ≤ δ0,
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where we have used (7.3) in the second inequality. □

Proof of Lemma 2.8. Let 0 ≤ x1 ≤ x2 ≤ 1. Then we have

D(x1, x2) := (F )(x1)− (F )(x2)

=

√
2

π2

(
cos(πx1)− cos(πx2)

)
=

2
√
2

π2
sin
(π
2
(x1 + x2)

)
sin
(π
2
(x2 − x1)

)
.

We will use the following lower bounds on the sine function:

sin(πx) ≥ x

2
, for all 0 ≤ x ≤ 1

2
,

sin(πx) ≥ 1− x, for all
1

2
≤ x ≤ 1.

We get that

sin
(π
2
(x2 − x1)

)
≥ x2 − x1

4
, for all 0 ≤ x1 ≤ x2 ≤ 1.

For 0 ≤ x1 ≤ x2 ≤ 1 we also have

sin
(π
2
(x2 + x1)

)
≥

{
x2+x1

4
, for x1 + x2 ≤ 1,

1− x2+x1

2
, for 1 < x1 + x2 ≤ 2.

We get that for all 0 ≤ x1 ≤ x2 ≤ 1

D(x1, x2) ≥

{ √
2

8π2 (x2 − x1)(x2 + x1), for x1 + x2 ≤ 1,
√
2

2π2 (x2 − x1)
(
1− x2+x1

2

)
, for 1 < x1 + x2 ≤ 2.

□

Proof of Lemma 2.9. First we bound I2(a). Recall that

I2(a) =

∫ 1

0

∫ 1

x1

1{x1+x2>1}(x2 − x1)
−1/2

× exp

(
−C4a

2

(
1− x2 + x1

2

)2

(x2 − x1)

)
dx1dx2.

Using the transformation

x′2 − x′1 = x2 − x1,

x′2 + x′1 = 1− x2 + x1
2

,
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we get that

I2(a)

≤ 1

2

∫ 1

−1

∫ 1

x′
1

(x′2 − x′1)
−1/2 exp

(
−C4a

2 (x′1 + x′2)
2
(x′2 − x′1)

)
dx′1dx

′
2,

where the inequality is due to an enlargement of the integration region.
Letting x′1 = x and x′2 − x′1 = h we get that

(7.5) I2(a) ≤
1

2

∫ 1

−1

∫ 1

0

h−1/2 exp
(
−C4a

2 (2x+ h)2 h
)
dhdx.

We distinct between the following cases.

Case I: 0 ≤ a ≤ 1.
Let y = 2a2/3x, g = a2/3h. Then we get from (7.5) that

I2(a) ≤
1

4a

∫ a2/3

−a2/3

∫ 2a2/3

0

g−1/2 exp

(
−C4

2
(y + g)2g

)
dgdy

≤ 1

4a

∫ a2/3

−a2/3

∫ 2a2/3

0

g−1/2dgdy

≤ C
1

a
,

where C does not depend on a. We therefore derived the bound (i) for
Ĩ2(a).

Case II: a > 1.
We split the right-hand side of (7.5) into two regions:

(7.6)

1

2

∫ 1

−1

∫ 1

0

h−1/2 exp
(
−C4a

2 (2x+ h)2 h
)
dhdx

=
1

2

∫ 1

−1

∫ 1
a2

0

h−1/2 exp
(
−C4a

2 (2x+ h)2 h
)
dhdx

+
1

2

∫ 1

−1

∫ 1

1
a2

h−1/2 exp
(
−C4a

2 (2x+ h)2 h
)
dhdx

=:
1

2

(
I2,1(a) + I2,2(a)

)
.
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We first deal with I2,1(a). By making the same change of variable as
in case I, that is y = 2a2/3x and g = a2/3h, we get that

(7.7)

I2,1(a) =
1

2a

∫ 2a2/3

−2a2/3

∫ a−4/3

0

g−1/2 exp
(
−C4(y + g)2g

)
dgdy

≤ 1

2a

∫ 2a2/3

−2a2/3

∫ a−4/3

0

g−1/2dgdy

=
1

2a

∫ 2a2/3

−2a2/3
2a−2/3dy

=
4

a
.

Now we deal with I2,2(a). Define

σ2 =
1

8C4ha2
,

and using the Gaussian density we get∫ ∞

−∞
exp

(
−C4a

2 (2x+ h)2 h
)
dx =

∫ ∞

−∞
exp

(
−(x+ h/2)2

2σ2

)
dx

=
√
2πσ.

It follows that

(7.8)

I2,2(a) =

∫ 1

1
a2

h−1/2

∫ ∞

−∞
exp

(
−C4a

2 (2x+ h)2 h
)
dxdh

=

∫ 1

1
a2

h−1/2
√
2πσdh

=

√
2π

8C4

1

a

∫ 1

1
a2

h−1dh

= C
log a

a
,

where C is independent of a. From (7.5)–(7.8) we get (ii) for I2(a).

Next, we bound I1(a). By setting h = x2 − x1 and x = x1 we get

I1(a) ≤
∫ 1

0

∫ 1

0

1{2x+h≤1}h
−1/2 exp

(
−C3a

2(x1 + x2)
2h
)
dhdx

≤
∫ 1

0

∫ 1

0

h−1/2 exp
(
−C3a

2(x1 + x2)
2h
)
dhdx.
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We can therefore bound I1(a) similarly as we bounded the right hand
side of (7.5), so we are done. □

Appendix A. Some heuristic ideas

For intuitive purposes, we define R so that the processes in this
section are restricted to a ball of radius R.

A.1. Flory’s argument for self-avoiding walk in two dimen-
sions. Since this is an imprecise argument, we will freely assume that
the walk (Sn)n∈N0 is a Brownian motion B(t). Large deviation theory
suggests that probabilities such as QT (A) are dominated by a “most
likely path” (X(t))t∈[0,T ], with approximate probability

(A.1) exp

(
−β
∫
R2

ℓXT (y)
2dy

)
exp

(
−1

2

∫ T

0

|X ′(t)|2dt
)

where the second exponential is, roughly speaking, the probability of
a Brownian motion path whose increments are independent normal
variables. Here we take ℓXt to be the usual local time for X.

Large deviation theory also suggests that the overall most likely path
is realized when the two exponential terms are comparable. Now sup-
pose that the walk X is confined to a ball BR centered at the origin
and of radius R. The first exponential in (A.1) will be minimized when
ℓXT (y) is constant over y ∈ BR, meaning that ℓXT (y) = T/(πR2).

(A.2)

∫
BR

ℓXT (y)
2dy =

CT 2

R4
·R2 =

CT 2

R2
.

As for the second exponential term in (A.1), if X reaches the bound-
ary of BR (as it must for ℓXT to be constant on BR), then the most
likely path has constant velocity, X(t) = (R/T )t. Then

(A.3)

∫ T

0

|X ′(t)|2dt = T ·
(
R

T

)2

=
R2

T
.

Equating (A.2) and (A.3), we get

R = CT 3/4

which yields ν = 3/4 as conjectured (see (1.1)).
We have ignored the inconvenient fact that the minimizing paths for

the two exponential terms are different.
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A.2. An intuitive justification for Theorem 1.1. The intuition is
quite close to that in Section A.1. Indeed, in the exponential term
involving local time we again assume that ℓt(y) is constant over y ∈
[−R,R] and so ℓt(y) = J/(2R). Then,

(A.4)

∫ T

0

∫ R

−R

ℓ2t (y)dydt = 2TR

(
J

2R

)2

=
CTJ2

R
.

The main difference is that the approximate probability for a white

noise Ẇ , intuitively speaking, is exp(−1
2

∫ T

0

∫ J

0
(Ẇ (t, x))2dxdt), since

we think of (Ẇ (t, x))t∈[0,T ],x∈[0,J ] as a collection of independent Gauss-

ian variables. But using (1.2) to substitute for Ẇ , we get an approxi-
mate probability of

exp

(
−1

2

∫ T

0

∫ J

0

[
(∂tu− ∂2xu)(t, x)

]2
dxdt

)
.

In such problems the minimizer u is often constant in t, giving us

exp

(
−T
2

∫ J

0

[
∂2xu(t, x)

]2
dx

)
.

We might think that the minimizer u has a constant value of |∂2xu|,
consistent with the Neumann boundary conditions. Such a function
could be

u(x) =

{
ax2 − aJ2/4 if x ∈ [0, J/2],

a(J − x)2 − aJ2/4 if x ∈ [J/2, J ].

If we require u(0) = R and u(J) = −R then we get a = 4R/J2 and
|u′′(x)| = 2a = 8R/J2. Then

(A.5)
T

2

∫ J

0

[
∂2xu(t, x)

]2
dx = CTJ

(
R

J2

)2

=
CTR2

J3
.

Equating (A.4) and (A.5), we get

R = CJ5/3

which gives the dependence of R on J in Theorem 1.1.

A.3. Intuition behind the Conjecture. The intuition in this case is
almost the same as in Section A.2. Again, the approximate probability
of a path is given as a product of two exponentials as in (A.1). The
second exponential is the same as in (A.5), giving an exponent of

(A.6)
CTR2

J3
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For the local time exponential, we are using a two dimensional ball
BR of volume CR2, so we get an exponent of

(A.7)

∫ T

0

∫ R

−R

ℓ2t (y)dy = CTR2

(
J

R2

)2

=
CTJ2

R2
.

Equating the terms (A.6) and (A.7), we get

R = CJ5/4

as in Conjecture 1.1.
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