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Abstract. We consider the following stochastic partial differential equation on
t ≥ 0, x ∈ [0, J ], J ≥ 1 where we consider [0, J ] to be the circle with end points
identified:

∂tu(t, x) =
1

2
∂2xu(t, x) + g(t, x,u) + σ(t, x,u)Ẇ(t, x),

and Ẇ(t, x) is 2-parameter d-dimensional vector valued white noise and σ is function
from R+ × R × Rd to space of symmetric d × d matrices which is Lipschitz in u.
We assume that σ is uniformly elliptic and that g is uniformly bounded. Assuming
that u(0, x) ≡ 0, we prove small-ball probabilities for the solution u. We also prove
a support theorem for solutions, when u(0, x) is not necessarily zero.

1. Introduction

In this article we study small-ball probabilities and support theorems for solutions to
the stochastic heat equation given by

(1.1) ∂tu(t, x) =
1

2
∂2xu(t, x) + g(t, x,u) + σ(t, x,u) Ẇ(t, x).

where, t ∈ R+, x ∈ R, Ẇ(t, x) = (Ẇ1(t, x), . . . ,Ẇd(t, x)) is d-dimensional space-
time white noise, with d ≥ 1 and σ is a function from R+ × R × Rd to space of
symmetric d×d matrices. Assuming that σ is Lipschitz in u and uniformly elliptic, g
is uniformly bounded, and u(0, x) ≡ 0, our main result Theorem 1.1 provides upper
and lower bounds for the small ball probabilities of the solution to (1.1). This result
gives bounds on the probability that the profile u(t, ·) stays close to the zero profile
up to time T , see Theorem 1.1 for the precise statement. As a consequence of the
above result we are able to prove a support theorem, which provides similar bounds
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on the probability that the profile u(t, ·) stays close to a twice differentiable function
up to time T , see Theorem 1.2 for the precise statement.

Small ball problems have been well studied and have a long history in probability
theory, see [LS01] for a survey. More precisely, for a stochastic process Xt starting at
0, we are interested in the probability that Xt stays near its starting point for a long
time, that is,

P ( sup
0≤t≤T

|Xt| < ε)

where ε > 0 is small. When Xt is Brownian motion, small ball estimates follow from
the reflection principle or from the study of eigenvalues, among other techniques.
Donsker and Varadhan [DV75] obtained small ball estimates for a wide class of Markov
processes as a result of their theory of large deviations of local time. For other
processes, the complexity of the small ball estimates are well-known. Moreover, in
general small ball probabilities are usually harder to estimate than the the large
deviation probability that Xt achieves unusually large values, that is

P ( sup
0≤t≤T

|Xt| > λ)

for large values of λ.

For some class of Gaussian processes small ball probabilities can be determined. Often
these results are given in terms of metric entropy estimates which are hard to explicitly
compute [KL93]. One exceptional case is the Brownian sheet, for which fairly sharp
small ball estimates are explicitly known, see Bass [Bas88] and Talagrand [Tal94]. In
[DKM+09], Xiao provides small ball estimates for Gaussian processes that satisfy a
certain condition which is related to the Gaussian concept of local nondeterminism.
In [LS01], an overview of known results on Gaussian processes and references on other
processes such as fractional Brownian motion are given.

There has not been much exploration of small ball probabilities in the context of
stochastic PDEs. Lototsky [Lot17] has studied small ball problems for a linear SPDE
with additive white noise, where the solution is a Gaussian process. Martin [Mar04]
followed the approach of Talagrand [Tal94] to study the following stochastic wave
equation.

(1.2) ∂2t u = ∂2xu+ f(u) + g(t, x)Ẇ (t, x)

where Ẇ (t, x) is two-parameter white noise and g(t, x) is a deterministic function.
Without f(u), the solution u would be a Gaussian process of the type studied by Bass
[Bas88] and Talagrand [Tal94]. Although (1.1) and (1.2) have similar multiplicative
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noise terms, in our case the noise coefficient σ(t, x,u) depends on the solution, and
this dependence takes us away from Gaussian processes setting.

Small ball probabilities have many applications, for e.g. they play key role in studying
the small scale behavior of Gaussian processes, such as the Hausdorff dimension of
the range (see [Bas88], [Tal95]). Another key application is the support theorem.
For e.g., in the case of Brownian motion an application of Girsanov Theorem yields
the classical support theorem (See [Bas95, Proposition 6.5 and Theorem 6.6 on pages
59-60]). Once we have obtained small probability estimates for solution (1.1) then we
use the Girsanov Theorem for SPDE to obtain a support theorem for solution.

We are now ready to state our main results.

1.1. Main Results. For any u ∈ Rd we shall denote | u | to be the standard Eu-
clidean norm on Rd and 〈u,v〉 denote the inner product between u,v ∈ Rd. Md(R)
will denote the space of symmetric d×d matrices over real numbers. Let (Ω,F ,Ft,P)

be a filtered Probability space on which Ẇ = Ẇ(t, x) is a d-dimensional random vec-
tor whose components are i.i.d. two-parameter white noises adapted to Ft.

We consider vector-valued solutions u(t, x) ∈ Rd, to the following stochastic heat
equation (SHE)

∂tu(t, x) =
1

2
∂2xu(t, x) + g(t, x,u(t, x)) + σ(t, x,u(t, x)) Ẇ(t, x).

u(0, x) = u0(x) ≡ 0,
(1.3)

on the circle with x ∈ [0, J ] and endpoints identified, and for the function σ : R+×R×
Rd →Md(R). We assume that g : R+×R×Rd → Rd is uniformly bounded, σ(t, x,u)
is Lipschitz continuous in the third variable, that is there is a constant D > 0 such
that for all t ≥ 0, x ∈ [0, J ], u,v ∈ Rd,

(1.4) |σ(t, x,u)− σ(t, x,v)| ≤ D|u− v|.

We will further assume that the functions σ is uniformly elliptic, that is there are
constants C1,C2, > 0 such that for all t ≥ 0, x ∈ [0, J ], u ∈ Rd, y ∈ Rd with |y| = 1,

(1.5) C1 ≤ 〈y, σ(t, x,u)y〉 ≤ C2.

The above implies that the matrix valued function σ is positive definite everywhere
(in particular invertible) and that all the eigenvalues of σ are uniformly bounded
above and away from 0.
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As is usual in stochastic differential equations, (1.3) is not well-posed as written, be-

cause the solution u is not differentiable and Ẇ only exists as a generalized function.
We take (1.3) to be shorthand for the mild form:

u(t, x) =

∫ J

0

G(t, x− y)u0(y) +

∫ t

0

∫ J

0

G(t− s, x− y)g(s, y,u(s, y))dyds

+

∫ t

0

∫ J

0

G(t− s, x− y)σ(s, y,u(s, y)) W(dyds)

(1.6)

where G : R+ × [0, J ]→ R is the fundamental solution of the heat equation

∂tG(t, x) =
1

2
∂2xG(t, x)

G(0, x) = δ(x).

where [0, J ] is the circle with endpoints identified. Furthermore, the final integral in
(1.6) is a white noise integral in the sense of Walsh [Wal86]. We give more information
about the heat kernel in Section 3.1. Given an initial profile u0 that is continuous then
it is well known that there exists a unique strong solution to (1.3) (see for example
section 6, page 23 of [DKM+09]; the proof there can be easily modified to cover (1.3)).
We are now ready to state the main results of this paper.

Theorem 1.1. Consider the solution to (1.3) and let the assumptions (1.4) and (1.5)
hold. Then

(a) There is a D0(J,C1,C2) > 0 and positive constants C0,C1,C2,C3 depending
only on d,C1,C2 and ε0 additionally depending on sup

t,x,u
| g(t, x,u) | such that

for any D < D0 and all 0 < ε < ε0, T > 0 we have

C0 exp

(
−C1

TJ

ε6

)
≤ P

 sup
0≤t≤T
x∈[0,J ]

|u(t, x)| ≤ ε

 ≤ C2 exp

(
−C3

TJ

ε6

)
.(1.7)

(b) For any D and 0 < δ < 1, there exist positive constants C0,C1,C2,C3 depend-
ing only on d,C1,C2 and ε0 additionally depending on J,D, δ, sup

t,x,u
| g(t, x,u) |

such that for all 0 < ε < ε0, T > 0 we have

C0 exp

(
−C1

TJ1+(δ/2)

ε6+δ

)
≤ P

 sup
0≤t≤T
x∈[0,J ]

|u(t, x)| ≤ ε

 ≤ C2 exp

(
−C3

TJ

(1 + JD2)ε6

)
.

(1.8)
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As stated earlier in the introduction, in [DKM+09], page 168, Theorem 5.1, Xiao
proves a result similar to Theorem 1.1 in the Gaussian case, including a term ε−6

in the exponent. His argument builds on techniques from Gaussian processes, in
particular Robeva and Pitt [RP04]. Xiao’s condition C3’, which is related to the
Gaussian concept of local nondeterminism, is not always easy to verify. His result
does not seem to carry over to (1.1) even in the case where the coefficients are functions
of t, x but not of u, and then the solution is a Gaussian process. In contrast, we make
key use of the Markov property of (1.1), which allows us to extend our results to the
non-Gaussian case in which the equation has coefficients that depend on the solution.

Before stating our next result we define the class of predictable functions.

Definition 1.1. Let S be the set consisting of functions f : R × [0, J ] × Ω → Rd of
the form

f(x, t, ω) = X(ω) · 1A(x) · 1(a,b](t),

with 0 < a < b <∞, A ⊂ R, X an Fa measurable random variable, and consider the
predictable sigma-algebra P generated by all functions in S. A function h(t, x, ω) :
R+ × R× Ω→ Rd is said to be predictable if it is measurable with respect to P. We
will say a predictable function h ∈ PC2

b , if with probability one h, ∂th, and ∂2xh are
uniformly bounded by a deterministic constant H.

Theorem 1.2. Consider the solution to (1.3) and let the assumptions (1.4) and (1.5)
hold. Let u0,h ∈ PC2

b and assume

sup
x∈[0,J ]

|u0(x)− h(0, x)| < ε/2

almost surely. Then

(a) There is a D0(J,C1,C2) > 0 and positive constants C0,C1,C2,C3 depending
only on d,C1,C2 and ε0 additionally depending on H, sup

t,x,u
| g(t, x,u) | such

that for any D < D0 and all 0 < ε < ε0, T > 0 we have
(1.9)

C0 exp

(
−C1

TJ

ε6

)
≤ P

 sup
0≤t≤T
x∈[0,J ]

|u(t, x)− h(t, x)| ≤ ε

 ≤ C2 exp

(
−C3

TJ

ε6

)
.

(b) For any D and 0 < δ < 1, there exist positive constants C0,C1,C2,C3 de-
pending only on d,C1,C2 and ε0 additionally depending on J,D, δ,H, sup

t,x,u
|
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g(t, x,u) | such that for all 0 < ε < ε0, T > 0 we have

C0 exp

(
−C1TJ

1+(δ/2)

ε6+δ

)
≤ P

 sup
0≤t≤T
x∈[0,J ]

|u(t, x)− h(t, x)| ≤ ε


≤ C2 exp

(
− C3TJ

(1 + JD2)ε6

)
.

(1.10)

Our result is similar to the support theorem for Brownian motion given in [Bas95,
Proposition 6.5 and Theorem 6.6 on pages 59-60]. Theorem 1.2 says for any nice
function h there is a positive probability that the solution u gets close (within ε)
to h provided that the initial profile u0 is close (within ε/2) to h(0, ·). Support
theorems, of a slightly different flavour, for (1.3) have been studied in the literature.
In [BMSS95], a support theorem is proven for (1.6) when d = 1 and J = 1. Suppose

S(h) denotes the solution (1.6) when the white noise Ẇ is replaced by ḣ ∈ H, where

H = {h : [0, T ]× [0, 1]→ R : h is absolutely continuous and ḣ ∈ L2([0, T ]× [0, 1])}.

When u(0, x) is Hölder α with α < 1
2
, g has bounded derivatives up to order 3, and

σ is a Lipschitz function they show that the support of P ◦ u−1 is the closure in the
Hölder topology of the set {S(h) : h ∈ H}.

We will now make a couple of remarks. These could be of independent interest.

Remark 1.1. (a) For Theorem 1.1, our assumptions on σ, g need only hold until
u exits from the ε-ball and respectively until u exits from the ε-ball around h
for Theorem 1.2.

(b) It will be clear from our proofs of part (a) in Theorem 1.1 and Theorem 1.2

that in fact D0(J,C1,C2) = D0J
− 1

2 where D0 depends on C1,C2 only. For part

(b) of Theorem 1.1 and Theorem 1.2 we can choose ε0 = e0 · (JD2)−
2
δ where

e0 depends only on J,C1,C2, sup
t,x,u
| g(t, x,u) |, and H.

(c) Theorem 1.1 shows that under certain conditions. ε6 logP
(
supx∈[0,J ], t≤T |u(t, x)| ≤ ε

)
is bounded away from 0 and ∞ as ε → 0. An important question is whether
the limit exists (the limit is then called the small ball constant). This is in
general a very difficult question (see the discussion in in Section 6 of [LS01]).

As noted earlier in the introduction, sharp small ball estimates for Gaussian processes
are obtained using their special structures. Gaussian processes have many detailed
properties and these do not hold for the stochastic heat equation (1.3). Therefore the
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proofs of our above results will not follow by translating techniques used in proving
small-ball probabilities in the literature.

However, by freezing the coefficient σ(t, x,u) we may approximate u by a Gaussian
random field, at least in a small time region. One of the key arguments of the paper
is in showing that the error in the approximation can be well controlled if the time
interval where the coefficient is frozen is suitably chosen.

The stochastic heat equation also has a Markov property with respect to the time
parameter t, and this property plays an essential role in the proof of Theorem 1.1.
Thanks to this property, we are able to reduce our analysis to the behaviour of the
solution in small time intervals of order ε4. Roughly speaking, we show that the
probability that the solution remains within ε in this small time increment is like
exp(−Cε−2); this is the content of Proposition 2.1. Since there are O(ε−4) such time
intervals, we get our result.

The rest of the paper is organized as follows. In Section 2 we state the key Proposition
2.1 required to prove our main results, and reduce our problem to the case g ≡ 0
and J = 1 using a couple of lemmas. We also explain how Theorem 1.2 follows from
Theorem 1.1. Then in Section 3 we provide some heat kernel estimates which yield
critical tail bounds on the noise term in Lemma 3.4. We conclude the paper with
Section 4 where we prove Proposition 2.1 and then Theorem 1.1.

Convention on constants: Throughout the paper C denotes a positive constant whose
value may change from line to line. All other constants will be denoted by C1, C2, . . ..
These are positive with their precise values being not important. The dependence
of constants on parameters when relevant will be denoted by special symbols or by
mentioning the parameters in brackets, for e.g. C, C1(σ, J).

2. Some reductions and the key proposition

We first explain how Theorem 1.2 follows immediately from Theorem 1.1. We next
discuss how the analysis of Theorem 1.1 can be reduced to the case g ≡ 0 and J = 1.
Finally we state the key Proposition 2.1 which is the main ingredient in the proof of
Theorem 1.1 and whose proof will occupy the majority of the paper.
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2.1. Proof of Theorem 1.2. Before we proceed to the proof of Theorem 1.1, let us
discuss how Theorem 1.2 follows from Theorem 1.1. Let

H =
1

2
∂2x − ∂t

be the heat operator on (t, x) ∈ R+ × [0, J ] where as usual, [0, J ] is the circle with
endpoints identified. Let h0(x) = h(0, x) and let

w(t, x) = u(t, x)− u0(x)− h(t, x) + h0(x)

g1(t, x,w) = −g(t, x,u)−Hu0(x)−Hh(t, x) +Hh0(x)

σ1(t, x,w) = σ(t, x,u).

We see that σ1 is Lipschitz in w with the same Lipschitz constant as σ. Furthermore,
by the assumptions of Theorem 1.2, g1 is uniformly bounded by a deterministic
constant, almost surely.

Then w satisfies

∂tw(t, x) =
1

2
∂2xw(t, x)− g1(t, x,w) + σ1(t, x,w) Ẇ(t, x),

w(0, x) = 0.

Now supx |u0(x) − h0(x)| ≤ ε/2, and so supx |w(t, x)| ≤ ε/2 implies supx |u(t, x) −
h(t, x)| ≤ ε.

Thus Theorem 1.2 follows from applying Theorem 1.1 to w. �

The rest of the paper will be focused on the proof of Theorem 1.1.

2.2. Reduction to the case g ≡ 0. We show that it is enough to prove Theorem
1.1 when g ≡ 0. We will need the following Girsanov lemma and moment estimate
on the Radon-Nikodym derivative.

Lemma 2.1. Let f : [0,∞)×Rd×Ω→ Rd be a predictable function which is uniformly
bounded by M > 0. Let Pt be P restricted to Ft and consider the measure Qt given
by

(2.1)
dQt

dPt
= exp

(
Z

(1)
t −

1

2
Z

(2)
t

)
,
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where

Z
(1)
t :=

∫ t

0

∫ J

0

f(s, x) ·W(dxds),

Z
(2)
t :=

∫ t

0

∫ J

0

|f(s, x)|2 dxds,

and f ·W is the dot product of f and W in Rd. Then

(a) Under the measure Qt,

˙̃
W(s, x) := Ẇ(s, x)− f(s, x), x ∈ [0, J ], s ∈ [0, t]

is a d dimensional vector of i.i.d. two-parameter white noise.
(b) Furthermore

(2.2) 1 ≤ E

[(
dQt

dPt

)2
]
≤ exp

(
M2tJ

)
.

Proof. (a) A stronger version of the statement can be found in [All98] but this is
enough for our purposes. While [All98] deals only with d = 1, the extension below to
higher dimensions is immediate.

(b) Since dQt/dPt is a Radon-Nikodym derivative,

1 = E

[
dQt

dPt

]
= E

[
exp

(
Z

(1)
t −

1

2
Z

(2)
t

)]
and replacing f by 2f in the definitions of Z

(1)
t , Z

(2)
t , we get

(2.3) 1 = E
[
exp

(
2Z

(1)
t − 2Z

(2)
t

)]
.

Next, note that 0 ≤ Z
(2)
t ≤M2tJ and therefore

(2.4) 1 ≤ exp
(
Z

(2)
t

)
≤ exp

(
M2tJ

)
.

Combining (2.3) and (2.4), we get

E

[(
dQt

dPt

)2
]

= E
[
exp

(
2Z

(1)
t − Z

(2)
t

)]
= E

[
exp

(
2Z

(1)
t − 2Z

(2)
t

)
· exp

(
Z

(2)
t

)]
,

and we obtain (2.2) from (2.3) and (2.4). �
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Using the above lemma we now explain how it is enough to prove Theorem 1.1 when
g ≡ 0. Consider the event

A =

{
sup

s≤T, y∈[0,J ]
|u(s, y)| ≤ ε

}
.

Consider (1.3) with g ≡ 0, and write

∂tu(t, x) =
1

2
∂2xu(t, x) + σ

(
t, x,u(t, x)

)
Ẇ(t, x)

=
1

2
∂2xu(t, x) + g

(
t, x,u(t, x)

)
+ σ
(
t, x,u(t, x)

) (
Ẇ(t, x)− σ−1

(
t, x,u(t, x)

)
g(t, x)

)
.

Let

f(t, x) = σ−1
(
t, x,u(t, x)

)
g(t, x),

and note that f is uniformly bounded by some M > 0 by the assumptions on g

and (1.5). Define QT as in (2.1). From Lemma 2.1, we know that
˙̃

W(s, x) :=

Ẇ(s, x) − f(s, x), x ∈ [0, J ], s ∈ [0, T ] is a white noise under QT . Therefore the
distribution of u under QT corresponds to the case when g is present in (1.3). Now

QT (A) = E

[
1A
dQT

dPT

]

≤
√
P (A) ·

√√√√E

[(
dQT

dPT

)2
]

≤
√
P (A) · exp

(
M2TJ

2

)
.

(2.5)

This explains how we get a similar upper bound for nonzero g as when g ≡ 0 with
different constants. For the lower bound consider instead (1.3) with nonzero g. We
can write

∂tu(t, x) =
1

2
∂2xu(t, x) + σ

(
t, x,u(t, x)

) (
Ẇ(t, x) + σ−1

(
t, x,u(t, x)

)
g(t, x)

)
.

Now let f(t, x) = −σ−1
(
t, x,u(t, x)

)
g(t, x) and define QT as before. Note that in this

case
˙̃

W = Ẇ + f is a white noise under QT , and so u has the distribution of (1.3)
with g ≡ 0. Follow the same argument as in (2.5) to obtain a similar lower bound
for nonzero g as when g ≡ 0.
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2.3. Reduction to the case J = 1. Due to the previous subsection we can now
assume g ≡ 0. Let u(t, x) be the solution to (1.3) with g ≡ 0. We now reduce to the
case J = 1. Consider the function

(2.6) v(t, z) = J−1/2u(J2t, Jz), t ≥ 0, z ∈ [0, 1],

with initial profile v0(z) = J−1/2u0(Jz), z ∈ [0, 1].

Let us denote the heat kernel by G(J)(t, x) to emphasize the dependence on J . The
scaling relation below is immediate.

(2.7) G(1)(J−2t, J−1x) = J ·G(J)(t, x), x ∈ [0, J ], t ≥ 0.

The following distributional identity for white noise is well known.

(2.8) WJ2,J(dy ds) := J−3/2W(Jdy J2ds)
D
= W(dy ds),

where
D
= denotes equality in distribution.

Lemma 2.2. The random field v(t, x) : t ≥ 0, x ∈ [0, 1] is the mild solution to the

stochastic heat equation on [0, 1] with white noise ẆJ2,J :

∂tv(t, x) =
1

2
∂2x v(t, x) + σ(J) (t, x,v(t, x)) · ẆJ2,J(t, x)

v(0, x) = v0(x),
(2.9)

where
σ(J)(t, x,u) := σ(J2t, Jx, J1/2u).

Proof. From (1.6) one obtains

v(t, z) = J−1/2
∫ J

0

G(J)(J2t, Jz − y) u0(y) dy

+ J−1/2
∫ J2t

0

∫ J

0

G(J)(J2t− s, Jz − y)σ (s, y,u(s, y)) W(dyds)

= J−3/2
∫ J

0

G(1)(t, z − J−1y) u0(y) dy

+ J−3/2
∫ J2t

0

∫ J

0

G(1)(t− J−2s, z − J−1y)σ (s, y,u(s, y)) W(dyds)

=

∫ 1

0

G(1)(t, z − w) v0(w) dw

+

∫ t

0

∫ 1

0

G(1)(t− r, z − w)σ
(
J2r, Jw, J1/2v(r, w)

)
WJ2,J(dwdr),
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where we have used (2.7) for the second equality, and (2.8) for the last equality. �

The reduction to J = 1 then follows easily using Lemma 2.2. Indeed, write s = J2t,
y = Jx and note that

P

 sup
0≤s≤T
y∈[0,J ]

|u(s, y)| ≤ ε

 = P

 sup
0≤J2t≤T
Jx∈[0,J ]

J−1/2|u(J2t, Jx)| ≤ εJ−1/2


= P

 sup
0≤t≤TJ−2

x∈[0,1]

|v(t, x)| ≤ εJ−1/2

 .

Assuming we have Theorem 1.1 for J = 1 we will obtain the result for general J from
the above.

Remark 2.1 (Important). Note that the function σ(J) satisfies (1.5) with the same
C1,C2. However the Lipschitz constant for σ(J) is J1/2D, and not D. This is the
reason for the somewhat strange expressions for the upper bounds in (1.8) and (1.10).

Remark 2.2. Thanks to the above reductions, we will assume for the rest of the
article that J = 1 and g ≡ 0.

2.4. Key proposition. We divide the time interval [0, T ] into increments of length
c0ε

4 where c0 = c0(C1,C2) is chosen so that

(2.10) 0 < c0 < max

{(
K2

36 log(K1)C2
2

)2

, 1

}
.

Above K1 and K2 are universal constants specified in the statement of Lemma 3.4.
Consider time points

tn = nc0ε
4, n ≥ 0,

and let In := [tn, tn+1] be the nth time increment. Let

n1 := min{n ≥ 1 : tn > T}
be the smallest n for which the time interval In is completely outside [0, T ].

We shall similarly consider a discrete set of spatial points separated by c1ε
2, where

c21 = θc0 with θ = θ(C1,C2) > 0 is chosen so that

θ ≥ max

{
2, 4 log

(
1

2c0

)}
and

C10

C8

∑
k≥1

exp

(
−θk

2

8

)
<

1

6
.(2.11)
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The constants C8 and C10 are specified in the statement of Lemma 4.1 and depend
on C1 and C2 only. Consider discrete spatial points

xn = nc1ε
2, n ≥ 0,

and let Jn := [xn, xn+1] be the nth space increment. Let

n2 := min{n ≥ 1 : xn > 1}
be the smallest n for which the space interval Jn is completely outside [0, 1]. Note
that

(2.12) n2 ≤ (c1ε
2)−1 + 1.

We will first define a sequence of sets which we can use to prove the lower bounds in
(1.7) and (1.8). Let A−1 = Ω and for n ≥ 0 define events

(2.13) An =
{
|u(tn+1, x)| ≤ ε

3
∀x, and |u(t, x)| ≤ ε ∀t ∈ In, x ∈ [0, 1]

}
.

Thus An is the event that u(t, ·) is everywhere of modulus at most ε in the time
interval In, and is everywhere of modulus at most ε/3 at the terminal time tn+1. We
will next define a sequence of sets which we use to prove the upper bounds in (1.7)
and (1.8). Denote by

pij = (ti, xj),

the left hand corner of the box Ii × Jj. Let F−1 = Ω and for n ≥ 0, define

Fn = {|u(pnj)| ≤ ε for all j ≤ n2 − 2} .
By the above constructions of An and Fn, the proposition below along with the Markov
property will be the key step in the proof Theorem 1.1.

Proposition 2.1. Fix g ≡ 0, J = 1. Consider the solution to (1.3) with u0(x) ≡ 0
and let the assumptions (1.4) and (1.5) hold. Then

(a) For all D > 0, there exist constants ε0(C1,C2,D) > 0 and C4, C5 > 0 depend-
ing only C1,C2 such that for 0 < ε < ε0 and n ≥ 1

P
(
Fn

∣∣∣ n−1⋂
k=0

Fk

)
≤ C4 exp

(
− C5

(1 + D2)ε2

)
.(2.14)

(b) There is a D0(C1,C2) > 0 and constants ε0, C6, C7 depending only on C1,C2

such that for any D < D0 , 0 < ε < ε0 and n ≥ 0

P
(
An

∣∣∣ n−1⋂
k=−1

Ak

)
≥ C6 exp

(
−C7ε

−2) .(2.15)
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The majority of the work in the paper will be to prove the above Proposition. In the
last section we will explain how Theorem 1.1 follows from this.

3. Preliminaries

In this section we state and prove some preliminaries with regard to (1.3) that we
will need for the proof of Proposition 2.1. Recall that we are restricting ourselves to
J = 1 and g ≡ 0.

3.1. Heat Kernel Estimates. In this subsection we prove a few preliminary results
about the heat kernel G(t, x) which was mentioned in the introduction. G is given by

G(t, x) =
∑
n∈Z

(2πt)−1/2 exp

(
−(x+ n)2

2t

)
.

The following lemma is well-known for x ∈ R, see for example [DKM+09], Lemma
4.3, page 126. We give a brief proof for the case x ∈ [0, 1] (the circle).

Lemma 3.1. There exists a constant C0 > 0 such that for all 0 < s < t ≤ 1 with
|t− s| ≤ 1 and x, y ∈ [0, 1], we have∫ t

0

∫ 1

0

[G(s, x− z)−G(s, y − z)]2 dz ds ≤ C0|x− y|,(3.1) ∫ t

s

∫ 1

0

G2(t− r, z) dzdr ≤ C0|t− s|1/2,(3.2) ∫ s

0

∫ 1

0

[G(t− r, z)−G(s− r, z)]2 dzdr ≤ C0|t− s|1/2.(3.3)

Proof. From the standard Fourier decomposition we have

G(t, x) =
∑
k∈Z

exp
(
− (2πk)2t

2

)
· exp

(
i(2πk)x

)
.
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Using the orthogonality of {exp
(
i(2πk)z

)
: k ∈ Z} in L2([0, 1]), it is immediate that

there is a c1 > 0 such that∫ t

0

∫ 1

0

[G(s, x− z)−G(s, y − z)]2 dz ds

= C

∫ t

0

ds
∑
k≥1

exp
(
− (2πk)2s

)
·
∣∣1− exp

(
i(2πk)(x− y)

)∣∣2
≤ C

∑
k≥1

1

k2
·
∣∣∣1 ∧ (2πk)|x− y|

∣∣∣2
≤ C|x− y|.

The second inequality above is obtained by using Fubini’s theorem, integrating over
s and using |1− eix| ≤ 2 ∧ |x|. The last inequality above is obtained by splitting the
sum according to whether k is less than or greater than (2π|x− y|)−1. Thus we have
obtained (3.1).

As for (3.2) we integrate over z first and using orthogonality again we obtain∫ t

s

∫ 1

0

G2(t− r, z) dzdr

≤ C

∫ t−s

0

dr
∑
k≥0

exp
(
− (2πk)2r

)
≤ C(t− s) + C

∑
k≥1

1

(2πk)2

[
1− exp

(
− (2πk)2(t− s)

)]
≤ C(t− s) + C

∑
k≥1

1

(2πk)2

[
1 ∧ (2πk)2(t− s)

]
≤ C(t− s)1/2.

We obtain the last inequality above by splitting the earlier sum according to whether
(2πk)2(t− s) is less than or greater than 1. Thus we have obtained (3.2).

For (3.3), using orthogonal basis as above we have that∫ s

0

∫ 1

0

[G(t− r, z)−G(s− r, z)]2 dzdr

=

∫ s

0

dr
∑
k≥1

exp
(
− (2πk)2r

)
·
[
1− exp

(
− (2πk)2(t− s)

)]
.

Using Fubini and integrating each of the terms over r, we obtain (3.3). �
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For x ∈ [0, 1], the circle with end points identified, define

(3.4) x∗ =

{
x, 0 ≤ x ≤ 1

2
,

x− 1, 1
2
< x ≤ 1.

We will need the following comparison between the heat kernel on the circle [0, 1]
with the heat kernel on R.

Lemma 3.2. There is a CG > 0 such that for all t ≤ 1

G(t, x) ≤ CG√
2πt

exp
(
− x2∗

2t

)
, x ∈ [0, 1].

Proof. As we are working on the circle [0, 1] we have G(t, x) = G(t, x∗). It is imme-
diate to observe that |x∗| ≤ min(|x∗|, |x∗ − 1|, |x∗ + 1|), and

−(x∗ + k)2 ≤ −x2∗ −
k2

2
if |k| ≥ 2.

Therefore,

G(t, x∗) ≤
3√
2πt

exp
(
− x2∗

2t

)
+
∑
|k|≥2

1√
2πt

exp
(
− x2∗

2t
− k2

4t

)
≤ 3√

2πt
exp

(
− x2∗

2t

)
+

1√
2πt

exp
(
− x2∗

2t

)∑
|k|≥2

e−k
2/4,

uniformly for t ≤ 1. This completes the proof. �

3.2. Noise Term Estimates. Recall that any solution u to (1.3) with J = 1,g ≡ 0
satisfies

u(t, x) =

∫ 1

0

G(t, x− y) u0(y) dy +

∫ t

0

∫ 1

0

G(t− s, x− y)σ (s, y,u(s, y)) W(dyds),

(3.5)

where x − y denotes subtraction modulo 1. The above is known as the mild form
of the solution. We refer the reader to [Wal86] or [DKM+09] for a discussion of the
stochastic integral with respect to white noise, and a treatment of the mild form. The
Lipschitz assumption on σ guarantees that a unique strong solution exists [DKM+09,
Theorem 6.4, page 26].

We shall denote the second term of (3.5), i.e. noise term, by

(3.6) N(t, x) :=

∫ t

0

∫ 1

0

G(t− s, x− y)σ (s, y,u(s, y)) W(dyds).
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Lemma 3.3. There exist constants C1, C2 depending on the dimension d such that
for all 0 < s < t < 1, x, y ∈ [0, 1] and λ > 0,

P
(∣∣N(t, x)−N(t, y)

∣∣ > λ
)
≤ C1 exp

(
− C2λ

2

C2
2|x− y|

)
P
(∣∣N(t, x)−N(s, x)

∣∣ > λ
)
≤ C1 exp

(
− C2λ

2

C2
2|t− s|1/2

)

Proof. One can use Lemma 3.1 and follow the argument in Corollary 4.5 on page 127
of [DKM+09] to obtain the result. We sketch the details. First note that it is enough
to prove the above inequalities for each of the components of N. Let us focus on the
first coordinate N1. For the first inequality one observes that for s ∈ [0, t]∫ s

0

∫ 1

0

[G(t− r, x− z)−G(t− r, y − z)] σ (r, z,u(r, z)) W(dzdr)

is an Ft-martingale whose value at time t is N(t, x) − N(t, y). Thus N1 is also a
martingale. Any one dimensional martingale is a time-changed Brownian motion and
(3.1) gives a bound of CC2

2|x − y| on the time change. One then uses the reflection
principle to get the bound on the probability. Next consider the martingale

Mq =

∫ q

0

∫ 1

0

G(t− r, x− z)σ (r, z,u(r, z)) W(dzdr)−N(s, x), s ≤ q ≤ t.

The second bound can be proved similarly using (3.2) and (3.3) to get a bound of
CC2

2|t− s|1/2 on the time change. �

Lemma 3.4. There exist constants K1, K2 > 0 depending on the dimension d such
that for all α, λ, ε > 0 we have

P

 sup
0≤t≤αε4
x∈[0,ε2]

|N(t, x)| > λε

 ≤ K1

1 ∧
√
α

exp

(
−K2

λ2

C2
2

√
α

)
.(3.7)

Proof. Let us first consider the case α ≥ 1. For n ≥ 0, define the grid

Gn =

{(
j

22n
,
k

2n

)
: 0 ≤ j ≤ αε422n, 0 ≤ k ≤ ε22n

}
.

Let

n0 = dlog2

(
α−1/2ε−2

)
e.
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For n < n0, the grid Gn consists simply of the point (0, 0). For n ≥ n0, the grid Gn

has at most 4αε422n · ε22n ≤ 4 · 23(n−n0) many points. Fix

K =

(
4
∑
n≥0

2−n/4

)−1
.

Consider the events

A(n, λ) =
{
|N(p)−N(q)| ≤ λKε2−(n−n0)/4 for all p, q ∈ Gn, nearest neighbors

}
.

Thanks to Lemma 3.3, a union bound gives for n ≥ n0

P (Ac(n, λ)) ≤ C12
3(n−n0) exp

(
−C2

λ2K2

C2
2

ε22n02(n−n0)/2

)
≤ C12

3(n−n0) exp

(
−C2

λ2K2

C2
2

√
α

2(n−n0)/2

)
.

Let A(λ) = ∩n≥n0A(n, λ). Therefore

P
(
A(λ)c

)
≤
∑
n≥n0

P
(
A(n, λ)c

)
≤ exp

(
−C3

λ2K2

C2
2

√
α

)
for some constant C3 > 0, as long as λ2/

√
α ≥ C̃3C

2
2 for some C̃3 large enough. Since

the left hand side is a probability it is at most 1. Therefore we can conclude that
there exist constants C4, C5 > 0 such that for all α ≥ 1 and λ > 0 we have

P
(
A(λ)c

)
≤ C4 exp

(
−C5

λ2K2

C2
2

√
α

)
.

Now consider a point (t, x) ∈ [0, αε4]× [0, ε2] which is in a grid Gn for some n ≥ n0.
From arguments similar to page 128 of [DKM+09] we can find a sequence of points
(0, 0) = p0, p1, · · · , pm = (t, x) of points in Gn such that each pair pi−1, pi are nearest
neighbors in some grid Gk, n0 ≤ k ≤ n, and at most 4 such pairs are nearest neighbors
in any given grid Gk. Therefore on the event A(λ) we have

|N(t, x)| ≤
m∑
k=1

|N(pj−1)−N(pj)|

≤ 4
∑
n≥n0

λKε2−(n−n0)/4 ≤ λε.

This points (t, x) ∈ Gn are dense in [0, αε4] × [0, ε2], and therefore we have (3.7) in
the case α ≥ 1.
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Let us next consider the case 0 < α < 1. We divide the interval [0, ε2] into 1√
α

intervals each of length
√
αε2. A simple union bound and stationarity in x implies

that

P

 sup
0≤t≤αε4
x∈[0,ε2]

|N(t, x)| > λε

 ≤ 1√
α
P

 sup
0≤t≤(

√
αε2)2

x∈[0,
√
αε2]

|N(t, x)| > λε


=

1√
α
P

 sup
0≤t≤(

√
αε2)2

x∈[0,
√
αε2]

|N(t, x)| > λ

α1/4
(α1/4ε)


≤ K1√

α
exp

(
−K2

λ2

C2
2

√
α

)
.

This completes the proof the lemma. �

Remark 3.1. Suppose the function σ in N (see equation (3.6)) satisfies

|σ
(
s, y,u(s, y)

)
| ≤ C1ε

then the probability in (3.7) is bounded above by K1

1∧
√
α

exp
(
−K2

λ2

C2
1C

2
2ε

2
√
α

)
for the

same constants K1,K2 as in (3.7). This can be proved similarly to the above lemma
and will be used later.

4. Proof of Proposition 2.1

4.1. Proof of Proposition 2.1(a). Let u1(t, x) be the first coordinate of u(t, x).
Let us define

F̃n = {|u1(pnj)| ≤ ε for all j ≤ n2 − 2} .

Since Fn ⊂ F̃n, it is sufficient to prove

P
(
F̃n

∣∣∣ n−1⋂
k=0

Fk

)
≤ C4 exp

(
− C5

(1 + D2)ε2

)
.(4.1)

The following lemma on the random variables N1(p1k) (recall that N1 is the first
coordinate of N) is crucially used in the proof of the proposition. It shows that the
variance of N1(p1k) is of order ε2, and gives a bound on the decay of correlations
between random variables N1(p1k) and N1(p1k′) as |k − k′| increases.
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Lemma 4.1. The random variables N1(p1k) are Gaussian with mean 0. Furthermore
there exist constants C8, C9, C10 depending only on C1,C2 such that

C8ε
2 ≤ Var

(
N1(p1k)

)
≤ C9ε

2(4.2)

Cov
(
N1(p1k), N1(p1k′)

)
≤ C10t1 sup

0≤t≤2t1

1√
t

exp
(
− |xk − xk

′|2∗
2t

)
.(4.3)

Furthermore, if 0 < |xk − xk′ | ≤ 1
2

and θ is as in (2.11), one obtains

(4.4) Cov
(
N1(p1k), N1(p1k′)

)
≤ C10ε

2 exp

(
−θ(k − k

′)2

8

)
.

Proof. It is immediate that the random variables are mean zero Gaussian. As for the
covariance

Cov
(
N1(p1k), N1(p1k′)

)
≤ CC2

2

∫ t1

0

∫ 1

0

G(t1 − s, xk − y)G(t1 − s, xk′ − y) dyds

= CC2
2

∫ t1

0

G(2t1 − 2s, xk − xk′) ds(4.5)

≤ CC2
2t1 sup

0≤t≤2t1
G(t, xk − xk′)

≤ CC2
2t1 sup

0≤t≤2t1

C√
2πt

exp
(
− |xk − xk

′ |2∗
2t

)
.

The last inequality follows by the symmetry of G(t, x) in x and by Lemma 3.2. The
bound for the variance obtained above is ∞ which is useless. We instead use the
expression after the equality above and Lemma 3.2 to obtain the upper bound in
(4.2). The lower bound in (4.2) can be obtained similarly since the components of σ
are bounded away from 0 as well.

Let us turn our attention back to (4.5) and consider the situation when |xk−xk′| ≤ 1
2
.

In this case we have |xk − xk′ |∗ = |xk − xk′|. Thus

Cov
(
N1(p1k), N1(p1k′)

)
≤ CC2

2ε
2 sup
0≤t≤2c0

exp

(
−c

2
1(k − k′)2

2t
+

log(1/t)

2

)
= CC2

2ε
2 sup
s≥(2c0)−1

exp

(
−1

2

[
c21(k − k′)2s− log s

])
.

By our choice of c21 = θc0 with θ as in (2.11) we see that the maximum is attained
at (2c0)

−1 for k 6= k′. Indeed the expression inside the exponential is decreasing in
the interval [(2c0)

−1,∞). Moreover the quantity in brackets inside the exponential is
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at least θ(k − k′)2/4 as long as θ ≥ 4 log[(2c0)
−1], which we have assumed in (2.11).

This proves (4.4) and completes the proof of the lemma. �

Proof of Proposition 2.1(a) (D ≡ 0 – The Gaussian case, i.e. deterministic σ). By the
Markov property, it is enough to show that

P (F̃1) ≤ C0 exp(−C1ε
−2),

for constants C0, C1 depending only on C1,C2, if we start with a deterministic initial

profile u0 satisfying |u0(xj)| ≤ ε for all j ≤ n2− 2. Let H̃−1 = Ω and for j ≥ 0 define
the events

H̃j = {|u1(p1k)| ≤ ε for all k ≤ j}.
We will show that

(4.6) P (H̃j|H̃j−1) ≤ η for all 0 ≤ j ≤ n2 − 2,

for some constant η = η(C1,C2) < 1. Since n2 = [c−11 ε−2], we have that

P (F̃1) =

n2−2∏
j=0

P (H̃j|H̃j−1) ≤ η[c
−1
1 ε−2]

as required. Let us therefore turn our attention to proving (4.6). Now

u1(p1k) =
[
Gt1(u0)(xk)

]
1

+N1(p1k).

The term
[
Gt1(u0)(xk)

]
1

is the first component of the deterministic term in (3.5),
while N1(p1k) are mean zero Gaussian random variables. To obtain (4.6) we will
show the existence of some 0 ≤ η < 1 such that

(4.7) P
(
|u1(p1j)| ≤ ε | Gj−1

)
≤ η for all 0 ≤ j ≤ n2 − 2,

where Gj is the σ-algebra generated by the random variables N1(p1k), 0 ≤ k ≤ j. The
inequality (4.7) gives a uniform bound on the probability of the event |u1(p1j| ≤ ε,
given every realization of the random variables N1(p1k), 0 ≤ k ≤ j − 1. In particular

it gives the same bound on P (|u1(p1j)| ≤ ε | H̃j−1).

Therefore let us turn our attention to proving (4.7).

This will be achieved by producing a uniform (in j) lower bound of order Cε2 on the
conditional variance of u1(p1j) given Gj−1, where C depends only on C1,C2. This will
imply that the conditional distribution of u1(p1j) is sufficiently spread out and that
the event |u1(p1j)| > ε has nonvanishing probability.
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By general properties of Gaussian random vectors we can decompose

(4.8) u1(p1j) =
[
Gt1(u0)(xk)

]
1

+X + Y,

where X is the conditional expectation of N1(p1j) given Gj−1. Furthermore

(4.9) X =

j−1∑
k=0

β
(j)
k N1(p1k)

for some coefficients β
(j)
l . The variance of the random variable Y = N1(p1j) − X is

precisely the conditional variance of N1(p1j) given Gj−1, and is also the conditional
variance of u1(p1j) given Gj−1.

Let us use the notation SD to denote the standard deviation of a random variable.
By Minkowski’s inequality

SD(X) ≤
j−1∑
k=0

|β(j)
k | · SD

(
N1(p1k)

)
.

We will show in the following lemma that
∑j−1

k=0 |β
(j)
k | can be made less than 1/2 by

our choice of θ. In particular for this choice of θ the standard deviation of X is less
than one half the standard deviation of N1(p1j). Therefore, for this choice of θ

SD
(
N1(p1k)

)
≤ SD(X) + SD(Y ) ≤

SD
(
N1(p1k)

)
2

+ SD(Y ).

From (4.2) the variance of N1(p1j) is bounded below by C8ε
2. We have thus shown

that the conditional variance of N1(p1j) given Gj−1, which is also the variance of Y ,
is uniformly (in j) bounded below by C11ε

2. Recall that the conditional variance of
N1(p1j) given Gj−1 is also the conditional variance of u1(p1j) given Gj−1. This implies

P
(
|u1(p1j)| ≤ ε | Gj−1

)
≤ η

for some η < 1 uniformly in j. Indeed, for a Gaussian random variable Z ∼ N(µ, σ2)
and any a > 0 the probability P (|Z| ≤ a) is maximized when µ = 0. Therefore

P
(
|u1(p1j)| ≤ ε | Gj−1

)
≤ P

(
|N(0, 1)| ≤ ε√

Var (u1(p1j) | Gj−1)

)

≤ P

(
|N(0, 1)| ≤ 1√

C11

)
.

This completes the proof of the proposition. �
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The only ingredient left in the proof of Proposition 2.1 in the Gaussian case is the
following lemma.

Lemma 4.2. Recall the coefficients β
(j)
k from (4.9). By choosing θ as in (2.11)

j−1∑
k=0

|β(j)
k | ≤

1

2
for all 0 ≤ j ≤ n2 − 2.

Proof. The random variable Y , defined in (4.8), has the nice property that it is
independent of Gj−1, and therefore

Cov(Y,N1(p1k)) = 0 for k = 0, 1 · · · j − 1.

It follows that
(4.10)

Cov
(
N1(p1j), N1(p1l)

)
=

j−1∑
k=0

β
(j)
k Cov

(
N1(p1k), N1(p1l)

)
for all l = 0, 1, · · · , j − 1.

Consider now the vector β = (β
(j)
0 , β

(j)
1 , · · · , β(j)

j−1)
T and

y =
(

Cov
(
N1(p1j), N1(p10)

)
, · · · ,Cov

(
N1(p1j), N1(p1,j−1)

))T
.

Let S =
((

Cov
(
N1(p1k), N1(p1l)

)))
0≤k,l≤j−1 be the covariance matrix. The system

(4.10) can be succinctly written as y = Sβ, whence

β = S−1y.

Denote by ‖ · ‖1 the `1 norm on Rk, and by ‖ · ‖1,1 the matrix norm induced on j × j
matrices by the ‖ · ‖1 norm, that is for a matrix A

‖A‖1,1 = sup
x 6=0

‖Ax‖1
‖x‖1

.

It can be shown that ‖A‖1,1 = maxj
∑n

i=1 |aij| (see page 259 of [RB00]). Therefore
we have

(4.11) ‖β‖1 ≤ ‖S−1‖1,1‖y‖1.
Now we write S = DTD where D is a diagonal matrix with diagonal entries√

Var
(
N1(p1k)

)
, and T is the matrix of correlation coefficients

tkl =
Cov

(
N1(p1k), N1(p1l)

)√
Var
(
N1(p1k)

)√
Var
(
N1(p1l)

) , 0 ≤ k, l ≤ j − 1.
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Therefore S−1 = D−1T−1D−1 = D−1(I − A)−1D−1 for some matrix A. Thanks to
(4.2) and (4.4) we can make ‖A‖1,1 < 1

3
by choosing θ as in the second inequality in

(2.11). Therefore

‖(I−A)−1‖1,1 ≤
1

1− ‖A‖1,1
≤ 3

2

and so ‖S−1‖1,1 ≤ ‖D−1‖1,1 · ‖T−1‖1,1 · ‖D−1‖1,1 ≤ 2C−18 ε−2, where C8 is as in (4.2).
Note in obtaining an upper bound on ‖D−1‖1,1, we have crucially used the lower
bound in in (4.2), which in turn is based on the assumption that the components of
σ are bounded away from zero.. Substituting the above bounds into (4.11) we obtain

(4.12) ‖β‖1 ≤ 2C−18 ε−2‖y‖1,
which can be made less than 1/2 by choosing θ as in (2.11). �

Proof of Proposition 2.1(a) (The general case i.e general σ). By the Markov property

it is enough to show the bound P (F1) ≤ C0 exp
(
− C1

(1+D2)ε2

)
, for constants C0, C1 de-

pending only on C1,C2, starting with a deterministic initial profile u0 with |u0(xj)| ≤ ε
for all j ≤ n2 − 2.

For a point z ∈ Rd define

fε
(
z
)

=

{
z, |z| ≤ ε,
ε
|z|z, |z| > ε.

In particular |fε(z)| ≤ ε. We consider the equation

∂tv(t, x) =
1

2
∂2xv(t, x) + σ (t, x, fε (v(t, x))) · Ẇ(t, x)

with initial profile u0. It is clear that as long as |u(t, x)| ≤ ε for all x, we have
u(t, ·) = v(t, ·). Therefore it enough to prove the proposition for v.

We compare v with vg where

(4.13) ∂tvg =
1

2
∂2xvg + σ

(
t, x, fε (u0(x))

)
· Ẇ(t, x)

starting with the same initial profile u0. We decompose v(t, x) = vg(t, x) + D(t, x),
with

D(t, x) =

∫ t

0

∫ 1

0

G(t− s, x− y)
[
σ
(
s, y, fε(v(s, y))

)
− σ

(
s, y, fε(u0(y))

)]
·W(dyds).

Define

Hj = {|v(p1j)| ≤ ε},
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so that F1 = ∩n2−2
j=0 Hj. Define also the events

A1,j = {|vg(p1j)| ≤ 2ε}, and

A2,j = {|D(p1j)| > ε}.
If |D(p1j)| ≤ ε and |vg(p1j)| > 2ε, we must have |v(p1j)| > ε. As a consequence,

Hj ⊂ A1,j ∪ A2,j.

Therefore

P (F1) ≤ P

(
n2−2⋂
j=0

[A1,j ∪ A2,j]

)
.

The intersection can be expanded as the union of various events. One of the terms
in the union is

A1,0 ∩ A1,1 ∩ A1,2 ∩ · · · ∩ A1,n2−2.

The remaining events in the union looks like this:

A1,0 ∩ A1,1 ∩ A1,2 ∩ · · · ∩ A1,k−1 ∩ A2,k ∩ · · · .
That is, it will involve a run of {A1,j : 0 ≤ j ≤ k − 1} and then by A2,k followed by
the intersection with other sets. We collect all these events which have the same time
k of the first appearance of an A2,j. The probability of the union of all these sets is
dominated by

P (A1,0 ∩ A1,1 ∩ A1,2 · · · ∩ A1,k ∩ A2,k).

Thus we obtain the upper bound

P (F1) ≤ P

(
n2−2⋂
j=0

A1,j

)
+

n2−2∑
k=0

P (A1,0 ∩ A1,1 ∩ A1,2 · · · ∩ A1,k−1 ∩ A2,k)

≤ P

(
n2−2⋂
j=0

A1,j

)
+

n2−2∑
j=0

P (A2,j).

The argument for the Gaussian case shows that

(4.14) P

(
n2−2⋂
j=0

A1,j

)
= P

(
|vg(pnj)| ≤ 2ε for all j ≤ n2 − 2

)
≤ C2 exp

(
−C3ε

−2) ,
for constants C2, C3 depending only on C1,C2. By the Lipschitz assumption on σ we
have ∣∣σ(t, x, fε(v(t, x))

)
− σ

(
t, x, fε(u0(x))

)∣∣ ≤ 2Dε.

An application of (3.7) with N replaced by D (see Remark 3.1) gives

P (A2,j) ≤ K1 exp

(
− K2

4C2
2D

2ε2
√
c0

)
.
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Then by adjusting K1,K2 and using our bound (2.12) on n2, we get

n2−2∑
j=0

P (A2,j) ≤ (n2 − 2)K1 exp

(
− K2

4C2
2D

2ε2
√
c0

)
≤ 1

c1ε2
K1 exp

(
− K2

4C2
2D

2ε2
√
c0

)
≤ C4 exp

(
− C5

8C2
2(1 + D2)ε2

√
c0

)
when ε is small enough, for some constants C4, C5 dependent on d,C2. Combining
the above bound with (4.14) completes the proof of the proposition for the general
case. �

4.2. Proof of Proposition 2.1(b). We begin by stating the Gaussian correlation
inequality which we will need.

Lemma 4.3. For any convex symmetric sets K,L in Rd and any centered Gaussian
measure µ on Rd we have

µ(K ∩ L) ≥ µ(K)µ(L).

Proof. cf. [Roy14] and [LaM17]. �

By the Markov property of the solution u(t, ·) to (1.3) (see page 247 in [DPZ14]), the
behavior of u(t, ·) in the interval In depends only on the profile u(tn, ·). Therefore it
is enough to prove that there are constants C1, C2 > 0 such that

(4.15) P (A0) ≥ C1 exp(−C2ε
−2),

for constants C1, C2 depending only C1,C2 when u0 satisfies |u0(x)| ≤ ε/3.

Proof of Proposition 2.1(b) (D ≡ 0 – The Gaussian case i.e. deterministic σ). Consider
the event

(4.16) B0 =

{
|u(t1, x)| ≤ ε

6
∀x, and |u(t, x)| ≤ 2ε

3
∀t ∈ I0, x ∈ [0, 1]

}
.

We shall prove below a lower bound of the form (4.15) with the event A0 replaced by
B0. Since B0 ⊂ A0, this implies (4.15).

We employ a standard technique in large deviation theory to obtain lower bounds
on probabilities of atypical events. That is, we construct a measure Q, absolutely
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continuous with respect to P , under which the event A0 is likely. Once we have done
this, we next control the Radon Nikodym derivative dQ

dP
. Let us denote

Gt(u0)(x) =

∫ 1

0

G(t, x− y)u0(y)dy,

the space convolution of G(t, ·) and u0. Consider the measure Qt given by

dQt

dPt
= exp

(
Z

(1)
t1 −

1

2
Z

(2)
t1

)
where

Z
(1)
t1 = −

∫ t1

0

∫ 1

0

σ−1(s, y)
Gs(u0)(y)

t1
W(dyds),

Z
(2)
t1 =

∫ t1

0

∫ 1

0

∣∣∣∣σ−1(s, y)
Gs(u0)(y)

t1

∣∣∣∣2 dyds.
By Lemma 2.1

˙̃
W(s, y) := Ẇ(s, y) + σ−1(s, y)

Gs(u0)(y)

t1

is a white noise under the measure Qt. We now write u(t, x) as∫ 1

0

G(t, x− y) u0(y) dy

+

∫ t

0

∫ 1

0

G(t− s, x− y)σ (s, y)

[
W̃(dyds)− σ−1(s, y)

Gs(u0)(y)

t1
dsdy

]
=

(
1− t

t1

)
Gt(u0)(x) +

∫ t

0

∫ 1

0

G(t− s, x− y)σ (s, y) W̃(dyds)

(4.17)

The first term is equal to 0 at time t1 and

(4.18)

∣∣∣∣(1− t

t1

)
Gtu0(x)

∣∣∣∣ ≤ ε

3
, x ∈ [0, 1], t ≤ t1.

Denote the second term by

Ñ(t, x) =

∫ t

0

∫ 1

0

G(t− s, x− y)σ (s, y) W̃(dyds).
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Since
˙̃

W is a white noise under Qt we can apply (3.7) to conclude

Qt

 sup
0≤t≤t1

x∈[0,c0ε2]

|Ñ(t, x)| > ε

6

 = Qt

 sup
0≤t≤c−1

0 (c0ε
2)2

x∈[0,c0ε2]

|Ñ(t, x)| > (6
√
c0)
−1 · (

√
c0ε)


≤ K1 exp

(
− K2

36C2
2

√
c0

)
,

where we used α = c−10 and λ = (6
√
c0)
−1 in (3.7). An application of Lemma 4.3

gives the following.

Qt

 sup
0≤t≤t1
x∈[0,1]

|Ñ(t, x)| ≤ ε

6

 ≥ Qt

 sup
0≤t≤t1

x∈[0,c0ε2]

|Ñ(t, x)| ≤ ε

6


1

c0ε
2

≥
[
1−K1 exp

(
− K2

36C2
2

√
c0

)] 1
c0ε

2

We observed earlier that the first term in (4.17) is bounded by ε/3 and is 0 at time
t1. Therefore

Qt(B0) ≥ Qt

 sup
0≤t≤t1
x∈[0,1]

|Ñ(t, x)| ≤ ε

6

 .

We finally compare Pt(A0) with Qt(A0). To do this we first observe

E

(
dQt

dPt

)2

= exp

(∫ t1

0

∫ 1

0

∣∣∣∣σ−1(s, y)
Gs(u0)(y)

t1

∣∣∣∣2 dyds
)

≤ exp
( 1

c0C2
1ε

2

)
The inequality is a consequence of the bound max|x|=1 |σ−1x|2 ≤ λ−21 ≤ C2, where λ1
is the smallest eigenvalue of σ. By the Cauchy-Schwarz inequality

Qt(B0) ≤

√
E

(
dQt

dPt

)2

·
√
Pt(B0),

and from this it follows

(4.19) P (B0) ≥ exp
(
− 1

c0C2
1ε

2

)
exp

(
2

c0ε2
log

[
1−K1 exp

(
− K2

36C2
2

√
c0

)])
,
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where K1, K2 are the constants appearing in (3.7). With our choice of c0 in (2.10),
this completes the proof of the proposition in the case of deterministic σ. �

For the Proof of Proposition 2.1(b) with general σ we compare u with ug, where

(4.20) ∂tug =
1

2
∂2xug + σ

(
t, x,u0(x)

)
Ẇ(t, x), t ∈ [0, c0ε

4], x ∈ [0, 1],

with the same initial profile u0. Recall that we are assuming |u0(x)| ≤ ε/3 for all x.
We write

(4.21) u(t, x) = ug(t, x) + D(t, x),

where

D(t, x) =

∫ t

0

∫ 1

0

G(t− s, x− y)
[
σ
(
s, y,u(s, y)

)
− σ

(
s, y,u0(y)

)]
W(dyds).

Let us define

(4.22) B̃0 =

{
|ug(t1, x)| ≤ ε

6
∀x, and |ug(t, x)| ≤ 2ε

3
∀t ∈ I0, x ∈ [0, 1]

}
.

Since the solution of (4.20) is Gaussian, we can apply (4.19) applied to ug to obtain

(4.23) P (B̃0) ≥ exp
(
− 1

c0C2
1ε

2

)
exp

(
2

c0ε2
log

[
1−K1 exp

(
− K2

36C2
2

√
c0

)])
,

where K1 and K2 are the constants appearing in (3.7).

Proof of Proposition 2.1(b)(general σ). We will again prove (4.15). As discussed in
the Gaussian case, we will use the Markov property of the solution u(t, ·) to (1.3) and
therefore it is enough to prove that there are constants C1, C2 > 0 such that

(4.24) P (A0) ≥ C1 exp(−C2ε
−2),

for constants C1, C2 depending only C1,C2 when u0 satisfies |u0(x)| ≤ ε/3. Define

τ = inf{t : |u(t, x)− u0(x)| > 2ε, for some x ∈ [0, 1]}.

Since | u0(x) |≤ ε
3
, we must have τ > t1 on the event A0. Moreover on the event

τ > t1 we have D(t, x) = D̃(t, x) for t ≤ t1, where

D̃(t, x) =

∫ t

0

∫ 1

0

G(t− s, x− y)
[
σ
(
s, y,u(s ∧ τ, y)

)
− σ

(
s, y,u0(y)

)]
W(dyds).
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Therefore, thanks to the decomposition (4.21), we have

P (A0) ≥ P

B̃0 ∩

 sup
0≤t≤t1
x∈[0,1]

∣∣D(t, x)
∣∣ ≤ ε

6




= P

B̃0 ∩

 sup
0≤t≤t1
x∈[0,1]

∣∣D̃(t, x)
∣∣ ≤ ε

6




≥ P (B̃0)− P

 sup
0≤t≤t1
x∈[0,1]

∣∣D̃(t, x)
∣∣ > ε

6

 .

Let us explain the equality above. On the event {τ > t1} we have supx≤1,t≤t1 |D(t, x)| =
supx≤1,t≤t1 |D̃(t, x)|, whereas on the event B̃0 ∩ {τ ≤ t1} we have

sup
t≤t1, x≤1

|D̃(t, x)| ≥ sup
x
|D̃(τ, x)| = sup

x
|D(τ, x)| ≥ ε,

a consequence of |ug(τ, x)| ≤ 2ε/3 and |u(τ, x)− u0(x)| > 2ε for some x (recall that
we are assuming that |u0(x)| ≤ ε/3 for all x). Now a union bound gives

P

 sup
0≤t≤t1
x∈[0,1]

∣∣D̃(t, x)
∣∣ > ε

6

 ≤ 1√
c0ε

2
P

 sup
0≤t≤t1

x∈[0,
√
c0ε

2]

∣∣D̃(t, x)
∣∣ > ε

6


=

1√
c0ε

2
P

 sup
0≤t≤t1

x∈[0,
√
c0ε

2]

∣∣D̃(t, x)
∣∣ > 1

6c
1/4
0

· c1/40 ε


≤ K1√

c0ε
2

exp

(
− K2

144D2C2
2ε

2
√
c0

)
,

(4.25)

where we applied Remark 3.1 to D̃ instead of N. Thus when ε is small enough we
have

(4.26) P

 sup
0≤t≤t1
x∈[0,1]

∣∣D̃(t, x)
∣∣ > ε

6

 ≤ K1 exp

(
− K2

288D2C2
2ε

2
√
c0

)



SMALL BALL AND SUPPORT THEOREMS FOR SPDE 31

Using (4.23) and (4.26) we have

P (A0) ≥ exp
(
− 1

c0C2
1ε

2

)
exp

(
2

c0ε2
log

[
1−K1 exp

(
− K2

36C2
2

√
c0

)])
−K1 exp

(
− K2

288D2C2
2ε

2
√
c0

)
.

(4.27)

Consequently there is a D0(C1,C2) such that if D < D0 then there are constants
C1, C2 > 0 depending only on C1,C2 such that

(4.28) P (A0) ≥ C1 exp
(
− C2

ε2

)
.

This completes the proof of Proposition 2.1(b). �

We can now give the proof of Theorem 1.1

4.3. Proof of Theorem 1.1: Recall that we are working with J = 1 and g ≡ 0.
For the upper bounds in (1.7) and (1.8) we consider the set

F =

n1−2⋂
n=0

Fn.

Clearly we have {∣∣u(t, x)
∣∣ ≤ ε for t ∈ [0, T ], x ∈ [0, 1]

}
⊂ F.

From Proposition 2.1(a) we obtain

P (F ) =

n1−2∏
n=1

P
(
Fn

∣∣∣ n−1⋂
k=0

Fk

)
≤
[
C4 exp

(
− C5

(1 + D2)ε2

)] T
c0ε

4

,

which proves the upper bounds in Theorem 1.1.

For the lower bound in (1.7) consider the set

A :=

n1−1⋂
n=−1

An.

Clearly we have

A ⊂
{∣∣u(t, x)

∣∣ ≤ ε, for 0 ≤ t ≤ T, x ∈ [0, 1]
}
.
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From Proposition 2.1(b) we obtain for D < D0

P (A) =

n1−1∏
n=−0

P
(
An

∣∣∣ n−1⋂
k=−1

Ak

)
≥
[
C6 exp

(
−C7

ε2

)] T
c0ε

4

,

which proves the lower bound in (1.7).

To prove the lower bound in (1.8), we now take t1 = ε4+2δ (note that this is smaller
than the earlier value of t1 = c0ε

4, at least for small ε), and generally tn = nε4+2δ.

We consider the events An (see (2.13)), B0 (see (4.16)) and B̃0 (see (4.22)), now with
this new value of tn. We have as before

P (A0) ≥ P (B̃0)− P

 sup
0≤t≤t1
x∈[0,1]

∣∣D̃(t, x)
∣∣ > ε

6

 .

Since t1 < c0ε
4+δ for small ε, we have the same lower bound (4.23) for P (B̃0):

(4.29) P (B̃0) ≥ exp
(
− 1

c0C2
1ε

2

)
exp

(
2

c0ε2
log

[
1−K1 exp

(
− K2

36C2
2

√
c0

)])
,

because B̃0 is a larger event than the earlier defined event with c0ε
4. By a similar

argument as (4.25) we obtain

P

 sup
0≤t≤t1
x∈[0,1]

∣∣D̃(t, x)
∣∣ > ε

6

 ≤ K1

ε2+
δ
2

exp

(
− K2

144D2C2
2ε

2+ δ
2
√
c0

)
.

This is much smaller than the lower bound for P (B̃0), for small ε. Therefore P (A0) ≥
C1 exp(−C2ε

−2) for constants C1, C2 depending on C1,C2 only, when ε is small enough.
Now with n1 = Tε−4−δ we obtain

P (A) =

n1−1∏
n=0

P
(
An

∣∣∣ n−1⋂
k=−1

Ak

)
≥
[
C6 exp

(
−C7

ε2

)] T

ε4+δ

,

which gives the lower bound in (1.8). �
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