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Abstract. We study elastic manifolds with self-repelling terms
and estimate their effective radius. This class of manifolds is mod-
elled by a self-repelling vector-valued Gaussian free field with Neu-
mann boundary conditions over the domain [−N,N ]d ∩ Zd, that
takes values in Rd. Our main result states that in two dimensions
(d = 2), the effective radius RN of the manifold is approximately
N . This verifies the conjecture of Kantor, Kardar and Nelson [8]
up to a logarithmic correction. Our results in d ≥ 3 give a simi-
lar lower bound on RN and an upper of order Nd/2. This result
implies that self-repelling elastic manifolds undergo a substantial
stretching at any dimension.

1. Introduction

1.1. Motivation. The Gaussian free field (GFF) has become a central
object in probability, studied for its own sake and with connections to
several areas of physics. In pure probability, GFF plays the role of
Brownian motion with multidimensional time. In Euclidean field the-
ory, GFF represents a field of noninteracting particles, with interacting
models such as the ϕ4 field theory arising through a change of mea-
sure, often requiring renormalization. In fact GFF over Rd with d ≥ 2
is valued in the space of Schwartz distributions and cannot be realized
as a function, so its fourth power ϕ4 is undefined in the usual sense (see
Biskup [4]).

In this paper we take inspiration from a different set of physical
models, elastic manifolds (see Mezard and Parisi [10] and Balents and
Fisher [1]). Here GFF is vector-valued, and represents the position of
a random surface. To avoid using Schwartz distributions as mentioned
above, we discretize the domain of GFF, and use the notation DGFF
(discrete GFF) for the resulting model.
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If the domain of DGFF is one dimensional, then we have a well-
known model of a random polymer. In this context, it is common to
include a self-repelling term which reflects the fact that different parts
of the polymer cannot occupy the same position. A typical object
of study is the end-to-end distance of such a polymer, or the closely
related concept of effective radius. There is a vast literature on such
problems, see Bauerschmidt, Duminil-Copin, Goodman, and Slade [2]
and the included citations.

In the context of random surfaces, GFF’s are also called elastic man-
ifolds. The purpose of this paper is to study elastic manifolds with
self-repelling terms, and to estimate the effective radius in the case.
Self-repelling elastic manifolds were first introduced by Kantor, Kar-
dar and Nelson in [6] as generalizations of polymer models to higher
dimensions, in order to capture the behaviour of sheets of covalently
bonded atoms and of polymerized lipid surfaces, among others. See
[6, 8, 7, 12] and references therein for additional details. To our knowl-
edge no one has studied these models in the mathematical literature. In
this class of models, we define an RD-valued DGFF over [−N,N ]d∩Zd,
and use Neumann boundary conditions since these are most closely tied
to a random surface with free boundary conditions. In two dimensions,
that is d = D = 2, we get fairly tight bounds on the effective radius of
the manifold RN , which is proportional to N in the upper and lower
bounds, up to logarithmic corrections. Our results in higher dimensions
are not as sharp, as we derive a lower bound on RN that is proportional
to N , but the upper bound is of order Nd/2. This proves however that
self-repelling elastic manifolds experience a substantial stretching at
any dimension.

We remark that for the case where D = d = 1 we expect RN to
have the same asymptotic behaviour as a one dimensional self-repelling
polymer, that is RN ∼ N . This result can be derived by the argument
of the proof of Theorem 1.1, at least up to a logarithmic constant. We
leave the details of the proof to the reader.

The case where D < d was studied by the authors in a followup
paper [11]. It was proved that when the dimension of the domain is
d = 2 and the dimension of the range is D = 1, the effective radius RN

of the manifold is approximately N4/3. The results for the case d ≥ 3

and D < d give a lower bound on RN of order N
1
D (d−

2(d−D)
D+2 ) and an

upper bound proportional to N
d
2
+ d−D

D+2 . The results of [11] imply that
self-repelling elastic manifolds with a low dimensional range undergo
a significantly stronger stretching than in the case d = D, which is
studied in this paper.
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The remaining case, D > d, looks to be much harder. For exam-
ple, consider the case where the domain of the self-repelling DGFF is
{0, . . . , N} and it takes values in RD. For D = 2, 3, 4 the behavior of
the effective radius of the self-repelling polymer as N → ∞ is still un-
known, although we have good information for D = 1 and for D > 4.
See page 400 of Bauerschmidt, Duminil-Copin, Goodman, and Slade
[2] and also Bauerschmidt, Slade, and Tomberg, and Wallace [3]. If D
is large enough, then for self-avoiding walks, the lace expansion can be
used. For DGFF however, there appears to be no analogue of the lace
expansion.

We briefly compare the mathematical results for self-repelling elas-
tic manifolds, which were described above, to conjectures which are
available in the physical literature. Most of such conjectures are based
on the so called Flory’s argument. We refer to Section 7 for a heuris-
tic derivation of such result for D = d = 2. In general this heuristic
argument suggests that

(1.1) RN ∼ N ν , with ν =
d+ 2

D + 2
.

For the cases where D = 1, d = 2 and D = 2, d = 2 we can confirm
(1.1) up to a logarithmic correction by Theorem 1.1 in this paper and
by the results in [11]. For the case where D = 3 and d = 2 the physical
literature is inconclusive as simulations suggest that RN grows linearly
in N in contradiction to (1.1). Not much is known about other cases
besides from these heuristic results and some arguably imprecise results
using ε-expansions (see [8]). We refer to Chapter 10.5.2 of [13] and
references therein for additional information about Flory’s argument
for self-repelling manifolds and for related results on simulations.

1.2. Setup. Now we give more precise definitions; the reader can also
consult Biskup [4]. Since the standard definition of DGFF involves
Dirichlet rather than Neumann boundary conditions, we give details of
its construction below. In the following, ordinary letters such as x, u
take values in R or Z, while boldface letters such as x,u take values in
Rd for d ≥ 2.

Fix d ≥ 2, N ≥ 1 and define our parameter set as follows.

Sd
N := [−N,N ]d ∩ Zd.

Note that

S1
N := {−N, . . . , N}.

Thus Sd
N is a cube in Zd centered at the origin. Let N = NN,d be the

set of unordered nearest neighbor pairs in Sd
N .
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Now we define the discrete Neumann Laplacian ∆ = ∆N,d,D as fol-
lows. Given functions f ,g : Sd

N → RD we define the energy H and the
inner product (·, ·) = (·, ·)N,d,D as follows,

H(f ,g) =
∑

(x,y)∈N

(
f(x)− f(y)

)
·
(
g(x)− g(y)

)
,

(f ,g) =
∑
x∈Sd

N

f(x) · g(x).

We will usually write H(f) instead of H(f , f). Define the operator
∆ = ∆N,d,D on such functions by the requirement

H(f ,g) = −(f ,∆g).

If D = 1, we simply write f, g instead of f ,g.
We claim that ∆ is a self-adjoint operator defined pointwise as fol-

lows. Given f : Sd
N → RD, we first extend the domain of f to Sd

N+1.
If x,y are nearest neighbors in Zd with x ∈ Sd

N and y ̸∈ Sd
N , define

f(y) := f(x). If y ∈ Sd
N+1 \ Sd

N but y is not a nearest neighbor of any
point in Sd

N , let f(y) := 0. We leave it to the reader to use summation
by parts to verify that for x ∈ Sd

N ,

(1.2) ∆f(x) =
∑
y∼x

[f(y)− 2d · f(x)] ,

where x ∼ y means that x,y are nearest neighbors.
In the case D = 1, since −∆ is a self-adjoint operator on a finite-

dimensional space, there exists a finite index set I = IN,d to be defined
later, and an orthonormal basis of eigenfunctions (φk)k∈I with corre-
sponding eigenvalues (λk)k∈I. We can assume without loss of generality
that there is a distinguished index 0 such that φ0 is constant and that
λ0 = 0.

Throughout, we fix a parameter β > 0, which has a physical in-

terpretation as the inverse temperature. Let (X
(i)
k )k∈I\{0},i=1,...,D be

a collection of i.i.d. random variables defined on a probability space
(Ω,F ,P) such that

X
(i)
k ∼ N(0, (2βλk)

−1).

For each i = 1, . . . , D define

(1.3) u(i) =
∑
k∈I\0

X
(i)
k φk,

and define DGFF as

(1.4) u = (u(1), . . . , u(D)).
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Since the definition of u in (1.3) may appear unmotivated, we remark
that it is equivalent to stating that (u(x))x∈Sd

N
is a collection of RD-

valued centered jointly Gaussian variables with joint density

(1.5)
1

CN,β,d,D

exp (−βH(u)) =
1

CN,β,d,D

exp (β(u,∆u))

when u is restricted to those u for which∑
x∈Sd

N

u(x) = 0.

Here CN,β,d,D is a normalizing constant which ensures that we have a
probability density. We will elaborate on the equivalence of these two
definitions in Section 2.2.

We define the local time of the field u at level z ∈ RD as

ℓN(z,u) = #{x ∈ Sd
N : u(x) ∈ [z− 1/2, z+ 1/2]}

=
∑
x∈Sd

N

1{u(x)∈[z−1/2,z+1/2]},(1.6)

where 1
2
= (1/2, . . . , 1/2) ∈ RD.

Now we define a weakly self-avoiding Gaussian free field. Through-
out, we fix a parameter γ > 0. If PN,d,D,β denotes the original prob-
ability measure of (u(x))x∈Sd

N
, we define the probability QN,d,D,β,γ as

follows. For ease of notation, we write E for the expectation with
respect to PN,d,D,β. Let

(1.7)
EN,d,D,γ = exp

(
−γ

∫
RD

ℓN(y,u)
2dy

)
,

ZN,d,D,β,γ = E[EN,d,D,γ] = EPN,d,D,β [EN,d,D,γ].

Then we define for any set A ∈ F ,

(1.8) QN,d,D,β,γ(A) =
1

ZN,d,D,β,γ

E
[
EN,d,D,γ1A

]
.

For ease of notation, we will usually drop the subscripts except for N
and write

PN = PN,d,D,β, QN = QN,d,D,β,γ, EN = EN,d,D,γ, ZN = ZN,d,D,β,γ.

Finally, we define the effective radius of the field u as

RN = max
w,z∈Sd

N

∥u(z)− u(w)∥,

where ∥ · ∥ denotes the Euclidian norm.
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1.3. Statement of the main result. Note that in our main theorem
below, we assume that D = d.

Theorem 1.1. Let u be the weakly self-avoiding DGFF on Sd
N taking

values in Rd. There are constants ε0, K0 > 0 not depending on β, γ,N
such that

(i) For d = 2,

lim
N→∞

QN

[
ε0

( γ

β + γ

)1/2
N(logN)−1/2 ≤ RN

≤ K0

(β + γ

β

)1/2
N(logN)3/2

]
= 1.

(ii) For d ≥ 3,

lim
N→∞

QN

[
ε0

( γ

β + γ

)1/d
N ≤ RN ≤ K0

(β + γ

β

)1/2
Nd/2

]
= 1.

Remark 1.2. Here is the reason we restrict ourselves to the case of
u taking values in RD with D = d. As mentioned in the introduction,
there is good information about the radius of the self-repelling random
polymer taking values in RD for D = 1, but not for D = 2, 3, 4. This is
because we can guess that for D = 1, a self-avoiding polymer has ballis-
tic behavior, i.e. u(x) ≈ Cx roughly speaking. In higher dimensions, it
is hard to guess what shape the polymer might take. There are results
for d > 4 using the lace expansion (see den Hollander [5], Chapter 4),
but this method seems hard to adapt to elastic manifolds. However, if
D = d, then we can guess that the self-repelling elastic manifold should
stretch itself by dilation in all directions so that u(x) ≈ Cx. This guess
allows us to carry out the analysis.

Remark 1.3. Note that when γ = 0, i.e. the self-repelling penalization
in (1.8) is set zero, the following statement holds for any d ≥ 2. There
exists K > 0 large enough such that,

lim
N→∞

PN,d,D,β

(
RN ≤ Kβ1/2 logN

)
= 1.

This result follows from Proposition 3.1 and by repeating the same steps
as in the proof of the upper bound in Theorem 2.1 of [4]. Theorem 1.1
therefore suggests that self-repelling elastic manifolds undergo a sub-
stantial stretching at any dimension.

Remark 1.4. Theorem 1.1 verifies the conjecture by Kantor, Kardar
and Nelson in [8] for the case where d = 2 and D = 2, up to a log-
arithmic correction. Although in the model that was presented in [8]
the DGFF is defined on the triangular lattice, the heuristics that yields
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their result is based on Flory’s argument which also applies for the
rectangular lattice.

1.4. Outline of the proof. We describe the outline for the case d = 2
as the proof for d ≥ 3 follows similar lines. Define the following events.

(1.9)

A
(1)
N =

{
RN > K0

(β + γ

β

)1/2
N(logN)3/2

}
,

A
(2)
N =

{
RN < ε0

( γ

β + γ

)1/2
N(logN)−1/2

}
.

It suffices to show that for i = 1, 2 we have

lim
N→∞

QN

(
A

(i)
N

)
= 0.

From (1.8) we see that it is enough to find:

(1) a lower bound on ZN , derived in Section 2,
(2) and an upper bound on EPN

[
EN1A

(i)
N

]
for i = 1, 2, obtained in

Sections 5 and 6, respectively.

Finally, the upper bounds divided by the lower bound should vanish as
N → ∞.

2. Lower Bound on the Partition Function

In this section we derive the following lower bound on ZN .

Proposition 2.1. Let β > 0. Then there exists a constant C > 0 not
depending on N , β and γ such that

(i) for d = 2,

logZN ≥ −C(β + γ)N2 logN.

(ii) for d ≥ 3,

logZN ≥ −C(β + γ)Nd.

In order to prove Proposition 2.1 we will introduce some additional
definitions and auxiliary lemmas.

2.1. The probability density and associated random walk. Note
that (1.2) implies that ∆N,d,1 is the generator of a continuous-time
simple random walk X = (Xt)t≥0 which is reflected at the boundary of
Sd
N . More precisely, if X attempts to leave Sd

N , then it stays where it
is. Later we will use X to obtain the lower bounds in Proposition 2.1.
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2.2. The probability density of the GFF. Now we study the prob-
ability density formula (1.5) in more detail. We focus on D = 1, and
note that ∆ = ∆N,d,1 is nonpositive definite. As in (1.3), we need to
take into account the 0 eigenvalue of ∆, which has a constant eigen-
function φ0 with 0 = (0, . . . , 0) ∈ Sd

N . In order to do that we let
V+ = V+

N,d be the vector space with the standard basis {ex : x ∈ Sd
N}.

We denote vectors in V+ as having one component vx for each position
x ∈ Sd

N , so that v =
∑

x∈Sd
N
vxex. Let

(2.1) V = VN,d =

v ∈ V+ :
∑
x∈Sd

N

vx = 0

 .

Next, we wish to put a natural measure on V. Clearly V is a sub-

space of V+, so we can choose an orthonormal basis {bk}(2N+1)d−1
k=1

such that each basis element is perpendicular to the constant vector∑
x∈Sd

N
ex. Using such a basis, we can construct Lebesgue measure on

V in the usual way, to be translation invariant. Also, any such or-
thonormal basis gives rise to the same measure, which we denote as
µ = µN,d.

Then we can define DGFF on V having density with respect to µ
given by (1.5) with D = 1. Note that if we were to use V+, then
(1.5) (without the normalizing constant) would integrate to ∞. The
extension of (1.5) to D ≥ 2 is done by taking the product of the D = 1
densities of (u(i))Di=1, which are i.i.d, and then using (1.2).

2.3. The orthonormal function basis. We first specify the orthonor-
mal basis {φk} in (1.3) of eigenfunctions of ∆N,d,1 on [−N,N ]d ∩ Zd

taking values in R. We note that each basis function φk can be repre-
sented as a product of d functions ϕj : Rd → R, as follows
(2.2) φk(x) = ϕk1(x1) . . . ϕkd(xd),

where x = (x1, . . . , xd) and k = (k1, . . . , kd), −N ≤ ki ≤ N , and
1 ≤ i ≤ d. Here {ϕj}Nj=−N is an orthonormal basis of eigenfunctions of

−∆N,1,1, the Laplacian with Neumann boundary conditions on S1
N =

{−N, . . . , N}. Note that if λk is the eigenvalue of φk and λk is the
eigenvalue corresponding to ϕk, then satisfies

(2.3) λk =
d∑

i=1

λki .

We can explicitly define these eigenfunctions and eigenvalues as fol-
lows. Let

ϕ0(x) = (2N + 1)−1/2,
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and for k = 1, . . . , N denote

(2.4) ϕk(n) =
1

ak,N
sin

(
(2k − 1)π

2N + 1
n

)
,

where ak,N is a normalizing constant so that

N∑
n=−N

ϕ2
k(n) = 1.

A calculation (perhaps using Wolfram Alpha) yields

ak,N =
(1
2
csc

(
(2k − 1)π

(2N + 1)

)
sin(2kπ) +N +

1

2

)1/2
=
(
N +

1

2

)1/2
,

since k is an integer.
For k = 1, .., N we further define

ϕ−k(n) =
1

bk,N
cos

(
2kπ

2N + 1
n

)
,

where as in the previous case, bk,N is a normalizing constant such that

N∑
n=−N

ϕ2
−k(n) = 1.

As before, we can compute

bk,N =

(
1

2
csc

(
2kπ

2N + 1

)
sin(2kπ) +N +

1

2

)1/2

=

(
N +

1

2

)1/2

,

since k is an integer.
Our basis comprises all such combinations as in (2.2), excluding the

constant eigenfunction

φ(0,...,0)(x) = ϕ0(x1) . . . ϕ0(xd).

We denote by N(d) the number of function in our basis,

N(d) = |Sd
N | − 1 = (2N + 1)d − 1.

2.4. Incorporating drift. From (1.5) it follows that CN,β,d,D is given
by

(2.5)

CN,β,d,D =

∫
RN(d)

exp

−
d∑

i=1

N(d)∑
k=1

(x
(i)
k )2

2(2βλk)−1

 d∏
i=1

N(d)∏
k=1

dx
(i)
k

=
1

(2β)dN(d)/2

N(d)∏
k=1

1

λ
d/2
k

.
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Next we incorporate a linear drift into each of the components u(i)

of u, calling the resulting component u
(i)
a .

u(i)
a (x) =

N(d)∑
k=1

X
(i)
k φk(x) + axi, i = 1, . . . , d

where a > 0 is a constant to be determined later.
Using (1.3) and (2.3), we get

(2.6) u(i)
a (x) =

∑
(k1,...,kd)∈Sd

N\{0}

X
(i)
k1,...,kd

ϕk1(x1) . . . .ϕkd(xd) + axi.

where 0 = (0, . . . , 0) ∈ Zd.
Regarding xi as a function on S1

N = {−N, . . . , N} and expanding it

in terms of our eigenfunctions, we see that there are coefficients α
(i)
j

such that

(2.7) xi = (ϕ0)
d−1

∑
j∈S1

N\{0}

ϕj(xi)α
(i)
j ,

where we have included (ϕ0)
(1−d) for convenience in later calculations.

Recall that

ϕ0 = ϕ0(x) = (2N + 1)−1/2.

In (2.7), we do not include j = 0 because xi is orthogonal to the
constant function ϕ0.

Next we find α
(i)
j in (2.7). Since α

(i)
j are used to expand the function

f(x) = x for each coordinate i, we can omit the superscript i and write
just αj in what follows. Since {ϕj}Nj=−N forms an orthonormal basis,
we get

(2.8) αj = ϕ
(1−d)
0

N∑
n=−N

nϕj(n), j ̸= 0, and α0 = 0.

From (2.6) and (2.7) we have

u(i)
a (x) =

∑
(k1,...,kd)∈Sd

N\{0}

X
(i)
k1,...,kd

ϕk1(x1) . . . .ϕkd(xd)

+ aϕd−1
0

∑
j∈S1

N\{0}

ϕj(xi)αj.
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We can represent u
(i)
a as follows:

(2.9)

u(i)
a (x) =

∑
(k1,...,kd)∈Sd

N\{jei: j∈S1
N}

X
(i)
k1,...,kd

ϕk1(x1) · · ·ϕkd(xd)

+ ϕd−1
0

∑
j∈S1

N\{0}

(X
(i)
jei

+ aα
(i)
j )ϕj(xi).

For i = 1, . . . , d let x(i) ∈ V and define

F (x(1), . . . ,x(d)) =
d∑

i=1

∑
(k1,...,kd)∈Sd

N\{0}

(x
(i)
k1,...,kd

)2

2(2βλk1,...,kd)
−1

.

We rewrite ZN in (1.7) as follows. We should emphasize that the local

time ℓN is random and hence a function of the random variables (X
(i)
k ),

hence we can write

gN(y, (X
(i)
k )) := ℓN (y,u)

where for readability we have omitted the specification that i = 1, . . . , d
and k ∈ Sd

N \ {0}. We get that,

(2.10)

ZN =

∫
RN(d)

exp

(
−F (x(1), . . . ,x(d))− γ

∫
Rd

g2N
(
y, (x(i))

)
dy

)
×

d∏
i=1

∏
(k1,...,kd)∈Sd

N\{0}

dx
(i)
k1,...,kd

.

In order to find the Radon-Nikodym derivative that allows the drift
addition in (2.9) we note that,

(2.11)

d∑
i=1

∑
(k1,...,kd)∈Sd

N\{0}

(x
(i)
k1,...,kd

)2

2(2βλk1,...,kd)
−1

=
d∑

i=1

( ∑
(k1,...,kd)∈Sd

N\{jei: j∈S1
N}

(x
(i)
k1,...,kd

)2

2(2βλk1,...,kd)
−1

+
∑

j∈S1
N\{0}

(x
(i)
jei

+ aαj)
2

2(2βλjei)
−1

−
∑

j∈S1
N\{0}

2aαjx
(i)
jei

+ (aαj)
2

2(2βλjei)
−1

)
.
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We therefore define P̂ (a) (resp. Ê(a)) be the measure (expectation)
under which u is shifted as in (2.9). Then (2.10) and (2.11) imply

(2.12)
dP̂ (a)

dP
= exp

(
−

d∑
i=1

∑
j∈S1

N\{0}

2aαjx
(i)
jei

+ (aαj)
2

2(2βλjei)
−1

)
.

We can therefore rewrite ZN in (2.10) as follows,

ZN = Ê(a)

[
exp

( d∑
i=1

∑
j∈S1

N\{0}

2aαjX
(i)
jei

+ (aαj)
2

2(2βλjei)
−1

− γ

∫
Rd

ℓ2N(y,u)dy

)]
.

(2.13)

We define

(2.14) Y
(i)
jei

=
2aαjX

(i)
jei

+ (aαj)
2

2(2βλjei)
−1

.

Using Jensen’s inequality, we get that
(2.15)

logZN ≥ Ê(a)

[
−γ

∫
Rd

ℓ2N(y,u)dy

]
− Ê(a)

− d∑
i=1

∑
j∈S1

N\{0}

Y
(i)
jei


=: −(I1 + I2).

The following proposition gives some essential bounds on Ii, i = 1, 2.

Proposition 2.2. Let β, γ > 0. Then there exists a constant C > 0
not depending on N, β, γ such that

(i) for d = 2,

I1 ≤ Cγ
(
(a−2(logN)2) ∨ 1

)
N2,

(ii) for d ≥ 3,

I1 ≤ Cγ(a−2 ∨ 1)Nd,

(iii) for any d ≥ 2,

I2 ≤ Cβa2Nd.

The proof of Proposition (2.2)(i) and (ii) is postponed to Section 3.
The proof of Proposition (2.2)(iii) is given in Section 4.
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2.5. Proof of Proposition 2.1.

Proof of Proposition 2.1. From (2.15) and Proposition 2.2(i) and (iii)
it follows that for d = 2,

(2.16) log ẐN ≥ −(I1+I2) ≥ −C
[
γ
(
(a−2(logN)2) ∨ 1

)
N2 + βN2a2

]
.

Taking a2 = logN we have

log ẐN ≥ −C(β + γ)N2 logN.

The proof for d ≥ 3 follows the same lines with the only modification
that we are using Proposition 2.2(ii) and choosing a = 1.

□

3. Proof of Proposition (2.2)(i) and (ii)

Proof of Proposition 2.2(i) and (ii). We can write

(3.1)

Ĩ1 := Ê(a)

[∫
Rd

ℓN(y,u)
2dy

]

= Ê(a)

∫
Rd

( ∑
z∈Sd

N

1[y−1/2,y+1/2](u(z))
)2
dy


=
∑
z∈Sd

N

Ê(a)

[∫
Rd

1[y−1/2,y+1/2](u(z))dy

]

+
∑

z,w∈Sd
N , z ̸=w

Ê(a)

[∫
Rd

1u(z),u(w)∈[y−1/2,y+1/2]dy

]

= (2N + 1)d +
∑

z,w∈Sd
N , z ̸=w

∫
|y|≤1

p̂z,w(y)dy,

where p̂z,w is the density of u(z)− u(w) under P̂ (a).
We will need the following proposition which will be proved in Section

7.

Proposition 3.1. There exist constants C1, C2 > 0 such that,

(i) for d = 2, for all w, z ∈ S2
N with w ̸= z, and for i = 1, 2 we

have

C1β
−1 ≤ Var

(
u(i)(z)− u(i)(w)

)
≤ C2β

−1(logN)2,

(ii) for d ≥ 3, for all w, z ∈ Sd
N with w ̸= z, and for i = 1, . . . , d

we have

C1β
−1 ≤ Var

(
u(i)(z)− u(i)(w)

)
≤ C2β

−1.
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Note that from (2.6) we have

Ê(a)[u(i)(z)− u(i)(w)] = a(zi − wi), for i = 1, . . . , d.

Since (u(i))i=1,...,d are independent, we have for any y ∈ Rd

(3.2) p̂z,w(y) :=
d∏

i=1

p̂(i)z,w(yi)

and therefore

(3.3)

∫
∥y∥≤1

p̂z,w(y)dy ≤
d∏

i=1

∫ 1

−1

p̂(i)z,w(yi)dyi,

where p̂
(i)
z,w is the density of u(i)(z)− u(i)(w) under P̂ (a).

We distinguish between the following two cases.
Case 1: d = 2. Then from Proposition 3.1(i) we have

(3.4) p̂(i)z,w(yi) ≤
1√

2πC1β−1
exp

(
− a2(yi − (zi − wi))

2

2β−1C2(logN)2

)
.

From (3.3) and (3.4) we therefore get

(3.5)

∑
z,w∈S2

N , z ̸=w

∫
∥y∥≤1

p̂z,w(y)dy

≤
∑

z,w∈S2
N , z ̸=w

∫
y∈[−1,1]2

1

2πC1β−1
exp

(
− a2∥z−w − y∥2

2C2β−1(logN)2

)
dy

≤
∫
y∈[−1,1]2

J(y)dy.

where

J(y) :=
∑

z,w∈S2
N

1

2πC1β−1
exp

(
− a2∥z−w − y∥2

2C2β−1(logN)2

)
.

We will use the following lemma, which will be proved in the end of
this section.

Lemma 3.2. Let κ > 0. Then for all y ∈ [−1, 1] and w ∈ S1
N we have∑

z∈S1
N

exp
(
− κ(z − w − y)2

)
≤ 3 +

∫ ∞

−∞
exp

(
− κ(z − w − y)2

)
dy.
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Using Lemma 3.2 and integrating over the Gaussian density gives,

(3.6)

J(y) =
1

2πC1β−1

 ∑
w1∈S1

N

∑
z1∈S1

N

exp
(
− a2(z1 − w1 − y1)

2

2C2β−1(logN)2

)
×

 ∑
w2∈S1

N

∑
z2∈S1

N

exp
(
− a2(z2 − w2 − y2)

2

2C2β−1(logN)2

)
≤ Ca−2(logN)2

×
∑

w1∈S1
N

(
3 +

1√
2πC2β−1a−2(logN)2

×
∫ ∞

−∞
exp

(
− (z1 − w1 − y1)

2

2C2β−1a−2(logN)2

)
dz1

)

×
∑

w2∈S1
N

(
3 +

1√
2πC2β−1a−2(logN)2

×
∫ ∞

−∞
exp

(
− (z2 − w2 − y1)

2

2C2β−1a−2(logN)2

)
dz2

)
≤ Ca−2(logN)2

∑
w1∈S1

N

∑
w2∈S1

N

16

≤ Ca−2N2(logN)2.

The number 16 in the next to last line above comes from evaluating
the standard Gaussian integrals in the previous two lines.

Substituting (3.6) into (3.5) gives∑
z,w∈S2

N , z ̸=w

∫
∥y∥≤1

p̂z,w(y)dy ≤ Ca−2N2(logN)2.

Together with (3.1) we get that

(3.7)
Ĩ1 ≤ (2N + 1)2 + Ca−2N2(logN)2

≤ C̃(a−2(logN)2 ∨ 1)N2.

Case 2: d ≥ 3. From Proposition 3.1(ii) we have

(3.8) p̂(i)z,w(yi) ≤
1√

2πC1β−1
exp

(
− a2(zi − wi − yi)

2

2C2β−1

)
.
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From (3.3) and (3.8) we therefore get∑
z,w∈Sd

N , z ̸=w

∫
∥y∥≤1

p̂z,w(y)

≤ C
∑

z,w∈Sd
N , z ̸=w

∫
y∈[−1,1]d

1

(2πC1β−1)d/2
exp

(
− a2∥z−w − y∥2

2C2β−1

)
dy.

The rest of the proof is similar to Case 1, with the only difference that
we do not have the dependence in logN in the Gaussian density. This
leads to,

Ĩ1 ≤ C̃(a−2 ∨ 1)Nd.

Since from (2.15) we have that

I1 = γĨ1,

this completes the proof of Proposition 2.2 parts (i) and (ii). □

Proof of Lemma 3.2. Using the fact that f(z) := exp
(
−κ(z−w−y)2

)
is monotone decreasing for z > w + y and since y ∈ [−1, 1] we get,
(3.9)∑

z≥w+2

exp
(
− κ(z − w − y)2

)
≤
∫ ∞

w+1

exp
(
− κ(z − w − y)2

)
dz.

Similarly using the fact that f(z) is monotone increasing for z < w+ y
we get
(3.10)∑

z≤w−2

exp
(
− κ(z − w − y)2

)
≤
∫ w−1

−∞
exp

(
− κ(z − w − y)2

)
dz.

Finally, we have,

(3.11)

w+1∑
z=w−1

exp
(
− κ(z − w − y)2

)
≤ 3.

From (3.9)–(3.11) we get∑
z∈S1

N

exp
(
− κ(z − w − y)2

)
≤ 3 +

∫ ∞

−∞
exp

(
− κ(z − w − y)2

)
dz.

□
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4. Proof of Proposition (2.2) (iii)

Proof of Proposition (2.2) (iii) . Recall that I2 was defined in (2.15),

(4.1) I2 = −
d∑

i=1

∑
ℓ∈S1

N\{0}

Ê(a)
[
Y

(i)
ℓei

]
,

where Y
(i)
ℓei

was defined in (2.14). We further introduce the following
notation:

z
(i)
k1,...,kd

=
(x

(i)
k1,...,kd

)2

2(2βλk1,...,kd)
−1

, w
(i)
jei

=
(x

(i)
jei

+ aαj)
2

2(2βλjei)
−1

,

and

y
(i)
ℓei

=
2aαℓx

(i)
ℓei

+ (aαℓ)
2

2(2βλℓei)
−1

.

Then from (2.11) and (2.12) we have

(4.2)

Ê(a)
[
Y

(i)
ℓei

]
=

1

CN,β,d,D

∫
y
(i)
ℓei

exp

(
−

d∑
m=1

( ∑
(k1,...,kd)∈Sd

N\{jem: j∈S1
N}

z
(m)
k1,...,kd

+
∑

l∈S1
N\{0}

w
(i)
lem

)) d∏
r=1

N(d)∏
k=1

dx
(r)
k ,

where CN,β,d,D was defined in (2.5).
Since the expected value in (4.2) is symmetric with respect to i, we

can use i = 1 in what follows in order to ease the notation.

Ê(a)
[
Y

(1)
ℓe1

]
=

1

CN,β,d,D

∫
y
(1)
ℓe1

exp(−w
(1)
ℓe1

)

×
∫

exp

(
−
( d∑

i=1

∑
(k1,...,kd)∈Sd

N\{jei: j∈S1
N}

z
(i)
k1,...,kd

+
d∑

i=2

∑
j∈{−N,...,N}\{0}

w
(i)
jei

+
∑

j∈S1
N\{0,ℓ}

w
(1)
je1

)) d∏
r=1

N(d)∏
k=1

dx
(r)
k .

(4.3)

We notice that we have three types of integrals above, which can be
evaluated as follows. We have d((2N +1)d − (2N +1)) integrals of the
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form∫
R
exp

(
− z

(i)
k1,...,kd

)
dx

(i)
k1,...,kd

=

∫
R
exp

(
−

(x
(i)
k1,...,kd

)2

2(2βλk1,...,kd)
−1

)
dx

(i)
k1,...,kd

=
√
2π(2βλk1,...,kd)

−1/2.

We have 2N(d− 1) + 2N − 1 integrals of the form∫
R
exp

(
− w

(i)
jei

)
dx

(i)
jei

=

∫
R
exp

(
−
(x

(i)
0i(j)

+ aαj)
2

2(2βλjei)
−1

)
dx

(i)
jei

=
√
2π(2βλjei)

−1/2,

and one integral as follows∫
yℓe1 exp(−w

(1)
ℓe1

)dx
(1)
ℓe1

=

∫
R

2aαℓx
(1)
je1

+ (aαℓ)
2

2(2βλℓe1)
−1

exp

(
−
(x

(1)
ℓe1

+ aαℓ)
2

2(2βλℓe1)
−1

)
dx

(1)
ℓe1

= −
√
2π

(aαℓ)
2

2(2βλℓe1)
−1/2

.

Plugging in all the above integrals into (4.3) gives

Ê(a)
[
Y

(1)
ℓe1

]
= − 1

CN,β,d,D

√
2π

(aαℓ)
2

2(2βλℓe1)
−1/2

×
d∏

i=1

∏
(k1,...,kd)∈Sd

N\{jei: j∈S1
N}

√
2π(2βλk1,...,kd)

−1/2

×
d∏

i=2

∏
j∈S1

N\{0}

√
2π(2βλjei)

−1/2
∏

j∈S1
N\{0,ℓ}

√
2π(2βλje1)

−1/2

= − 1

CN,β,d,D

(2π)((2N+1)d−1)d/2(aαℓ)
2λℓe1

2(2β)((2N+1)d−1)d/2−1

d∏
i=1

∏
(k1,...,kd)∈Sd

N\{0}

1

λ
1/2
k1,...,kd

.

Together with (2.5) we get

(4.4) Ê(a)
[
Y

(1)
ℓe1

]
= −β(aαℓ)

2λℓe1 .
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Plugging (4.4) into (4.1) gives

(4.5)

I2 = β
d∑

i=1

∑
ℓ∈S1

N\{0}

(aαℓ)
2λℓei

= dβa2
∑

ℓ∈S1
N\{0}

α2
ℓλℓe1 ,

where we used the fact that λℓei = λℓe1 , by the symmetry of the eigen-
values (see (2.3)).

In order to complete the proof we introduce the following lemma,
which will be proved at the end of this section.

Lemma 4.1. There exists a constant C > 0 not depending on N and
β such that, ∑

j∈S1
N\{0}

α2
jλje1 ≤ CNd.

From Lemma 4.1 and (4.5) we conclude that

(4.6) I2 ≤ Cβa2N2,

which completes the proof of Proposition 2.2 part (iii). □

Proof of Lemma 4.1. From (2.8) we have

n = ϕd−1
0

∑
j∈S1

N\{0}

ϕj(n)αj,

where we recall that

(4.7) ϕ0 = ϕ0(x) = (2N + 1)−1/2.

Since {ϕj}N−N are orthonormal we get

αj =
N∑

n=−N

n

ϕd−1
0

ϕj(n), j ̸= 0, and α0 = 0.

We recall the eigenfunctions from Section 2.3. For the cosine eigen-
functions we have

N∑
−N

n cos

(
2kπ

2N + 1
n

)
= 0,

and therefore for all k = 1, .., N ,

(4.8) α−k = 0.
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So together with (2.4) we have

αk =
N∑

n=−N

n

ϕd−1
0

ϕk(n)

= (2N + 1)(d−1)/2

N∑
n=−N

nϕk(n)

= (2N + 1)(d−1)/2 1

(N + 1/2)1/2

N∑
n=−N

n sin

(
(2k − 1)π

2N + 1
n

)

=
√
2(2N + 1)(d−2)/2

N∑
n=−N

n sin

(
(2k − 1)π

2N + 1
n

)
.

Let

Y :=
(2k − 1)π

2N + 1
.

Then we have,

αk√
2(2N + 1)(d−2)/2

=
N∑

n=−N

n sin (Y n)

=
1

2
csc2

(
Y

2

)[
(N + 1) sin(NY )−N sin((N + 1)Y )

]
=

(N + 1) sin(NY )−N sin((N + 1)Y )

2 sin2
(
Y
2

)
=

sin(NY ) + 2N sin
(
−Y

2

)
cos
((
N + 1

2

)
Y
)

2 sin2
(
Y
2

) .

Note that (
N +

1

2

)
Y =

1

2
(2N + 1)Y =

(
k − 1

2

)
π,

and so for any integer k,

cos

((
N +

1

2

)
Y

)
= cos

((
k − 1

2

)
π

)
= 0.

Therefore
αk√

2(2N + 1)(d−2)/2
=

sin(NY )

2 sin2
(
Y
2

) .
Note that since k ∈ {1, 2, . . . , N} we have

0 <
Y

2
≤ π

2
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and so ∣∣∣∣sin(Y

2

)∣∣∣∣ ≤ Y

2
≤ C

k

N
.

It follows that,

(4.9)

|αk| ≤C(2N + 1)(d−2)/2

∣∣∣∣∣sin(NY )

sin2
(
Y
2

) ∣∣∣∣∣
≤CN (d−2)/2

∣∣∣∣∣ 1

sin2
(
Y
2

)∣∣∣∣∣
≤CN (d+2)/2

(
1

k

)2

.

Recall that λk is eigenvalue of ϕk. Since λ0 = 0, from (2.3) and (2.4)
we have

(4.10) λje1 = λj =

(
(2k − 1)π

2N + 1

)2

.

Using (4.8), (4.9) and (4.10) we get∑
j∈S1

N\{0}

α2
jλje1 ≤ C

N∑
j=1

Nd+2

(
1

j

)4(
(2j − 1)π

2N + 1

)2

≤ CNd

N∑
j=1

1

j2

≤ CNd.

□

5. Large distance tail estimates

We define

ū(i) = max
w,z∈SN

|u(i)(z)− u(i)(w)|.

Assume first that d = 2. Let α > 0, then from (1.8) we have
(5.1)
logQN(RN > αN(logN)3/2) ≤ logP (RN > αN(logN)3/2)− logZN .

Note that

(5.2)
P (RN > αN(logN)3/2) ≤ 2P

(
∪2

i=1 {ū(i) > αN(logN)3/2/2}
)

≤ 4P
(
ū(1) > αN(logN)3/2/2

)
,

where we used the fact that ū(i) are i.i.d..
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We will use the following standard bound on the tail distribution of
the Gaussian random variable W ∼ N(0, σ2),

P (W > a) ≤ σ

σ + a
exp

(
−a2

2σ2

)
.

Using this bound and Proposition 3.1(i) we have for any K ≥ 1,

P
(
|u(i)(z)− u(i)(w)| > β−1/2KN(logN)3/2

)
≤ C exp

{
−K2N2(logN)3

2c1(logN)2

}
≤ C exp

{
−c̃1K

2N2 logN
}
.

Note that this bound is uniform in z,w ∈ S2
N .

It follows that

P
(
ū(i) > β−1/2KN(logN)3/2/2

)
≤

∑
w,z∈S2

N

P
(
|u(1)(z)− u(1)(w)| > β−1/2KN(logN)3/2/2

)
≤ C(2N + 1)4 exp

{
− c̃1

4
K2N2 logN

}
≤ C exp

{
− c̃1

8
K2N2 logN

}
.

Together with (5.2) we have

P (RN > αβ−1/2N(logN)3/2) ≤ C exp

{
− c̃1α

2N2 logN

8

}
.

Using this bound together with Proposition 2.1(i) and (5.1) we get for
d = 2, and α ≥ 1,

logQN(RN > αβ−1/2(β + γ)1/2N(logN)3/2)

≤ logP (RN > αβ−1/2(β + γ)1/2N logN)− logZN

≤ −(β + γ)N2 logN
(
c3α

2 − c4
)
.

We then can choose α to be large enough to get the large distance tail
estimate in Theorem 1.1. The proof for d ≥ 3 follows similar lines, only
now we use Proposition 2.1(ii) and Proposition 3.1(ii).
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6. Small distance tail estimates

Let ε > 0, then from (1.8) we have the following:
(6.1)

logQN(RN < εN) ≤ logE

[
exp

{
−γ

∫
Rd

ℓN(y,u)
2dy

}
1{R<εN}

]
− logZN .

Let

(6.2) J̃ := E

[
exp

{
−γ

∫
Rd

ℓN(y,u)
2dy1{R<εN}

}]
.

Note that on {R < εN} we have

(6.3)

∫
Rd

ℓN(y,u)
2dy = 2dNdεd

∫ εN

−εN

· · ·
∫ εN

−εN

ℓN(y,u)
2 1

2dNdεd
dy

≥ 2dNdεd
(∫ εN

−εN

· · ·
∫ εN

−εN

ℓN(y,u)
1

2dNdεd
dy

)2

=
1

2dNdεd

(∫ εN

−εN

· · ·
∫ εN

−εN

ℓN(y,u)dy

)2

,

where we used Jensen’s inequality. Since on {RN < εN} we have∫ εN

−εN

· · ·
∫ εN

−εN

ℓN(y,u)dy = |SN | = (2N + 1)d,

and together with (6.3) we get that

(6.4)

∫
Rd

ℓN(y,u)
2dy ≥ 2dNd

εd
.

From (6.2) and (6.4) we have

(6.5) J̃ ≤ e−γ 2dNd

εd .

Together with (6.1), (6.2), (6.5) with ε(logN)−1/2 instead of ε, and
Proposition 2.1(i) we get for d = 2,

logQN(RN < εγ1/2(β + γ)−1/2N(logN)−1/2)

≤ −(β + γ)

(
4N2 logN

ε2
− CN2 logN

)
.

By choosing ε > 0 small enough it follows that

lim
N→∞

logQN(RN < εγ1/2(β + γ)−1/2N(logN)−1/2) = 0.
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Repeating the same steps as in the case where d = 2 gives the following
result for d ≥ 3,

logQN

(
RN < εγ1/d(β + γ)−1/dN

)
≤ −(β + γ)

(
Nd

ε2
− CNd

)
.

Then choosing ε > 0 sufficiently small and taking the limit where
N → ∞ completes the proof of Theorem 1.1.

7. Proof of Proposition 3.1

Proof of Proposition 3.1. We prove the result for the case where β = 1.
The extension for any β > 0 follows from (1.3) by scaling. We start
with the proof of the lower bound. We want to show that for d ≥ 2,
there exists a constant C = C(d) such that for all w, z ∈ Sd

N , w ̸= z,
i = 1, . . . , d we have

C(d) ≤ Var(u(i)(z)− u(i)(w)).

Since (u(i))i=1,...,d are i.i.d., we will omit the superscript i for ease of
notation. Let Fz be the σ-field generated by {u(v) : v ∈ Sd

N \ {z}}
and define

û(z) = E[u(z)|Fz].

By using the conditional expectation projection theorem and then con-
ditioning on Fz we get

Var(u(z)− u(w)) = E
[
(u(z)− u(w))2

]
≥ E

[
(u(z)− û(z))2

]
= E

[
E
[
(u(z)− û(z))2

∣∣Fz

]]
.

Hence it is enough to show that there exists a constant C(d) > 0 not
depending on z such that

(7.1) Var[u(z)|Fz] = E
[
(u(z)− û(z))2

∣∣Fz

]
≥ C(d).

We consider the nearest neighbor values of u(z), which we denote by
{u(y): y ∼ z}. These values are fixed once we condition on Fz. We
further denote by N (z) the number neighboring sites of z. Note that
for any d ≥ 2 we have d ≤ N (z) ≤ 2d. Then the part of the exponent
of (1.5) which is relevant to (7.1) is∑

y∼z

(u(z)− u(y))2 = N (z) · u(z)2 + 2u(z)
∑
y∼z

u(y) + C,
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where C is Fz-measurable. By completing the squares we get

∑
y∼z

(u(z)− u(y))2 = N (z)

(
u(z)− 1

N (z)

∑
y∼z

u(y)

)2

+ C ′

= N (z) (u(z)− C ′′)
2
+ C ′,

(7.2)

where again C ′ and C ′′ are Fz-measurable. It follows from the equality
in (7.1) and from (7.2) that conditioned on Fz, u(z) is a Gaussian
random variable with variance (2N (z))−1 > (4d)−1 and therefore (7.1)
follows.

Next we prove the upper bound. Recall that V was defined in (2.1).
Let ex−ey ∈ V. Recall that u has density function given by (1.5). Let
X = {Xt}t≥0 be the continuous time Markov chain associated with ∆
and {Pt}t≥0 the corresponding probability transition function.

It follows that the variance of u(x) − u(y) is given in terms of ∆−1

as follows:

Var(u(x)− u(y)) =
〈
(ex − ey),∆

−1(ex − ey)
〉

=

∫ ∞

0

⟨(ex − ey),Pt(ex − ey)⟩ dt.
(7.3)

7.1. Estimation of the integrand in (7.3) for small t. We con-
sider the case where t ≤ K0N

2 logN for some constant K0 > 0 to be
determined. Note that we can extend Pt to a semigroup on all of V+,
corresponding to the same random process Xt. We write Px to indicate
the starting point X0 = x.

Next, we note that the components X(k), k = 1, . . . , d of X are
independent, since their jump times are independent Poisson processes
which determine the jumps of X. Let x = (x1, . . . , xd) ∈ Sd

N , then

(7.4) ⟨ex,Ptex⟩ = Px[Xt = x] =
d∏

k=1

Pxk
(X

(k)
t = xk).

In what follows we focus on the marginal distribution of X(k). We write

z = xk, and Zt = X
(k)
t and get

(7.5) Pz(Zt = z) =
∞∑
n=0

P (Tt = n)Pz(Sn = z),

where Tt Poisson process with intensity 1/d and Sn is a discrete-time
nearest-neighbor one-dimensional simple random walk with reflection
at the boundary ±N .
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Let Y be a Poisson random variable with mean λ then using Markov
inequality we get for all θ > 0 and y > λ,

(7.6)
P (Y > y) ≤ E[eθY ]

eθy

≤ (eλ)ye−λ

yy
,

where we choose θ = log(y/λ) > 0 in the second inequality.
Let K1 > eK0. Recall that t ≤ K0N

2 logN and that Tt is a Poisson
random variable with mean (2d)−1t. From (7.6) we get the following
bound on the tail distribution of Tt,

(7.7)
P (Tt > K1N

2 logN) ≤ e−(2d)−1t((2d)−1te)K1N2 logN

(K1N2 logN)K1N2 logN

≤ e−cN2 logN ,

for some constant c > 0.
Using the reflection principle we note that

Pz(Sn = z) =
∑
k∈Z

Pz

(
Wn = 2Nk + (−1)kz

)
,(7.8)

where {Wn}n≥1 is a discrete-time simple random walk on Z.
Since Pz(Wn = z) = 0 if n is odd, we need to take into account only

even number of steps, so we have

Pz(W2m = z) =

(
2m

m

)
2−2m.

Note that the transition probability from z to all other points 2Nk +
(−1)kz in the right-hand side of (7.8) can be computed according to
the same binomial distribution, since these transitions also require an
even number of steps. Moreover the maximum of the above binomial
distribution (i.e. Bin(2m, 1/2)) is attained at m so we must have

(7.9) Pz

(
W2m = 2Nk + (−1)kz

)
≤ Pz(W2m = z), for all k ∈ Z.

Let ℓ(N) be the number of points from the set {2Nk+(−1)kz : z ∈ Z}
visited by Wn up to n = [K1N

2 logN ]. We will use a special case of
Corollary A.2.7 in [9] which states that there exist constants C1, c2 > 0
such that

P
(
max

i=0,...,n
|Wn| > s

√
n
)
≤ C1e

−c2s2 , for all n ≥ 0, s > 0,
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in order to bound the tail probability of ℓ(N) as follows. Let K3 > 0
then we have

(7.10)

P (ℓ(N) > K3 logN) ≤ P

(
sup

0≤i≤K1N2 logN

|Wi| >
K3

4
N logN

)
≤ C1e

−c2(K2
3/(16K2)) logN

≤ C1N
−c2K2

3/(16K2).

We would like to bound (7.5) on the event Tt ≤ K1N
2 logN . From

(7.8) we have
(7.11)
K1N2 logN∑

m=0

P (Tt = 2m)Pz(S2m = z)

=

K1N2 logN∑
m=0

P (Tt = 2m)
∑
k∈Z

Pz

(
W2m = 2Nk + (−1)kz

)
=

K1N2 logN∑
m=0

P (Tt = 2m)
∑

|k|≤2−1K3 logN

Pz

(
W2m = 2Nk + (−1)kz

)
+

K1N2 logN∑
m=0

P (Tt = 2m)
∑

|k|>2−1K3 logN

Pz

(
W2m = 2Nk + (−1)kz

)
:= J1 + J2.

From (7.10) it follows that J2 is bounded by

J2 ≤
K1N2 logN∑

m=0

P (Tt = 2m)P (ℓ(N) > K3 logN)

≤ C1N
−c2K2

3/(16K2)

∞∑
m=0

P (Tt = 2m)

≤ CN−r.

(7.12)

for r > 0 to be determined. Note that the last inequality follows by
choosing K3 large enough.

Using (7.9) and we get for J1 that

(7.13) J1 ≤ K3 logN

K1N2 logN∑
m=0

P (Tt = 2m)Pz (W2m = z) .
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We estimate the above sum as follows,
∞∑

m=0

P (Tt = 2m)Pz(W2m = z) =
∞∑

m=0

(t/d)2m

(2m)!
e−t/d ·

(
2m

m

)
2−2m

= e−t/d

∞∑
m=0

(t/(2d))2m

(m!)2
.

(7.14)

Recall that

I0(2z) =
∞∑

m=0

z2m

(m!)2
,

where I0 is a modified Bessel function of the first kind, so for large
values of y, I0 has the following asymptotics,

I0(y) ∼
ey√
2πy

and so by taking y = 2z = 2t/(2d) = t/d, it follows that there exists a
constant C > 0 not depending on z such that

(7.15)

∞∑
m=0

P (Tt = 2m)Pz(W2m = z) ≤ Ce−t/d et/d√
2πt/d

≤ Ct−1/2, for all t ≥ 1.

From (7.11)–(7.13) and (7.15) it follows that

K1N2 logN∑
m=0

P (Tt = 2m)Pz(S2m = z) ≤ C logNt−1/2 +N−r.

Using this bound together with (7.5) and (7.7) we have

Pz(Zt = z) ≤ C1 logNt−1/2 + C2N
−r + e−cN2 logN

≤ C(logNt−1/2 +N−r).
(7.16)

From (7.4) and (7.16) we get

(7.17)

| ⟨(ex − ey),Pt(ex − ey)⟩ |
≤ 2 ⟨ex,Ptex⟩+ 2 ⟨ey,Ptey⟩
≤ C(d)(logNt−d/2 +N−rd), for all 0 ≤ t ≤ K0N

2 logN.

From (7.17) and by choosing r sufficiently large we finally get,
(7.18)∫ K0N2 logN

1

| ⟨(ex − ey),Pt(ex − ey)⟩ |dt ≤

{
C(logN)2 if d = 2,

C if d ≥ 3.
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7.2. Estimation of the integrand in (7.3) for large t. Here we
consider the case where t ≥ KN2 logN with K sufficiently large. We
again consider the one-dimensional projection of the continuous time
random walk Z reflected at ±N , as in (7.5). We expect that in this case
there is a large probability of Z reaching the boundary on or before time
t, hence we expect the semigroup Pt to even out any given function.
Thus we keep both ex, ey in (7.3), use the fact that ⟨ex−ey,Pt(ex−ey)⟩
mostly cancels out. We therefore show that Px (Zt = x)− Py (Zt = x)
is small for large t uniformly in x, y.

We will use the coupling method in order to bound the difference
in the probabilities above. To this end, we construct two i.i.d copies

Z(1), Z(2) of the process Z with Z
(1)
0 = x and Z

(2)
0 = y on the same

probability space. We seek a (random) coupling time τ such that if

t > τ then Z
(1)
t = Z

(2)
t . In that case we would have

(7.19) |Px (Zt = x)− Py (Zt = x)| ≤ P (τ > t).

Next we derive an upper on P (τ > t). For any process Y , and for
z ∈ S1

N define

τYz = inf{t ≥ 0 : Yt = z}.

Without loss of generality assume that x > y. We observe that in this
case we have for Z(1) and Z(2) as above that τ ≤ τZ

(1)

−N . Using reflection
and translation invariance we get

(7.20)

P (τ > t) ≤ Px(τ
Z(1)

−N > t)

≤ PN−x(τ
Y
2N > t)

≤ P0(τ
Y
2N > t),

where Y = {Yt}t≥0 is a continuous time simple random walk on Z,
reflected at 0 with jumps rate similar to Z(1).

Recall that W as simple random walk on Z and {Tt}t≥0 is a Poisson
process with intensity 1/d. By Proposition 2.4.5 in [9] we get that
there exists constants C1, C2 > 0 such that for all integer n > 0 and
any r > 0 we have

P0(τ
|W |
n > rn2) ≤ C1e

−C2r.
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We therefore get

(7.21)

P0(τ
Y
2N > t) =

∞∑
m=0

P (Tt = m)P0(τ
|W |
2N > m)

≤ C1

∞∑
m=0

e−t/d (t/d)
m

(m)!
e−C2mN−2

= C1E[e−C2N−2Tt ]

= C1 exp

{
t

d
(e−C2N−2 − 1)

}
≤ C̃1e

−C̃2tN−2

,

where we have used the expression for the characteristic function of Tt.
Combining (7.19), (7.20) and (7.21) gives

|Px (Zt = x)− Py (Zt = x)| ≤ C̃1e
−C̃2tN−2

,

for all x, y ∈ [−N,N ], t > 0.
(7.22)

From (7.4) we get,
(7.23)
|⟨ex,Ptex⟩ − ⟨ey,Ptex⟩| = |Px[Xt = x]− Py[Xt = x]|

=

∣∣∣∣∣
d∏

k=1

Pxk
(X

(k)
t = xk)−

d∏
k=1

Pyk(X
(k)
t = xk)

∣∣∣∣∣
≤ C(d)e−C̃2tN−2

,

where we used (7.22) and the triangle inequality in the last inequality.
Then by choosing K0 large enough, we get from (7.23) that

(7.24)∫ ∞

K0N2 logN

| ⟨(ex − ey),Pt(ex − ey)⟩ |dt ≤ C(d)

∫ ∞

K0N2 logN

e−C̃2tN−2

dt

≤ CN2N−C̃2K0

≤ C̃.

Finally from (7.18), (7.24) and by noting that the integral on the right-
hand side of (7.3) is bounded trivially by a constant on the integration
region [0, 1] we get the upper bound in Proposition 3.1. □

Appendix A. Some heuristic ideas

We introduce some heuristic ideas to shed light on our main results.
We consider parameters i, j ∈ {−N, . . . , N}, and let Xi,j ∈ R2. We
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define the energy of for the field X as

EN(X) =
1

2

∑
|(i,j)−(i′,j′)|=1

|Xi,j −Xi′,j′|2

Then we define PN to be a constant times exp(−EN(X)).
For x ∈ R2, let ℓN(x) be the number of points Xi,j within distance

1/2 of x. We weight the probability PN by exp(−γEN(X)) where

EN(X) =

∫
R2

ℓN(x)
2dx.

Now we argue heuristically, and suppose that the Xi,j are evenly
spread in a ball of radius R. One way to spread them evenly is to let

Xi,j ≈
R

N
· (i, j)

In that case,

EN(X) ≈ C

(
R

N

)2

N2 = CR2.

Also, with the hypothesis of even spreading, we have that either ℓ(x) =
0 or

ℓN(x) ≈ C
N2

R2

and then

EN(X) ≈ C

(
N2

R2

)2

R2 = C
N4

R2

Equating EN(X) and EN(X), we get

R2 =
N4

R2

and so
R = N.
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