
Dissipation in Parabolic SPDEs II:

Oscillation and decay of the solution∗

Davar Khoshnevisan
University of Utah

Kunwoo Kim
POSTECH

Carl Mueller
University of Rochester

October 11, 2021

Abstract

We consider a stochastic heat equation of the type, ∂tu = ∂2xu+ σ(u)Ẇ on (0 ,∞)× [−1 , 1]
with periodic boundary conditions and on-degenerate positive initial data, where σ : R → R is
a non-random Lipschitz continuous function and Ẇ denotes space-time white noise. If addi-
tionally σ(0) = 0 then the solution is known to be strictly positive; see Mueller [15]. In that
case, we prove that the oscillation of the logarithm of the solution decays sublinearly as time
tends to infinity. Among other things, it follows that, with probability one, all limit points of
t−1 supx∈[−1,1] log u(t , x) and t−1 infx∈[−1,1] log u(t , x) must coincide. As a consequence of this
fact, we prove that, when σ is linear, there is a.s. only one such limit point and hence the entire
path decays almost surely at an exponential rate.
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1 Introduction

Let T = R/(2Z) denote the 1-dimensional torus, and identify T with the interval [−1 , 1] in the
usual way. We are interested in the large-time behavior of the unique continuous solution u to the
following stochastic heat equation,

∂tu(t , x) = ∂2
xu(t , x) + σ(u(t , x))Ẇ (t , x) for all (t , x) ∈ (0 ,∞)× T, (1.1)

where Ẇ denotes a space-time white noise and σ : R → R is a non-random, Lipschitz continuous
function that satisfies the following:

σ(0) = 0 and |σ(z1)− σ(z2)| 6 Lip(σ)|z1 − z2| for all z1, z2 ∈ R. (1.2)

We consider (1.1) subject to having the initial profile u0 : T → R+ which is assumed to be an
element of L∞(T); that is, u0 a non-negative, bounded and measurable function that is either
non-random or random but independent of the noise Ẇ . Let us mention also that the quotient
topology of T automatically imposes a periodic boundary condition on (1.1); that is, (1.1) is tacitly
restricted additionally to satisfy u(t ,−1) = u(t , 1) for all t > 0.

With these assumptions in place, standard arguments show that (1.1) has a unique random-field
solution valid for all times t > 0; see Walsh [20], Chapter 3. Walsh’s presentation is for the same
SPDE but with different boundary conditions. Small adjustments to that argument will establish
the existence and uniqueness of a solution in the present setting.

We pause to remind that (1.1) does not make sense if we interpret it literally as written, since
we do not expect u to be differentiable in either of its variable. As was pointed out earlier, for
example by Walsh [20], (1.1) is shorthand for the random evolution equation (1.11) in the footnote.
The latter is also sometimes known as the “mild,” or “integral,” formulation of (1.1).

To avoid degeneracies, we will also assume that infx∈T u0(x) > 0.1 In this way, Condition (1.2)
assures us that

P {u(t , x) > 0 for all t > 0 and x ∈ T} = 1; (1.3)

see Mueller [15].
In a precursor to this paper (see [12]), together with S.-Y. Shiu we proved the following. If we

additionally assume that infz 6=0 |σ(z)/z| > 0, then there exist non-random real numbers λ1 > λ2 > 0
such that

P

{
e−λ1t+o(t) 6 inf

x∈T
u(t , x) 6 sup

x∈T
u(t , x) 6 e−λ2t+o(t) as t→∞

}
= 1. (1.4)

This proves that the solution to the stochastic heat equation (1.1) dissipates precisely exponentially
as time increases. In this context, “dissipation” is another way to say that the solution tends to 0
uniformly in the space variable x.

Let U denote the solution to the non-random heat equation,

∂tU(t , x) = ∂2
xU(t , x) for (t , x) ∈ (0 ,∞)× T,

subject to U(0) = u0, where u0 is the initial profile of the SPDE (1.1). We can write U(t , x) =´
T pt(x , y)u0(y) dy where pt(x , y) denotes the heat kernel on T; see (1.9) below for an expression

1The condition infT u0 > 0 can be replaced with the weaker condition |{u0 > 0}| > 0 without changing either
(1.3) or (1.4). Mueller [15] proved that the weaker condition |{u0 > 0}| > 0 suffices to imply (1.3). Then, we first
condition on u(t0) for a fixed value of t0 > 0, and then use the Markov property and (1.3) to conclude that (1.4)
continues to hold when |{u0 > 0}| > 0.
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for p. It is well known that, as t→∞, pt(x , y)→ 1/|T| = 1/2 uniformly for x and y in T. Thus we
find limt→∞ U(t , x) = 1

2

´
T u0(y) dy > 0 uniformly for x ∈ T, in contrast to (1.4). In other words,

the dissipation result (1.4) holds in large part because the PDE (1.1) is forced randomly by the
white noise Ẇ .

Here, we continue our analysis of (1.4), and introduce methods that yield the following almost-
sure asymptotic result, which is the main result of this paper. The remainder of the paper is
dedicated to the proof of this result. Before we state the result, let us recall that the oscillation of
a function f : T→ R is defined as follows: For every relatively open set X ⊂ T,

OscX (f) = sup
x∈X

f(x)− inf
y∈X

f(y) = sup
x,y∈X

|f(x)− f(y)|.

Theorem 1.1. With probability one, OscT(log u(t)) 6 (log t)8+o(1) as t→∞.

Remark 1.2. We cannot reduce the exponent 8 in Theorem 1.1 with our present methods, and
we do not know if this exponent is sharp.

Since infx∈T log u(t , x) + log 2 6 log ‖u(t)‖L1(T) 6 supx∈T log u(t , x) + log 2, it follows from
Theorem 1.1 that, with probability one,

t−1 log ‖u(t)‖L∞(T) − t−1 log ‖u(t)‖L1(T) → 0 as t→∞.

The quantity ‖u(t)‖L∞(T) = supx∈T u(t , x) measures the size of the tallest peaks of u(t), and
‖u(t)‖L1(T) =

´
T u(t , x) dx denotes the “total mass” at time t. In this way we see that the tallest

peaks and the total mass almost surely have the same asymptotic behavior, to leading exponential
order. As it turns out, this implication can be effectively reversed: We first prove in §3 the following
improvement of the preceding display:

log ‖u(t)‖L∞(T) − log ‖u(t)‖L1(T) = O(log log t) as t→∞. (1.5)

Then, in §4 we appeal to a support argument of Mueller [15] in order to prove that (1.5) implies
that infx∈T u(t , x) decays at the same exponential rate as ‖u(t)‖L1(T). The combination of these
efforts establishes Theorem 1.1.

Next, we make a few comments about the nature of the decay of the solution to (1.1).
Thanks to Theorem 1.1 and our earlier collaboration with S.-Y. Shiu [12] on the dissipation of

parabolic SPDEs, we can see that

−∞ < lim inf
t→∞

t−1 inf
x∈T

log u(t , x) = lim inf
t→∞

t−1 sup
x∈T

log u(t , x) < 0, and

−∞ < lim sup
t→∞

t−1 inf
x∈T

log u(t , x) = lim sup
t→∞

t−1 sup
x∈T

log u(t , x) < 0,

provided additionally that infz 6=0 |σ(z)/z| > 0. It is natural to try and find conditions that ensure
that the above lim infs and lim sups are in fact bona fide limits. Such conditions would readily
imply that there exists a number λ > 0 such that

lim
t→∞

sup
x∈T

∣∣t−1 log u(t , x) + λ
∣∣ = 0 almost surely. (1.6)

That is, we would like to know when the entire solution dissipates at a precise exponential rate. In
the language of the literature on random media, (1.6) says that the solution to (1.1) has a uniform
almost-sure Lyapunov exponent [4,5,7]. The earlier combined works of Carmona and Molchanov [5]
and Zeldovich, Molchanov, Ruzmaikin, and Sokolov [21,22] contain engaging discussions of the role
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of dissipation, and more generally intermittency, in equations of random media from mathematical
and physical viewpoints, respectively.

We are able to use Theorem 1.1 in order to carry out this program in the special case of the
parabolic Anderson model only.

Theorem 1.3 (A parabolic Anderson model). Suppose in addition that there exists Q > 0 such
that σ(z) = Qz for all z ∈ R, and that infx∈T u0(x) > 0. Then, there exists a non-random real
number λ > 0 such that (1.6) holds. Moreover, λ does not depend on the particular choice of u0.

There is a wide literature that implies the dissipation of the solution, particularly when:
1. (1.1) is replaced by a similiar SPDE on R+ × R;
2. Almost sure convergence is replaced by another mode of convergence; and more significantly,
3. Uniform convergence in (1.6) is replaced with pointwise convergence.

For example, Bertini and Giacomin [3] have studied (1.1) on R+ × R in the special case that
σ(z) = Qz for all z ∈ R and u0 = exp(B) where B is a two-sided Brownian motion that is
independent of Ẇ [to ensure stationarity]. They proved that for every non random ϕ ∈ C∞0 (R),

1

t

ˆ ∞
−∞

ϕ(y) log u(t , y) dy
L2(Ω)−−−−→ −Q

4

24

ˆ ∞
−∞

ϕ(x) dx as t→∞.

Ideally, one would like to know that the above holds when ϕ = δx for an arbitrary x ∈ R and with
L2(Ω)-convergence replaced by almost sure convergence. This would show that the [pointwise]
almost sure Lyapunov exponent of (1.1) is −Q4/24. Amir, Corwin, and Quastel [1] considered the
same SPDE as in [3], but started at u0 = δ0, and proved among other interesting things that indeed
for every x ∈ R fixed,

t−1 log u(t , x)
P−→ −Q

4

24
as t→∞. (1.7)

The more recent work of Ghosal and Lin [9] implies that (1.7) holds for a wide class of initial data.
Additional references can be found in the recent paper by Gu and Komorowski [10], where the
asymptotics of the linear form of (1.1) is considered, together with an associated central limit theo-
rem, via a Feynman-Kac representation of a smoothed version of (1.1) in spatial higher dimensions
than one.

There also are results with the desired almost sure convergence, particularly when (1.1) is
replaced with an SPDE on R+ × Zd, in which case ∂2

x is supplanted by the discrete Laplacian on
Zd. Notably, Carmona, Koralov, and Molchanov [4] and Cranston, Mountford, and Shiga [7] have
proved independently and nearly at the same time that Λ(Q) = limt→∞ t

−1 log u(t , x) exists almost
surely and is in (−∞ ,∞) a.s. for every fixed x ∈ Zd. Moreover, one can expect based on Ref.s [4,7]
that Λ(Q) < 0 for all sufficiently large values of Q.2

We pause the explore the sharpness of the linearity condition of Theorem 1.3.

Open Problem. Let us first suppose that there exists Q > 0 such that σ(z) = Qz for all z ∈ R.
In that case, we have seen that (1.6) holds for some λ = λ(Q), and one expects λ(Q) to have
nontrivial dependence on Q. For example, our recent work with S.-Y Shiu [12] proves this by
showing that, if in addition infz 6=0 |σ(z)/z| > 0, then Q−4λ(Q) is bounded from above and below
by positive constants, uniformly for all Q > 1. Now suppose instead that there exist large numbers

2To be sure, Carmona, Koralov, and Molchanov [4] and Cranston, Mountford, and Shiga [7] study the semi-discrete
stochastic partial differential equation ∂tu = κ∆u+ uḂ where κ > 0, ∆ denotes the discrete Laplacian on Zd, and Ḃ
is space-time white noise indexed by R+ × Zd. Their results imply that Λ(κ) = limt→∞ t

−1 log u(t , x) exists almost
surely, and satisfies Λ(κ) < 0 for all sufficiently small κ > 0.
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Q1 6= Q2 and large continuous non-overlapping intervals I1, I2, . . . ⊂ R such that σ(z) = Q1z
whenever z ∈ I2n for some n ∈ N, and σ(z) = Q2z when z ∈ I2n+1 for some n ∈ N. Then, Theorem
1.3 intuitively suggests that, for a suitable choice of the intervals I1, I2, · · · , we might expect u(t)
to decrease at an exponential rate λ(Q1) for a while, then switch to decaying at rate λ(Q2) for
a while, then back to the decay rate λ(Q1), and so on. This heuristic argument implies that the
linearity condition of Theorem 1.3 for σ is likely to be close to be sharp. It should be possible to
build on the quantitative assertions of this paper in order to make such counterexamples rigorous.
However, that undertaking would require a good deal more effort still. Because we are presently
concerned with establishing positive results, we leave a rigorous construction as an open problem.

Let us conclude the Introduction by defining some notation that is used throughout. As is
customary, we define Lip(f) to be the optimal Lipschitz constant of every real-valued function
f : I → R, defined any subinterval I of R; that is,

Lip(f) = sup
x,y∈I
x 6=y

|f(x)− f(y)|
|x− y|

.

Thus, we can interpret the constant Lip(σ) in (1.2) as the optimal such choice.
We occasionally let

St = sup
x∈T

u(t , x) = ‖u(t)‖L∞(T) for all t > 0, (1.8)

in order to simplify the exposition.
Define pt(x , y) to be the heat kernel associated to the Laplace operator on T [tacitly endowed

with periodic boundary conditions]. That is,

pt(x , y) = pt(x− y) =
1√
4πt

∞∑
n=−∞

exp

(
−(x− y + 2n)2

4t

)
for all t > 0 and x, y ∈ T. (1.9)

The heat kernel induces the transition semigroup {Pt}t>0 of Brownian motion on T, defined via

(Ptu0)(x) =

ˆ
T
pt(x , y)u0(y) dy for t > 0 and x ∈ T, (1.10)

and all non-negative u0 ∈ L∞(T). In this way, we can give rigorous meaning to the stochastic PDE
(1.1) using its mild formulation in the same manner as in Walsh [20]. Namely,

u(t , x) = (Ptu0)(x) +

ˆ
(0,t)×T

pt−s(x , y)σ(u(s , y))W (dsdy). (1.11)

For every real number k ∈ [1 ,∞), we always write

‖X‖k = {E(|X|k)}1/k

for the Lk(Ω)-norm of a random variable X ∈ Lk(Ω).
Throughout this paper, we follow the customary habit of writing f . g when we mean that

there exists a constant C > 0 such that f(x) 6 Cg(x) for all x in the stated range. We write f & g
iff g . f , and f � g is short-hand for the statement that both relations f . g and f & g hold.
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2 Proof of Theorem 1.3

Throughout this section, we assume that the hypotheses of Theorem 1.3 are met; that is,

u0(x) = 1 and σ(z) = Qz for all x ∈ T and z ∈ R, (2.1)

where Q > 0 is a fixed real number. With this in mind, we present the following which is the main
result of this section.

Theorem 2.1. limt→∞ t
−1 log ‖u(t)‖L∞(T) exists and is in (−∞ , 0) almost surely.

It is possible to quickly present a conditional proof of Theorem 1.3, given that we can establish
Theorems 1.1 and 2.1. Therefore, let us dispense with the proof of Theorem 1.3 first, conditionally
on Theorems 1.1 and 2.1. Then, we proceed to establish Theorem 2.1; that effort takes up the rest
of this section. Theorem 1.1 will be proved subsequently.

Conditional proof of Theorem 1.3. If the initial data is u0 ≡ 1, then we combine Theorems 1.1 and
2.1 in order to see that

−λ = lim
t→∞

t−1 sup
x∈T

log u(t , x) = lim
t→∞

t−1 inf
x∈T

log u(t , x),

almost surely, and λ > 0 is non random. This yields (1.6), provided that u0 ≡ 1.
Next, suppose u0 is a non-zero constant, say κ 6= 1. Since κ−1u solves (1.1) started identically

from 1 [with σ(z) = Qz], the first portion of the proof implies that u satisfies (1.6), and the exponent
λ does not depend on κ.

Finally, let us suppose u solves (1.1) with σ(z) = Qz for all z and 0 < infT u0 6 supT u0 < ∞.
In accord with the comparison theorem for SPDEs (see for example Shiga [18]),

u 6 u 6 u almost surely,

where u and u respectively solve ∂tv = ∂2
xv + QvẆ with constant initial profiles κ = infT u0 and

κ = supT u0. Apply the preceding portions of the proof respectively to u and u in order to see
that u satisfies (1.6), and the limiting exponent λ does not depend on the initial data u0 ∈ L∞(T)
provided that infT u0 > 0. This completes the proof.

The remainder of this section is devoted to proving Theorem 2.1.
In the case that (1.1) is replaced by the parabolic Anderson model on (0 ,∞) × Zd, with ∂2

x

replaced by the discrete Laplacian, Carmona and Molchanov [5] and Cranston, Mountford, and
Shiga [7] have shown that limt→∞ t

−1 log u(t , x) exists a.s. for every x ∈ Zd. That is a quite
similar result to the one announced in Theorem 2.1, but the results differ in two ways: First,
Theorem 2.1 is a statement about uniform convergence and is not a pointwise assertion; and also
significantly, unlike the previous approaches of [5,7], ours cannot rely on a Feynman-Kac formulation
of the solution since the Feynman-Kac expectation blows up when the space variable is continuous.
Instead, we use comparison arguments. Still, as was done earlier in [5,7], we prove the existence of a
limit by making appeals to Kingman’s subadditive ergodic theorem for continuous-time processes;
see Kingman [14, Theorem 4]. Because the application of Kingman’s theorem in continuous time
requires some care, as compared with the earlier discrete-time version of the ergodic theorem of
Kingman [13], we begin with a somewhat more general measure-theoretic discussion.

Let (Ω ,F ,P) be a complete probability space, and for every t > 0 consider a mapping ϑt : Ω→
Ω such that:
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1. ϑ0ω = ω for every ω ∈ Ω;
2. ϑt+s = ϑt ◦ ϑs for every s, t > 0; and
3. Every ϑt preserves the measure P; that is every A ∈ F has the same P-measure as ϑ−1

t A for
every t > 0.

Then we say that ϑ = {ϑt}t>0 is a measure-preserving semigroup.
The following is a continuous-time form of the Kingman subadditive ergodic theorem that has

easy-to-check conditions, but is otherwise a consequence of Kingman’s original result [14, Theorem
4] for continuous-time subadditive processes.3

Proposition 2.2. Let ϑ be as above and X = {Xt}t>0 denote a real-valued stochastic process that
satisfies Xt+s 6 Xt +Xs ◦ ϑt a.s. for every s, t > 0, as well as the following: There exist c, a, b > 0
and k > 1 such that

E
(
|Xt −Xs|k

)
6 c|t− s|1+a and sup

u∈[0,1]
E
(
|Xu ◦ ϑr −Xu|k

)
6 cr1+b, (2.2)

uniformly for all s, t, r ∈ [0 , 1]. Then, limt→∞ t
−1Xt = infn∈N E(n−1Xn | I) exists and is in

[−∞ ,∞) a.s., where I denotes the invariant σ-algebra {A ∈ F : A = ϑ−1
1 A}.

We include a proof for the sake of completeness.

Proof. Let xs,t = Xt−s ◦ϑs for all 0 < s < t, and observe that the two-parameter process {xs,t; 0 <
s < t <∞} is subadditive in the sense of Kingman [14]. Clearly, (2.2) implies that

E
(
|Xt ◦ ϑs −Xh ◦ ϑs|k

)
6 c|t− h|1+a and E

(
|Xu ◦ ϑs −Xu ◦ ϑr|k

)
6 c|s− r|1+b,

uniformly for all u, t, h, s, r ∈ [0 , 1]. These bounds, and a suitable form of Kolmogorov’s continuity
theorem [11, Appendix C] together ensure that the two-parameter process {xs,t; 0 < s < t} is
continuous [up to a modification] and satisfies sup0<s<t<1 |xs,t| ∈ L1(Ω). The proposition follows
from Theorem 4 of Kingman [14].

We now prepare to begin the proof of Theorem 2.1. Before we start, we need to deal with some
measure-theoretic issues first.

Recall that a two-parameter stochastic process W = {W (t , x)}t>0,x∈T is a two-parameter Brow-
nian sheet if W is a centered Gaussian process and

Var

(ˆ
(0,t)×T

φ dW

)
=

ˆ t

0
ds

ˆ
T

dy [φ(s , y)]2 for all φ ∈ L2(R+ × T) and t > 0,

where the integral
´
φ dW on the left-hand side denotes the Wiener integral that is associated to

the Brownian sheet W (see Nualart [19, Chapter 1]), and the integral on the right-hand side is
Lebesgue’s. It is well known that W has an almost surely continuous modification on R+ × T. In
this way, we may define the white noise Ẇ as the distributional space-time derivative of W ; that
is, Ẇ = ∂t∂xW ; see Čentsov [6].

Let Ω = C(R+ × T) and endow Ω with its usual compact-open topology and associated Borel
sigma-algebra F . Let P denote the law of a two-parameter Brownian sheet. Since the Brownian

3Kingman’s theorem [14, Theorem 4] includes an additional technical condition that, in the present context,
translates to the assumption that inft>0 t

−1EXt > −∞. It is easy to see from Kingman’s argument, however, that
this condition is needed only in order to prove that limt→∞ t

−1Xt holds in L1(Ω). We do not require it here, as we
are not interested in L1(Ω)-convergence.
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sheet is a.s. continuous, we may realize P as a probability measure on Ω. We may, and will, assume
without loss of generality that F is P-complete.

Let W (t , x)(ω) = ω(t , x) for every (t , x) ∈ R+ × T and ω ∈ Ω; that is W (ω) = ω denotes
the coordinate function on C(R+ × T). Then, W is a particular construction of a two-parameter
Brownian sheet under the measure P. We may also introduce a measure-preserving semigroup
ϑ = {ϑt}t>0 on (Ω ,F ,P) as follows:

(ϑtω)(s , x) = ω(t+ s , x)− ω(t , x) for all s, t > 0, x ∈ T, and ω ∈ Ω. (2.3)

The following shows that the one-parameter stochastic process t 7→ log ‖u(t)‖L∞(T) = logSt [see
(1.8)] satisfies the integrability property (2.2) of our formulation of Kingman’s subadditive ergodic
theorem (Proposition 2.2). Since Theorem 2.1 can be proved on any probability space, including
our particular construction of (Ω ,F ,P), Lemma 2.3 reduces the proof of Theorem 2.1 to the proof
of subadditivity property Xt+s 6 Xt +Xs ◦ ϑt, to which we return once we verify the following.

Lemma 2.3. Suppose u0 ≡ 1 and let Xt = logSt for every t > 0. Then, for every α ∈ (0 , 1/8)
and k > 1 there exists a real number c = c(k , α) > 0 such that

E
(
|Xt −Xs|k

)
6 c|t− s|kα and sup

u∈[0,1]
E
(
|Xu ◦ ϑr −Xu|k

)
6 crkα,

uniformly for all s, t, r ∈ (0 , 1).

Remark 2.4. It is possible to refine the forthcoming argument to prove that the above in fact
holds for every α ∈ (0 , 1/4); one uses Hölder’s inequality in (2.8) in place of the Cauchy-Schwarz
inequality as is done here. We omit the elementary details as we do not need the improvement.

Proof. Choose and fix a real number k > 2. We start the proof by developing a preliminary
estimate; see (2.7) below.

Recall the following basic estimates from the literature [20, Exercise 3.7, p. 323]:

‖u(t , x)‖k . 1 and ‖u(t , x)− u(s , y)‖k .
(
|s− t|1/4 + |x− y|1/2

)
, (2.4)

both valid uniformly for all (s , y), (t , x) ∈ (0 , 1)× T. In light of (2.1), and according to Chapter 3
of Walsh [20], we may write the solution u to (1.1) in the following mild form:

u(t , x) = 1 +Q

ˆ
(0,t)×T

pt−r(y − x)u(r , y)W (dr dy), (2.5)

where the latter denotes the Walsh stochastic integral [20, Chapter 3]. See also (1.11). Choose
and fix some s > 0. We can see immediately from the above, and from elementary facts about the
Walsh stochastic integral, that the ϑs-shift of u has a mild representation. To see this, let us first
define

v(t , x) = u(t , x) ◦ ϑs for all t > 0 and x ∈ T.

Then, v solves

v(t , x) = 1 +Q

ˆ
(s,s+t)×T

pt+s−r(y − x)v(r − s , y)W (dr dy) for all t > 0 and x ∈ T.

Define Ws(dr dy) = (W ◦ ϑs)(dr dy) in order to deduce from the preceding that

v(t , x) = 1 +Q

ˆ
(0,t)×T

pt−r(y − x)v(r , y)Ws(dr dy) for all t > 0 and x ∈ T. (2.6)
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Because the Brownian sheet has stationary and independent increments in its first variable (say),
it follows that Ws is a Brownian sheet. Thus, we see that v is the solution to (1.1) but with
Ẇ replaced by Ẇs. Among other things, it follows that v satisfies (2.4). Therefore, whenever
0 < s < t < 1 and x ∈ T, we may write

|u(t , x) ◦ ϑs − u(t , x)| = |v(t , x)− u(t , x)| 6 Q(q1 + q2 + q3 + q4 + q5),

where

q1 =

∣∣∣∣∣
ˆ

(0,s)×T
pt−r(y − x)u(r , y)W (dr dy)

∣∣∣∣∣ ,
q2 =

∣∣∣∣∣
ˆ

(t,s+t)×T
pt+s−r(y − x)v(r − s , y)W (dr dy)

∣∣∣∣∣ ,
q3 =

∣∣∣∣∣
ˆ

(s,t)×T
{pt+s−r(y − x)− pt−r(y − x)}u(r , y)W (dr dy)

∣∣∣∣∣ ,
q4 =

∣∣∣∣∣
ˆ

(s,t)×T
pt+s−r(y − x) {u(r − s , y)− u(r , y)}W (dr dy)

∣∣∣∣∣
q5 =

∣∣∣∣∣
ˆ

(s,t)×T
pt+s−r(y − x) {v(r − s , y)− u(r − s , y)}W (dr dy)

∣∣∣∣∣ .
We estimate q1, . . . , q5 next, and in this order.

A suitable application of the Burkholder-Davis-Gundy inequality [11, Proposition 4.4] yields

‖q1‖2k .
ˆ s

0
dr

ˆ
T

dy [pt−r(y − x)]2‖u(r , y)‖2k,

where the implied constant depends neither on s ∈ (0 , t) nor on (t , x) ∈ (0 , 1)× T. Therefore, we
may appeal to (2.4) in order to obtain

‖q1‖2k .
ˆ s

0
dr

ˆ
T

dy [pt−r(y − x)]2 =

ˆ s

0
p2(t−r)(0) dr =

ˆ t

t−s
p2r(0) dr,

thanks to the semigroup property of the heat kernel. It is well known that pτ (0) . τ−1/2 uniformly
for all τ ∈ (0 , 2]; see for example Lemma B.1 of our earlier paper [12, Appendix B]. This yields

‖q1‖2k .
ˆ t

t−s

dr√
r
∝
√
t−
√
t− s .

√
s,

where the implied constants are independent of 0 < s < t < 1 and x ∈ T. Similarly,

‖q2‖2k .
ˆ s+t

t
dr

ˆ
T

dy [pt+s−r(y − x)]2‖v(r − s , y)‖2k .
ˆ s+t

t
p2(t+s−r)(0) dr =

ˆ s

0
p2r(0) dr .

√
s,

and another appeal to (2.4) yields

‖q3‖2k .
ˆ t

s
dr

ˆ
T

dy {pt+s−r(y − x)− pt−r(y − x)}2 ‖u(r , y)‖2k

.
ˆ t−s

0
dr

ˆ
T

dy {ps+r(y − x)− pr(y − x)}2 .
√
s,
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all valid uniformly for s ∈ (0 , t) and (t , x) ∈ (0 , 1)×T. Another appeal to (2.4) yields the following
bound:

‖q4‖2k .
ˆ t

s
dr

ˆ
T

dy [pt+s−r(y − x)]2‖u(r − s , y)− u(r , y)‖2k

.
√
s

ˆ t

s
dr

ˆ
T

dy [pt+s−r(y − x)]2 =
√
s

ˆ t−s

0
dr

ˆ
T

dy [pr+s(y − x)]2 .
√
s,

also valid uniformly for all s ∈ (0 , t) and (t , x) ∈ (0 , 1)× T.
Finally, we estimate q5. As before, a suitable application of the Burkholder-Davis-Gundy in-

equality yields

‖q5‖2k .
ˆ t

s
dr

ˆ
T

dy [pt+s−r(y − x)]2‖v(r − s, y)− u(r − s, y)‖2k.

Let w(t , x) = v(t , x)− u(t , x) and combine the preceding observation to find that

‖w(t , x)‖2k .
√
s+

ˆ t

0
ds

ˆ
T

dy [pt−s(y − x)]2‖w(s , y)‖2k,

where the implied constant does not depend on (t , x) ∈ (0 , 1) × T. A Gronwall-type argument as
in Walsh [20, Lemma 3.3] now yields the bound,

‖w(t , x)‖2k .
√
s,

valid uniformly for all t ∈ (0 , 1), s ∈ (0 , t) and x ∈ T. Thus, we have

‖u(t , x) ◦ ϑs − u(t , x)‖k . s1/4, (2.7)

valid uniformly for all 0 < s < t < 1 and x ∈ T. This is the preliminary estimate that was alluded
to at the beginning of the proof. We can now establish Lemma 2.3.

Since | log b− log a| 6 |b− a|(a−1 + b−1) for all b, a > 0, the Cauchy-Schwarz inequality plus the
triangle inequality together yield

‖ logA− logB‖k 6 ‖B −A‖2k
(
‖A−1‖2k + ‖B−1‖2k

)
, (2.8)

valid for all strictly positive random variables A and B. According to the method of Mueller and
Nualart [16],

ck = sup
t∈(0,1)

E

(
inf
x∈T
|u(t , x)|−2k

)
<∞. (2.9)

Therefore, we may recall (1.8) and let Xt = logSt for every t > 0 in order to deduce from the
preceding remarks that

‖Xt −Xs‖k 6 2c
1/(2k)
k ‖St − Ss‖2k , (2.10)

uniformly for all 0 < s < t < 1. Since k > 2 can be as large as we would like, (2.10), (2.4), and
Kolmogorov’s continuity theorem together imply that for every fixed α ∈ (0 , 1/8),

‖Xt −Xs‖k . |t− s|
α uniformly for all 0 < s < t < 1. (2.11)

Here we have used the fact that |St−Ss| 6 supx∈T |u(t , x)−u(s , x)|. The very same argument that
led us to (2.11) shows also that

‖Xv −Xv ◦ ϑr‖k 6 2c
1/(2k)
k ‖Sv − Sv ◦ ϑr‖2k for every r, v ∈ [0 , 1].
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Since the shift ϑr : Ω → Ω preserves the measure P, (2.7), Kolmogorov’s continuity theorem, and
(2.9) together imply that

sup
v∈(0,1)

‖Xv −Xv ◦ ϑr‖k . rα for all r ∈ [0 , 1]. (2.12)

Finally, (2.12) and (2.11) together verify the assertions of Lemma 2.3.

We are ready for the following.

Proof of Theorem 2.1. As has been mentioned already, we can write u in mild form as in (2.5).
Moreover, it is well known that the C>0(T)-valued stochastic process {u(t)}t>0 is a strong Markov
process; see Nualart and Pardoux [17]. Here C>0(T) means that the process is continuous and takes
values in the positive real numbers.

Now choose and fix an arbitrary number s > 0. Then, elementary properties of the Walsh
stochastic integral imply that for all s, t > 0 and x ∈ T,

u(t+ s , x) = (Ptu(s))(x) +Q

ˆ
(s,t+s)×T

pt+s−r(x , y)u(r , y)W (dr dy)

= (Ptu(s))(x) +Q

ˆ
(0,t)×T

pt−r(x , y)u(r + s , y)Ws(dr dy),

almost surely, where Ws(dr dy) = (W ◦ϑs)(dr dy) defines a space-time white noise , and {Pt}t>0 de-
notes the heat semigroup on T. That is, P0f = f for all f ∈ C(T), and (Ptf)(x) =

´
T pt(x , y)f(y) dy

for all t > 0 and x ∈ T.
Recall the process S = {St}t>0 from (1.8). The comparison theorem for SPDEs (see Shiga [18])

and the independence of Ws(dr dy) and u(s) together tell us that for all s, t > 0 and x ∈ T,

u(t+ s , x) 6 us(t , x) and hence St+s 6 sup
x∈T

us(t , x) a.s.,

where us solves
∂tus = ∂2

xus +QusẆs on (0 ,∞)× T,

subject to the initial profile us(0) ≡ Ss. Because the SPDE in question is linear, vs(t , x) =
us(t , x)/Ss solves the SPDE,

∂tvs = ∂2
xvs +QvsẆs on (0 ,∞)× T,

subject to vs(0) ≡ 1. Because this SPDE has a unique solution, we compare the above with (2.6)
(and recall the uniqueness of the SPDE that (2.6) describes) in order to deduce that vs = u ◦ ϑs.
Thus, it follows that

St+s 6 Ss × (St ◦ ϑs) ⇒ logSt+s 6 logSs + logSt ◦ ϑs a.s.,

This and Lemma 2.3 together imply that {logSt}t>0 satisfies the conditions of our formulation of
Kingman’s subadditive ergodic theorem (Proposition 2.2) and hence

−λ = lim
t→∞

t−1 logSt

exists a.s. and is measurable with respect to the invariant sigma-algebra of ϑ1. By the Kolmogorov
0-1 law, the latter sigma-algebra is trivial; therefore, λ is non random. In principle, λ could be any
extended real number in [−∞ ,∞). However, the theory of [12] implies, in the particular case that
(2.1) holds, that

−∞ < lim inf
t→∞

t−1 inf
x∈T

log u(t , x) 6 lim sup
t→∞

t−1 sup
x∈T

log u(t , x) < 0 a.s.

This proves that −∞ < λ < 0 and completes the proof.
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3 An asymptotic interpolation theorem

In this section, we return to the first part of the proof of Theorem 1.1 and prove the following
asymptotic Lp-interpolation theorem. This result will be used in the proof of Theorem 1.1 afterward.

Theorem 3.1. Choose and fix two extended real numbers 1 6 p, q 6∞. Then, a.s.,

log ‖u(t)‖Lp(T) − log ‖u(t)‖Lq(T) = O(log log t) as t→∞.

Jensen’s inequality implies that Theorem 3.1 is an equivalent formulation of (1.5). Our proof
of Theorem 3.1 hinges on the following simple lemma.

Lemma 3.2. Theorem 3.1 holds provided that, for every β > 3,

∞∑
n=1

P

{
sup

06t6n

‖u(t)‖L∞(T)

‖u(t)‖L1(T)
> (log n)β

}
<∞. (3.1)

Proof. According to (3.1) and the Borel-Cantelli lemma, with probability one,

sup
06t6n

‖u(t)‖L∞(T)

‖u(t)‖L1(T)
6 (log n)β for all but a finite number of n ∈ N. (3.2)

We would like to replace n in (3.2) by a continuous variable. Note that for t > 1 we have ([t]+1) 6 2t
where [t] is the greatest integer in t. So (3.2) implies that with probability 1,

‖u(t)‖L∞(T)

‖u(t)‖L1(T)
6 (log([t] + 1))β 6 (log t+ log 2)β for all sufficiently large t > 0.

In other words, for every β > 3

log ‖u(t)‖L∞(T) − log ‖u(t)‖L1(T)

log log t
6 β + 1 as t→∞ a.s.

Moreover, the inequality can be reversed since ‖u(t)‖L1(T) 6 2‖u(t)‖L∞(T).

The remainder of this section is devoted to the estimation of the probability term in (3.1). In
order to do that, we must overcome two challenges:

1. First, let us consider the non-random case [σ ≡ 0] and take advantage of the following
elementary property of the heat semigroup P = {Pt}t>0, defined earlier in (1.10): P tames
very tall, thin peaks. Thus, for example, if u0 ∈ C+(T) has a given area — say ‖u0‖L1(T) = 1
— and a much larger maximum — say ‖u0‖L∞(T) = N � 1 — then ‖Ptu0‖L∞(T) � N for
relatively small values of t. Our first challenge is to show that the random heat operator
u 7→ ∂tu−∂2

xu−σ(u)Ẇ preserves essentially this taming property with high probability. The
details of this argument can be found in §3.1 below.

2. Our second challenge is to prove that, with high probability, the total mass process t 7→
‖u(t)‖L1(T) does not get too big or too small in “mesoscopic time,” especially important when
the initial data u0 has very tall peaks in the sense of the previous paragraph. This endeavor
requires the simultaneous control of the total mass and the maximum of u(t). See §3.2 below
for details.

Once these challenges are met, we appeal to the strong Markov property of the infinite-dimensional
process {u(t)}t>0 in order to complete the proof of Theorem 3.1. This can be done relatively
effortlessly; see §3.3.
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3.1 Control of tall peaks

We begin work toward addressing our first challenge, mentioned in the preamble to this section.
Throughout, we denote the stochastic integral in (1.11) by I(t , x). That is,

I(t , x) = u(t , x)− (Ptu0)(x) =

ˆ
(0,t)×T

pt−s(x , y)σ(u(s , y))W (dsdy), (3.3)

for all t > 0 and x ∈ T.

Lemma 3.3. For every T,$ > 0 there exists a real number c = c(T,$) > 0 such that

E
(
|I(t , x)− I(s , y)|k

)
6 (ck)k/2 exp(ck3(s ∨ t))‖u0‖kL∞(T)

[√
|t− s|+ |x− y|

]k/2
,

uniformly for all Lipschitz-continuous functions σ : R → R that satisfy Lip(σ) 6 $, u0 ∈ L∞(T),
x, y ∈ T, 0 6 s, t 6 T , and k > 2.

Lemma 3.3 is not a result about the solution to (1.1) for a fixed diffusion coefficient σ; rather,
it is a statement that holds uniformly over all solutions to (1.1) for which the diffusion coefficient
satisfies Lip(σ) 6 $ and the initial profile is in L∞(T).

Proof. It is well known that there exists a real number A = A($) > 1 such that

sup
x∈T
‖u(t , x)‖k 6 A exp(Ak2t)‖u0‖L∞(T), (3.4)

uniformly for all Lipschitz-continuous functions σ : R → R that satisfy Lip(σ) 6 $, u0 ∈ C+(T),
t > 0, and k > 2; see [12, Proposition 4.1] and its proof.

Next we write, for all k > 2, t, h > 0, and x ∈ T,

‖I(t+ h , x)− I(t , x)‖k 6 J1 + J2

where

J1 =

∥∥∥∥∥
ˆ

(0,t)×T
[pt+h−s(x , y)− pt−s(x , y)]σ(u(s , y))W (dsdy)

∥∥∥∥∥
k

,

J2 =

∥∥∥∥∥
ˆ

(t,t+h)×T
pt+h−s(x , y)σ(u(s , y))W (dsdy)

∥∥∥∥∥
k

.

We may estimate J1 and J2 in turn using the Burkholder-Davis-Gundy inequality as follows; see
Khoshnevisan [11, Proposition 4.4] for the details of the application of the Burkholder-Davis-Gundy
inequality. For the same constant A that appeared in (3.4),

J2
1 6 4k|Lip(σ)|2

ˆ t

0
ds

ˆ
T

dy [pt+h−s(x , y)− pt−s(x , y)]2 ‖u(s , y)‖2k

6 4A2$2k exp(2Ak2t)‖u0‖2L∞(T)

ˆ t

0
ds

ˆ
T

dy [ps+h(x , y)− ps(x , y)]2 .

Therefore, we may apply Lemma B.6 of [12] in order to bound
´ t

0 ds
´

T dy [ps+h(x , y)− ps(x , y)]2

and deduce the following:

J2
1 6 6A2$2k exp(2Ak2t)‖u0‖2L∞(T)

ˆ t

0
min

(
1 ,
h

s

)
ds√
s
.
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A direct evaluation of the integral [based on whether or not s 6 h], and application of a square
root, together yield

J1 6
√

24kA$ exp(Ak2(t+ h))h1/4 ‖u0‖L∞(T).

Similarly, one obtains the following:

J2
2 6 4k$2

ˆ t+h

t
ds

ˆ
T

dy [pt+h−s(x , y)]2 ‖u(s , y)‖2k

6 4A2$2k exp(2Ak2(t+ h))‖u0‖2L∞(T)

ˆ h

0
ds

ˆ
T

dy [ps+h(x , y)]2

= 4A2$2k exp(2Ak2(t+ h))‖u0‖2L∞(T)

ˆ h

0
p2(s+h)(x , x) ds.

We now apply Lemma B.1 of our earlier paper with S.-Y. Shiu [12] in order to find that

J2
2 6 8A2$2k exp(2Ak2(t+ h))‖u0‖2L∞(T)

ˆ h

0
max

(
1√
s+ h

, 1

)
ds

6 8A2$2k exp(2Ak2(t+ h))‖u0‖2L∞(T)

ˆ h

0

ds√
s

= 16A2$2k exp(2Ak2(t+ h))
√
h ‖u0‖2L∞(T).

Once again, the constant A is the same that appeared in (3.4). In this way, we find that

‖I(t+ h , x)− I(t , x)‖k 6 A$
√

80k exp(Ak2(t+ h))h1/4‖u0‖L∞(T). (3.5)

One proves, using similar arguments (see [12, Lemma B.3]) that for all k > 2, t > 0, and
x, z ∈ T,

‖I(t , x)− I(t , z)‖2k 6 4A2$2k exp(2Ak2t)‖u0‖2L∞(T)

ˆ t

0
ds

ˆ
T

dy [ps(x , y)− ps(z , y)]2

6 ck exp(2Ak2t)‖u0‖2L∞(T)|x− z|
ˆ t

0

ds

s ∧
√
s
,

for a real number c > 0 that does not depend on u0, t > 0, x, z ∈ T, nor k > 2. Moreover, the
constant c depends on σ only via $ > Lip(σ). Thus, we find that

‖I(t , x)− I(t , z)‖k .
√
k exp(Ak2t)‖u0‖L∞(T)

(
t1/4 ∧

√
log+ t

)
|x− z|1/2, (3.6)

where A is the same constant that appeared in (3.4), and the implied constant does not depend
on t > 0, x, z ∈ T, k > 2, or u, except that u0 ∈ L∞(T) and Lip(σ) 6 $. Lemma 3.3 follows from
(3.5) and (3.6), and the triangle inequality.

Lemma 3.3 has the following consequence for the stochastic integral process I from (3.3). Recall
that $ serves as a proxy for an upper bound for the Lipschitz constant for σ.

Lemma 3.4. For every $ > 0 and 0 < θ < 1
4 there exists a number c = c(θ ,$) > 0 such that

E
(
‖I(t)‖kL∞(T)

)
6 (ck)k/2 exp(ck3t)‖u0‖kL∞(T)t

k/4,

E

(
sup
s∈[0,t]

‖I(s)‖kL∞(T)

)
6 (ck)k/2 exp(ck3t)‖u0‖kL∞(T)t

kθ,
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uniformly for t ∈ (0, 1] and for all Lipschitz-continuous functions σ : R→ R that satisfy Lip(σ) 6 $,
u0 ∈ L∞(T), and k > 2.

Proof. The first inequality comes from Lemma 3.3 and a quantitative form of Kolmogorov continuity
theorem (see Khoshnevisan [11, Appendix C]). The second inequality also comes from Lemma 3.3
and the Kolmogorov continuity theorem. We will mention how, since this sort of argument can
arise multiple times:

|I(s , x)| 6 tθ
[
|I(s , x)− I(0 , x)|

sθ

]
+ |I(0 , x)|

6 tθ

 sup
(s1,x1) 6=(s2,x2)

s1,s2∈[0,t], x1,x2∈T

|I(s1, x1)− I(s2, x2)|
|s1 − s2|θ + |x1 − x2|2θ

+ |I(0 , x)|,

uniformly for all s ∈ [0 , t] and x ∈ T. This completes the proof.

Lemma 3.5. For every $ > 0 and 0 < θ < 1
4 there exists c = c(θ ,$) > 0 such that∥∥‖u(t)‖L∞(T)

∥∥
k
.
√
k exp(ck2t)‖u0‖L∞(T)t

1/4 + t−1/2,∥∥∥∥∥ sup
s∈(0,t)

‖u(s)‖L∞(T)

∥∥∥∥∥
k

6 c
√
k exp(ck2t)‖u0‖L∞(T)t

θ + ‖u0‖L∞(T),

uniformly for all k > 2, 0 < t 6 1, all Lipschitz-continuous functions σ : R → R that satisfy
Lip(σ) 6 $, and all u0 ∈ C+(T) that satisfy ‖u0‖L1(T) = 1.

Proof. Because supx∈T pt(x) 6 2(1 ∨ t−1/2) for all t > 0 (see for example [12, Lemma B.1]), and
since

´
T u0(x) dx = 1, it follows that ‖Ptu0‖L∞(T) 6 2(1 ∨ t−1/2). The first portion of the lemma

follows from this, Lemma 3.4, and (3.3). The second portion follows similarly.

We are ready to present and prove the main result of this subsection. The following device
controls the tall peaks of the solution, and addresses the first of the two challenges that were
mentioned earlier on in the section.

Proposition 3.6. For every $ > 0 and 4
3 < γ < 2 there exist K = K(γ ,$) > 0 such that

P
{∥∥u (N−γ)∥∥

L∞(T)
> KNγ/2

}
6 K exp

(
−N (3γ−4)/2

)
,

P

{
sup

06s6N−γ
‖u(s)‖L∞(T) > 2N

}
6 K exp

(
−1

2N
(3γ−4)/2

)
,

uniformly for all real numbers N > 1, all Lipschitz-continuous functions σ : R → R that satisfy
Lip(σ) 6 $, and all u0 ∈ C+(T) that satisfy ‖u0‖L1(T) = 1 and ‖u0‖L∞(T) 6 N .

The proof of Proposition 3.6 rests solely on Lemma 3.5 and Chebyshev’s inequality. Still, there
are a number of parameters that needs to be controlled and the ensuing “numerology” is slightly
messy. Therefore, we include some of the requisite details in order to help with the perusal of the
argument.
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Proof. Since γ < 2, we can choose and fix 0 < θ < 1
4 that satisfies γ(3 − 4θ) < 4. We apply

Lemma 3.5 with t = N−γ and k = N (3γ−4)/2 in order to see that there exists a real number
K1 = K1(γ , θ ,$) > 0 such that∥∥‖u(N−γ)‖L∞(T)

∥∥
N(3γ−4)/2 6 e−1K1N

γ/2,∥∥∥∥∥ sup
06s6N−γ

‖u(s)‖L∞(T)

∥∥∥∥∥
N(3γ−4)/2

6 N + 1
2K1N

γ(3−4θ)/4,
(3.7)

uniformly for all N > 22/(3γ−4), all Lipschitz-continuous functions σ : R→ R that satisfy Lip(σ) 6
$, and all u0 ∈ C+(T) that satisfy ‖u0‖L1(T) = 1. This is because exp(ck2/Nγ) is bounded
uniformly in (k ,N) for the present choices of (k ,N). The first bound in (3.7) and Chebyshev’s
inequality together imply that

P
{∥∥u (N−γ)∥∥

L∞(T)
> K1N

γ/2
}
6 E

∣∣∣∣∣‖u (N−γ)‖L∞(T)

K1Nγ/2

∣∣∣∣∣
k


6 exp
(
−N (3γ−4)/2

)
for all N > 2(3γ−2)/2.

Thus, we find that there exists K2 = K2(γ , θ ,$) > 0 such that

P
{∥∥u (N−γ)∥∥

L∞(T)
> K1N

γ/2
}
6 K2 exp

(
−N (3γ−4)/2

)
for all N > 1,

which is another way to state the first assertion of the proposition.
In order to deduce the second portion of the proposition, note that the constant γ(3−4θ)/4 [that

appears in the exponent of N in the second part of (3.7)] lies strictly between 0 and 1. Therefore,
it follows from (3.7) that for every q > 1 there exists N0 = N0(q , γ , θ ,$) > 0 such that∥∥∥∥∥ sup

06s6N−γ
‖u(s)‖L∞(T)

∥∥∥∥∥
N(3γ−4)/2

6 qN for all N > N0.

Apply this with q = 2 exp(−1/2), and then use Chebyshev’s inequality to deduce that

P

{
sup

06s6N−γ
‖u(s)‖L∞(T) > 2N

}
6 exp

(
−1

2N
(3γ−4)/2

)
for all N > N0.

Consequently, there exists K3 = K3(γ , θ ,$) > 0 such that

P

{
sup

06s6N−γ
‖u(s)‖L∞(T) > 2N

}
6 K3 exp

(
−1

2N
(3γ−4)/2

)
for all N > 1.

The proposition follows with K = max(K1 ,K2 ,K3).

3.2 Control of total mass

We now turn to the second-mentioned challenge of the section. The solution to that challenge lies
in the next proposition. Specifically, the following asserts that, on a mesoscopic time scale, there is
a high probability that the total mass of the solution is not unduly small, even if the solution starts
out with a rather tall peak at time zero (and is everywhere else small at that time), and hence the
spatial maximum of the noise coefficient may be large to begin with.
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Proposition 3.7. For every $ > 0 and 4
3 < γ < 2, there exists L = L(γ ,$) > 1 such that

P

{
inf

06t6N−γ
‖u(t)‖L1(T) 6

1

2
or sup

06t6N−γ
‖u(t)‖L1(T) > 2

}
6 L exp

(
−N

(3γ−4)/3

L

)
,

uniformly for all N > 2, all Lipschitz-continuous functions σ : R→ R that satisfy Lip(σ) 6 $, and
all u0 ∈ C+(T) that satisfy ‖u0‖L1(T) = 1 and ‖u0‖L∞(T) 6 N .

We will prove Proposition 3.7 after we comment on a subtle feature of that proposition. Define

Mt = ‖u(t)‖L1(T) =

ˆ
T
u(t , x) dx for all t > 0.

This is the total mass process of the solution to (1.1), and is well known to be a nice martingale.
In fact, we can integrate both sides of (3.3) and appeal to a stochastic Fubini theorem in order to
conclude the well-known fact that

Mt = M0 +

ˆ
(0,t)×T

σ(u) dW [t > 0].

Thus, we see that {Mt}t>0 is a continuous L2(Ω)-martingale with quadratic variation given by

〈M〉t =

ˆ t

0
‖σ(u(s))‖2L2(T) ds [t > 0].

An appeal to a suitable form of the Burkholder-Davis-Gundy inequality and (1.2) yields the fol-
lowing: For all t > 0 and k > 2,

‖Mt −M0‖2k 6 4k

ˆ t

0
ds

ˆ
T

dy ‖σ(u(s , y))‖22k 6 4k|Lip(σ)|2
ˆ t

0
ds

ˆ
T

dy ‖u(s , y)‖22k;

see Khoshnevisan [11, Proposition 4.4]. Therefore, (3.4) yields the following: For every k > 2,

‖Mt − 1‖k . N
√
t, (3.8)

uniformly for all t > 0, N > 1, and u0 ∈ L∞(T) such that ‖u0‖L1(T) = 1 and ‖u0‖L∞(T) 6 N . This
bound turns out to be essentially unimprovable.

Instead of establishing the above assertions in great detail, let us simply apply them in order
to be able to observe that P{Mt ≈ 1} ≈ 1 provided that the time variable t is measured on a
microscopic scale: t � N−2. Among other things, this shows that a well-known concentration
estimate such as (3.8) yields P{Mt ≈ 0} ≈ 0 when t � N−2. Proposition 3.7 says that we still
have P{Mt ≈ 0} ≈ 0 even when t is in the mesoscopic scale, N−2 � t � 1. But, as we shall see,
this is true for more subtle reasons than a mere concentration fact such as (3.8).

Proof of Proposition 3.7. Concentration estimates such as (3.8) fail to prove Proposition 3.7 be-
cause there is a very tall peak at time 0. That is, when ‖u0‖L1(T) = 1 yet ‖u0‖L∞(T) = N � 1
one is faced with an “intermittency effect.” That renders a moment bound such as (3.8) useless.
Therefore, in order to subdue the “intermittency effect”, we control the quadratic variation of Mt

by using ‖u(t)‖L∞(T) and ‖u(t)‖L1(T) as follows. Define

Nt = Mt − 1 =

ˆ
(0,t)×T

σ(u(s , y))W (dsdy) [t > 0].
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We may write

P

{
inf

06t6N−γ
‖u(t)‖L1(T) 6

1

2
or sup

06t6N−γ
‖u(t)‖L1(T) > 2

}
6 P

{
sup

06t6N−γ
|Nt| >

1

2

}
6 P(A1) + P(A2) + P(A3),

where A1, A2, and A3 are events that are defined in reverse order as follows:

A3 =

{
ω ∈ Ω : sup

06t6N−γ
‖u(t)‖L1(T)(ω) > N1/3

}
;

A2 =

{
ω ∈ Ω : sup

06t6N−γ
‖u(t)‖L∞(T)(ω) > 2N

}
;

A1 =

{
ω ∈ Ω : sup

06t6N−γ
|Nt(ω)| > 1

2

}
∩Ac2 ∩Ac3.

Proposition 3.6 tells us that there exists a number K = K(γ ,$) > 0 such that

P(A2) 6 K exp
(
−1

2N
(3γ−4)/2

)
,

uniformly for all N > 2.
Next, we consider the event A1. Since N is a continuous L2(Ω)-martingale with mean zero and

quadratic variation

〈N〉t =

ˆ
(0,t)×T

[σ(u(s , y))]2 dy ds [t > 0].

Therefore, almost surely on the event Ac2 ∩Ac3,

sup
06t6N−γ

〈N〉t 6 [Lip(σ)]2 sup
06t6N−γ

ˆ
(0,t)×T

[u(s , y)]2 dy ds 6 2$2N−(3γ−4)/3, (3.9)

uniformly for all solutions of the SPDE (1.1) as long as Lip(σ) 6 $. Thanks to the martingale
representation theorem, there exists a Brownian motion B = {B(t)}t>0 such that Nt = B(〈N〉t)
for all t > 0. Therefore, the reflection principle and (3.9) together imply that there exists a real
number c1 = c1($ , γ) > 0 such that

P(A1) 6 P

{
sup

06t6N−γ
|B(〈N〉t)| >

1

2
, sup

06t6N−γ
〈N〉t 6 2$2N−(3γ−4)/3

}

6 P

{
sup

06t62$2N−(3γ−4)/3

|B(t)| > 1

2

}
6 2 exp

(
−c1N

(3γ−4)/3
)
,

uniformly for all N > 2. We pause to mention that the above basically reproduces Freedman’s
martingale inequality [8].

Finally, we bound P(A3). By a suitable application of the Burkholder-Davis-Gundy inequality
[11, Proposition 4.4], for all k > 2 and t > 0,

E
(
|Nt|k

)
6 (4k)k/2E

(
〈Nt〉k/2

)
= (4k)k/2E

∣∣∣∣∣
ˆ

(0,t)×T
[σ(u(s , y))2 dsdy

∣∣∣∣∣
k/2


6 (4k)k/2$k

(ˆ
(0,t)×T

‖u(s , y)‖2k dsdy

)k/2
6 (3A$N)k (tk)k/2 exp

(
Ak3t

)
.
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In the last inequality, we have used the fact that ‖u0‖∞ 6 N together with (3.4). And the number
A is the constant that appeared in (3.4) and is, in particular, independent of N > 2 and t > 0.
Whenever N > 2,

N1/3 − 1 > N1/3 − (N/2)1/3 = C−1N1/3,

with C = (1− 2−1/3)−1. Therefore, Doob’s inequality ensures that

P(A3) = P

{
sup

06t6N−γ
|Nt + 1| > N1/3

}
6 P

{
sup

06t6N−γ
|Nt| > C−1N1/3

}
6 CkN−k/3 E

(
|NN−γ |k

)
6 (3CA$)kkk/2N−k(3γ−4)/6 exp(Ak3N−γ)

=

(
(3CA$)2k

N (3γ−4)/3

)k/2
exp(Ak3N−γ),

for all k,N > 2. We can choose

k =
N (3γ−4)/3

(3CA$e)2

in order to see that

P(A3) 6 exp
(
−k +Ak3Nγ

)
= exp

(
− N (3γ−4)/3

(3CA$e)2
+

AN2γ−4

(3CA$e)6

)
.

Because γ < 2, it follows that 2γ − 4 < (3γ − 4)/3, and this means that the negative part of the
exponent dominates. Therefore, there exists a number C0 = C0($ , γ) > 0 such that

P(A3) 6 C−1
0 exp

(
−C0N

(3γ−4)/3
)
.

We may combine our estimates for the respective probabilities of A1, A2, A3 in order to find that,
uniformly for all N > 2,

P

{
inf

06t6N−γ
‖u(t)‖L1(T) 6

1

2
or sup

06t6N−γ
‖u(t)‖L1(T) > 2

}
6 P(A1) + P(A2) + P(A3)

6 2 exp
(
−c1N

(3γ−4)/3
)

+K exp
(
−1

2N
(3γ−4)/2

)
+ C−1

0 exp
(
−C0N

(3γ−4)/3
)
,

to conclude the proof from the elementary fact that (3γ − 4)/3 < (3γ − 4)/2.

3.3 Completion of the proof of Theorem 3.1

The proof relies on a few applications of the strong Markov property. With the latter in mind, let
F(W ) = {Ft(W )}t>0 denote the Gaussian filtration that is generated by the white noise Ẇ . It
might help to recall that one constructs these sigma-algebras as follows: First, for every t > 0 we
let F0

t denote the sigma-algebra that is generated by all Wiener integrals of the form
´

(0,t)×T φdW

as φ ranges over L2(T). Then, we P-complete every F0
t , call the completion F1

t , and finally we
make these right-continuous and call the resulting sigma-algebra Ft; that is, Ft(W ) = ∩s>tF1

s for
all t > 0.

Fix β > 3. For every n > 1 define

τ(n) = inf
{
t > 0 : ‖u(t)‖L∞(T) > (log n)β/2‖u(t)‖L1(T)

}
[inf ∅ =∞].
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The general theory of processes ensures that every τ(n) is a stopping time with respect to the
Gaussian filtration F(W ); see Bass [2] for a modern account. With Lemma 3.2 in mind, we then
write for every n > 1,

P

{
sup

06t6n

‖u(t)‖L∞(T)

‖u(t)‖L1(T)
> (log n)β

}
= P

{
τ(n) < n , sup

06t6n−τ(n)

[
‖u(t)‖L∞(T)

‖u(t)‖L1(T)
◦ ϑτ(n)

]
> (log n)β

}

6 P

(
sup

06t6n

[
‖u(t)‖L∞(T)

‖u(t)‖L1(T)
◦ ϑτ(n)

]
> (log n)β

∣∣∣∣∣ τ(n) <∞

)
,

where ϑ is the same shift on the noise that we introduced earlier in the context of the application
of Kingman’s theorem, and where we have appealed to the elementary inequality,

P(A ∩B) 6 P(B | A),

valid for all events A,B in the underlying probability space. Thanks to the continuity properties
of u and the compactness of T,

‖u(τ(n))‖L∞(T) = (log n)β/2‖u(τ(n))‖L1(T) a.s. on {τ(n) <∞}.

Therefore, the strong Markov property of {u(t)}t>0 ensures that

P

{
sup

06t6n

‖u(t)‖L∞(T)

‖u(t)‖L1(T)
> (log n)β

}
6 sup

v0∈C>0(T):

‖v0‖L∞(T)=(logn)β/2‖v0‖L1(T)

P

{
sup

06t6n

‖v(t)‖L∞(T)

‖v(t)‖L1(T)
> (log n)β

}
,

where v solves (1.1) subject to initial data v0 that is being optimized under “supv0∈C>0(T)···,” and
driven by the ϑτ(n)-shift of the Brownian sheet W , which is itself a Brownian sheet thanks to the
strong Markov property of the latter, viewed as an infinite-dimensional diffusion in its first variable
[and with respect to the Gaussian filtration F(W )] .

Now let v0 ∈ C>0(T) be an otherwise arbitrary continuous and strictly positive function such
that ‖v0‖L∞(T) = (log n)β/2‖v0‖L1(T). Also, let v = {v(t , x)}t>0,x∈T denote the solution to the

SPDE (1.1), driven by some space-time white noise Ẇ, and with the initial data v0 that we just
fixed in our minds. Define

V (t , x) =
v(t , x)

‖v0‖L1(T)
for all t > 0 and x ∈ T.

The random field V = {V (t , x)}t>0,x∈T solves the SPDE,

∂tV (t , x) = ∂2
xV (t , x) + σ̂(V (t , x))Ẇ(t , x) on (0 ,∞)× T, (3.10)

subject to V (0 , x) = V0(x), where V0 ∈ C>0(T) solves ‖V0‖L∞(T) = (log n)β/2 and ‖V0‖L1(T) = 1,
and

σ̂(z) = ‖v0‖−1
L1(T)

σ
(
z‖v0‖L1(T)

)
for all z ∈ R.

Since Lip(σ̂) = Lip(σ), any result about the solution u [to (1.1)] that depends on σ only through
Lip(σ) can be applied to V , regardless of our choice of v0 ∈ C>0(T). In this way we find the
following. First define S(N) = S(N,Lip(σ)) to be the class of all predictable space-time random
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fields V = {V (t , x)}t>0,x∈T that solve the SPDE (3.10) when Lip(σ̂) = Lip(σ), subject to some
non-random initial data V0 ∈ C>0(T) that satisfies ‖V0‖L1(T) = 1 and ‖V0‖L∞(T) 6 N . Also define

N = N(n) = (log n)β/2 to simplify the typesetting, and

TV (R) = inf
{
t > 0 : ‖V (t)‖L∞(T) > R‖V (t)‖L1(T)

}
for all R > 0 [inf ∅ =∞].

(3.11)

[Thus, for example, the elementary inequality ‖f‖L1(T) 6 2‖f‖L∞(T), valid for all f ∈ L∞(T), tells

us that TV (R) = 0 when 0 6 R 6 1
2 .]

Then we have

P

{
sup

06t6n

‖u(t)‖L∞(T)

‖u(t)‖L1(T)
> (log n)β

}
6 sup

V ∈S(N)
P

{
sup

06t6n

‖V (t)‖L∞(T)

‖V (t)‖L1(T)
> (log n)β

}
6 sup

V ∈S(N)
P
{
TV (N2) 6 exp

(
N2/β

)}
.

(3.12)

The general theory of stochastic processes tells us that TV (R) is a stopping time with respect
to the Gaussian filtration F(W) for every R > 0; see Bass [2].

Define
P(m, t) = sup

V ∈S(N)
P {TV (m) 6 t} for all t,m > 0.

According to (3.12), we may write

P

{
sup

06t6n

‖u(t)‖L∞(T)

‖u(t)‖L1(T)
> (log n)β

}
6 P

(
N2, exp

(
N2/β

))
6 J1 + J2 + J3, (3.13)

where

J1 = P(N2, N−γ),

J2 = sup
V ∈S(N)

P
{
‖V (N−γ)‖L∞(T) > N

}
,

J3 = sup
V ∈S(N)

P

‖V (N−γ)‖L∞(T) 6 N , sup
N−γ6t6exp(N2/β)

‖V (t)‖L∞(T)

‖V (t)‖L1(T)
> N2

 .

We study the respective behaviors of J1, J2, and J3 next, and in this order.

J1 6 sup
V ∈S(N)

P

{
sup

06t6N−γ
‖V (t)‖L∞(T) > 2N

}

+ sup
V ∈S(N)

P

{
sup

06t6N−γ
‖V (t)‖L∞(T) < 2N , inf

06t6N−γ
‖V (t)‖L1(T) 6

2

N

}

6 sup
V ∈S(N)

P

{
sup

06t6N−γ
‖V (t)‖L∞(T) > 2N

}
+ sup
V ∈S(N)

P

{
inf

06t6N−γ
‖V (t)‖L1(T) 6

2

N

}
,

= P1 + P2,

notation being clear from context. For any γ ∈
(

4
3 , 2

)
, the second part of Proposition 3.6 ensures

that there exists K = K(Lip(σ)) > 0 such that

P1 6 K exp
(
−K−1N (3γ−4)/2

)
uniformly for all N > 1.
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Moreover, we may apply Proposition 3.7 in order to see that there exists L = L(Lip(σ)) > 0 such
that, for all N > 4 [so that 2/N 6 1/2],

P2 6 sup
V ∈S(N)

P

{
inf

06t6N−γ
‖V (t)‖L1(T) 6

2

N

}
6 L exp

(
−L−1N (3γ−4)/3

)
,

and the very same inequality holds for all N > 1 if we increase the numerical value of L by a little,
as necessary. Combine to see that there exists a constant K1 = K1(Lip(σ)) > 0 such that

J1 6 K1 exp
(
−K−1

1 N (3γ−4)/3
)

for all N > 1.

The estimation of J2 is a slightly simpler matter. Indeed, the first assertion of Proposition 3.6
readily yields the existence of a number K2 = K2(Lip(σ)) > 0 such that

J2 6 K2 exp
(
−K−1

2 N (3γ−4)/2
)

for all N > 1.

Finally, we apply the Markov property at time N−γ in order to see that

J3 6 P
(
N2, exp

(
N2/β

)
−N−γ

)
.

Combine the preceding bounds for J1, J2, J3 and apply (3.13) in order to find that

P
(
N2, exp

(
N2/β

))
6 L0 exp

(
−L−1

0 N (3γ−4)/3
)

+ P
(
N2, exp

(
N2/β

)
−N−γ

)
for all N > 1,

where L0 = max(K1,K2) = L0(Lip(σ)) > 0. Because L0 does not depend on N , and N is an
arbitrary real variable > 1, we may iterate the above. Thus, for example

P
(
N2, exp

(
N2/β

))
6 2L0 exp

(
−L−1

0 N (3γ−4)/3
)

+ P
(
N2, exp

(
N2/β

)
− 2N−γ

)
6 3L0 exp

(
−L−1

0 N (3γ−4)/3
)

+ P
(
N2, exp

(
N2/β

)
− 3N−γ

)
...

6 `NL0 exp
(
−L−1

0 N (3γ−4)/3
)

+ P
(
N2, exp

(
N2/β

)
− `NN−γ

)
,

where `N = bNγ exp
(
N2/β

)
c. We now choose γ ∈

(
4
3 , 2

)
so that 3γ−4

3 > 2
β . This is possible because

β > 3. Since t 7→ P(N2, t) is monotone, it follows the preceding and (3.13) that

P

{
sup

06t6n

‖u(t)‖L∞(T)

‖u(t)‖L1(T)
> (log n)β

}
6 L0N

γ exp
(
−L−1

0 N (3γ−4)/3 +N2/β
)

+ P
(
N2, N−γ

)
= L0N

γ exp
(
−L−1

0 N (3γ−4)/3 +N2/β
)

+ J1,

6 L1 (Nγ + 1) exp
(
−L−1

1 N (3γ−4)/3
)
,

(3.14)

thanks to a final appeal to our estimate for J1, and for a suitably large choice of L1 = L1(Lip(σ)) >
0. A final appeal to (3.11) allows to change variables back from N to n and obtain

∞∑
n=1

P

{
sup

06t6n

‖u(t)‖L∞(T)

‖u(t)‖L1(T)
> (log n)β

}
6 L1

∞∑
n=1

(1 + log n)γβ/2 exp
(
−L−1

1 (log n)β(3γ−4)/6
)
<∞,

(3.15)
for every β > 3. Lemma 3.2 now implies Theorem 3.1.
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4 Proof of Theorem 1.1

The proof of Theorem 1.1 is divided into a series of natural steps that we separate as individual sub-
sections below. Throughout, we will appeal also to the following fact from elementary probability
theory.

Lemma 4.1. For all integers n > 2 and events E1, . . . , En in the underlying probability space,

P(En) 6
n∑
j=1

P
(
Ej | Ec0 ∩ · · · ∩ Ecj−1

)
, where E0 = ∅.

Proof. Define p1 = P(E1) and set pj = P(Ej | Ec1 ∩ · · · ∩ Ecj−1) for j = 2, . . . , n. Then,

P(Ecn) > P (Ec1 ∩ · · · ∩ Ecn) =
n∏
j=1

(1− pj).

The result follows from this and the elementary inequality
∏n
j=1(1 − pj) > 1 −

∑n
j=1 pj , valid for

every 0 6 p1, . . . , pn 6 1 as can be checked directly by induction.

4.1 The influence of the heat kernel

Let us start with a small technical result about the smoothing action of the heat semigroup on
the torus. It is well known that, in arbitrary positive time, the heat semigroup maps an integrable
function to a smooth one. The following provides a quantitative bound for that smoothness, where
“smoothness” is interpreted here in terms of optimal Lipschitz constants.

Lemma 4.2. If t > 0 and f ∈ L1(T), then Ptf is Lipschitz continuous, and

Lip(Ptf) 6
7√
t

(
1 +

1√
t

)
‖f‖L1(T).

Proof. We can differentiate the series representation (1.9) term by term in order to see that

|∂xpt(x , y)| 6
∞∑

n=−∞

|x− y + 2n|
t
√

4πt
exp

(
−|x− y + 2n|2

4t

)
pointwise.

If |n| > 2, then certainly |x − y| 6 2 6 |n|, whence also |x − y + 2n| > 2|n| − |x − y| > |n| for all
x, y ∈ T. Since |x− y + 2n| 6 2(1 + |n|) 6 3|n| as well, it follows that

∑
n∈Z:|n|>2

|x− y + 2n|
t
√

4πt
exp

(
−|x− y + 2n|2

4t

)
6

3

t
√

4πt

∑
n∈Z:|n|>2

|n|e−n2/(4t).

Now,

∞∑
n=1

ne−n
2/(4t) =

∞∑
n=1

ˆ n

n−1
ne−n

2/(4t) dy 6
∞∑
n=1

ˆ n

n−1
(1 + y)e−y

2/(4t) dy

=

ˆ ∞
0

e−y
2/(4t) dy +

ˆ ∞
0

ye−y
2/(4t) dy =

√
πt+ 2t <

√
4πt(1 +

√
t).
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Therefore, by symmetry,∑
n∈Z:|n|>2

|x− y + 2n|
t
√

4πt
exp

(
−|x− y + 2n|2

4t

)
6

6

t
√

4πt

√
4πt(1 +

√
t) =

6√
t

(
1 +

1√
t

)
.

When |n| 6 1, we use the fact that |z| exp(−z2/(4t)) 6
√

2t/e for all z ∈ R and t > 0 in order to
be able to say that∑

n∈Z:|n|61

|x− y + 2n|
t
√

4πt
exp

(
−|x− y + 2n|2

4t

)
6

3

t
√

2πe
<

1√
t

(
1 +

1√
t

)
.

Combine these bounds in order to find that

Lip(pt(· , y)) = sup
x∈T
|∂xpt(y , x)| 6 7√

t

(
1 +

1√
t

)
for all t > 0 and y ∈ T.

This bound does the job since |(Ptf)(x)− (Ptf)(z)| 6
´

T |pt(x , y)− pt(z , y)| |f(y)|dy.

Let
B(x , r) = {x+ rz ∈ T : z ∈ T} (4.1)

denote the closed r-ball about x ∈ T for all r > 0. Because of (1.9),

ˆ
B(a,c

√
t)
pt(x , y) dy =

1√
4πt

∞∑
n=−∞

ˆ a+c
√
t

a−c
√
t

exp

(
−(y − x+ 2n)2

4t

)
dy, (4.2)

for every t > 0, c ∈ [0 , 1/
√
t], and a, x ∈ T. For the right-hand side it might help to recall the

convention that we are identifying points in T with those in [−1 , 1]. Still, to be completely clear,
the left-hand side is an integral on the abelian group T against the Haar measure [dy], and the
right-hand side is a sum of integrals over the real line against Lebesgue’s measure [also denoted by
dy].

Lemma 4.3. There exists a constant A ∈ (0 , 1) such that for every c > 1, t > 0, and a, x ∈ T,
ˆ
B(a,c

√
t)
pt(x , y) dy > A1B(a,(c+1)

√
t)(x).

Proof. Because the integral in question is manifestly > 0, we may (and will) consider only x ∈
B(a , (c + 1)

√
t). In (4.2), we drop all summands except the one that corresponds to n = 0 to see

that

ˆ
B(a,c

√
t)
pt(x , y) dy >

1√
4πt

ˆ a+c
√
t

a−c
√
t

exp

(
−(y − x)2

4t

)
dy

= P

{
a− x√

2t
− c√

2
6 Z 6

a− x√
2t

+
c√
2

}
,

where Z is distributed according to the standard normal distribution on R. Since x is within
a± (c+ 1)

√
t and c > 1, it follows that
ˆ
B(a,c

√
t)
pt(x , y) dy > P

{
1√
2
6 Z 6

2c+ 1√
2

}
> P

{
1√
2
6 Z 6

3√
2

}
=: A. (4.3)

This completes the proof.
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4.2 The influence of the noise

Lemmas 4.2 and 4.3 concern the heat kernel/semigroup. We now begin studying the noise Ẇ . In
order to do that, let us choose and fix some numbers

β > 3 and α >
4β

3
> 4 (4.4)

and define successively,

t1 = 1, t2 = 2, and tk+1 = tk +
1

(log k)α
for k > 2. (4.5)

Note that tk > 1 for all k ∈ N, and k(log k)−α 6 tk 6 k for all k > 2. In particular, we have

log k

2
6 log tk 6 log k for all k > 1. (4.6)

With the above sequence of tk’s in place, we consider the events A1,1,A2,1, . . . defined via the
following:

Ak,1 =

{
ω ∈ Ω : sup

t∈(0,tk]

‖u(t)‖L∞(T)(ω)

‖u(t)‖L1(T)(ω)
< (log tk)

β

}
These are large sets in the underlying probability space when k � 1. In fact, we have the following.

Lemma 4.4. There exist numbers c = c(α , β ,Lip(σ)) > 0 and η1 = η1(β) > 0 such that

P(Ac
k,1) . exp (−c(log k)η1) uniformly for all k ∈ N.

Proof. When used in conjunction, (3.14) and (3.15) imply that there exist constants L1 = L1(Lip(σ)) >
0 and γ1 = γ1(β) ∈

(
4
3 , 2

)
such that

P(Ac
k,1) 6 L1(1 + log tk)

γ1β/2 exp
(
−L−1

1 (log tk)
β(3γ1−4)/6

)
,

uniformly for all k ∈ N. We can choose η1 = β(3γ1 − 4)/6, and enlarge L1 = L1(α , β ,Lip(σ)) if
needed, in order to deduce the lemma from this, (4.4), and (4.6).

Next, we define a sequence v1, v2, . . . of space-time random fields as follows:

vk(t) =
u(t)

‖u(tk−1)‖L1(T)
for every t > tk−1, (4.7)

Consider the events,

Ak,2 =

{
ω ∈ Ω :

1

2
6 ‖vk(t)‖L1(T)(ω) 6 2 for every t ∈ [tk−1 , tk]

}
, (4.8)

and recall that η1 = η1(β) > 0 is the number given in Lemma 4.4. Then we have the following
result.

Lemma 4.5. There exist numbers c = c(α , β ,Lip(σ)) > 0 and η2 = η2(α , β) ∈ (0 , η1] such that

P(Ac
k,2) . exp (−c(log k)η2) uniformly for all k ∈ N.
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Lemma 4.5 is a quantitative way to say that, with very high probability, the total-mass process´
T u(t , y) dy = ‖u(t)‖L1(T) does not move much for t ∈ (tk−1 , tk).

Proof. We shall consider integers k > 2. The k = 1 case is easy to include [by adjusting constants
only] and will not be discussed.

Let us observe that ‖vk(tk−1)‖L1(T) = 1 almost surely. We emphasize that, by virtue of defini-

tion, ‖vk(tk−1)‖L∞(T) 6 (log tk)
β almost surely on Ak−1,1.

According to (4.4), we can choose γ ∈ (4/3 , 2) that satisfies

γ <
α

β
. (4.9)

We apply Proposition 3.7, with N = (log tk)
β, together with the Markov property of the solution

to (1.1) in order to find that there exists L = L(γ ,Lip(σ)) > 0 such that, a.s. on Ak−1,1,

P
(
‖vk(t)‖L1(T) 6∈ (1/2 , 2) for some t ∈

[
tk−1 , tk−1 + (log tk)

−γβ
] ∣∣∣ Ftk−1

)
= P

(
‖vk(t)‖L1(T) 6∈ (1/2 , 2) for some t ∈

[
tk−1 , tk−1 +N−γ

] ∣∣ Ftk−1

)
6 L exp

(
−N

(3γ−4)/3

L

)
= L exp

(
−(log tk)

(3γ−4)β/3

L

)
6 L exp

(
−(log k)(3γ−4)β/3

2(3γ−4)β/3L

)
,

uniformly for all integers k > 2; see (4.6) for the last inequality. Because of (4.6) and (4.9),

tk−1 + (log tk)
−γβ > tk−1 + (log k)−γβ > tk−1 + (log k)−α = tk,

for all k > 2. In other words, [tk−1 , tk−1 + N−γ ] ⊃ [tk−1 , tk] for all k > 2. Therefore, a second
appeal to (4.6) yields

P
(
Ac
k,2 | Ftk−1

)
6 L exp

(
−(log k)(3γ−4)β/3

2(3γ−4)β/3L

)
,

a.s. on Ak−1,1, for all but a finite number of integers k > 1. In particular, we appeal to the fact
that Ak−1,1 is Ftk−1

-measurable in order to deduce the following:

P
(
Ac
k,2 | Ak−1,1

)
6 L exp

(
−(log k)(3γ−4)β/3

2(3γ−4)β/3L

)
for all k ∈ N. (4.10)

According to Lemma 4.1, P(Ac
k,2) 6 P(Ac

k−1,1) + P(Ac
k,2 | Ak−1,1). We now choose η2 = η1 ∧

1
3(3γ − 4)β in order to deduce the result from the preceding and from Lemma 4.4.

Next, let us consider for every q, L > 0 and k ∈ N the event

Ak,3 = Ak,3(q , L) =

ω ∈ Ω : sup
x,y∈T
x 6=y

|vk(tk , x)− vk(tk , y)|
|x− y|q

(ω) 6 L(log k)α

 .

These are large-probability events, provided that q and L are chosen appropriately. In fact, we
have the following.
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Lemma 4.6. For every q ∈ (0 , 1/2), there exist numbers L = L(α, β , q ,Lip(σ)) > 0, c =
c(α , β , q ,Lip(σ)) > 0, and η3 = η3(α , β) ∈ (0 , η2] such that, uniformly for all k ∈ N,

P(Ac
k,3) . exp (−c (log k)η3) ,

where η2 > 0 is the number given in Lemma 4.5.

Proof. It suffices to prove the lemma for k ∈ N ∩ [3 ,∞).
We may apply the Markov property at time tk−1 to see that, started from time tk−1, vk solves

the (1.1) with a suitable rescaled version of σ, and with initial profile vk(tk−1). More precisely, we
may write vk in the following mild form:

vk(t) = Pt−tk−1
[vk(tk−1)] + Iv,k(t) for all t > tk−1, (4.11)

where p and P denote respectively the heat kernel and semigroup [see (1.9) and (1.10)], and

Iv,k(t , x) =

ˆ
(tk−1,t)×T

pt−s(x , z)σk (vk(s , z))W (dsdz), (4.12)

with

σk(w) =
σ
(
‖u(tk−1)‖L1(T)w

)
‖u(tk−1)‖L1(T)

for all w ∈ R. (4.13)

In order to simplify the typography, we will write

Ek = E( · · · | Ftk−1
) [k ∈ N].

The random function σk is Ftk−1
-measurable, and has the same optimal Lipschitz constant as σ.

Because tk − tk−1 = (log k)−α 6 1 for all k ∈ N ∩ [3 ,∞), we may apply Lemma 3.3 conditionally
using the Markov property in order to see that there exists c = c(Lip(σk)) = c(Lip(σ)) > 0 such
that, uniformly for every k ∈ N ∩ [3 ,∞), ν ∈ [2 ,∞), s, t ∈ (tk−1 , tk], and x, y ∈ T,

Ek (|Iv,k(t , x)− Iv,k(s , y)|ν) 6 (cν)ν/2‖vk(tk−1)‖νL∞(T) exp
(
2cν3(log k)−α

) (√
|t− s|+ |x− y|

)ν/2
,

almost surely. Therefore, a suitable formulation of the Kolmogorov continuity theorem [11, Ap-
pendix C] yields, for every q ∈ (0 , 1/2) a number c1 = c1(q ,Lip(σ)) > 0 such that, uniformly for
every k ∈ N ∩ [3 ,∞), ν ∈ [2 ,∞), s, y ∈ (tk−1 , tk], and x, y ∈ T,

Ek

 sup
x,y∈T
x 6=y

|Iv,k(tk , x)− Iv,k(tk , y)|ν

|x− y|qν

 6 (c1ν)ν/2‖vk(tk−1)‖νL∞(T) exp
(
2cν3(log k)−α

)
,

almost surely. Since Lip(Ptf) . t−1‖f‖L1(T) for all t ∈ (0 , 2] and f ∈ L1(T) [see Lemma 4.2], we
can deduce from (4.11) that for every q ∈ (0 , 1/2) there exists a number c2 = c2(q ,Lip(σ)) > 0
such that, uniformly for every k ∈ N ∩ [3 ,∞), ν ∈ [2 ,∞), s, t ∈ (tk−1 , tk], and x, y ∈ T,

Ek

 sup
x,y∈T
x6=y

|vk(tk , x)− vk(tk , y)|ν

|x− y|qν

 6 (c2ν)ν/2‖vk(tk−1)‖νL∞(T) exp
(
2cν3(log k)−α

)
+
cν2‖vk(tk−1)‖νL1(T)

(tk − tk−1)ν

6 cν2

[
νν/2‖vk(tk−1)‖νL∞(T) exp

(
2cν3(log k)−α

)
+ (log k)αν‖vk(tk−1)‖νL1(T)

]
,
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almost surely. We have observed already that ‖vk(tk−1)‖L1(T) = 1 [see also (4.7)] and ‖vk(tk−1)‖L∞(T) 6
(log tk)

β 6 (log k)β a.s. on Ak−1,1 [see (4.6) for the last inequality]. Therefore, we get that

E

 sup
x,y∈T
x 6=y

|vk(tk , x)− vk(tk , y)|ν

|x− y|qν

∣∣∣∣∣∣∣ Ftk−1

 6 cν2

[√
ν (log k)β exp

(
2cν2(log k)−α

)
+ (log k)α

]ν
,

a.s. on Ak−1,1 ∩Ak,2. Define

ν := (log k)α/2

and apply the preceding with this ν to see thatE

 sup
x,y∈T
x6=y

|vk(tk , x)− vk(tk , y)|ν

|x− y|qν

∣∣∣∣∣∣∣ Ftk−1




1/ν

6 c4

[
(log k)β+α/4 + (log k)α

]
6 2c4(log k)α [see (4.4)];

a.s. on Ak−1,1 ∩ Ak,2, where c4 = c4(α , q ,Lip(σ)) > 0 is a non-random number that does not
depend on k ∈ N. Therefore, an application of Chebyshev’s inequality yields

P

 sup
x,y∈T
x 6=y

|vk(tk , x)− vk(tk , y)|
|x− y|q

> 2ec4(log k)α

∣∣∣∣∣∣∣ Ftk−1

 6 e−ν ,

a.s. on Ak−1,1 ∩Ak,2. Because Ak−1,1 is Ftk−1
-measurable, we deduce from the above and (4.4)

that
P
(
Ac
k,3 | Ak−1,1 ∩Ak,2

)
6 exp

(
−(log k)α/2

)
for all k ∈ N. (4.14)

Lemma 4.1 ensures that

P(Ac
k,3) 6 P(Ac

k−1,1) + P(Ac
k,2 | Ak−1,1) + P(Ac

k,3 | Ak−1,1 ∩Ak,2).

Combine this with Lemma 4.4, (4.10), and (4.14), and let

η3 := min
{
η1 , η2 ,

α

2

}
> 0 (4.15)

in order to conclude the proof.

4.3 Conclusion of the proof of Theorem 1.1

Armed with the technical results of the previous two subsections, and with Theorem 3.1, equiva-
lently (1.5), we now work toward completing the proof of Theorem 1.1. Because we have already
proved (1.5) which states that the L1(T)- and L∞(T)-norms are close up to logarithmic errors, it
remains to prove that with probability one the infimum does not stray away from the L1(T)-norm
by more than a logarithmic term as time tends to infinity. Therefore, we can see that the following
clearly is a big step in the right direction. The notation is the same as that of the earlier portions
of this section. In particular, t1 < t2 < · · · is the sequence that was defined in (4.5); see also (4.6).

Lemma 4.7. Choose and fix a real number κ > 2α. Then, there exists a non-random sequence
0 < s1 < s2 < · · · such that sk + tk 6 tk+1 for all k ∈ N sufficiently large, and with probability one,

inf
x∈T

u(sk + tk , x) > exp (−7(log tk)
κ) ‖u(tk−1)‖L1(T) for all but a finite number of k ∈ N.
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Proof. As before, let us identify T with the interval [−1 , 1] and with that in mind define

xk = inf
{
x ∈ T : vk(tk , x) > 1

4

}
,

with inf ∅ = 2 (any point that is not in [−1 , 1] will do). Then, xk is an Ftk -measurable random
variable that takes its values in [−1 , 1] ∪ {2}. Because ‖vk(tk)‖L1(T) > 1

2 a.s. on Ak,2 [see (4.8)],
we can conclude that

xk ∈ T a.s. on Ak,2. (4.16)

Choose and fix q ∈ (0 , 1/2) and L > 0 according to the statement of Lemma 4.6 and let κ be any
number such that

κ >
α

q
. (4.17)

Since we can choose α to be any number in (4 ,∞) – see (4.4) – and because q ∈ (0 , 1/2) is otherwise
arbitrary, we can choose κ to be any number that satisfies

κ > 8. (4.18)

We also define
rk = (log tk)

−κ [k ∈ N].

Then, recall (4.1) and observe that for every k ∈ N,

inf
y∈B(xk,rk)

vk(tk , xk) > vk(tk , xk)− sup
y∈B(xk,rk)

|vk(tk , y)− vk(tk , xk)|

>
1

4
− Lrqk(log k)α a.s. on Ak,2 ∩Ak,3

=
1

4
− 2κL(log k)−(κq−α);

see (4.6). We set

kα =
⌈
exp

(
(2κ+3L)1/(κq−α)

)⌉
,

where dye denotes the smallest integer to the right of y > 0, as is customary. In particular, we may
observe that kα ∈ N is deterministic and

inf
y∈B(xk,rk)

vk(tk , xk) >
1

8
a.s. on Ak,2 ∩Ak,3 for all integers k > kα. (4.19)

As in (4.11),
vk(t+ tk) = Pt[vk(tk)] + Iv,k+1(t+ tk) for all t > 0, (4.20)

where p and P denote respectively the heat kernel and semigroup [see (1.9) and (1.10)], and Iv,k+1

and σk+1 were respectively defined in (4.12) and (4.13). We study the two terms on the right-hand
side of (4.20) separately.

Thanks to (4.19), the deterministic quantity on the right-hand side of (4.20) satisfies the fol-
lowing:

Pt[vk(tk)] >
1

8

ˆ
B(xk,rk)

pt(· , y) dy a.s. on Ak,2 ∩Ak,3.

Therefore, Lemma 4.3 [with c = 1] ensures that, for all k ∈ N,

Pt[vk(tk)] >
A

8
1B(xk,2

√
t) = e−χ 1B(xk,2

√
t) a.s. on Ak,2 ∩Ak,3, (4.21)
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provided additionally that 0 < 4t < r2
k = (log tk)

−2κ. The following choice will therefore do:

t = 1
8(log tk)

−2κ. (4.22)

Henceforth, the symbol “t” is reserved for the particular choice in (4.22). To be sure, we mention
also that (4.21) defines the number χ independently of all other parameters; in fact, in light of
(4.3), we have

χ = log 8− logA = log 8− P

{
1√
2
6 Z 6

3√
2

}
> log 8− 1 ≈ 1.08.

Let us turn to the second quantity on the right-hand side of (4.20). Lemma 3.3 and an ap-
plication of the Markov property at time tk together yield the following: There exists constant
c = c(Lip(σ)) > 0 such that simultaneously for all ν ∈ [2 ,∞), k ∈ N, x, y ∈ T, and s1, s2 ∈ [0 , t],

E ( |Iv,k+1(s1 + tk , x)− Iv,k+1(s2 + tk , y)|ν | Ftk)1/ν

.
√
ν exp(cν2t)‖vk(tk)‖L∞(T)

[√
|s2 − s1|+ |x− y|

]1/2

6
√
ν exp(cν2t)(log k)β

[√
|s2 − s1|+ |x− y|

]1/2
a.s. on Ak,1.

Moreover, the implied constant is deterministic, as can be seen from inspecting the details of the
arguments that leads to these bounds. Once again, we appeal to this and a suitable form of the
Kolmogorov continuity theorem in order to conclude that

E

 sup
s1,s2∈(0,t)
s1 6=s2

sup
x∈T

|Iv,k+1(s1 + tk , x)− Iv,k+1(s2 + tk , x)|ν

|s2 − s1|qν/2

∣∣∣∣∣∣∣ Ftk


1/ν

.
√
ν exp

(
cν2t

)
(log k)β a.s. on Ak,1,

where the implied constant is independent of ν ∈ [2 ,∞) and k ∈ N, as well as deterministic. In
particular, this yields

E

(
sup
s∈(0,t)

sup
x∈T
|Iv,k+1(s+ tk , x)|ν

∣∣∣∣∣ Ftk
)1/ν

.
√
ν exp(cν2t)tq/2(log k)β a.s. on Ak,1

.
√
ν exp(cν2t)(log k)−κq+β

6
√
ν exp

(
22κcν2

8(log k)2κ

)
(log k)−κq+β [see (4.6) and (4.22)],

where the implied constants are deterministic and independent of ν ∈ [2 ,∞) and k ∈ N. We now
choose ν slightly more carefully. Namely, we apply the preceding with the following particular
choice:

ν = (log k)α/2.

Since we have chosen q ∈ (0, 1/2), (4.4) and (4.17) imply that

θ1 := 2κ− α > α

(
2

q
− 1

)
> 0 and θ2 := κq − β − α

4
>

3α

4
− β > 0.
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Therefore,
√
ν exp

(
22κcν2

8(log k)2κ

)
(log k)−κq+β = exp

(
22κc

8(log k)θ1

)
(log k)−θ2 .

Thus, we find that, for the particular choice of ν = ν(k), as given above, we can find a non-random
number C = C(α , β ,Lip(σ)) > 0 such that

E

(
sup
s∈(0,t)

sup
x∈T
|Iv,k+1(s+ tk , x)|ν

∣∣∣∣∣ Ftk
)1/ν

6 C(log k)−θ2 a.s. on Ak,1,

simultaneously for all k ∈ N large enough to ensure that ν = ν(k) > 2. The magnitude of the
minimum k that does this is deterministic and depends only on α; see (4.19). This bound and
Chebyshev’s inequality together yield that as long as k is large enough to ensure that ν > 2,

P

(
sup
x∈T
|Iv,k+1(t+ tk , x)| > eC

(log k)θ2

∣∣∣∣ Ftk) 6 e−ν . exp
(
−(log k)α/2

)
a.s. on Ak,1,

where the implied constant is non random and independent of k. By choosing a slightly large
implied constant, we can see that the preceding holds uniformly for all k ∈ N, in fact. Recall χ
from (4.21), and recall also that χ > 1.08. We apply the preceding probability bound together with
the triangle inequality in order to deduce from (4.20) and (4.21) that

P

(
inf

x∈B(xk,2
√
t)
|vk(t+ tk , x)| 6 exp(−2χ)

∣∣∣∣∣ Ftk
)

6 P

(
inf

x∈B(xk,2
√
t)
|vk(t+ tk , x)| 6 e−χ − eC

(log k)θ2

∣∣∣∣∣ Ftk
)

6 P

(
sup
x∈T
|Iv,k+1(t+ tk , x)| > eC

(log k)θ2

∣∣∣∣ Ftk) . exp
(
−(log k)α/2

)
a.s. on Ak,1 ∩Ak,2 ∩Ak,3,

valid for all k ∈ N large enough to ensure that exp(−χ) − eC/(log k)θ2 > exp(−2χ), and where
the implied constant is non random and independent of k. We can increase the implied constant if
needed so that it still only depends on (α ,Lip(σ)) and yet the above inequality holds for all k ∈ N.

Define

B0 = B0,k =

{
ω ∈ Ω : |vk(tk , xk)|(ω) >

1

4

}
and

Bj = Bj,k =

{
ω ∈ Ω : inf

x∈B(xk,j
√
t)
|vk(jt+ tk , x)|(ω) > e−2jχ

}
[j > 1].

We have shown that:
1. B0 ⊃ Ak,2 a.s. [see (4.16)]; and
2. P(Bc

1 | Ftk) . exp(−(log k)α/2) a.s. on Ak,1 ∩Ak,2 ∩Ak,3 ∩B0 for all k.
Now we proceed inductively, and repeat the above procedure, in order to see that uniformly for
every j ∈ Z+ and k ∈ N,

P
(
Bc
j+1 | Ftk+jt

)
. exp

(
−(log k)α/2

)
a.s. on (Ak,1 ∩Ak,2 ∩Ak,3) ◦ ϑjt ∩Bj ,

where ϑ is the same shift functional on paths that was defined in (2.3). And we can repeat the
proof of Lemmas 4.4, 4.5, and 4.6 in order to see that

max
i∈{1,2,3}

sup
j∈Z+

P
(
Ac
k,i ◦ ϑjt

)
. exp (− log k)η3) for all large k ∈ N,
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where η3 = η3(α , β) > 0 is the number given in Lemma 4.6. It might help to also recall that
η3 6 η1 ∧ η2 ∧ (α/2); see (4.15). We now let η := η(α , β) := η3 and then make repeated appeals to
Lemmas 4.1, 4.4, 4.5, and 4.6 in order to see that for all large k ∈ N and J = J(k) ∈ N,

P(Bc
J) . J exp (−(log k)η) ,

where the implied constant depends neither on J nor k. Thanks to (4.22),

J
√
t > 1 ⇔ J >

√
8 (log tk)

κ,

uniformly for all k ∈ N. Therefore, we may set J = 3(log tk)
κ to ensure that J

√
t > 1, whence

B
(
xk , J

√
t
)

= T,

For this particular choice of J = J(k), and regardless of the value of xk [which is in T a.s. on Ak,1],
(4.6) implies that

P

{
inf
x∈T

vk(Jt+ tk , x) 6 exp(−2Jχ)

}
= P(BJ) . (log k)κ exp (−(log k)η) ,

uniformly for all large k ∈ N. We used (4.6) in the last inequality above. Because of the definition
of J , and thanks to (4.6) again and (4.17),

Jt =
3

8
(log tk)

−κ 6
3

8
23κ (log k)−κ < (log k)−α

for all k sufficiently large. In other words, we can see that Jt+ tk < tk+1 for all k sufficiently large
[how large is deterministic and depends only on α and q]. In addition, since χ > 1.08, we can have
that

exp(−2Jχ) > exp (−6χ(log tk)
κ) > exp (−7(log tk)

κ) .

Set sk = Jt and collect things in order to see that

sk + tk 6 tk+1 and P

{
inf
x∈T

vk(sk + tk , x) 6 exp (−7(log tk)
κ)

}
. (log k)κ exp (−(log k)η) ,

uniformly for all sufficiently large k ∈ N. We now apply the Borel–Cantelli lemma and see that
κ > α

q for every q ∈ (0, 1/2) from (4.17) to conclude the proof.

Recall that the remaining step of the proof of Theorem 1.1 is an assertion that says that
log ‖u(t)‖L1(T) − infx∈T log u(t , x) . (log t)κ for every κ > 2α when t � 1. Because of (4.6),
Lemma 4.7 essentially verifies this property, but only along the time sequence {sk + tk}k∈N. The
following allows for extension to all large times.

Lemma 4.8. With probability one,

inf
r∈[sk+tk,sk+1+tk+1]

inf
x∈T

u(r , x) >
1

2
inf
x∈T

u(sk + tk , x) for all but a finite number of k ∈ N.

Proof. To simplify the exposition define

m(t) = inf
x∈T

u(t , x) [t > 0].
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Now consider the following space-time random fields,

Yk(r) =
u(r)

m(sk + tk)
for all r > sk + tk,

one for every k ∈ N. Our goal is to prove that almost surely,

inf
sk+tk6r6sk+1+tk+1

inf
x∈T

Yk(r , x) >
1

2
for all but a finite number of k ∈ N. (4.23)

Let us condition on Fsk+tk and apply the Markov property at time sk+tk to see that {Yk(r)}r>sk+tk

solves (1.1) with σ replaced by Σk where

Σk(w) =
σ (m(sk + tk)w)

m(sk + tk)
[w ∈ R].

Since Lip(Σk) = Lip(σ) and Σk is Fsk+tk -measurable, the analysis of the resulting SPDE is the
same as the original analysis of (1.1). In particular, the fact that infx∈T Yk(0 , x) = 1 and the
comparison theorem for SPDEs (see Shiga [18]) together imply that Yk > Yk where Yk solves the
same SPDE as Yk but started identically at one. Consequently, (4.23) will follow as soon as we can
show that

inf
sk+tk6r6sk+1+tk+1

inf
x∈T
Yk(r , x) >

1

2
for all but a finite number of k ∈ N. (4.24)

To be sure, recall that Yk solves

Yk(τ , x) = 1 +

ˆ
(sk+tk,τ)×T

pτ−s(x , z)Σk(Yk(s , z))W (dsdz).

Apply Lemma 3.3 and the Markov property at time sk + tk in order to find a number C =
C(Lip(σ)) > 0 such that

E
(
|Yk(τ , x)− Yk(τ ′, x′)|ν

∣∣ Fsk+tk

)1/ν
.
√
ν exp

(
Cν2 [sk+1 + tk+1 − (sk + tk)]

){
|τ − τ ′|1/4 + |x− x′|1/2

}
,

for all ν ∈ [2 ,∞), τ, τ ′ ∈ [sk + tk , sk+1 + tk+1], and x, x′ ∈ T, and where the implied constant is
deterministic and independent of (ν , τ , τ ′, x, x′) as stated. We may also observe that, for every
k ∈ N,

[sk+1 + tk+1 − (sk + tk)] 6 tk+2 − tk = (log(k + 1))−α + (log k)−α 6 2(log k)−α.

Therefore, we choose and fix some ζ ∈ (0 , 1/4), and then apply a suitable form of the Kolmogorov
continuity theorem in order to see that

E

(
sup

τ∈[sk+tk,sk+1+tk+1]
sup
x∈T
|Yk(τ , x)− 1|ν

)1/ν

.
√
ν exp

(
2Cν2

(log k)α

)
(log k)−αζ

valid for all ν ∈ [2 ,∞) and k ∈ N, and where the implied constant is deterministic and depends
only on (ζ ,Lip(σ)). We apply the preceding with ν = (log k)αζ in order to deduce from the above
that, for this particular choice of ν, there exists A = A(ζ ,Lip(σ)) > 0 such that

E

(
sup

τ∈[sk+tk,sk+1+tk+1]
sup
x∈T
|Yk(τ , x)− 1|ν

)1/ν

. (log k)−αζ/2,
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uniformly for all k ∈ N. In particular, we learn from Chebyshev’s inequality that, for this particular
choice of ν = (log k)αζ/2,

P

{
inf

sk+tk6r6sk+1+tk+1

inf
x∈T
Yk(r , x) <

1

2

}
6 P

{
sup

τ∈[sk+tk,sk+1+tk+1]
sup
x∈T
|Yk(τ , x)− 1| > 1

2

}

6 (2A)ν(log k)−ανζ/2 = exp

(
ν

[
log(2A)− αζ

2
log k

])
= o

(
exp

(
−(log k)αζ/2

))
[k →∞].

Therefore, the Borel-Cantelli lemma implies (4.24) and hence the lemma.

We are ready to prove the remaining parts of Theorem 1.1 and conclude the paper.

Proof of Theorem 1.1. Lemma 4.5 and the Borel–Cantelli lemma together imply that with proba-
bility one,

sup
r∈[tk,tk+1]

‖u(r)‖L1(T) 6 2‖u(tk)‖L1(T) for all but a finite number of k ∈ N.

In particular, we almost surely have

sup
r∈[tk,tk+2]

‖u(r)‖L1(T) 6 8‖u(tk−1)‖L1(T) for all but a finite number of k ∈ N. (4.25)

Lemmas 4.7 and 4.8 then imply that for every fixed κ > 2α, a.s., the following holds for all but a
finite number of k ∈ N:

inf
r∈[sk+tk,sk+1+tk+1]

inf
x∈T

u(r , x) >
1

2
inf
x∈T

u(sk + tk , x)

>
1

2
exp (−7(log tk)

κ) ‖u(tk−1)‖L1(T)

>
1

16
exp (−7(log tk)

κ) sup
r∈[tk,tk+2]

‖u(r)‖L1(T);

see (4.25) for the last line. Since the interval [sk + tk , sk+1 + tk+1] is a subset of [tk , tk+2], and
because tk+2/tk → 1 as k →∞, it follows from the above that a.s.,

inf
x∈T

u(t , x) > (16)−1 exp (−7(log t)κ) ‖u(t)‖L1(T) for all t > 0 outside a certain compact t-set.

On one hand, this proves that, with probability one,

inf
x∈T

log u(t , x) > − log 16− 7(log t)κ + log ‖u(t)‖L1(T) as t→∞.

On the other hand, Lemma 4.4 and the Borel-Cantelli lemma together imply that, almost surely,

log ‖u(t)‖L∞(T) 6 (β + o(1)) log log t+ log ‖u(t)‖L1(T) as t→∞.

Combine to find that, with probability one,

OscT(log u(t)) 6 7(log t)κ +O(log log t) as t→∞.

Because κ is an arbitray number in (8 ,∞) by (4.18), this implies that

lim sup
t→∞

log OscT(log u(t))

log log t
6 8 a.s.,

which is an equivalent formulation of the theorem.
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