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Abstract. We provide asymptotic bounds on the survival probability of a moving
polymer in an environment of Poisson traps. Our model for the polymer is the
vector-valued solution of a stochastic heat equation driven by additive spacetime
white noise; solutions take values in Rd, d ≥ 1. We give upper and lower bounds for
the survival probability in the cases of hard and soft obstacles. Our bounds decay
exponentially with rate proportional to T d/(d+2), the same exponent that occurs in
the case of Brownian motion. The exponents also depend on the length J of the
polymer, but here our upper and lower bounds involve different powers of J .

Secondly, our main theorems imply upper and lower bounds for the growth of
the Wiener sausage around our string. The Wiener sausage is the union of balls of
a given radius centered at points of our random string, with time less than or equal
to a given value.

1. Introduction

The model of particles performing random diffusive motion in a region containing
randomly located traps is known as the trapping problem (see [6] for review). Particle
motion is typically Brownian motion in Rd or a random walk in Zd. The traps are
placed in a Poissonian manner and the particle gets annihilated on encountering a
trap. The main question of interest in such models is the “Survival Probability” of
the particle. We refer the reader to [11] and references there in for a review of the
problem of Brownian motion among Poissonian obstacles, to [8] and references there
in for a review of the problem of a random walk in a random potential and to [2] for
a review of Random walks among mobile and immobile traps.

There is an extensive literature about such trapping problems, see the references in
the preceding paragraph. These results often depend on refined estimates for the
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eigenvalues of the Laplacian or potential theory. On the other hand, the process
we consider takes values in function space, and we found it impossible to analyze the
situation using existing techniques. Indeed, carrying over finite-dimensional potential
theoretic arguments to the infinite dimensional case is often difficult or impossible.
We will consider a Gaussian process, but we did not find any Gaussian tools which
were relevant to trapping problems.

In this article we will study the annealed survival probability of a random string in
a Poissonian trap environment. Let (Ω,F ,Ft,P0) be a filtered probability space on

which Ẇ = Ẇ(t, x) is a d-dimensional random vector whose components are i.i.d.
two-parameter white noises adapted to Ft. We consider a random string u(t, x) ∈ Rd,
which is the solution to the following stochastic heat equation (SHE)

∂tu(t, x) =
1

2
∂2
xu(t, x) + Ẇ(t, x)

u(0, x) = u0(x)
(1.1)

on the circle x ∈ [0, J ], having endpoints identified, and t ∈ [0, T ]. The initial profile
u0 is assumed to be continuous. Note that we will use boldface letters to denote
vector-valued quantities.

We will be interested in the evolution of the random string in a field of obstacles
centered at points coming from an independent Poisson point process. More precisely,
let (Ω1,G,P1) be a second probability space on which is defined a Poisson point process
η with intensity ν given by

η(ω1) =
∑
i≥1

δξi(ω1), ω1 ∈ Ω1,

with points {ξi(ω1)}i≥1 ⊂ Rd.

The obstacles will be formed via a potential V : Rd × Ω1 → [0,∞]

V(z,η) =
∑
i≥1

H(z− ξi),

where H : Rd → [0,∞] is a non-negative, measurable function whose support of H is
contained in the closed ball B(0, a) of radius 0 < a ≤ 1 centered at 0.

We will work in the product space (Ω×Ω1,F × G,P0 × P1) along with the filtration
(Ft × G)t≥0. We will write E for the expectation with respect to P := P0 × P1, and
Ei for the expectation with respect to Pi for i = 0, 1. Our main quantity of interest
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is the quenched and the annealed survival probabilities given by

ST,η(ω1) = E0

[
exp

(
−
∫ T

0

∫ J

0

V
(
u(s, x),η(ω1)

)
dxds

)]
, and

ST = E
[
exp

(
−
∫ T

0

∫ J

0

V(u(s, x),η) dxds

)]
respectively. Sometimes we will write SH,J,ν

T and SH,J,ν
T,η to emphasize the dependence

on H, J, ν.

1.1. Main Result. Our first result on hard obstacles, i.e. the string is killed imme-
diately on contact and the only way it can survive is to avoid them.

Theorem 1.1 (Hard obstacles). Consider the solution to (1.1) with d ≥ 2 and J ≥ 1,
and let ν and a be as above. Then the following hold in the case H(·) ≡ ∞ · 1B(0,a)

(1) (Lower bound) There exist positive constants

(a) C0, C1, C2 independent of T, J such that for T ≥ C0J
2+ d

2

(1.2) SH,J,ν
T ≥ C1 exp

(
−C2

(
T

J

) d
d+2

)
.

(b) C3, C4, C5 independent of T, J such that for T ≤ C3J
2+ d

2

(1.3) SH,J,ν
T ≥ C4 exp

(
−C5 (TJ)

d
d+6

)
.

(2) (Upper bound) There exist positive constants C6, C7 independent of T, J such
that for all T > 0, J ≥ 1

(1.4) SH,J,ν
T ≤ C6 exp

(
− C7

1 + | log J |

(
T

J2

) d
d+2

)
.

In the case of hard obstacles we immediately see that the survival of the string is
only possible if the string avoids the obstacles. Thus the“sausage of radius a around
string up to time T” should be devoid of any Poisson points. Indeed it is easy to
check using standard properties of the Poisson random variable that

(1.5) SH,J,ν
T = E exp

(
−ν
∣∣SJ

T (a)
∣∣) ,

where

(1.6) SJ
T (a) =

⋃
0≤s≤T,
0≤y≤J

{u(s, y) +B(0, a)} ,
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is the sausage of radius a around u. Thus Theorem 1.1 also provides bounds on the
exponential moments of the volume of the sausage of radius a around the string up
to time T .

We next turn our attention to the case of soft obstacles, i.e. H does not take the value
∞. We make the following specific assumptions on H.

Assumption 1.1. There is a C > 0 such that H(x) ≥ C · 1B(0,a
2
)(x).

We note that under this assumption there is a positive probability of survival even
if the string interacts with the obstacle environment. We are now ready to state our
result in this setting.

Theorem 1.2 (Soft obstacles). Consider the solution to (1.1) with d ≥ 2 and J ≥ 1,
let ν > 0 be as above and let H be a soft obstacle satisfying Assumption 1.1. Then

(1) (Lower bound) There exist positive constants

(a) C0, C1, C2 independent of T, J such that for T ≥ C0J
2+ d

2

(1.7) SH,J,ν
T ≥ C1 exp

(
−C2

(
T

J

) d
d+2

)
.

(b) C3, C4, C5 independent of T, J such that for T ≤ C3J
2+ d

2

(1.8) SH,J,ν
T ≥ C4 exp

(
−C5 (TJ)

d
d+6

)
.

(2) (Upper bound) Fix β > 0. There exist positive constants C6, C7 independent
of T, J such that for all T > 0, J ≥ 1

(1.9) SH,J,ν
T ≤ C6 exp

(
− C7

J3+β(1 + | log J |)

(
T

J2

) d
d+2

)
.

We conclude this sub-section with a few remarks.

Remark 1.1. (i) If we set J = 1 in (1.2) and (1.4) or in (1.7) and (1.9) then
for large enough T > 0, in both the hard and soft obstacle cases we have

C1 exp
(
−C2T

d
d+2

)
≤ SH,1,ν

T ≤ C3 exp
(
−C4T

d
d+2

)
,

for some constants C1, C2, C3, C4 > 0. Thus the bounds in our results (Theo-
rems 1.1 and 1.2) are optimal in the case when J = 1 for large enough T > 0.
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(ii) Due to (1.5), Theorem 1.1 immediately gives us bounds on E exp
(
−ν
∣∣SJ

T (a)
∣∣).

Further, as we observe above at J = 1, from Theorem 1.1 that we have for
sufficiently large T > 0

C1 exp
(
−C2T

d
d+2

)
≤ E exp

(
−ν
∣∣S1

T (a)
∣∣) ≤ C3 exp

(
−C4T

d
d+2

)
,

for some constants C1, C2, C3, C4 > 0. The exponent of T matches that of the
asymptotics of the volume of the Brownian Sausage. Since in our case u is
the solution of a stochastic PDE, this seems to be a new result of independent
interest.

(iii) The constants mentioned in Theorem 1.1 and Theorem 1.2 are all independent
of T, J but do depend on ν, a, and C. The bound 0 < a ≤ 1 is used for technical
convenience.

1.2. Overview of Proof. We will say that u is a solution to (1.1) if it satisfies,

(1.10) u(t, x) =

∫ J

0

G(J)(t, x− y)u0(y)dy +

∫
[0,t]×[0,J ]

G(J)(t− s, x− y)W(dsdy),

where [0, J ] is the circle with endpoints identified and G(J) : R+ × [0, J ] → R is the
fundamental solution of the heat equation

∂tG
(J)(t, x) =

1

2
∂2
xG

(J)(t, x),

G(J)(0, x) = δ(x).

Furthermore, the final integral in (1.10) can be regarded as either a Wiener integral
or a white noise integral in the sense of Walsh [13].

The first reduction in the proof is to reduce to the case J = 1. We will do this by
deriving a scaling relation for SH,J,ν

T . Consider

v(t, x) := J− 1
2u(J2t, Jx),

defined for x ∈ [0, 1] with endpoints identified, and t ∈ [0, TJ−2]. The initial profile
is v(0, x) = v0(x) = J−1/2u0(Jx). It was proved in Lemma 2.2 of [3] that v satisfies

∂tv =
1

2
∂2
xv +

˙̃
W, t ∈ [0, TJ−2]

v(0, x) = v0(x), x ∈ [0, 1]
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for some other white noise
˙̃
W. Now it is easily checked

SH,J,ν
T = E

[
exp

(
−
∫ T

0

∫ J

0

∑
i≥1

H(u(s, x)− ξi) dxds

)]

= E

[
exp

(
−
∫ T

J2

0

∫ 1

0

∑
i≥1

J3H

(
J

1
2

(
v(s̃, x̃)− ξi

J
1
2

))
dx̃ds̃

)]
Define

(1.11) H̃(·) := J3H(J
1
2 ·), ξ̃i :=

ξi

J
1
2

, and ν̃ := νJ
d
2 .

It is easily seen that H̃ is supported in the ball B(0, aJ− 1
2 ). The points ξ̃ form a

Poisson point process of intensity ν̃. Setting T̃ = TJ−2 we obtain

(1.12) SH,J,ν
T = SH̃,1,ν̃

T̃
.

Remark 1.2 (Important). For the rest of article will focus on J = 1, so (1.10)
becomes

u(t, x) =

∫ 1

0

G(t, x− y)u0(y) dy +N(t, x),

where

N(t, x) =

∫
[0,t]×[0,1]

G(t− s, x− y)W(dsdy)

is the noise term. For simplicity of notation, we have also removed the superscript
in G(1). We will work with SH,1,ν

T and finally use the scaling relation (1.12) to obtain

the bounds for SH,J,ν
T

The key strategy for proving the lower bound for survival probability in Theorem 1.1
Theorem 1.2 is to obtain an optimal configuration for the traps ξ so that the string
does not get killed. This configuration has an area free of traps in a ball of radius
αT around the origin and the string under this potential is made to stay inside this
ball till time T . The probability of obtaining such a configuration is of the order
exp(−C1(αT + a)d). In the regime 1(b) of Theorems 1.1 and 1.2 we can use the
small ball probability estimates of Theorem 1.1 in [3] to obtain a lower bound of
exp(−C2

TJ
α6
T
) on P0

(
supt≤T, x∈[0,1] |u(t, x)| ≤ αT

)
. Optimizing αT in the product we

obtain the lower bound in the regime 1(b) of Theorems 1.1 and 1.2. In the regime
1(a) of the theorems, Theorem 1.1 in [3] is not applicable, and therefore we decompose
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the string into two components, namely center of mass and radius of u respectively.
More precisely let

Xt =

∫ 1

0

u(t, x) dx, (Center of Mass)

Rt = sup
x∈[0,1]

|u(t, x)−Xt| , (Radius).
(1.13)

We show that Xt and Rt are independent. Then separately we consider the events
|Xt| ≤ αT

2
, t ≤ T and Rt ≤ αT

2
, t ≤ T , and show that the probability of their

intersection is bounded below by exp(−C2(
T
α2
T
)). Optimizing over αT and the scaling

relations discussed above yield 1(a) in Theorems 1.1 and 1.2. We present the details
in Section 2.

Unlike the lower bound, the proof of upper bound differs from the classical setting
of random walks or that of Brownian motion. The proof techniques in those models
depend on potential theory and eigenvalues of the Laplacian, and both of these are
much harder to study for infinite dimensional processes such as the random string.
We are thus forced to go back to first principles, which perhaps explains the fact that
our upper and lower bounds do not completely match. It is also important to note
that while the upper and lower bounds match for the case J = 1, the scaling relations
in (1.11) imply that they don’t carry over to the general case via space-time scaling.

Following Remark 1.2 we first obtain an upper bound for SH,1,ν
T . Recall

(1.14) SH,1,ν
T = E exp

(
−ν
∣∣S1

T (a)
∣∣) ,

where S1
T (a) is the sausage of radius a around u, that is

S1
T (a) =

⋃
0≤s≤T,
0≤y≤1

{u(s, y) +B(0, a)} .

We will explain the strategy for the proof in the case of hard obstacles, the argument
for the soft obstacles not being very different. Due to (1.14), an upper bound on

the partition function SH,1,ν
T essentially boils down to obtaining a lower bound on

the volume of the sausage S1
T (a) around u. For this, we consider the sausage around

u(t) = u(t, ·), that is

(1.15) S1(a; t) =
⋃

0≤y≤1

{u(t, y) +B(0, a)} ,

so that
S1
T (a) =

⋃
0≤t≤T

S1(a; t).
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We will identify times at which S1(a; t) do not intersect, so the sum of the volumes
of these fixed time sausages will provide the desired lower bound.

We will consider a set of stopping times τi (see (3.3)) such that the center of mass
at these time points, Xτi , are separated by at least 4Λ from each other (where Λ is
suitably chosen, see Lemma 3.10). Using known results on the volume of the Wiener

sausage, we show that the number of τi before time T should be at least C1T
d

d+2 with

probability 1− exp(−C2T
d

d+2 ) for some constants C1, C2 (see Lemma 3.2).

Now, let

N(s, t;x) :=

∫
[s,t]×[0,1]

G(t− r, x− y)W(drdy),

which represents the noise term from time s to t. Then N(s, t) will represent the
function from x ∈ [0, 1] to Rd. For s < t, we use the Markov property for u to write

u(t) = Gt−s ∗ u(s) +N(s, t).

If s ≪ t then the first term is almost a constant because of the smoothening effect of
the Laplacian. The volume of the sausage around Gt−s ∗ u(s) will then be approxi-
mately ad. We show in Lemma 3.11, using the independence of Xt and Rt, that with
probability ≥ 1

2
the range (see (3.8) for precise definition) of N(s, t) is at most Λ and

the volume of the sausage of radius a around N(s, t) is of order at least ad−2+ϵ.

Using this we shall construct a subset {Ti} of {τi}, such that:

(a) the {Ti} are at least distance L apart (see (3.9));
(b) the range of each N(Ti−1, Ti]) is less than equal to Λ ;
(c) the volume of the sausage of radius a around each N(Ti−1, Ti) is of order at

least ad−2+ϵ; and

(d) the number of {Ti} before time T is at least C3T
d

d+2 with probability 1 −
exp(−C4T

d
d+2 ) for some constants C3, C4 (see Lemma 3.2).

These conditions with appropriate choice of Λ will imply that the sausages around
{u(Ti)} will be disjoint and have volume ad−2+ϵ each. Therefore formally speaking
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(see proof for precise details)

SH,1,ν
T ≤ P0

(
#Ti ≤ C3

T
d

d+2

L

)
+ E0

exp
−ν

∣∣∣∣∣∣
⋃C3

T
d

d+2

L

j=0
S
(a
2
;N(Tj−1, Tj)

)∣∣∣∣∣∣


≤ exp

(
−C4

T
d

d+2

L

)
+ exp

(
−C5a

d−2+γ T
d

d+2

L

)

≤ exp

(
−C4

T
d

d+2

L

)
+ exp

(
−C5a

d−2+γ T
d

d+2

L

)
.

Then using the scaling mentioned above we obtain

SH,J,ν
T ≤ exp

(
− C6(T/J

2)
d

d+2

E + 3| log(a/J 1
2 )|

)
+ exp

(
−C7(T/J

2)
d

d+2J1− γ
2

E + 3| log(a/J 1
2 )|

)
,

for some γ > 0. We note that after scaling the first term above will be the dominating
term and will provide the upper bound in Theorem 1.1 part 2. We derive the best
possible estimates for volume of the sausage as this might allow future improvements
in our bounds on the first term.

We conclude this section with some open questions. The upper and lower bounds do
not match in Theorem 1.1 and Theorem 1.2 in J . This is a gap that seems hard to fix
given the paucity of techniques and tools available in the infinite dimensional setting.
The quenched survival probability is also of keen interest. Here the geometry of the
string and its topology will come into play. We do not consider this here. We also
do not explore large deviations for the volume of the sausage as there is no obvious
ergodicity to establish a limiting value of a Lyapunov exponent.

Convention: We will use C to denote constants whose value might change from
line to line. Sometimes we will indicate dependence of constants on parameters by
putting the parameters in parentheses, for example C(d), C(ν, d) etc. The notation
C1, C2, · · · will be used to denote constants whose value remain fixed throughout a
lemma, proposition, theorem etc. Such constants might be used later in which case
it will be clear from the context.

Acknowledgment: S.A. research was partially supported by the CPDA grant from
the Indian Statistical Institute and the Knowledge Exchange, Infosys excellence grants
from the International Centre for Theoretical Sciences, C.M. research was partially
supported by Simons Collaboration Grant 513424, and M.J. research was partially
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2. Proof of the lower bound in Theorems 1.1 and 1.2

As indicated above we will use the same strategy for the lower bound for the survival
probability for both the hard and soft obstacle case. We begin with the proof of 1(b)
first.

Proof of lower bounds 1(b) in Theorem 1.1 and Theorem 1.2. Following Remark 1.2

we find the lower bound for SH,1,ν
T . As indicated earlier for the string to survive in a

hard obstacle environment, it must avoid the obstacles. We will use the same strategy
of survival for the soft obstacle as well. Let

O =
⋃
i≥1

B(ξi, a)

be the obstacle set. For T > 0, let α ≡ αT > 0 be a parameter which will be chosen
to devise the optimal strategy. Due to the support of H being in a ball of radius a
one obtains

SH,1,ν
T ≥ P(BT ∩ CT )

= P0(BT )P1(CT ),
(2.1)

where

BT =

 sup
s∈[0,T ]

x∈[0,1]

|u(s, x)| ≤ α

 ,

CT =
{
there are no ξi in the ball B (0, α+ a)

}
.

It is important to observe here that the above argument does not depend on whether
the obstacles are hard or soft. Clearly

(2.2) P1(CT ) = exp
(
−νcd(α + a)d

)
for some dimension dependent constant cd.
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Using Theorem 1.1 in [3] we have that there exist C0 > 0, C1 > 0 and ϵ0 > 0 such

that if αT < ϵ0
√
J then

P

 sup
0≤s≤T
y∈[0,J ]

|u(s, y)| ≤ ε

 ≥ C0 exp

(
−C1

TJ

ε6

)

Therefore using the above we have

SH,J,ν
T ≥ C0 exp

(
−νcd(α + a)d

)
exp

(
−C1

TJ

α6

)
≥ C0 exp

(
−νcd2

dad
)
exp

(
−νcd2

dαd − C1
TJ

α6

)

A simple calculus computation shows that the maximum of the exponent in the

attained at α = (C2TJ)
1

d+6 for some C2(d, ν) > 0 so that

(2.3) SH,J,ν
T ≥ C0 exp

(
−νcd2

dad
)
exp

(
−(C2TJ)

d
d+6

)
.

The choice of α is valid provided

(C2TJ)
1

d+6 < ϵ0
√
J ⇐⇒ T <

ϵd+6
0

C2

J
d
2
+2

Thus there is a constant C3(d, ν) independent of J, T , such that if T ≤ C3J
2+ d

2 then
there are C4(d, ν), C5(d, ν) > 0 such that

SH,J,ν
T ≥ C4 exp

(
−C5(TJ)

d
d+6

)
□

We need a couple of technical results before we begin the proof of 1(a). The following
lemma is crucial.

Lemma 2.1. With Xt and Rt as in (1.13), we have

(a) Xt is a standard Brownian motion starting at
∫ 1

0
u0(x)dx.

(b) Xt and Rt are independent.
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Proof. It is easily checked that

Xt =

∫ 1

0

u0(x)dx+

∫ t

0

W(dyds)

is a standard Brownian motion, and

u(t, x)−Xt =

∫ 1

0

[G(t, x− y)− 1]u0(y)dy+

∫
[0,t]×[0,1]

[G(t− s, x− y)− 1]W(dsdy),

where G = G(1) is the heat kernel on the unit circle. Both these processes are
Gaussian. The components of Xt and u(t, x)−Xt are uncorrelated since∫ t

0

∫ 1

0

[G(t− s, x− y)− 1] dyds = 0.

The second part of the lemma immediately follows. □

We will also need

Proposition 2.1. Assume supx |u0(x)| ≤ α
2
. Then there are constants 0 < C0 < 1

and K0 > 0 such that for all α ≥ K0

(2.4) P0

 sup
s≤α2

x∈[0,1]

|u(s, x)| ≤ α, sup
x∈[0,1]

|u(α, x)| ≤ α

2

 ≥ C0.

Proof. Let us consider first the case u0 ≡ 0. From the previous lemma

P0

 sup
s≤α2

x∈[0,1]

|u(s, x)| ≤ α

2

 ≥ P0

(
sup
s≤α2

|Rs| ≤
α

4

)
P0

(
sup
s≤α2

|Xs| ≤
α

4

)
.

Since the last term is a positive constant independent of T , it is enough to show that
there is a K0 > 0 such that

sup
α≥K0

P0

(
sup
s≤α2

|Rs| >
α

4

)
< 1.

Now

P0

(
sup
s≤α2

|Rs| >
α

4

)
= P0

 sup
s≤α2

x∈[0,1]

|u(s, x)−Xs| >
α

4

 .(2.5)
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By splitting the time interval into subintervals of length 1 we have the bound

P0

 sup
s≤α2

x∈[0,1]

|u(s, x)−Xs| >
α

4


≤

[α2]+1∑
k=0

P0

 sup
s∈[k,k+1]

x∈[0,1]

|u(s, x)−Xs| >
α

4


≤

[α2]+1∑
k=0

P0

(
|u(k, 0)−Xk| >

α

8

)

+

[α2]+1∑
k=0

P0

 sup
s∈[i,i+1]

x∈[0,1]

| [u(k, 0)−Xk]− [u(s, x)−Xs] | >
α

8



(2.6)

Using the standard Fourier decomposition of G(t, x) (see Section 3 of [3]) one obtains
that each coordinate of u(i, 0)−Xi has variance∫ k

0

∫ 1

0

[G(s, y)− 1]2 dyds =

∫ k

0

∫ 1

0

G2(s, y) dyds− k

=

∫ k

0

∑
l≥1

exp
(
−(2πl)2s

)
ds

≤ C.

See Lemma 3.1 of [3] for details. Therefore for large α

[α2]+1∑
k=0

P0

(
|u(k, 0)−Xk| >

α

8

)
≤ exp

(
−Cα2

)
.

Now we turn to the last term in (2.6). Consider the process

M(s, x) = [u(k, 0)−Xk]− [u(s, x)−Xs] , s ∈ [k, k + 1], x ∈ [0, 1].

Note that M(k, 0) = 0. A quick calculation gives

M(s, x)−M(s, x̃) =

∫
[0,s]×[0,1]

[G(s− r, x̃− y)−G(s− r, x− y)]W(drdy)



14 SIVA ATHREYA, MATHEW JOSEPH, AND CARL MUELLER

whose components have variance less than C|x−y| (see Lemma 3.1 of [3] for details).
Similarly for k ≤ s < s̃ ≤ k + 1 we obtain

M(s, x)−M(s̃, x) =

∫
[0,s]×[0,1]

[G(s̃− r, x− y)−G(s− r, x− y)]W(drdy)

+

∫
[s,s̃]×[0,1]

G(s̃− r, x− y)W(drdy) + [Xs −Xs̃] .

Following Lemma 3.1 of [3] we obtain that the components have variance less than
C
√
s̃− s. Note that s̃ ≤ s+1 so that the variance of the components of Xs̃ −Xs are

also bounded by C
√
s̃− s.

Therefore the conditions of Lemma 3.4 of [3] are satisfied, and we obtain for large α

[α2]+1∑
k=0

P0

 sup
s∈[k,k+1]

x∈[0,1]

|[u(k, 0)−Xk]− [u(s, x)−Xs]| >
α

8

 ≤ exp
(
−Cα2

)
.

Returning to (2.5) we obtain

P0

(
sup
s≤α2

|Rs| >
α

2

)
≤ exp

(
−Cα2

)
< 1,

uniformly in α ≥ K0 for some K0 > 0. This completes the proof of the proposition
in the case that u0 ≡ 0.

In the general case supx |u0(x)| ≤ α
2
, we apply a Girsanov change of measure argu-

ment. Consider the measure Q0 given by

dQ0

dP0

= exp

(
−
∫
[0,α2]×[0,1]

(Gs ∗ u0)(y) ·W(dsdy)

α2
− 1

2

∫ α2

0

∫ 1

0

|Gs ∗ u0)(y)|2

α4

)
,

where Gs ∗ u0 is the convolution of G(s, ·) with u0. Under the measure Q0,

W̃(dsdy) = W(dsdy) +
(Gs ∗ u0)(y)

α2
dsdy

is a white noise (see [1]). Moreover for 0 ≤ t ≤ α2

(2.7) u(t, x) =

(
1− t

α2

)
(Gt ∗ u0)(x) +

∫
[0,t]×[0,1]

G(t− s, x− y)W̃(dsdy),
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and the first term is 0 at time t = α2. The case of u0 ≡ 0 shows

Q0

 sup
t≤α2

x∈[0,1]

∣∣∣∣∫
[0,t]×[0,1]

G(t− s, x− y)W̃(dsdy)

∣∣∣∣ ≤ α

2

 ≥ C̃0,

for some C̃0 > 0. An application of the Cauchy-Schwarz inequality gives

P0

 sup
t≤α2

x∈[0,1]

∣∣∣∣∫
[0,t]×[0,1]

G(t− s, x− y)W̃(dsdy)

∣∣∣∣ ≤ α

2



≥ Q0

 sup
t≤α2

x∈[0,1]

∣∣∣∣∫
[0,t]×[0,1]

G(t− s, x− y)W̃(dsdy)

∣∣∣∣ ≤ α

2


1/2

· E0

[(
dQ0

dP0

)2
]−1/2

≥ C̃
1/2
0 exp

(
−1

4

∫ α2

0

∫ 1

0

α2

4α4
dyds

)

= C̃
1/2
0 exp

(
− 1

16

)
.

The first term in (2.7) is at most α
2
, and so the above lower bound is also a lower

bound for the probability in (2.4). This completes the proof of the proposition. □

Proof of lower bound in Theorems 1.1 and 1.2 1(b): Following Remark 1.2 we find the

lower bound for SH,1,ν
T . As indicated earlier for the string to survive in a hard obstacle

environment, it must avoid the obstacles. We will use the same strategy of survival
for the soft obstacle as well. Let

O =
⋃
i≥1

B(ξi, a)

be the obstacle set. For T > 0, let α ≡ αT > 0 be a parameter which will be chosen
to devise the optimal strategy. Due to the support of H being in a ball of radius a
one obtains

SH,1,ν
T ≥ P(BT ∩ CT )

= P0(BT )P1(CT ),
(2.8)
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where

BT =

 sup
s∈[0,T ]

x∈[0,1]

|u(s, x)| ≤ α

 ,

CT =
{
there are no ξi in the ball B (0, α+ a)

}
.

It is important to observe here that the above argument does not depend on whether
the obstacles are hard or soft. Clearly

(2.9) P1(CT ) = exp
(
−νcd(α + a)d

)
for some dimension dependent constant cd.

We will next estimate P0(BT ) by using Proposition 2.1. Indeed, an application of the
Markov property and (2.4) yields
(2.10)

P0(BT ) ≥ P0

 sup
s≤α2

x∈[0,1]

|u(s, x)| ≤ α, sup
x∈[0,1]

|u(α, x)| ≤ α

2


T
α2

≥ exp

(
T

α2
logC0

)
,

for α2 ≪ T.

Using (2.9) and (2.10) in (2.8) we have for α ≥ K0

SH,1,ν
T ≥ exp

(
−νcd(α + a)d

)
exp

(
T

α2
logC0

)
≥ exp

(
−νcd2

dad
)
exp

(
−νcd2

dαd +
T

α2
logC0

)
.

For general J ≥ 1 we use (1.12), as well as the fact that ã = aJ− 1
2 , ν̃ = νJ

d
2 to obtain

SH,J,ν
T ≥ exp

(
−νcd2

dad
)
exp

(
−νJ

d
2 cd2

dαd +
T

J2α2
logC0

)
.

A simple calculus computation shows that the maximum of the exponent in the second

term is attained at α = C(d, ν)
(

T

J2+ d
2

) 1
d+2

so that

(2.11) SH,J,ν
T ≥ exp

(
−νcd2

dad
)
exp

(
−C1(d, ν)

(
T

J

) d
d+2

)
,
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for a constant C1(d, ν) independent of J, T , as long as α ≥ K0 or equivalently T ≥
C2(d, ν)J

2+ d
2 . □

3. Preliminaries for the upper bounds in Theorems 1.1 and 1.2

In this section we prove several preliminary lemmas required for the proof. We begin
with Section 3.1, where we define the stopping times {τi} precisely and show that

there are order of T
d

d+2 such times in [0, T ] with very high probability. In Section 3.2,
we define the crucial stopping times {Ti} at which we will consider the volume of the
sausage around u(Ti, ·). We will choose the {Ti} from the {τi} so that

(1) u(Ti, ·) has a larger volume than the sausage of radius a/2 around N (Ti−1, Ti),
(2) the volume of the sausage around N(Ti−1, Ti) of radius

a
2
is at least Cγad−2+γ,

and
(3) the range of N(Ti−1, Ti) has volume less than or equal to Λ.

Then in Section 3.4 we show is that there are sufficiently many times {Ti}, and they
are far enough apart to ensure that the sausages at these times do not intersect and
the gaps between these times have finite mean. Finally we conclude with Section 3.5
where we prove some estimates needed for the soft obstacle case.

3.1. Using Estimates of the Wiener Sausage. For Λ > 1 (to be chosen specif-
ically in Lemma 3.10), it is useful to consider the sausage of radius 4Λ around the
center of mass XT :

(3.1) XT (4Λ) :=
⋃

0≤t≤T

{Xs +B(0, 4Λ)} .

This is the well studied Wiener sausage.

Lemma 3.1 ([12], [4], [7], [10]). Let d ≥ 2 and Λ > 1. There exists C(d,Λ) > 0 such
that for T > 0 we have

(3.2) P0

(
|XT (4Λ)| ≤ T

d
d+2

)
≤ exp

(
−C(d,Λ)T

d
d+2

)
.

Let τ0 = 0 and consider consecutive stopping times τi defined as

(3.3) τi+1 = inf

{
t > τi : dist

(
Xt,

i⋃
k=0

Xτk

)
≥ 4Λ

}
.
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Note that Xτi is on the boundary of the region
⋃i−1

k=0B(Xτk , 4Λ). Let

(3.4) #(T ) := |{i ≥ 1 : τi ≤ T}|

be the number of τi’s with i ≥ 1 before time T .

Lemma 3.2. Let d ≥ 2 and Λ > 1. There exists Cd > 0 such that for T > 0 we have

(3.5) P0

(
#(T ) ≤ CdT

d
d+2

Λd

)
≤ exp

(
−C(d,Λ)T

d
d+2

)
,

where C(d,Λ) is the same as in Lemma 3.1.

Proof. We first claim that

(3.6)

#(T )+1⋃
i=0

B (Xτi , 8Λ) ⊃ XT (4Λ).

Clearly we need to just consider the behavior of the sausage for the time points strictly
between τi and τi+1 for any fixed i. By the definition of τi+1 the path Xt, τi ≤ t ≤ τi+1

is inside
⋃i

k=0B(Xτk , 4Λ). Therefore any such Xt is within 4Λ distance of some
Xτk , k ≤ i. It then follows that B(Xt, 4Λ) ⊂ B(Xτk , 8Λ). The claim (3.6) then
follows immediately.

Using (3.6) and the formula for the volume of a d sphere of radius 8Λ

(3.7) (#(T ) + 2)
π

d
2 (8Λ)d

Γ(d
2
+ 1)

≥ |XT (4Λ)| .

Therefore

P0

(
#(T ) ≤ CdT

d
d+2

Λd

)
≤ P0

(
(#(T ) + 2)

π
d
2 (8Λ)d

Γ(d
2
+ 1)

≤ Cd16
dπ

d
2T

d
d+2

Γ(d
2
+ 1)

)

≤ P0

(
|XT (4Λ)| ≤

Cd16
dπ

d
2T

d
d+2

Γ(d
2
+ 1)

)
≤ exp

(
−C(d,Λ)T

d
d+2

)
,

if we choose

C−1
d =

16dπ
d
2

Γ
(
d
2
+ 1
) .

This completes the proof of the lemma. □
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3.2. Stopping times for string. For a Rd valued function f defined on [0, 1], we
denote the range of f by

(3.8) R(f) := sup
x,y∈[0,1]

|f(x)− f(y)|

We will need the following lemma

Lemma 3.3. Let f : [0, 1] → Rd. We have for t ≥ 1

R(Gt ∗ f) ≤ 4de−4π2t

∥∥∥∥f − ∫ 1

0

f(x)dx

∥∥∥∥
2

≤ 4de−4π2tR(f)

Proof. We expand each component f in the Fourier basis

fj(x) =
∑
k

a
(j)
k ei2πkx.

Then

sup
x,y

∣∣∣(Gt ∗ fj)(x)− (Gt ∗ fj)(y)
∣∣∣ = sup

x,y

∣∣∣∣∣∑
k ̸=0

e−4π2k2ta
(j)
k

[
ei2πkx − ei2πky

]∣∣∣∣∣
≤ 4e−4π2t

(∑
k ̸=0

[
a
(j)
k

]2)1/2

Now observe that
∫ 1

0
fj(x)dx is the zeroth Fourier coefficient of fj so that(∑

k ̸=0

[
a
(j)
k

]2)1/2

=

∥∥∥∥fj − ∫ 1

0

fj(x)dx

∥∥∥∥
2

≤
∥∥∥∥f − ∫ 1

0

f(x)dx

∥∥∥∥
2

.

Clearly R(f) is an upper bound for the right hand side. Finally note that

R(Gt ∗ f) ≤
d∑

i=1

R(Gt ∗ fj)

which gives the factor d in the bound. □

For the rest of this article, we let

δ =
a

100
,

L = E + 3| log a|,
(3.9)

where E is a large enough constant.
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Remark 3.1. The constant E chosen above is independent of any of the parameters
in the model, e.g. T, J, a, ν. It is chosen so that L satisfies the following:

• 4de−4π2L ≤ δ (see Lemma 3.3).
• L ≥ D+ 2| log a|, where D is the constant appearing in Lemma 3.9.

• e4π
2L ≥ 8C0d

3
2

δ
, where C0 is the constant appearing in (3.21).

• L is large enough so that the last inequality in (3.24) holds.

Recall the stopping times τi defined in (3.3). Let T0 = 0 and define the sequence of
stopping times

S1 = {t ≥ T0 + L : R (Gt−T0 ∗ u0) ≤ δ}
T1 = min {τj : τj ≥ S1} ,

S2 = inf
{
t ≥ T1 + L : R

(
Gt−T1 ∗N(T0, T1)

)
≤ δ
}
,

T2 = min {τj : τj ≥ S2} ,

S3 = inf
{
t ≥ T2 + L : R

(
Gt−T2 ∗N(T1, T2)

)
≤ δ
}
,

T3 = min {τj : τj ≥ S3} ,
...

...
...

(3.10)

The reason for introducing the stopping times Ti will be clear below. Inductively

u(Ti) = GTi−Ti−1
∗ u
(
Ti−1

)
+N(Ti−1, Ti)

= GTi−Ti−1
∗
[
GTi−1−Ti−2

∗ u
(
Ti−2

)
+N(Ti−2, Ti−1)

]
+N(Ti−1, Ti)

= GTi−Ti−2
∗ u
(
Ti−2

)
+GTi−Ti−1

∗N(Ti−2, Ti−1) +N(Ti−1, Ti)

...
...

...

= GTi−T0 ∗ u(T0) +GTi−T1 ∗N(T0, T1) +GTi−T2 ∗N(T1, T2) + · · ·+N(Ti−1, Ti)

Definition 3.1. For a Rd valued function f on [0, 1] we denote

S(a; f) :=
⋃

0≤y≤1

{f(y) +B(0, a)}

to be the sausage of radius a around f .

The following lemma is crucial for the upper bound.

Lemma 3.4. We have

(3.11)
∣∣R(u(Ti)

)
−R

(
N(Ti−1, Ti)

)∣∣ ≤ 2δ.
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and

(3.12)
∣∣S1 (a;Ti)

∣∣ ≥ ∣∣∣S(a/2; N (Ti−1, Ti)
)∣∣∣ .

Proof. Denote by

G := GTi−T0∗u(T0)+GTi−T1∗N(T0, T1)+GTi−T2∗N(T1, T2)+· · ·+GTi−Ti−1
∗N(Ti−2, Ti−1).

It is easily checked that when f = g+h then |R(f)−R(g)| ≤ R(h). Therefore, with
our choice of δ and L, and by using Lemma 3.3, we obtain∣∣R(u(Ti)

)
−R

(
N(Ti−1, Ti)

)∣∣ ≤ R(G) ≤
∑
i≥1

δi ≤ 2δ.

To prove (3.12) , note that

u(Ti, x) = [G(0) +N (Ti−1, Ti;x)] + [G(x)− G(0)],

and so the ball of radius a/2 around [G(0) +N (Ti−1, Ti;x)] is contained in the ball
of radius a around u(Ti, x) (note R(G) ≤ a/2 by our choice of δ). Consequently the
sausage of radius a/2 around N (Ti−1, Ti) has a smaller volume than the sausage of
radius a around u(Ti). □

Remark 3.2. Equations (3.11) and (3.12) show that the range of u(Ti) is close to
that of N(Ti−1, Ti), and a lower bound on the volume of the sausage around u(Ti) is
given by the volume of a smaller sausage around N(Ti−1, Ti) . As we will see later
N(Ti−1, Ti) form a weakly dependent sequence. In particular, using a weak form of

law of large numbers, we will see that there is a subset of O(T
d

d+2 ) many Ti’s where the
volume of the sausage around N(Ti−1, Ti) is large and where the range of N(Ti−1, Ti)
is small. Because of (3.11) and (3.12) the same holds for u(Ti) on this subset. The
small range guarantees that the sausages at these Ti’s are disjoint, and thus a lower
bound for S1

T (a) is obtained by adding the volumes of the sausages at the Ti’s on this
subset.

3.3. Volume of the sausage around N(Ti−1, Ti) and Range of N(Ti−1, Ti). Our
first objective will be to give a lower bound on the probability that the volume of
the sausage of radius a/2 around N(0, t) is at least Cad−2+ϵ (see Lemma 3.9). As
indicated in Remark 3.2, we will show later that there are sufficiently many i such
that the sausages around N(Ti−1, Ti) have at least this volume. Let

(3.13) N(t;x, y) = N(t, x)−N(t, y),

and write

N(t;x, y) = N(1)(t;x, y)−N(2)(t;x, y),
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where

N(1)(t;x, y) =

∫
(−∞,t]×[0,1]

[G(t− s, x, z)−G(t− s, y, z)]W(dsdz), and

N(2)(t, x, y) =

∫
(−∞,0]×[0,1]

[G(t− s, x, z)−G(t− s, y, z)]W(dsdz)

It is easy to see that N(1)(t; ·, ·) is a stationary process in t. The reason for considering
the differences N(t, x)−N(t, y) instead of N(t, x) is that the term∫

(−∞,t]×[0,1]

G(t− s, x, z)W(dzds)

would not be convergent. Note also that the volume of a sausage around N(0, t) is
the same as the volume of the sausage around N(t; ·, 0). The lemma below shows
that N(2) becomes smaller with increasing t, and hence the main contribution of
N(t, x, y) comes from N(1)(t;x, y) for large t. The process N(1)(t; ·, 0) behaves locally
like Brownian motion (see Lemma 3.6, and so we can use some techniques (see for
example Lemma 3.7) which work for Brownian motion, to obtain a lower bound on
the sausage around N(1)(t; ·, 0).

Lemma 3.5. There exists a constant C1 > 0 such that for any λ > 0

(3.14) P0

(
sup

x,y∈[0,1]

∣∣N(2)(t;x, y)
∣∣ > λ

)
≤ 2 exp

(
−etλ2

C1

)
.

Proof. We first observe

E0

[∣∣N(2)(t;x, y)
∣∣2] = ∫ 0

−∞

∫ 1

0

[G(t− s, x, z)−G(t− s, y, z)]2 dzds

=

∫ 0

−∞
ds
∑
k≥1

e−k2(t−s)
∣∣1− ei·2πk(x−y)

∣∣2
≤
∑
k≥1

e−k2t

k2
|1 ∧ (k|x− y|)|2

≤ Ce−t|x− y|.

An application of the Burkholder-Davis-Gundy inequality then gives us

E0

[∣∣N(2)(t;x, y)
∣∣2k] ≤ Ck(2

√
2)2kkke−kt|x− y|k
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for all positive integers k ≥ 1. From the argument leading up to inequality (6.9) in
[5] one then obtains

E0

[
sup

x,y∈[0,1]

∣∣N(2)(t;x, y)
∣∣2k] ≤ Cke−ktkk, k ≥ 2.

Therefore there exists a constant C1 > 0 such that

E0

[
sup

x,y∈[0,1]
exp

(
exp(t) · |N(2)(t;x, y)|2

C1

)]
≤ 2.

The inequality (3.14) follows immediately from this. □

The following lemma indicates that the process N(1)(t; ·, 0) behaves locally like Brow-
nian motion. It will be used in Lemma 3.7 below.

Lemma 3.6. There are constants C1, C2 > 0 such that for all x, y ∈ [0, 1] and all
t ≥ 1 one has

C1d(x, y) ≤
∫ t

0

∫ 1

0

[G(s, x, z)−G(s, y, z)]2 dzds ≤ C2d(x, y),

where d(x, y) is the distance between x and y on the torus T = [0, 1).

Proof. Using the Fourier decomposition of G(s, x) we obtain∫ t

0

ds

∫ 1

0

dz [G(s, x, z)−G(s, y, z)]2

= C

∫ t

0

ds
∑
k≥1

exp
(
−(2πk)2s

) ∣∣1− exp [i(2πk)d(x, y)]
∣∣2

= C
∑
k≥1

[1− exp(−(2πk)2t)]

k2

∣∣1− exp [i(2πk)d(x, y)]
∣∣2.

(3.15)

Now use |1− eiz| ≤ 1∧ |z| and |1− e−4π2k2t| ≤ 1 to obtain that the above is less than

C
∑
k≥1

1

k2

∣∣1 ∧ [kd(x, y)]
∣∣ ≤ Cd(x, y).

The final inequality is obtained by splitting the sum according to whether k ≤
d(x, y)−1 or k > d(x, y)−1.
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Next we turn to the lower bound. For this we only consider the sum in (3.15) for
1 ≤ k ≤ 1

2d(x,y)
. Now |1 − eiz| ≥ C|z| for all z ∈ [0, π] and some C > 0. Therefore

since t ≥ 1∫ t

0

ds

∫ 1

0

dz [G(s, x, z)−G(s, y, z)]2 ≥ C

[2d(x,y)]−1∑
k=1

k2d(x, y)2

k2
≥ Cd(x, y).

This completes the proof of the lemma. □

Before proceeding we recall

Definition 3.2. The lower Minkowski dimension of a set A is

dimM(A) := lim inf
ϵ→0

logNϵ(A)

log(ϵ−1)
,

where Nϵ(A) is the minimum number of balls of radius ϵ needed to cover A.

We will need

Lemma 3.7. For t ≥ 1

dimM

[
Range

(
N(1)(t; ·, 0)

)]
≥ 2 a.s.

Proof. We first recall that for any set A we have

dimM(A) ≥ dimH(A),

where dimH is the Hausdorff dimension (see page 115 of [9]). We use the energy
method (Theorem 4.27 in [9]) to get a lower bound on the Hausdorff dimension of the
range. Let µt be the occupation measure of N(1)(t; ·, 0):∫

Rd

f(x)dµt(x) =

∫ 1

0

f
(
N(1)(t;x, 0)

)
dx.

We just need to show that for any 0 < α < 2

E0

∫
Rd

∫
Rd

dµt(x)dµt(y)

|x− y|α
= E0

∫ 1

0

∫ 1

0

dxdy

|N(1)(t;x, 0)−N(1)(t; y, 0)|α
< ∞.

Now N(1)(t, x, 0)−N(1)(t, y, 0) is a Gaussian random variable with mean 0 and vari-
ance ∫ ∞

0

∫ 1

0

[G(s, x, z)−G(s, y, z)]2 dzds.
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From Lemma 3.6 this expression is bounded above and below by a constant multiple
of d(x, y). Therefore it follows that

E0

∫ 1

0

∫ 1

0

dxdy

|N(1)(t;x, 0)−N(1)(t;x, 0)|α
≤ C

∫ 1

0

∫ 1

0

dxdy

d(x, y)α/2
< ∞,

as required. Consequently∫
Rd

∫
Rd

dµt(x)dµt(y)

|x− y|α
< ∞ a.s.

It thus follows from Theorem 4.27 in [9] that dimM

[
Range

(
N(1)(t; ·, 0)

)]
≥ 2 a.s. as

required. □

The lower bound in the lower Minkowski dimension gives a lower bound on the number
of balls of radius a which intersect the range of N(1)(t; ·, 0), and consequently a lower
bound on the volume of the sausage of radius a around N(1)(t; ·, 0).

Lemma 3.8. Fix an arbitrary 0 < γ < 1. There exists a C̃γ > 0 such that for any
t ∈ R and any 0 < a ≤ 1

P0

(
|S
(
a; N(1)(t; ·, 0)

)
| ≥ C̃γad−2+γ

)
≥ 4

5
.

Proof. First note that the process N(1)(t; ·, 0) is stationary in t. Partition Rd into
cubes of side length a. Let Ña(N

(1), t) be the number of cubes through which
N(1)(t; ·, 0) passes. By Lemma 3.7 we obtain almost surely

Ña(N
(1), t) ≥

(
1

a

)2−γ

for all a small enough.

Therefore there exists a positive random variable A(ω) which is finite almost surely
such that

Ña(N
(1), t) ≥ A(ω)

(
1

a

)2−γ

for all 0 < a ≤ 1.

We now choose the largest possible subcollection of these Ña(N
(1), t) cubes such that

no two cubes are adjacent (that is, share a common edge). Let N∗
a (N

(1), t) be the
number of cubes in this subcollection. Clearly there exists a constant Cd such that
almost surely

N∗
a (N

(1), t) ≥ A(ω)Cd

(
1

a

)2−γ

for all 0 < a ≤ 1.
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From each of these N∗
a (N

(1), t) cubes choose any point in the range of N(1)(t, ·, 0).
The union of the balls of radius a around these points is contained in the sausage of
radius a around N(1)(t, ·, 0), so that

|S
(
a; N(1)(t, ·, 0)

)
| ≥ A(ω)C̃da

d−2+γ for all 0 < a ≤ 1,

for some other constant C̃d > 0. The constant Cγ > 0 is chosen so that

P0

(
A(ω)C̃d ≥ C̃γ

)
≥ 4

5
.

This completes the proof of the lemma. □

We now use Lemma 3.5 on the smallness of N(2)(t; ·, 0) to control the volume of the
sausage around N(0, t).

Lemma 3.9. Fix an arbitrary 0 < γ < 1. There are constants Cγ > 0 and D > 0
such that for any 0 < a ≤ 1 and t ≥ D+ 2| log a|

P0

(
|S
(a
2
; N(0, t)

)
| ≥ Cγad−2+γ

)
≥ 3

4
.

Proof. We shall use (3.14).

P0

(
sup

x,y∈[0,1]

∣∣N(2)(t;x, y)
∣∣ > a

4

)
≤ 2 exp

(
− eta2

16C1

)
.

If we choose D large enough the right hand side above is at most 1
20
. Therefore,

P0

(
R
(
N(2)(t; ·, 0)

)
≤ a

4

)
≥ 19

20
.

As a consequence of this we obtain by a similar argument as in Lemma 3.4 that∣∣S(a
2
; N(0, t)

) ∣∣ ≥ ∣∣S(a
4
; N(1)(t; ·, 0)

) ∣∣.
We now use Lemma 3.8 to complete the proof. □

Our second objective in this subsection is (following Remark 3.2) analyze the proba-
bility that the range of N(0, t) is small (see Lemma 3.10).

Lemma 3.10. There exists Λ > 1 such that for all t ≥ L

(3.16) P0 (R(N(0, t)) ≤ Λ) ≥ 3

4
.
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Proof. Since N(1)(t; ·, 0) is stationary in t, we can choose Λ > 1 such that

P0

(
R
(
N(1)(t; ·, 0)

)
≤ Λ

2

)
≥ 4

5
.

In the proof of Lemma 3.9 we have seen that with probability at least 19
20

one has

R
(
N(2)(t; ·, 0)

)
≤ a

4
.

Therefore with probability at least 3
4
we have

R
(
N(0, t)

)
≤ R

(
N(1)(t; ·, 0)

)
+R

(
N(2)(t; ·, 0)

)
≤ Λ.

This completes the proof. □

Remark 3.3. We fix and use a Λ as in Lemma 3.10 for the rest of the article. In
particular the τi’s defined in (3.3) are defined in terms of this particular choice of Λ.

Our final objective is to show that there are sufficiently many Ti’s such thatR (N(Ti−1, Ti)) ≤
Λ and S

(
a
2
;N (Ti−1, Ti)

)
≥ Cγad−2+γ (See Lemma 3.11). Before we proceed, we will

need

Definition 3.3. Let F̃t be the filtration generated by white noise

F̃t = σ {W(A× [r, s]); A ⊂ [0, 1], 0 ≤ r, s ≤ t} .
Let Gi denote the σ-algebra generated by the white noise up to time Ti:

Gi =
{
A ∈ F : A ∩ {Ti ≤ t} ∈ F̃t

}
Let

Hi = Gi ∨ σ {Xt; t ≥ 0}
the σ-algebra generated by the white noise up to time Ti and the center of mass process.

Lemma 3.11. Let Λ be as in Lemma 3.10. We have

(3.17) P0

(
R (N(Ti−1, Ti)) ≤ Λ,

∣∣∣S(a
2
; N(Ti−1, Ti))

)∣∣∣ ≥ Cγad−2+γ

∣∣∣∣Hi−1

)
≥ 1

2
.

Proof. It is enough to show

P0

(
R (N (Ti−1, Ti)) ≤ Λ

∣∣∣∣Hi−1

)
≥ 3

4
,(3.18)

P0

(∣∣∣S(a
2
; N (Ti−1, Ti)

)∣∣∣ ≥ Cγad−2+γ

∣∣∣∣Hi−1

)
≥ 3

4
.(3.19)
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We have from Lemma 3.10

P0

(
R (N (0, t)) ≤ Λ

)
≥ 3

4
,

uniformly in t ≥ L. Then observe

P0

(
R (N (Ti−1, Ti)) ≤ Λ

∣∣∣∣Hi−1

)
=

∫ ∞

0

∫ ∞

s+L

P0

(
Ti−1 ∈ ds, Ti ∈ dt, R

(
N(s, t)

)
≤ Λ

∣∣∣∣Hi−1

)
=

∫ ∞

0

∫ ∞

s+L

1 {Ti−1 ∈ ds, Ti ∈ dt} · P0

(
R
(
N(s, t)

)
≤ Λ

)
.

The second equality follows from an argument similar to Lemma 2.1, In fact the
event {Ti−1 ∈ ds, Ti ∈ dt} is measurable with respect to the sigma field Hi−1, while
R(N(s, t)) depends on

σ

(∫ t̃

s

∫ 1

0

[Gt−r(x, z)−Gt−r(0, z)]W(dzdr), x ∈ [0, 1], t̃ ≥ s

)
,

which is independent of Hi−1. From this we obtain (3.18). Similarly, to show (3.19)
we use Lemma 3.9, and integrate over the realizations of Ti−1 and Ti. This completes
the proof of the lemma. □

Consequently, due to (3.11) and (3.12) and using Lemma 3.11, there are sufficiently
many Ti such that R (u(Ti)) ≤ Λ + 2δ and |S1 (a;Ti)| ≥ Cγad−2+γ.

3.4. Sufficiently many Ti far apart.

Lemma 3.12. There exists C2 > 0 such that for all t ≥ L

P0

[
Si+1 − Ti > t

∣∣∣Hi−1

]
≤ C2e

−8π2t

δ2
.

In particular for any η < 8π2 there exists C3(η) > 0 such that

(3.20) E0

[
exp (η(Si+1 − Ti))

∣∣∣∣Hi−1

]
≤ eηL +

C3(η)

δ2

Proof. Recall from (3.10)

Si+1 = inf
{
t ≥ Ti + L : R

(
Gt−Ti

∗N(Ti−1, Ti)
)
≤ δ
}
.
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The event {Si+1 − Ti > t} implies that R
(
Gt ∗ N(Ti−1, Ti)

)
> δ, and in light of

Lemma 3.3, it further implies∥∥∥∥N(Ti−1, Ti)−
∫ 1

0

N(Ti−1, Ti; x)dx

∥∥∥∥
2

>
δ

4d
e4π

2t.

Using the subscript j to denote the components of N(Ti−1, Ti) it follows that there
exists a 1 ≤ j ≤ d such that∥∥∥∥Nj(Ti−1, Ti)−

∫ 1

0

Nj(Ti−1, Ti; x)dx

∥∥∥∥
2

>
δ

4d
3
2

e4π
2t.

We can formally write each component Wj of the white noise as Wj(dydr) =∑
k∈Z e

ı(2πky)dBk(r)dy, where the Bk’s are independent standard complex Brownian

motions (that is Bk = Rk√
2
+ ıCk√

2
where Rk, Ck are standard real Brownian motions)

with B̄k = B−k. This can be seen by integrating both sides with test functions and
computing the second moments. Since

Gt(x, y) =
∑
l∈Z

e−2π2l2teı2πl(x−y),

the kth Fourier coefficient of Nj(s, s̃), k ̸= 0 is

ak =

∫ s̃

s

e−2π2k2(s̃−r)dBk(r)

Furthermore we have āk = a−k and ak is independent of ak̃ if k̃ ̸= k,−k. Now

E

[∑
k ̸=0

|ak|2
]
=
∑
k ̸=0

1

2π2k2

(
1− e−2π2k2(s̃−s)

)
,

and so there exist positive constants C0, C1 such that

E

(∑
k ̸=0

|ak|2
) 1

2

 ≤ C0 and Var

(∑
k ̸=0

|ak|2
) 1

2

 ≤ C1

uniformly in s and s̃. Therefore

P0

[
Si+1 − Ti > t

∣∣∣ Hi−1

]
≤ d · P0

[∥∥∥∥Nj(Ti−1, Ti)−
∫ 1

0

Nj(Ti−1, Ti;x)dx

∥∥∥∥
2

>
δ

4d
3
2

e4π
2t

∣∣∣∣ Hi−1

]
≤ d · C1(

δ

4d
3
2
e4π2t − C0

)2 .
(3.21)
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The second part of the lemma follows from

E0

[
exp (η(Si+1 − Ti))

∣∣∣∣ Hi−1

]
≤ eηL −

∫ ∞

L

eηtP0

[
Si+1 − Ti > t

∣∣∣ Hi−1

]
dt,

and the above tail bound. □

We conclude this section regarding the spacings of Si and Ti. This will be crucially
used on a specific subset of Ti’s to show the upper bound.

Lemma 3.13. There is a constant C̃ > 0 such that for any A4 > 0 and L as in (3.9)
we have

P0

A4
T

d
d+2

L∑
i=1

(Si − Ti−1) > C̃A4T
d

d+2

 ≤ exp

(
−C̃A4

2
T

d
d+2

)
.

Proof. With the choice of η = 1 in (3.20) we obtain

P0

A4
T

d
d+2

L∑
i=1

(Si − Ti−1) > C̃A4T
d

d+2

 ≤ E0 exp

A4
T

d
d+2

L∑
i=1

(Si − Ti−1)− C̃A4T
d

d+2


≤
(
eL +

C3

δ2

)A4
T

d
d+2

L

exp
(
−C̃A4T

d
d+2

)
.

The lemma follows by a large choice of the constant C̃ above. □

3.5. Estimates for Soft obstacles. We will need a few lemmas which lead up
Proposition 3.2. This is a key proposition that will be used in the proof of the upper
bound in Theorem 1.2.

Proposition 3.1. There is a C3 > 0 such that for all s0 ≤ 1

P0

(
sup
s≤s0

sup
x∈[0,1]

|N(0, t+ s;x)−N(0, t;x)| > λ

)
≤ exp

(
−C2

3λ
2

√
s0

)
uniformly in t.
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The proof of the above proposition follows from a sequence of lemmas. Define for
s, t ≥ 0 and x, y ∈ [0, 1]

Z(t, s;x, y) =
{
N(0, t+ s;x)−N(0, t;x)

}
−
{
N(0, t+ s; y)−N(0, t; y)

}
Lemma 3.14. There is a constant C1 > 0 such that

P0 (|Z(t, s;x, y)| > λ) ≤ exp

(
− C2

1λ
2

√
s ∧ |x− y|

)
uniformly in t.

Proof. We first give an upper bound on E0 [Z
2
i (t, s;x, y)], for any fixed coordinate Zi

of Z. This is easily seen to be equal to

∫ t

0

∫ 1

0

[G(t+ s− r, x, z)−G(t+ s− r, y, z)−G(t− r, x, z) +G(t− r, y, z)]2 dzdr

(3.22)

+

∫ t+s

t

∫ 1

0

[G(t+ s− r, x, z)−G(t+ s− r, y, z)]2 dzdr

(3.23)

Let us first look at (3.23). This is bounded by∫ s

0

dr
∑
k≥1

e−(2πk)2r
∣∣∣1− exp (i(2πk)(x− y))

∣∣∣2
≤ C

∑
k≥1

1− e−(2πk)2s

k2

[
1 ∧ |2πk(x− y)|

]2
≤ C

∑
k≥1

1 ∧ (2πk)2s

k2

[
1 ∧ |2πk(x− y)|

]2
In the case that

√
s ≤ |x− y|, the above is bounded by

C

1
2π|x−y|∑
k=1

k2s

k2
k2|x− y|2 + C

1
2π

√
s∑

k= 1
2π|x−y|+1

s+ C
∞∑

k= 1
2π

√
s
+1

1

k2
≤ C

√
s.

In the case that |x− y| ≤
√
s we obtain a bound

C

1
2π

√
s∑

k=1

k2s

k2
k2|x− y|2 + C

1
2π|x−y|∑

k= 1
2π

√
s
+1

k2|x− y|2

k2
+ C

∞∑
k= 1

2π|x−y|+1

1

k2
≤ C|x− y|.
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Let us next consider the term (3.22). This is bounded by∫ t

0

dr
∑
k≥1

[
exp

(
−(2πk)2(t+ s− r)

2

)
− exp

(
−(2πk)2(t− r)

2

)]2
[1 ∧ |2πk(x− y)|]2

≤
∫ t

0

dr
∑
k≥1

exp
(
−π2k2r

) ∣∣1− exp
(
−2π2k2s

)∣∣2 [1 ∧ |2πk(x− y)|]2

≤ C

∫ t

0

dr
∑
k≥1

[1 ∧ 2π2k2s]
2

k2
[1 ∧ |2πk(x− y)|]2

Therefore a similar bound as that for (3.23) holds for (3.22). The conclusion of our
arguments is that

E0

[
Z2

i (t, s;x, y)
]
≤ C

[√
s ∧ |x− y|

]
Since Z(t, s;x, y) is Gaussian we obtain the lemma by standard arguments. □

By similar arguments (see Lemma 3.3 in [3]) one has

Lemma 3.15. There is a constant C̃1 > 0 such that for all s ≤ 1

P0 (|N(0, t+ s; 0)−N(0, t; 0)| > λ) ≤ exp

(
−C̃2

1λ
2

√
s

)
uniformly in t.

Let Dn denote the collection of dyadic points of the form k
2n

in [0, 1]. For any dyadic
point x ∈ Dn, we can find a sequence 0 = p0, p1, · · · , pm = x of points such that
pi, pi+1 are nearest neighbors in some Dk, k ≤ n, and there are at most 2 points in
any Dk. Now

N(0, t+ s;x)−N(0, t;x) =
[
N(0, t+ s; 0)−N(0, t; 0)

]
+

m∑
i=1

Z(t, s; pi+1, pi)

From this and a chaining argument, similar to that of Lemma 3.4 in [3] we obtain

Lemma 3.16. There is a C2 > 0 such that for all s ≤ 1

P0

(
sup

x∈[0,1]
|N(0, t+ s;x)−N(0, t;x)| > λ

)
≤ exp

(
−C2

2λ
2

√
s

)
.

uniformly in t.
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We clearly have for s, s̃ ≤ 1∣∣∣ sup
x∈[0,1]

|N(0, t+ s;x)−N(0, t;x)| − sup
x∈[0,1]

|N(0, t+ s̃;x)−N(0, t;x)|
∣∣∣

≤ sup
x∈[0,1]

|N(0, t+ s;x)−N(0, t+ s̃;x)| ,

and just as in the above lemma we have for s̃ ≤ s ≤ 1

P0

(
sup

x∈[0,1]
|N(0, t+ s, x)−N(0, t+ s̃, x)| > λ

)
≤ exp

(
− C2

2λ
2

√
s− s̃

)
.

Therefore a chaining argument gives us Proposition 3.1. □

Now we return to the case of soft obstacles. We will need the following

Proposition 3.2. Fix any η > 0. There are constant 0 < C6(η) < 1 and C7(η) > 0
such that for t ≥ L we have

P0

(
R (N(0, t)) ≤ a

8
, sup

s≤C6a4+η

sup
x∈[0,1]

|N(0, t+ s, x)−N(0, t, x)| ≤ a

16
,

and sup
s≤C6a4+η

|Xt+s −Xt| ≤
a

16

)
≥ a2

C7

.

Proof. We first give a lower bound on P0

(
R(N(0, t)) ≤ a

2

)
. Clearly R(N(0, t)) =

supx,y |N(t;x, y)|, where N(t;x, y) is defined in (3.13). We have

N(t;x, y) = N(1)(t;x, y)−N(2)(t;x, y).

Lemma 3.5 gives

P0

(
sup

x,y∈[0,1]
|N(2)(t;x, y)| ≥ a

16

)
≤ 2 exp

(
− eta2

256C1

)
.

We next obtain an upper bound on the tail probabilities of supx,y∈[0,1] |N(1)(t;x, y)|.
Using ideas analogous to Proposition 3.1, but now we use Lemma 3.6 instead of the
bounds on (3.22) and (3.23), we obtain

P0

(
sup

x,y∈[0,1]
|N(1)(t;x, y)| ≥ a

16

)
≤ exp

(
− a2

256C4

)
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for some C4 > 0. Therefore

P0

(
R (N(0, t)) ≤ a

2

)
= 1− P0

(
R (N(0, t)) >

a

4

)
≥ 1− P0

(
sup

x,y∈[0,1]
|N(1)(t;x, y)| ≥ a

16

)

− P0

(
sup

x,y∈[0,1]
|N(2)(t;x, y)| ≥ a

16

)

≥ a2

C5

.

(3.24)

for some C5 > 0. By Proposition 3.1 and standard results on Brownian motion the
quantities

P0

(
sup

s≤C6a4+η

sup
x∈[0,1]

|N(0, t+ s;x)−N(0, t;x)| ≤ a

16

)
and

P0

(
sup

s≤C6a4+η

|Xt+s −Xt| ≤
a

16

)
are both at least 1 − exp

(
− C

√
C6a

η
2

)
, uniformly in t. The proposition is proved by

combining the above with (3.24). □

4. The proof of upper bound in Theorems 1.1 and 1.2

As explained earlier (in Remark 1.2) due to the scaling relations, we will first obtain

an upper bound for SH,1,ν
T . We will consider the hard obstacle case first and then

modify its proof suitably to handle the soft obstacle case.

Proof of Upper bound in Theorem 1.1. Recall from (1.5) that

SH,1,ν
T = E0 exp

(
−ν
∣∣S1

T (a)
∣∣)

where S1
T (a) is the sausage of radius a around u, that is

S1
T (a) =

⋃
0≤s≤T,
0≤y≤1

{u(s, y) +B(0, a)} .

The upper bound on SH,1,ν
T essentially involves finding a lower bound on the volume

of the sausage.
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Recall from (3.4) that #(T ) = |{i ≥ 1 : τi ≤ T}| , counts the number of τi’s be-
fore time T , and for Λ > 1 from Lemma 3.2 that there are positive constants
A1(d,Λ), B1(d,Λ) such for all T > 0

(4.1) P0

(
#(T ) ≤ A1T

d
d+2

)
≤ exp

(
−B1T

d
d+2

)
.

Therefore

E0 exp
(
−ν
∣∣S1

T (a)
∣∣)

≤ exp
(
−B1T

d
d+2

)
+ E0

[
exp

(
−ν
∣∣S1

T (a)
∣∣) · 1{#(T ) > A1T

d
d+2

}]
.

Now let

#1(T ) :=
∣∣∣{i ≤ A1T

d
d+2 : τi+1 − τi ≥ Λ2

}∣∣∣ .
Clearly τi+1 − τi is more than the time it takes for the Brownian motion Xt to leave
a ball of radius 4Λ centered at Xτi . Therefore the sequence τi+1 − τi stochastically
dominates an i.i.d. sequence Ti, where Ti is distributed as the time it takes for a
Brownian motion starting at 0 to leave a ball of radius 4Λ. Moreover

P
(
Ti ≥ Λ2

)
= p > 0,

where p is independent of any of the parameters. Therefore by standard large devia-
tion theory, there are positive constants A2(p, d,Λ), B2(p, d,Λ) such that

(4.2) P0

(
#1(T ) < A2T

d
d+2

)
≤ exp

(
−B2T

d
d+2

)
.

Consider the event

A1 :=
{
#(T ) > A1T

d
d+2 , #1(T ) > A2T

d
d+2

}
.

Equations (4.1) and (4.2) imply that there is a positive B3(d,Λ, p) such that

(4.3) P0 (A
c
1) ≤ exp

(
−B3T

d
d+2

)
.

To get a good lower bound on the volume of the sausage, we need a good control on
the number of Ti’s up to time T . So let

#2(T ) := |{Ti : Ti ≤ T}| .
Our next task is to show that on the event A1 we must have that #2(T ) is sufficiently
large.

On the event

A2 =


A4

T
d

d+2

L∑
i=1

(Si − Ti−1) ≤ C̃A4T
d

d+2

 ,
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the number of τi with τi+1 − τi ≥ Λ2 in the union of all the intervals [Ti−1, Si], i =

1, 2 · · · , A4
T

d
d+2

L
is less than C̃A4T

d
d+2

Λ2 . On the event A1 we have #1(T ) > A2T
d

d+2 .
Therefore with the choice of A4 such that

(4.4)
C̃A4

Λ2
=

A2

4
,

the intersection of A1 and A2 contains at least
A2

2
T

d
d+2 many τi’s before time T outside

of the union of intervals [Ti−1, Si], i = 1, 2 · · · , A4
T

d
d+2

L
. Note carefully that any Tj is

the smallest τi immediately following Sj, and therefore this guarantees that there are

at least A4
T

d
d+2

L
many Tj’s up to time T . Then using Lemma 3.13 and (4.3) we have

that

(4.5) P0

(
#2(T ) < A4

T
d

d+2

L

)
≤ P0(A

c
1) + P0(A

c
2) ≤ exp

(
−B4T

d
d+2

)
,

for some B4(d,Λ, p) > 0.

Therefore on the event A3 := A1 ∩A2 we have that #2(T ) ≥ A4
T

d
d+2

L
. We now count

the Ti’s before time T with large sausage volumes at T ′
is, as in Lemma 3.11. Namely,

#3(T ) :=

∣∣∣∣∣
{
i ≤ A4

T
d

d+2

L
: R (N(Ti−1, Ti)) ≤ Λ,

∣∣∣S(a
2
; N(Ti−1, Ti))

)∣∣∣ ≥ Cγad−2+γ

}∣∣∣∣∣ .
It now follows from (3.17), for Λ > 1 as in Lemma 3.10, that for any A5 > 0

P0

(
#3(T ) ≤ A5

T
d

d+2

L

)
= P0

(
exp (−#3(T )) ≥ exp

(
−A5

T
d

d+2

L

))

≤
(
1

2
+ e−1

)A4
T

d
d+2

L

exp

(
A5

T
d

d+2

L

)

≤ exp

(
A4

T
d

d+2

L
log

(
1

2
+ e−1

)
+ A5

T
d

d+2

L

)
.

We now choose

A5 = −A4

2
log

(
1

2
+ e−1

)
,
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to obtain

(4.6) P0

(
#3(T ) ≤ A5

T
d

d+2

L

)
≤ exp

(
−B5

T
d

d+2

L

)
,

for a positive constant B5(d,Λ, p).

Let n1 < n2 < · · · be the indices j ≤ A4
T

d
d+2

L
such that Tj ≤ T and

(4.7) R (N(Ti−1, Ti)) ≤ Λ,
∣∣∣S(a

2
; N(Ti−1, Ti))

)∣∣∣ ≥ Cγad−2+γ.

Thanks to (4.1), (4.2), (4.5) and (4.6), outside of a set of probability exp

(
−B6

T
d

d+2

L

)
,

where B6 is a positive constant depending only on d,Λ, p, there are at least A5
T

d
d+2

L

many such ni’s. Further, from (3.11) we have that the fixed-time sausages S1(a;Tnj
)

are disjoint. Therefore, using (3.12) we have

SH,1,ν
T = E0 exp

(
−ν
∣∣S1

T (a)
∣∣)

≤ exp

(
−B6

T
d

d+2

L

)
+ E0

exp
−ν

∣∣∣∣∣∣
⋃A5

T
d

d+2

L

j=0
S1(a;Tnj

)

∣∣∣∣∣∣


≤ exp

(
−B6

T
d

d+2

L

)
+ E0

exp
−ν

∣∣∣∣∣∣
⋃A5

T
d

d+2

L

j=0
S(

a

2
;N(Tnj−1

, Tnj
)

∣∣∣∣∣∣


Now applying (4.7),

SH,1,ν
T ≤ exp

(
−B6

T
d

d+2

L

)
+ exp

(
−νA5Cγa

d−2+γ T
d

d+2

L

)
.

Note that the exponents in both the terms on the right hand side match in the case
J = 1.

Finally we apply the scaling (1.12) to get an upper bound for SH,J,ν
T . We thus obtain

SH,J,ν
T ≤ exp

(
− B6(T/J

2)
d

d+2

E + 3| log(a/J 1
2 )|

)
+ exp

(
−νA5Cγa

d−2+γ (T/J2)
d

d+2J1− γ
2

E + 3| log(a/J 1
2 )|

)
.

It is clear that the first term is the leading term. □

We now turn to the case of soft obstacles. As before we first find an upper bound for
SH,1,ν
T . We will explain how the argument differs from the case of hard obstacles.
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The proof of upper bound in Theorem 1.2 . We will now look for a subsequence Tnj

of the Ti’s such that the entire string stays in a small ball of radius 3a
8

during the
time interval [Tnj

, Tnj
+ a4+ϵ], and there exists a Poisson point within distance a

8
of

the center of mass (See Definition 4.8). Assumption 1.1 then guarantees there is a
contribution of at least Ca4+ϵ to the integral in ST during this time period.

We then follow the argument of Proof of upper bound in Theorem 1.1. The only
difference now is in the definition of #3(T ), which in the present case becomes

#3(T ) =

∣∣∣∣{i ≤ A4
T

d
d+2

L
: R(N(Tj−1, Tj)) ≤

a

8
,

sup
s≤C6a4+η

sup
x∈[0,1]

|N(Tj−1, Tj + s, x)−N(Tj−1, Tj, x)| ≤
a

16
,

sup
s≤C6a4+η

|XTj+s −XTj
| ≤ a

16
,

and there is a Poisson point within distance
a

8
of XTj

}∣∣∣∣
(4.8)

Therefore #3(T ) is a sum of Bernoulli random variables with probability of success p̃
satisfying

p̃ ≥ a2

C7

(
1− exp

(
−ν

ad

8d

))
≥ C8νa

d+2

for some constant 0 < C8 < 1.

Let Z1, Z2, · · · be i.i.d. Bernoulli random variables with success probability p∗ =
C8νa

d+2. By standard large deviation theory

P0

(
#3(T ) ≤ A4

T
d

d+2

L
· p∗
2

)
≤ P0


A4T

d
d+2

L∑
i=1

Zi ≤ A4
T

d
d+2

L
· p∗
2


≤ exp

(
−B7

T
d

d+2

L
· νad+2

)
,

(4.9)

for some constant B7(d,Λ, p) > 0.
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Let n1 < n2 < · · · be the indices j such that the event in the right hand side of (4.8)
occurs. Note that at these times Tnk

it follows from the proof of (3.11)

sup
s≤C6a4+η

R(u(Tnk
+ s)) ≤ sup

s≤C6a4+η

R(N(Tnk−1, Tnk
+ s)) + 2δ

≤ R(N(Tnk−1, Tnk
)) +

a

8
+ 2δ

≤ a

4
+ 2δ

Moreover we have that the center of mass satisfies sups≤C6a4+η

∣∣XTnk
+s −XTnk

∣∣ ≤ a
16
.

Therefore

sup
s≤C6a4+η

∣∣u(Tnk
+ s, x)−XTnk

∣∣
≤ sup

s≤C6a4+η

∣∣u(Tnk
+ s, x)−XTnk

+s

∣∣+ sup
s≤C6a4+η

∣∣XTnk
+s −XTnk

∣∣
≤ sup

s≤C6a4+η

R(u(Tnk
+ s)) + sup

s≤C6a4+η

∣∣XTnk
+s −XTnk

∣∣
≤ 5a

16
+ 2δ

≤ 3a

8
.

Thus the entire string lies within a ball of radius 3a
8
centered at XTnk

for the duration

[Tnk
, Tnk

+ C6a
4+η]. Since there is a Poisson point within distance a

8
of XTnk

the
string will be entirely contained within distance a

2
of the Poisson point during the

time interval [Tnk
, Tnk

+ C6a
4+η]. Therefore using the bounds in the proof of the

upper bound in Theorem 1.1 along with (4.9) we obtain for T > 0

SH,1,ν
T = E

[
exp

(
−
∫ T

0

∫ 1

0

V(u(s, x),η)dsdx
)]

≤ exp

(
−B7

T
d

d+2

L
· νad+2

)
+ exp

(
−B8

T
d

d+2

L

)

+ E

exp
−

A5
L

T
d

d+2 νad+2∑
j=1

∫ Tnj+C6a4+η

Tnj

∫ 1

0

V(u(s, x),η)dsdx

 ·

 ,
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where A5 =
A4C8

2
. Now we use Assumption 1.1 to obtain an upper bound

SH,1,ν
T ≤ exp

(
−B7

T
d

d+2

L
· νad+2

)
+ exp

(
−B8

T
d

d+2

L

)

+ exp

(
−CA5C6νa

d+6+ηT
d

d+2

L

)

Finally we use (1.12) to get an upper bound for SH,J,ν
T . We obtain for T > 0

SH,J,ν
T ≤ exp

− B7νa
d+2(T/J2)

d
d+2

J
(
E + 3| log(a/J 1

2 )|
)
+ exp

− CA5C6νa
d+6+η(T/J2)

d
d+2

J3+ η
2

(
E + 3| log(a/J 1

2 )|
)
 .

It is clear that the second term dominates the first term for large J .

□
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