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Abstract. We study the radius of gyration RT of a self-repellent fractional Brownian
motion

{
BH

t

}
0≤t≤T

taking values in Rd. Our sharpest result is for d = 1, where we find

that with high probability,

RT ≍ T ν , with ν =
2

3
(1 +H).

For d > 1, we provide upper and lower bounds for the exponent ν, but these bounds do not
match.

1. Introduction

Self-avoiding random walks are among the most extensively studied models in statistical
physics. A variant, the self-repellent walk (also known as the weakly self-avoiding walk),
provides a weaker version of the self-avoiding walk. This variation adjusts the probability
distribution of a simple random walk by imposing penalties on paths with self-intersections.
In contrast, a self-avoiding walk is a random walk that strictly prohibits any self-intersections.
The Domb-Joyce model [1] constitutes a discrete-time version of the self-repellent walk,
while the Edwards model [2] provides a continuous alternative, known as the self-repellent
Brownian motion. For an in-depth treatment of self-avoiding walks, readers are directed to
the monograph [3], lecture notes [4], and the survey [5] that highlights recent advancements
in the field.

This paper primarily focuses on the Edwards model associated with self-repellent fractional
Brownian motions (fBm’s). This particular model provides an apt framework to analyze the
properties of polymer molecules in good solvents, as discussed in detail in [6]. Extensive
investigation of the self-repellent fBm has been undertaken in [7, 8, 9], contingent on the
presence of a square-integrable (self-intersection) local time for the fBm. However, it is known
that the fBm with the Hurst parameter H might not possess a square-integrable local time
if dH ≥ 1—for instance, if d = 2 and H = 1/2; see [10, 11]. As observed in [12], the local
time characteristic in the self-repellent Brownian motion is not essential. Instead, one can
work with the occupation measure. In particular, we consider the occupation measure of
balls of radius 1. Thus, we penalize paths that come close to their past positions, rather
than passing through exactly the same points. Substituting local time with the occupation
measure should theoretically maintain the outcome, which is validated specifically within
dimension 1. This insight facilitates the characterization of self-repellent fBm’s across all
dimensions d ≥ 1 and for the entire range of the Hurst parameter H ∈ (0, 1).
Let

{
BH

t

}
t≥0

be a fractional Brownian motion with Hurst index H ∈ (0, 1), taking values

in Rd. That is, BH
t =

(
BH,1

t , . . . , BH,d
t

)
where

(
BH,i

·
)d
i=1

are independent one-dimensional
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fractional Brownian motions with Hurst index H. Thus, each BH,i
· is a centered Gaussian

process on [0,∞) with covariance

E
[
BH,i

s BH,i
t

]
=

1

2

(
t2H + s2H − |t− s|2H

)
.

We define the occupation time as follows:

LT (y) :=
∣∣{t ∈ [0, T ] : BH

t ∈ B1(y)
}∣∣ = ∫ T

0

1B1(y)

(
BH

t

)
dt, (1.1)

where |S| denotes the Lebesgue measure of the set S, and Br(y) is the open ball in Rd,
centered at y, of radius r > 0. Define

ET := exp

(
−β
∫
Rd

LT (z)
2dz

)
(1.2)

and for an event A, let

QT (A) :=
1

ZT

EPT [1AET ] , ZT := EPT [ET ] . (1.3)

Then, under probability measure QT ,
{
BH

t : 0 ≤ t ≤ T
}
is a self-repellent fBm.

In this paper, we will investigate the radius of gyration RT (see [13]) of the self-repellent
fractional Brownian motion BH

t .

RT :=

[
1

T

∫ T

0

∣∣∣BH
t −B

H

T

∣∣∣2 dt]1/2 with B
H

T :=
1

T

∫ T

0

BH
t dt. (1.4)

It is worth noting that another customary radius is the mean square end-to-end distance,
which is often seen in mathematical papers:(

EQT

[∣∣BH
T

∣∣2])1/2 , where
∣∣BH

T

∣∣ :=√(BH,1
T

)2
+ · · ·+

(
BH,d

T

)2
.

Physicists often base their reasoning on universality, namely the belief that changing
the details of a model will not affect its large-scale behavior. We believe that the exact
definition of the radius is unlikely to change our final result. It is expected that, maybe up
to a logarithmic correction,

RT ≍ T ν

for some exponent ν depending on the dimension d and the Hurst parameter H. It has been
conjectured in [8] and [9] that

ν =
2(1 +H)

2 + d
. (1.5)

In the case of one dimension, the radius exhibits ballistic behavior, ν = 1, for the self-
repellent random walk, as shown in [14, 15]. For fBm, the corresponding result is as follows:
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Theorem 1.1 (d = 1). Let BH be a one-dimensional fBm with Hurst parameter H ∈ (0, 1),
and let QT and RT be defined as in (1.3) and (1.4), respectively. Then, for any β > 0, there
exist nonrandom constants Tβ ≥ e, and C∗, C

∗, C1.12 > 0 such that the following inequality
holds whenever T ≥ Tβ:

QT

(
C∗β

1/3T
2(1+H)

3 ≤ RT ≤ C∗β1/3T
2(1+H)

3

)
≥ 1− 2 exp

(
−C1.12β

2/3T
2(2−H)

3

)
,

where the constants C∗, C
∗ are given in (1.8) and C1.12 in (1.12).

In other words, the radius of the one-dimensional self-repellent fBm is completely solved:

RT ≍ T ν with ν =
2

3
(1 +H)

with high probability for large T . This theorem proves the conjectured claim (1.5) for d = 1,
if we use the radius of gyration. In particular, when H = 1/2, RT ≍ T , which coincides with
the classical result for the Brownian motion/random walk in [14, 15].

The analogous question in dimensions d = 2, 3, 4 is completely open even in the special
case of self-repellent random walk/Brownian motion. In dimensions d ≥ 5, the lace expansion
was successfully used to show that ν = 1/2 for self-repellent random walk; see [16, 17]. The
lace expansion is not expected to work in the fBm case, since it requires the Markov property.
We have the following result for all dimensions:

Theorem 1.2 (d ≥ 1). Let BH be a d-dimensional fBm with Hurst parameter H ∈ (0, 1),
and let QT and RT be defined as in (1.3) and (1.4), respectively. Then, for any β > 0, there
exists some nonrandom constant Tβ ≥ e such that the following inequality holds whenever
T ≥ Tβ:

QT

(
C∗ RT ≤ RT ≤ C∗ RT

)
≥ 1− 2 exp (−C1.12γd,H(β)Fd,H(T )) . (1.6)

In (1.6), γd,H(β) and Fd,H(T ) are defined in Table 1 with

βa,b := βa1{0<β≤1} + βb1{β>1}. (1.7)

The constants C∗ and C∗ are defined as follows:

C∗ :=

(
C1.10

2C1.12

)1/d

and C∗ :=

(
2C1.12

C1.11

)1/2

, (1.8)

with C1.10, C1.11, and C1.12 being the positive constants appearing in (1.10), (1.11), and (1.12),
respectively. The bounds RT and RT in (1.6) are equal to

RT = RT (d,H, β) :=

(
βT 2

γd,H(β)Fd,H(T )

)1/d

,

RT = RT (d,H, β) :=
(
γd,H(β)T

2HFd,H(T )
)1/2

;

(1.9)

see Table 2 for their explicit expressions for various cases.

In the one-dimensional case, dH = H < 1, and thus

RT = RT = β1/3T
2(1+H)

3 ;

see the column d = 1 in Table 3b below for some concrete values. Therefore, Theorem 1.1 is
a direct corollary of Theorem 1.2.
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dH < 1 dH = 1 dH > 1

d = 1 d ≥ 1 H = 1/2 and d = 2 H < 1/2 H ≥ 1/2 H < 1/2

γd,H(β) := β2/3 β
2(1−H)

3−(d+2)H β1/2, 2/3 β β2/3 β

Fd,H(T ) := T
2(2−H)

3 T 1+
(1−2H)(1−dH)

3−(d+2)H T T log(T ) T
2(2−H)

3 T

Table 1. Definitions of γd,H(β) and Fd,H(T ), with the case d = 1 being
specially highlighted in the gray background. Recall that the notation β1/2, 2/3

is given in (1.7).

dH < 1 dH > 1

d = 1 d ≥ 1 H ≥ 1/2 H < 1/2

RT
β1/3T

2(1+H)
3

(
β

1−dH
3−(d+2)H T

2−2dH2

3−(d+2)H

)1/d (
β1/3T 2(1+H)/3

)1/d
T 1/d

RT β
1−H

3−(2+d)H T
2−(d−1)H−2H2

3−(d+2)H β1/3T 2(1+H)/3 β1/2T (1+2H)/2

(a) dH ̸= 1

dH = 1

H = 1/2 and d = 2 H = 1/d and d ≥ 3

RT β1/4,1/6 T 1/2 (T/ log(T ))1/d

RT β1/4,1/3 T β1/2T (1+2H)/2
√

log(T )

(b) dH = 1

Table 2. Explicit expressions of RT and RT , as defined in (1.9), for various
values of (d,H), with the case d = 1 being specially highlighted in the gray
background. Recall that the notation βa, b is given in (1.7).

The proof of Theorem 1.2 builds on techniques from Mueller and Neuman [12]. Given
r > 0, define the following events and probabilities:

A
(<)
r,T := {RT ≤ r} , q

(<)
r,T := EPT

[
1
A

(<)
r,T

ET
]
,

A
(>)
r,T := {RT ≥ r} , q

(>)
r,T := EPT

[
1
A

(>)
r,T

ET
]
.

The following two lemmas, whose proofs are deferred to Sections 2.1 and 2.2, respectively,
will be used in the proof of Theorem 1.2.
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Lemma 1.3. For any T ≥ 0, the following two inequalities hold:

q
(<)
r,T ≤ exp

(
−C1.10

β T 2

rd

)
, for all r ≥ 1, (1.10)

q
(>)
r,T ≤ exp

(
−C1.11

r2

T 2H

)
, for all r > 0. (1.11)

where

C1.10 = C1.10(d) :=
9Γ(1 + d/2)

25+d πd/2
and C1.11 = C1.11(d,H) > 0.

Lemma 1.4. There exist constants C1.12 = C1.12(d,H) > 0 and Tβ > e, such that for all
T ≥ Tβ, d ≥ 1, and H ∈ (0, 1), we have

logZT ≥ −C1.12 γd,H(β)Fd,H(T ), (1.12)

where γd,H(β) and Fd,H(T ) are defined in Table 1.

The paper is organized as follows. The proofs of Theorem 1.2 and lemmas 1.3 and 1.4
are given in Section 2. We then extend our discussions on our results in Section 3. Finally,
in the appendix, we include some known results for fBm’s and the corresponding Girsanov
theorem.

2. Proof of the main result

We will defer the proofs of the lemmas to the next section, opting to initially establish
Theorem 1.2 through their application. Here, let us briefly outline our strategy, which has
been successfully employed in Brownian cases in [12, Theorem 1.1].

Let a < b be real numbers, and let c > 0. Recall that QT is defined by (1.3). Let X be a
random variable. Then, to prove

QT (a ≤ X ≤ b) ≥ 1− 2 exp(−c), (2.1)

it suffices to show that

QT (X ≤ a) =
EPT

[
1{X≤a}ET

]
ZT

≤ exp(−c),

and

QT (X ≥ b) =
EPT

[
1{X≥b}ET

]
ZT

≤ exp(−c).

Additionally, the above two inequalities are ensured by the next three inequalities:

ZT ≥ exp(−c), (2.2)

EPT
[
1{X≤a}ET

]
≤ exp(−2c), (2.3)

and

EPT
[
1{X≥b}ET

]
≤ exp(−2c). (2.4)

Following this idea, we are ready to present the proof of Theorem 1.2.
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Proof of Theorem 1.2. By the definition of Fd,H in Table 1, it is clear that the function
T 2/Fd,H(T ) is monotone increasing on [e,∞) with limT→∞ T 2/Fd,H(T ) = ∞ for any d ≥ 1
and H ∈ (0, 1). Hence, when T is large enough, we can ensure that

r∗ :=

(
C1.10βT

2

2C1.12γd,H(β)Fd,H(T )

)1/d

≥ 1.

Plugging the above r∗ to (1.10) shows that

EPT [1RT≤r∗ ] = q
(<)
r∗,T

≤ exp

(
−C1.10

βT 2

rd∗

)
= exp

(
− 2C1.12γd,H(β)Fd,H(T )

)
.

Next, by choosing the following r∗ in (1.11)

r∗ :=

(
2C1.12γd,H(β)T

2HFd,H(T )

C1.11

)1/2

,

we have

EPT [1RT≥r∗ ] = q
(>)
r∗,T ≤ exp

(
−C1.11

(r∗)2

T 2H

)
= exp

(
− 2C1.12γd,H(β)Fd,H(T )

)
.

Concerning (1.12) in Lemma 1.4. We have justified all inequalities (2.2)–(2.4), and there-
fore (2.1), with X = RT defined as in (1.4), a = r∗, b = r∗, and c = C1.12γd,H(β)Fd,H(T ).
This proves (1.6) with RT and RT defined as in (1.9). This completes the proof of Theo-
rem 1.2. □

2.1. Upper bounds on q
(<)
r,T , q

(>)
r,T —Proof of Lemma 1.3. (1) Fix an arbitrary r ≥ 1.

Suppose RT ≥ r. Then there must be a time t1 ∈ [0, T ] such that
∣∣∣BH

t1
−B

H

T

∣∣∣ ≥ r. This

in turn implies that there exists t2 ∈ [0, T ] such that
∣∣BH

t1
−BH

t2

∣∣ ≥ r. Then the triangle

inequality shows that either
∣∣BH

t1

∣∣ ≥ r/2 or
∣∣BH

t2

∣∣ ≥ r/2. So we conclude that supt∈[0,T ] |Bt| ≥
r/2. Hence, concerning ET ≤ 1, and using [18, Theorem 4.1.1], we have

q
(>)
r,T =EP

[
1
A

(>)
r,T

ET
]
≤ P

(
A

(>)
r,T

)
≤ P

(
sup

t∈[0,T ]

∣∣BH
t

∣∣ ≥ r/2

)
≤ exp

(
−C1.11

r2

T 2H

)
,

for some constant C1.11 > 0. This proves (1.11).

(2) Fix an arbitrary r > 0. Recall that LT (x) and ET are defined in (1.1) and (1.2),
respectively. We claim that

RT ≤ r implies − log ET =

∫
Rd

LT (x)
2dx ≥ 2C1.10

T 2

(r + 1)d
. (2.5)

As a consequence, for all r ≥ 1,

q
(<)
r,T = EP

[
1
A

(<)
r,T

ET
]
≤ sup

ω∈A(<)
r,T

ET (ω) = exp

(
−β inf

ω∈A(<)
r,T

∫
Rd

LT (z, ω)
2dz

)

≤ exp

(
−2C1.10

βT 2

(r + 1)d

)
≤ exp

(
−C1.10

βT 2

rd

)
.
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This confirms (1.10). Thus, it remains to prove (2.5). Assume that RT ≤ r. Notice that

r2T ≥
∫ T

0

∣∣∣BH
t −B

H

T

∣∣∣2 dt ≥ ∫ T

0

4r21{|BH
t −B

H
T |>2r}dt

≥ 4r2
∣∣∣{t ∈ [0, T ] :

∣∣∣BH
t −B

H

T

∣∣∣ > 2r
}∣∣∣ ,

where | · | denotes Lebesgue measure. Therefore,∣∣∣{t ∈ [0, T ] :
∣∣∣BH

t −B
H

T

∣∣∣ > 2r
}∣∣∣ ≤ T

4
and ∣∣∣{t ∈ [0, T ] :

∣∣∣BH
t −B

H

T

∣∣∣ ≤ 2r
}∣∣∣ ≥ 3T

4
.

It follows that ∫
B(2r+1)(B

H
T )

LT (y)dy ≥ 3T

4
. (2.6)

Denote by Kd := πd/2/Γ(1 + d/2) the volume of the unit ball in Rd. Then

C1.10 =
9

25+dKd

, and Kd(2r + 1)d =
∣∣∣B2r+1

(
B

H

T

)∣∣∣ = ∫
B2r+1

(
B

H
T

) dy.
Now, by the Cauchy-Schwarz inequality and (2.6),

Kd(2r + 1)d
∫
Rd

LT (y)
2dy ≥

∫
B2r+1(B

H
T )

dy

∫
B2r+1(B

H
T )

LT (y)
2dy

≥
(∫

B2r+1(B
H
T )

LT (y)dy

)2

≥ 9T 2

16
.

It follows that∫
Rd

LT (y)
2dy ≥ 9T 2

16Kd(2r + 1)d
≥ 9

24+d
× T 2

Kd(r + 1)d
= 2C1.10

T 2

(r + 1)d
.

This proves claim (2.5). The proof of Lemma 1.3 is complete. □

2.2. Lower bounds on ZT—Proof of Lemma 1.4. Now we study the term ZT defined
as in (1.3). Let u be a unit vector in Rd, and let Pλ

T ,QT be given as in (A.2). That is, the
new measure Pλ

T adds a drift proportional to λ, and QT is the Radon-Nikodym change of
measure term, see Theorem A.2. The drift enforces the behavior we think the self-repellent
process should have. Then, we can write

ZT = EPT [ET ] = EPλ
T
[
ET · (QT (λM))−1] .

Applying Jensen’s inequality to logZT , we find

logZT ≥ EPλ
T
[
log
(
ET · (QT (λM))−1)] = − (I1 + I2) ,

where

I1 := EPλ
T

[
β

∫
Rd

LT (y)
2dy

]
and I2 := EPλ

T [log (QT (λM))] .

As a consequence, we need to establish upper bounds for both I1 and I2. In the proof below,
the generic constant C > 0 may vary from line to line.
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Upper bound for I1. Due to the Girsanov formula for fBm’s as stated in Theorem A.2,
under Pλ

T , {BH
t : 0 ≤ t ≤ T} has the same distribution as {BH

t + λtu : 0 ≤ t ≤ T} under PT .
Fixing T > e. Let g(t, ·) be the probability density of BH

t for all 0 ≤ t ≤ T . Since BH has
stationary increments, if 0 ≤ s < t then the probability density of BH

t − BH
s is g(t − s, ·).

Note that for x, y, z ∈ Rd, if |x− z| < 1 and |y − z| < 1, then |x− y| < 2. So we have

I1 ≤ Cβ

∫ T

0

dt

∫ T

0

ds EPT
[
1B2(0)(B

H
t −BH

s + (t− s)λu)
]

≤ Cβ

∫ T

0

dt

∫ t

0

ds

∫
B2(0)

dz g(t− s, z − (t− s)λu)

≤ CβT

∫ T

0

dr

∫
B2(0)

dz g(r, z − rλu).

Hence, choosing u = (1, 0, . . . , 0), we have that

I1 ≤ CβT

∫ T

0

dr

[∫ 2

−2

dz1 r
−H exp

(
−(z1 − rλ)2

r2H

)
×

d∏
i=2

∫ 2

−2

dzi r
−H exp

(
− z2i
r2H

)]
.

Notice that for all r ≥ 4/λ, z1 ∈ [−2, 2], we have |z1| ≤ rλ/2 and thus

exp

(
−(z1 − rλ)2

r2H

)
≤ exp

(
−1

4
λ2r2(1−H)

)
.

Therefore, ∫ 2

−2

dz1 exp

(
−(z1 − rλ)2

r2H

)
≤ 1{0≤r<4/λ}

∫ 2

−2

dz1 exp

(
−(z1 − rλ)2

r2H

)
+ 4× 1{r≥4/λ} exp

(
−1

4
λ2r2(1−H)

)
.

If λ ∈ (0, 1], it follows that

1{0≤r<4/λ}

∫ 2

−2

dz1 exp

(
−(z1 − rλ)2

r2H

)
≤4× 1{0≤r<4/λ}

≤C∗1{0≤r<4/λ} exp

(
−1

4
λ2r2(1−H)

)
,

where

C∗ := sup
λ∈(0,1]

sup
r∈(0,4/λ)

4 exp

(
1

4
λ2r2(1−H)

)
= 4 exp

(
22(1−2H)

)
.

On the other hand, if λ > 1, then we can write

1{0≤r<4/λ}

∫ 2

−2

dz1 exp

(
−(z1 − rλ)2

r2H

)
≤1{0≤r<4/λ}

∫ ∞

−∞
dz1 exp

(
−(z1 − rλ)2

r2H

)
=C1{0≤r<4/λ}r

H .

Combining the above four cases shows that∫ 2

−2

dz1 exp

(
−(z1 − rλ)2

r2H

)
≤ C

(
exp

(
−1

4
λ2r2(1−H)

)
+ 1{0≤r<4/λ<4}r

H

)
.
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Notice that ∫ 2

−2

dz r−H exp

(
− z2

r2H

)
≤ min

(
4r−H ,

√
π
)
≤ C

(
r−H ∧ 1

)
.

Therefore, we can write

I1 ≤CβT
∫ T

0

dr r−H
(
1 ∧ r−H

)d−1
(
exp

(
−1

4
λ2r2(1−H)

)
+ 1{0≤r<4/λ<4}r

H

)
≤CβT (I1,1 + I1,2 + I1,3) ,

where

I1,1 :=

∫ 1

0

dr r−H exp

(
−1

4
λ2r2(1−H)

)
,

I1,2 :=

∫ T

1

dr r−dH exp

(
−1

4
λ2r2(1−H)

)
,

I1,3 := 1{λ>1}

∫ 4/λ

0

dr ≤ C
(
1 ∧ λ−1

)
.

Performing a change of variable 1
4
λ2r2(1−H) = s, we can write

I1,1 =Cλ
−1

∫ λ2

4

0

s−
1
2 e−sds

≤C

(
1{0<λ≤1}λ

−1

∫ λ2

4

0

ds s−
1
2 + 1{λ>1}λ

−1

∫ ∞

0

ds s−
1
2 e−s

)
≤ C

(
1 ∧ λ−1

)
,

and

I1,2 = Cλ−
1−dH
1−H

∫ 1
4
λ2T 2(1−H)

λ2

4

ds s
1−dH
2(1−H)

−1e−s.

Therefore, we need only estimate I1,2. Assume T ≥ 1, otherwise I1,2 = 0.

Case I: If dH < 1, then 1−dH
2(1−H)

> 0 and hence,

I1,2 ≤ Cλ−
1−dH
1−H

∫ ∞

0

ds s
1−dH
2(1−H)

−1e−s = Cλ−
1−dH
1−H .

Case II: If dH = 1, then we have that I1,2 ≤ C (log T ∧ λ−2), which is due to

I1,2 = C

∫ 1
4
λ2T 2(1−H)

λ2

4

ds s−1e−s ≤ Cλ−2

∫ 1
4
λ2T 2−2H

λ2

4

ds e−s ≤ Cλ−2 and

I1,2 ≤ C

∫ 1
4
λ2T 2(1−H)

λ2

4

ds s−1 ≤ C

(
log

(
λ2

4
T 2−2H

)
− log

(
λ2

4

))
= C log T.

Case III: If dH > 1, then we have

I1,2 ≤ Cmin

(∫ ∞

1

dr r−dH , λ−2

∫ ∞

0

ds e−s

)
= C

(
1 ∧ λ−2

)
.
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As a consequence, with T > e, we can write

I1 ≤ I∗1 (λ) :=


CβTλ−

1−dH
1−H , dH < 1,

CβT
(
log(T ) ∧ λ−2 + 1 ∧ λ−1

)
, dH = 1,

CβT
(
1 ∧ λ−1

)
, dH > 1.

(2.7)

Upper bound for I2. As for I2, we need the Girsanov formula for martingales. Recall
Theorem A.1 that for any unit vector u ∈ Rd, M = Mu defined as in (A.1) is a square-

integrable martingale. The classical Girsanov formula for martingales implies that M̃ :={
M̃t =Mt + ⟨M⟩t

}
is a martingale under the probability measure Pλ

T given by (A.2). As a
consequence,

I2 = EPλ
T [log (QT (λM))] =EPλ

T

[
λMt −

1

2
λ2⟨M⟩t

]
= EPλ

T

[
λM̃t +

1

2
λ2⟨M⟩t

]
=
1

2
λ2EPλ

T [⟨M⟩t] =
1

2
CHλ

2t2(1−H) =: I∗2 (λ). (2.8)

Matching bounds for I1 and I2. Recall that log(Zt) ≥ −(I1 + I2), and I1 and I2
are bounded by I∗1 (λ) in (2.7) and I∗2 (λ) in (2.8), respectively. Notably, I∗1 is a decreasing
function of λ ∈ (0,∞), whereas I∗2 is an increasing function in the same range. Therefore,
in order to optimize the lower bound for log(ZT ) based on (2.7) and (2.8), we need to find
a suitable λ such that I∗1 (λ) and I

∗
2 (λ) coincide up to a constant. In the following, we omit

the tedious computations required to identify the appropriate λ, and choose1

λ =



β
1−H

3−(d+2)H T− (1−2H)(1−H)
3−(d+2)H , dH < 1,

β1/31{β≥1} + β1/41{0<β≤1}, dH = 1, H = 1/2,

β1/2TH−1/2
√
log T , dH = 1, H < 1/2,

β1/2TH−1/2, dH > 1, H < 1/2,

β1/3T
2H−1

3 , dH > 1, H ≥ 1/2.

Then, (1.12) follows immediately. The proof of Lemma 1.4 is complete. □

3. Discussion

In this section, we present some concrete examples and make some remarks on our results.
When d = 1, our results are sharp. When d ≥ 2, Theorem 1.2 provides some nontrivial lower
and upper bounds, as illustrated in Table 3 and Figure 1. One may compare our results with
the Brownian motion case given in [19], as detailed in the next example:

Example 3.1 (Brownian motion case). In the Brownian motion case, as seen in Table 3
(a), if H = 1/2, we have

T 1/d ≲ RT ≲ T, for large T .

1Here, we leverage the fact that for any β > 0, the expression βγ1T γ2 log(T )γ3 behaves like T γ2 log(T )γ3

for large T , where γ1, γ2, γ3 are arbitrary numbers, with the constraint that γ2 and γ3 cannot both be zero.
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This partially confirms the guess in [4, Equation (1.30)] in dimension 2, but is still far away
from the ultimate conjecture that RT ≍ T 3/4; see Equation (1.28) (ibid.). To the best of our
understanding, the only known related finding is presented in [20], where it is shown that
for d-dimensional self-avoiding random walk with the radius RT ≳ T 2/3d. It is noteworthy
that a direct comparison between our outcome and that of [20] is not feasible, as the latter
focused on self-avoiding random walk, not the self-repellent Brownian motion examined in
this paper. Additionally, the distance in [20] pertains end-to-end distance, which contrasts
with that employed in our context.

d = 1 d = 2 d = 3 d = 4 d ≥ 5

Lower bound 1 1/2 1/3 1/4 1/d

Conjectured (shaded)/confirmed 1 3/4 0.58759700(40) 1/2 with log1/8 1/2

Upper bound 1

(a) The Brownian motion case, i.e., H = 1/2. The lower and upper bounds correspond to the
exponent of T in RT and RT , as defined in (1.9). The conjectured and confirmed values are taken
from [5, Table 1].

H d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

1/4 5/6 [7/16, 13/16] [13/42, 11/14] (1
4
−, 3

4
+) [1/5, 3/4] [1/6, 3/4]

1/3 8/9 [7/15, 13/15] (1
3
−, 5

6
+) [1/4, 5/6] [1/5, 5/6] [1/6, 5/6]

1/2 1 [1/2, 1] [1/3, 1] [1/4, 1] [1/5, 1] [1/6, 1]

2/3 10/9 [5/9, 10/9] [10/27, 10/9] [5/18, 10/9] [2/9, 10/9] [5/27, 10/9]

3/4 7/6 [7/12, 7/6] [7/18, 7/6] [7/24, 7/6] [7/30, 7/6] [7/36, 7/6]

(b) The ranges (when d ≥ 2) and the exact values (when d = 1) for various
values of H and d. A gray background indicates cases with dH < 1. Red
highlights the scenario where dH = 1 with darker one for the case d = 2 and
lighter one for the cases d ≥ 3. Cyan represents cases where dH > 1 with darker
one for the cases H < 1/2 and lighter one for the cases H ≥ 1/2.

Table 3. Exponents of T in RT , as define in (1.4), for large T .

Remark 3.2. The Hurst parameterH does not need to be the same for each coordinate. The
same strategy presented in this paper can be readily applied to other cases. Let H1, . . . , Hd

denote the Hurst parameter of BH,1, . . . , BH,d, respectively. Then, the results in Theo-
rem 1.2 still hold, with parameters depending on H1 + · · · + Hd, max{H1, . . . , Hd}, and
min{H1, . . . , Hd}. For the sake of conciseness, we refrain from delving into the specifics in
this paper.
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0 1/3 1/2 1
0

2/9

1/3

1/2

2/3

1

4/3

d =
1

d = 2

d = 3

H

ν

Figure 1. Plots of the exponent ν for d = 1 (the blue dash-dotted line), 2
(two red dashed lines, one for the upper bound, the other for the lower bound)
and 3 (two green solid lines). The conjectured and confirmed values of µ when
H = 1/2 are labeled by the cross mark (“x”) for the cases d = 1 in blue
(confirmed), d = 2 in red, and d = 3 in green. The two green circles for d = 3
at H = 1/3 refer to the case that exponent is subject to logarithm corrections.

Remark 3.3. Lemma 1.4 provides a sharp bound for the Brownian case H = 1/2. With
B = B1/2 denoting the d-dimensional Brownian motion, we can write∫

Rd

LT (y)
2dy =

∫ T

0

dt1

∫ T

0

dt2

∫
Rd

dy 1B1(y)(Bt1)1B1(y)(Bt2)

=

∫ T

0

dt1

∫ T

0

dt2 |B1(Bt1) ∩B1(Bt2)|

≥
⌊T ⌋∑
k=0

∫ k+1

k

dt1

∫ k+1

k

dt2 |B1(Bt1) ∩B1(Bt2)| .

Since |B1(Bt1) ∩B1(Bt2)| is a non-negative function of Bt1 − Bt2 , the summands in above
expression are i.i.d. random variables. As a result, with f(Bt1 −Bt2) := |B1(Bt1) ∩B1(Bt2)|,

ZT =EP
[
exp

(
−β
∫
Rd

dy LT (y)
2

)]

≤EP

exp
−β

⌊T ⌋∑
k=0

∫ k+1

k

dt1

∫ k+1

k

dt2 f(Bt1 −Bt2)


=

⌊T ⌋∏
k=0

EP
[
exp

(
−β
∫ k+1

k

dt1

∫ k+1

k

dt2 f(Bt1 −Bt2)

)]
= eFβ⌊T ⌋,
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where

Fβ := logEP
[
exp

(
−β
∫ 1

0

dt1

∫ 1

0

dt2 f(Bt1 −Bt2)

)]
< 0.

In other words, ZT ≤ exp(−CT ) with some C > 0 for all T > 1, and combining Lemma 1.4,
we see that logZT ≍ −T as T → ∞. Therefore, the lack of sharpness in Theorem 1.2 is
likely attributed to the estimates in Lemma 1.3. We expect that this aspect can be resolved
in future research.

Appendix A. Fractional Brownian motions and Girsanov theorem

In this section, we present some preliminaries about stochastic calculus for fBm’s. For a
more detailed account of this topic, we refer the interested readers to [21].

A d-dimensional stochastic process BH =
{(
BH,1

t , . . . , BH,d
t

)
: t ∈ R+

}
is a called a frac-

tion Brownian motion (fBm) with the Hurst parameters H ∈ (0, 1) on a probability space
(Ω,F ,P), if
(i) BH,i, i = 1, . . . , d, are independent;

(ii) for each 1 ≤ i ≤ d,
{
BH,i

t : t ∈ R+

}
is a centered Gaussian family with covariance

E
[
BH,i

t BH,i
s

]
=

1

2

(
t2H + s2H − |t− s|2H

)
.

Without loss of generality, we can assume that the filtration {Ft : t ∈ R+} is the canonical
filtration generated by BH .
Next, we define the integration of deterministic functions against fBm’s. If ϕ is a smooth

function on R+ with compact support, i.e., ϕ ∈ C∞
c (R+), then the integrals

BH,i(ϕ) :=

∫ ∞

0

ϕ(t)dBH,i
t , i = 1, . . . , d,

are centered Gaussian random variables with the following covariance structure:

E
[
BH,i(ϕ)BH,j(ψ)

]
=


0, i ̸= j,

H(2H − 1)

∫∫
R2
+

dt ds ϕ(s)ψ(t)|t− s|2H−2, i = j,

for all 1 ≤ i, j ≤ d, and ϕ, ψ ∈ C∞
c (R+).

By typical approximation arguments, one can extend the integration to the Hilbert space
H of functions on R+, with inner product,

⟨ϕ, ψ⟩H :=

∫∫
R2
+

dt ds ϕ(s)ψ(t)|t− s|2H−2.

In particular, for any t ∈ R+, the function w(t, ·), given by

w(t, s) := c1 s
1/2−H(t− s)1/2−H1(0,t)(s), for all s ∈ R,

is an element of H (see [22, Proposition 2.1]), where, with B(·, ·) denoting the Beta function,

c1 := [2H ×B (3/2 −H, 1/2 +H)]−1 .
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This observation allows us to define the following Gaussian processM =Mu = {Mt : t ∈ R+}
with parameter u = (u1, . . . , ud) being a unit vector in Rd as follows:

Mt :=
d∑

i=1

ui

∫ t

0

w(t, s)dBH,i
s , for all t ∈ R+. (A.1)

The following theorem is a straightforward extension of [22, Theorem 3.1] from d = 1 to
higher dimensional cases, thanks to the independence of the components of BH :

Theorem A.1. Let BH be a d-dimensional fBm with H ∈ (0, 1), let u be a unit vector in Rd,
and let M = Mu be the Gaussian process given as in (A.1). Then M is a square-integrable
martingale with quadratic variation

⟨M,M⟩t = CHt
2(1−H), ∀t ∈ R+, where CH :=

Γ(3/2 −H)

4H(1−H)Γ(1/2 +H)Γ(2− 2H)
.

For any λ > 0 and T > 0, denote

QT (M) := exp

(
MT − 1

2
⟨M,M⟩T

)
,

and let Pλ
T = Pλ,u

T be a probability measure on (Ω,FT ) that is equivalent to PT with the
Radon–Nikodym derivative

dPλ
T

dPT

:= QT (λM). (A.2)

The next theorem, a Girsanov formula for fBm’s, is a straightforward extension of [22,
Theorem 4.1].

Theorem A.2. Under probability Pλ
T , the process

{
BH

t : 0 ≤ t ≤ T
}
is a d-dimensional fBm

with a drift λu ∈ Rd, i.e., the distribution of the process BH up to time T under Pλ
T = Pλ,u

T

is the same as BH,λ,u,T =
{
BH

t + λtu : 0 ≤ t ≤ T
}
under PT .
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