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Preface

From May 8 to May 19th of 2006, the Department of Mathematics at the
University of Utah hosted a minicourse on some modern topics in stochastic
partial differential equations [SPDEs]. The participants included graduate stu-
dents and recent PhDs from across North America, as well as research math-
ematicians at diverse stages of their careers. Intensive courses were given by
Robert C. Dalang, Davar Khoshnevisan, An Le, Carl Mueller, David Nualart,
Boris Rozovsky, and Yimin Xiao. The present book is comprised of most of
those lectures.

For nearly three decades, the topic of SPDEs has been an area of active
research in pure and applied mathematics, fluid mechanics, geophysics, and
theoretical physics. The theory of SPDEs has a similar flavor as PDEs and
interacting particle systems in the sense that most of the interesting devel-
opments generally evolve in two directions: There is the general theory; and
then there are specific problem-areas that arise from concrete questions in
applied science. As such, it is unlikely that there ever will be a cohesive all-
encompassing theory of stochastic partial differential equations. With that in
mind, the present volume follows the style of the Utah minicourse in SPDEs
and attempts to present a selection of interesting themes within this interest-
ing area. The presentation, as well as the choice of the topics, were motivated
primarily by our desire to bring together a combination of methods and deep
ideas from SPDEs (Chapters 1, 2, and 4) and Gaussian analysis (Chapters 3
and 5), as well as potential theory and geometric measure theory (Chapter 5).
Ours is a quite novel viewpoint, and we believe that the interface of the men-
tioned theories is fertile ground that shows excellent potential for continued
future research.

We are aware of at least four books on SPDEs that have appeared since
we began to collect the material for this project [4; 8; 12; 14]. Although there
is little overlap between those books and the present volume, the rapidly-
growing number of books on different aspects of SPDEs represents continued,
as well as a growing, interest in both the theory as well as the applications of
the subject. The reader is encouraged to consult the references for examples



2 Preface

in: (i) Random media [2; 4; 18] and filtering theory [15]; (ii) applications in
fluid dynamics and turbulence [1; 2; 17]; and (iii) in statistical physics of
disordered media [2; 6; 7; 10]. Further references are scattered throughout the
lectures that follow. The reader is invited to consult the references to this
preface, together with their volumnious bibliographies, for some of the other
viewpoints on this exciting topic.

The Utah Minicourse on SPDEs was funded by a generous VIGRE grant
by the National Science Foundation, to whom we are grateful. We thank
also the lecturers and participants of the minicourse for their efforts. Finally,
we extend our wholehearted thanks to the anonymous referee; their careful
reading and thoughtful remarks have led to a more effective book.

Davar Khoshnevisan and Firas Rassoul-Agha
July 1, 2008
Salt Lake City, Utah
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A Primer on Stochastic Partial Differential
Equations

Davar Khoshnevisan?

Department of Mathematics, The University of Utah,
Salt Lake City, UT 84112–0090,
Email: davar@math.utah.edu
URL: http://www.math.utah.edu/~davar

Summary. These notes form a brief introductory tutorial to elements of Gaussian
noise analysis and basic stochastic partial differential equations (SPDEs) in general,
and the stochastic heat equation, in particular. The chief aim here is to get to the
heart of the matter quickly. We achieve this by studying a few concrete equations
only. This chapter provides sufficient preparation for learning more advanced theory
from the remainder of this volume.

Key words: White noise, Gaussian processes, regularity of processes, martingale
measures, stochastic partial differential equations

1 What is an SPDE?

Let us consider a perfectly even, infinitesimally-thin wire of length L. We lay
it down flat, so that we can identify the wire with the interval [0 , L]. Now we
apply pressure to the wire in order to make it vibrate.

Let F (t , x) denote the amount of pressure per unit length applied in the
direction of the y-axis at place x ∈ [0 , L]: F < 0 means we are pressing down
toward y = −∞; and F > 0 means the opposite is true. Classical physics tells
us that the position u(t , x) of the wire solves the partial differential equation,

∂2u(t , x)
∂t2

= κ
∂2u(t , x)
∂x2

+ F (t , x) (t ≥ 0, 0 ≤ x ≤ L), (1)

where κ is a physical constant that depends only on the linear mass density
and the tension of the wire.
? Research supported in part by a grant from the National Science Foundation

grant DMS-0404729.
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Equation (1) is the so-called one-dimensional wave equation. Its solution—
via separation of variables and superposition—is a central part of the classical
theory of partial differential equations.

We are interested in addressing the question, “What if F is random noise”?
There is an amusing interpretation, due to Walsh [30], of (1) for random noise
F : If a guitar string is bombarded by particles of sand, then the induced
vibrations of the string are determined by a suitable version of (1).

It turns out that in most cases of interest to us, when F is random noise,
Equation (1) does not have a classical meaning. But it can be interpreted as
an infinite-dimensional integral equation. These notes are a way to get you
started thinking in this direction. They are based mostly on the Saint-Flour
lecture notes of Walsh from 1986 [30, Chapters 1–3]. Walsh’s lecture notes
remain as one of the exciting introductions to this subject to date.

2 Gaussian random vectors

Let g := (g1 , . . . , gn) be an n-dimensional random vector. We say that the
distribution of g is Gaussian if t·g :=

∑n
j=1 tjgj is a Gaussian random variable

for all t := (t1, . . . , tn) ∈ Rn. It turns out that g is Gaussian if and only if
there exist µ ∈ Rn and an n × n, symmetric nonnegative-definite matrix C
such that

E [exp (it · g)] = exp
(
it · µ− 1

2
t ·Ct

)
. (2)

Exercise 2.1. Prove this assertion. It might help to recall that C is nonneg-
ative definite if and only if t ·Ct ≥ 0 for all t ∈ Rn. That is, all eigenvalues
of C are nonnegative.

3 Gaussian processes

Let T be a set, and G = {G(t)}t∈T a collection of random variables indexed
by T . We might refer to G as either a random field, or a [stochastic] process
indexed by T .

We say that G is a Gaussian process, or a Gaussian random field, if
(G(t1) , . . . , G(tk)) is a k-dimensional Gaussian random vector for every
t1, . . . , tk ∈ T . The finite-dimensional distributions of the process G are the
collection of all probabilities obtained as follows:

µt1,...,tk(A1 , . . . , Ak) := P {G(t1) ∈ A1 , . . . , G(tk) ∈ Ak} , (3)

as A1, . . . , Ak range over Borel subsets of R and k ranges over all positive
integers. In principle, these are the only pieces of information that one has
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about the random process G. All properties of G are supposed to follow from
properties of these distributions.

The consistency theorem of Kolmogorov [19] implies that the finite-
dimensional distributions of G are uniquely determined by two functions:

1. The mean function µ(t) := E[G(t)]; and
2. the covariance function

C(s , t) := Cov(G(s) , G(t)).

Of course, µ is a real-valued function on T , whereas C is a real-valued function
on T × T .

Exercise 3.1. Prove that if G is a Gaussian process with mean function µ
and covariance function C then {G(t) − µ(t)}t∈T is a Gaussian process with
mean function zero and covariance function C.

Exercise 3.2. Prove that C is nonnegative definite. That is, prove that for
all t1, . . . , tk ∈ T and all z1, . . . , zk ∈ C,

k∑
j=1

k∑
l=1

C(tj , tl)zjzl ≥ 0. (4)

Exercise 3.3. Prove that whenever C : T × T → R is nonnegative definite
and symmetric,

|C(s , t)|2 ≤ C(s , s) · C(t , t) for all s, t ∈ T. (5)

This is the Cauchy–Schwarz inequality. In particular, C(t , t) ≥ 0 for all t ∈ T .

Exercise 3.4. Suppose there exist E,F ⊂ T such that C(s , t) = 0 for all
s ∈ E and t ∈ F . Then prove that {G(s)}s∈E and {G(t)}t∈F are indepen-
dent Gaussian processes. That is, prove that for all s1, . . . , sn ∈ E and all
t1, . . . , tm ∈ F , (G(s1) , . . . , G(sn)) and (G(t1) , . . . , G(tm)) are independent
Gaussian random vectors.

A classical theorem—due in various degrees of generality to Herglotz,
Bochner, Minlos, etc.—states that the collection of all nonnegative definite
functions f on T × T matches all covariance functions, as long as f is sym-
metric. [Symmetry means that f(s , t) = f(t , s).] This, and the aforementioned
theorem of Kolmogorov, together imply that given a function µ : T → R and
a nonnegative-definite function C : T×T → R there exists a Gaussian process
{G(t)}t∈T whose mean function is µ and covariance function is C.
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Example 3.5 (Brownian motion). Let T = R+ := [0 ,∞), µ(t) := 0, and
C(s , t) := min(s , t) for all s, t ∈ R+. I claim that C is nonnegative definite.
Indeed, for all z1, . . . , zk ∈ C and t1, . . . , tk ≥ 0,

k∑
j=1

k∑
l=1

min(tj , tl)zjzl =
k∑
j=1

k∑
l=1

zjzl

∫ ∞
0

1[0,tj ](x)1[0,tl](x) dx

=
∫ ∞

0

∣∣∣∣∣∣
k∑
j=1

1[0,tj ](x)zj

∣∣∣∣∣∣
2

dx,

(6)

which is greater than or equal to zero. Because C is also symmetric, it must be
the covariance function of some mean-zero Gaussian process B := {B(t)}t≥0.
That process B is called Brownian motion; it was first invented by Bachelier
[1].

Brownian motion has the following additional property. Let s > 0 be fixed.
Then the process {B(t+s)−B(s)}t≥0 is independent of {B(u)}0≤u≤s. This is
the socalled Markov property of Brownian motion, and is not hard to derive.
Indeed, thanks to Exercise 3.4 it suffices to prove that for all t ≥ 0 and
0 ≤ u ≤ s,

E[(B(t+ s)−B(s))B(u)] = 0. (7)

But this is easy to see because

E[(B(t+ s)−B(s))B(u)] = Cov(B(t+ s) , B(u))− Cov(B(s) , B(u))
= min(t+ s , u)−min(s , u)
= u− u
= 0.

(8)

By d-dimensional Brownian motion we mean the d-dimensional Gaussian
process B := {(B1(t) , . . . , Bd(t))}t≥0, where B1, . . . , Bd are independent [one-
dimensional] Brownian motions.

Exercise 3.6. Prove that if s > 0 is fixed and B is Brownian motion,
then the process {B(t + s) − B(s)}t≥0 is a Brownian motion independent
of {B(u)}0≤u≤s. This and the independent-increment property of B [Exam-
ple 3.5] together prove that B is a Markov process.

Example 3.7 (Brownian bridge). The Brownian bridge is a mean-zero Gaus-
sian process {b(x)}0≤x≤1 with covariance,

Cov(b(x) , b(y)) := min(x , y)− xy for all 0 ≤ x, y ≤ 1. (9)

The next exercise shows that the process b looks locally like a Brownian
motion. Note also that b(0) = b(1) = 0; this follows because Var(b(0)) =
Var(b(1)) = 0, and motivates the ascription “bridge.” The next exercise ex-
plains why b is “brownian.”
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Exercise 3.8. Prove that if B is Brownian motion, then b is Brownian bridge,
where

b(x) := B(x)− xB(1) for all 0 ≤ x ≤ 1. (10)

Also prove that the process b is independent of B(1).

Example 3.9 (OU process). Let B := {B(t)}t≥0 denote a d-dimensional Brow-
nian motion, and define

X(t) :=
B(et)
et/2

for all t ≥ 0. (11)

The coordinate processes X1, . . . , Xd are i.i.d. Gaussian processes with mean
function µ(t) := 0 and covariance function

C(s , t) := E
[
B1 (es)B1 (et)

e(s+t)/2

]
= exp

(
− 1

2 |s− t|
)
.

(12)

Note that C(s , t) depends on s and t only through |s − t|. Such processes
are called stationary Gaussian processes. This particular stationary Gaussian
process was predicted in the works of Dutch physicists Leonard S. Ornstein
and George E. Uhlenbeck [29], and bears their name as a result. The existence
of the Ornstein–Uhlenbeck process was proved rigorously in a landmark paper
of Doob [10].

Example 3.10 (Brownian sheet). Let T := RN
+ := [0 ,∞)N , µ(t) := 0 for all

t ∈ RN
+ , and define

C(s , t) :=
N∏
j=1

min(sj , tj) for all s, t ∈ RN
+ . (13)

Then C is a nonnegative-definite, symmetric function on RN
+ ×RN

+ , and the
resulting mean-zero Gaussian process B = {B(t)}t∈RN

+
is the N -parameter

Brownian sheet. This generalizes Brownian motion to an N -parameter ran-
dom field. One can also introduce d-dimensional, N -parameter Brownian
sheet as the d-dimensional process whose coordinates are independent, [one-
dimensional] N -parameter Brownian sheets.

Example 3.11 (OU sheet). Let {B(t)}t∈RN
+

denote N -parameter Brownian
sheet, and define a new N -parameter stochastic process X as follows:

X(t) :=
B (et1 , . . . , etN )
e(t1+···+tN )/2

for all t := (t1 , . . . , tN ) ∈ RN
+ . (14)

This is called the N -paramerter Ornstein–Uhlenbeck sheet, and generalizes the
Ornstein–Uhlenbeck process of Example 3.9.
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Exercise 3.12. Prove that the Ornstein–Uhlenbeck sheet is a mean-zero, N -
parameter Gaussian process and its covariance function C(s , t) depends on
(s , t) only through |s− t| :=

∑N
i=1 |si − ti|.

Example 3.13 (White noise). Let T := B(RN ) denote the collection of all
Borel-measurable subsets of RN , and µ(A) := 0 for all A ∈ B(RN ). De-
fine C(A ,B) := λN (A ∩ B), where λN denotes the N -dimensional Lebesgue
measure. Clearly, C is symmetric. It turns out that C is also nonnega-
tive definite (Exercise 3.14 on page 10). The resulting Gaussian process
Ẇ := {Ẇ (A)}A∈B(RN ) is called white noise on RN .

Exercise 3.14. Complete the previous example by proving that the covari-
ance of white noise is indeed a nonnegative-definite function on B(RN ) ×
B(RN ).

Exercise 3.15. Prove that if A,B ∈ B(RN ) are disjoint then Ẇ (A) and
Ẇ (B) are independent random variables. Use this to prove that if A,B ∈
B(RN ) are nonrandom, then with probability one,

Ẇ (A ∪B) = Ẇ (A) + Ẇ (B)− Ẇ (A ∩B). (15)

Exercise 3.16. Despite what the preceding may seem to imply, Ẇ is not a
random signed measure in the obvious sense. Let N = 1 for simplicity. Then,
prove that with probability one,

lim
n→∞

2n−1∑
j=0

∣∣∣∣Ẇ ([
j − 1

2n
,
j

2n

])∣∣∣∣2 = 1. (16)

Use this to prove that with probability one,

lim
n→∞

2n−1∑
j=0

∣∣∣∣Ẇ ([
j − 1

2n
,
j

2n

])∣∣∣∣ =∞. (17)

Conclude that if Ẇ were a random measure then with probability one Ẇ
is not sigma-finite. Nevertheless, the following example shows that one can
integrate some things against Ẇ .

Example 3.17 (The isonormal process). Let Ẇ denote white noise on RN . We
wish to define Ẇ (h) where h is a nice function. First, we identify Ẇ (A) with
Ẇ (1A). More generally, we define for all disjoint A1, . . . , Ak ∈ B(RN ) and
c1, . . . , ck ∈ R,

Ẇ

 k∑
j=1

cj1Aj

 :=
k∑
j=1

cjẆ (Aj). (18)
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The random variables Ẇ (A1), . . . , Ẇ (Ak) are independent, thanks to Exercise
3.15. Therefore, ∥∥∥∥∥∥Ẇ

 k∑
j=1

cj1Aj

∥∥∥∥∥∥
2

L2(P)

=
k∑
j=1

c2j |Aj |

=

∥∥∥∥∥∥
k∑
j=1

cj1Aj

∥∥∥∥∥∥
2

L2(RN )

.

(19)

Classical integration theory tells us that for all h ∈ L2(RN ) we can find hn
of the form

∑k(n)
j=1 cjn1Aj,n such that A1,n, . . . , Ak(n),n ∈ B(RN ) are disjoint

and ‖h−hn‖L2(RN ) → 0 as n→∞. This, and (19) tell us that {Ẇ (hn)}∞n=1 is
a Cauchy sequence in L2(P). Denote their limit by Ẇ (h). This is the Wiener
integral of h ∈ L2(RN ), and is sometimes written as

∫
h dW [no dot!]. Its key

feature is that ∥∥∥Ẇ (h)
∥∥∥
L2(P)

= ‖h‖L2(RN ). (20)

That is, Ẇ : L2(RN )→ L2(P) is an isometry; (20) is called Wiener’s isometry
[32]. [Note that we now know how to construct the stochastic integral

∫
h dW

only if h ∈ L2(RN ) is nonrandom.] The process {Ẇ (h)}h∈L2(RN ) is called
the isonormal process [11]. It is a Gaussian process; its mean function is zero;
and its covariance function is C(h , g) =

∫
RN h(x)g(x) dx—the L2(RN ) inner

product—for all h, g ∈ L2(RN ).

Exercise 3.18. Prove that for all [nonrandom] h, g ∈ L2(RN ) and a, b ∈ R,∫
(ah+ bg) dW = a

∫
h dW + b

∫
h dW, (21)

almost surely.

Exercise 3.19. Let {hj}∞j=1 be a complete orthonormal system [c.o.n.s.] in
L2(RN ). Then prove that {Ẇ (hj)}∞j=1 is a complete orthonormal system in
L2(P). In particular, for all Gaussian random variables Z ∈ L2(P) that are
measurable with respect to the white noise,

Z =
∞∑
j=1

ajẆ (hj) almost surely, with aj := Cov
(
Z , Ẇ (hj)

)
, (22)

and the infinite sum converges in L2(P). This permits one possible entry
into the “Malliavin calculus.” For this, and much more, see the course by D.
Nualart in this volume.
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Exercise 3.20. Verify that (18) is legitimate. That is, prove that ifB1, . . . , B` ∈
B(RN ) are disjoint, then

Ẇ

 k∑
j=1

cj1Aj

 = Ẇ

(∑̀
l=1

dl1Bl

)
almost surely, (23)

provided that d1, . . . , d` ∈ R satisfy
∑k
j=1 cj1Aj =

∑`
l=1 dl1Bl .

4 Regularity of random processes

Our construction of Gaussian processes is very general. This generality makes
our construction both useful and useless. It is useful because we can make
sense of fundamental mathematical objects such as Brownian motion, Brow-
nian sheet, white noise, etc. It is useless because our “random functions,”
namely the Brownian motion and more generally sheet, are not yet nice ran-
dom functions. This problem has to do with the structure of Kolmogorov’s
existence theorem. But instead of discussing this technical subject directly,
let us consider a simple example first.

Let {B(t)}t≥0 denote the Brownian motion, and suppose U is an inde-
pendent positive random variable with an absolutely continuous distribution.
Define

B′(t) :=

{
B(t) if t 6= U,

5000 if t = U.
(24)

Then B′ and B have the same finite-dimensional distributions. Therefore, B′

is also a Brownian motion. This little example shows that there is no hope of
proving that a given Brownian motion is, say, a continuous random function.
[Sort the logic out!] Therefore, the best one can hope to do is to produce a
modification of Brownian motion that is continuous.

Definition 4.1. Let X and X ′ be two stochastic processes indexed by some
set T . We say that X ′ is a modification of X if

P {X ′(t) = X(t)} = 1 for all t ∈ T . (25)

Exercise 4.2. Prove that any modification of a stochastic process X is a
process with the same finite-dimensional distributions as X. Construct an
example where X ′ is a modification of X, but P{X ′ = X} = 0.

A remarkable theorem of Wiener [31] states that we can always find a
continuous modification of a Brownian motion. According to the previous
exercise, this modification is itself a Brownian motion. Thus, a Wiener process
is a Brownian motion B such that the random function t 7→ B(t) is continuous;
it is also some times known as standard Brownian motion.
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4.1 A diversion

In order to gel the ideas we consider first a simple finite-dimensional example.
Let f ∈ L1(R) and denote its Fourier transform by Ff . We normalize the
Fourier transform as follows:

(Ff)(z) :=
∫ ∞
−∞

eizxf(x) dx for all z ∈ R. (26)

Let W (R) denote the collection of all f ∈ L1(R) such that f̂ ∈ L1(R)
as well. The space W is the so-called Wiener algebra on R. If f ∈ W (R),
then we can proceed, intentionally carelessly, and use the inversion formula
to arrive at the following:

f(x) =
1

2π

∫ ∞
−∞

e−izx(Ff)(z) dz. (27)

It follows readily from this and the dominated convergence theorem that f
is uniformly continuous. But this cannot be so! In order to see why, let us
consider the function

g(x) =

{
f(x) if x 6= 0,
f(0) + 1 if x = 0.

(28)

If f were a continuous function, then g is not. But because Ff = Fg the
preceding argument would “show” that g is continuous too, which is a con-
tradiction. The technical detail that we overlooked is that a priori (27) holds
only for almost all x ∈ R. Therefore,

x 7→ 1
2π

∫ ∞
−∞

e−izx(Ff)(z) dz (29)

defines a “modification” of f which happens to be uniformly continuous. That
is, we have proven that every f ∈ W (R) has a uniformly-continuous modifi-
cation.

4.2 Kolmogorov’s continuity theorem

Now we come to the question, “when does a stochastic process X have a
continuous modification?” If X is a Gaussian process then the answer is com-
pletely known, but is very complicated [11; 12; 26; 27; 28]. When X is a fairly
general process there are also complicated sufficient conditions for the exis-
tence of a continuous modification. In the special case that X is a process
indexed by RN , however, there is a very useful theorem of Kolmogorov which
gives a sufficient condition as well.
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Theorem 4.3. Suppose {X(t)}t∈T is a stochastic process indexed by a com-
pact cube T := [a1 , b1] × · · · × [aN , bN ] ⊂ RN . Suppose also that there exist
constants C > 0, p > 0, and γ > N such that uniformly for all s, t ∈ T ,

E (|X(t)−X(s)|p) ≤ C|t− s|γ . (30)

Then X has a continuous modification X̄. Moreover, if 0 ≤ θ < (γ − N)/p
then ∥∥∥∥∥sup

s6=t

|X̄(s)− X̄(t)|
|s− t|θ

∥∥∥∥∥
Lp(P)

<∞. (31)

Remark 4.4. Here, |x| could be any of the usual Euclidean `p norms for x ∈
Rk. That is,

|x| := max (|x1| , . . . , |xk|) ;

|x| := (|x1|p + · · ·+ |xk|p)1/p for p ≥ 1;
|x| := |x1|p + · · ·+ |xk|p for 0 < p < 1.

(32)

Proof. We prove Theorem 4.3 in the case that N = 1 and T := [0 , 1]. The
general case is not much more difficult to prove, but requires introducing
further notation. Also, we extend the domain of the process by setting

X(t) :=

{
X(0) if t < 0,
X(1) if t > 1.

(33)

First we introduce some notation: For every integer n ≥ 0 we define Dn :=
{j2−n : 0 ≤ j < 2n} to be the collection of all dyadic points in [0 , 1). The
totality of all dyadic points is denoted by D∞ := ∪∞n=0Dn.

Suppose n > k ≥ 1, and consider u, v ∈ Dn that are within 2−k of one
another. We can find two sequences of points uk, . . . , un and vk, . . . , vn with
the following properties:

1. uj , vj ∈ Dj for all j = k, . . . , n;
2. |uj+1 − uj | ≤ 2−j−1 for all j = k, . . . , n;
3. |vj+1 − vj | ≤ 2−j−1 for all j = k, . . . , n;
4. un = u, vn = v, and uk = vk.

(Draw a picture.) Because |X(u) − X(uk)| ≤
∑n−1
j=k |X(uj+1) − X(uj)|, this

yields

|X(u)−X(uk)| ≤
∞∑
j=k

max
s∈Dj+1

max
t∈B(s,2−j−1)∩Dj

|X(s)−X(t)|, (34)

where B(x , r) := [x − r , x + r]. The right-most term does not depend on
u, nor on the sequences {uj}nj=k and {vj}nj=k. Moreover, |X(v) − X(vk)| =
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|X(v)−X(uk)| is bounded above by the same quantity. Hence, by the triangle
inequality,

|X(u)−X(v)| ≤ 2
∞∑
j=k

max
s∈Dj+1

max
t∈B(s,2−j−1)∩Dj

|X(s)−X(t)|, (35)

uniformly for all u, v ∈ Dn that are within 2−k of one another. Because its
right-hand side is independent of n, the preceding holds uniformly for all u, v ∈
D∞ that are within distance 2−k of one another. This and the Minkowski
inequality together imply that∥∥∥∥∥∥∥ sup

u,v∈D∞
|u−v|≤2−k

|X(u)−X(v)|

∥∥∥∥∥∥∥
Lp(P)

≤ 2
∞∑
j=k

∥∥∥∥ max
s∈Dj+1

max
t∈B(s,2−j−1)∩Dj

|X(s)−X(t)|
∥∥∥∥
Lp(P)

.

(36)

A crude bound yields

E
(

max
s∈Dj+1

max
t∈B(s,2−j−1)∩Dj

|X(s)−X(t)|p
)

≤
∑

s∈Dj+1

∑
t∈B(s,2−j−1)∩Dj

E (|X(s)−X(t)|p)

≤ C
∑

s∈Dj+1

∑
t∈B(s,2−j−1)∩Dj

|s− t|γ ,

(37)

thanks to Condition (30) of the theorem. For the range in question: |s− t|γ ≤
2−(j+1)γ ; the sum over t then contributes a factor of 2; and the sum over s
yields a factor of 2j+1. Therefore,

E
(

max
s∈Dj+1

max
t∈B(s,2−j−1)∩Dj

|X(s)−X(t)|p
)
≤ 22−γC

2j(γ−1)
. (38)

We can plug this into (36) to deduce that∥∥∥∥∥∥∥ sup
u,v∈D∞
|u−v|≤2−k

|X(u)−X(v)|

∥∥∥∥∥∥∥
Lp(P)

≤ C̃

2kγ/p
, (39)

where

C̃ :=
2(2−γ+p)/pC1/p

1− 2−(γ−1)/p
. (40)

Now let us define
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X̄(s) := lim supX(t), (41)

where the lim sup is taken over all t ∈ D∞ such that t → s. Because X̄(s) =
X(s) for all s ∈ D∞, Equation (39) continues to hold, even if we replace
X by X̄. In that case, we can also replace the condition “s, t ∈ D∞” with
“s, t ∈ [0 , 1]” at no extra cost. This proves, among other things, that X̄ is a.s.
continuous [Borel–Cantelli lemma].

It is not hard to check that X̄ is a modification of X because: (i) X and
X̄ agree on D∞; (ii) X is continuous in probability2 by (30); and (iii) X̄ is
continuous a.s., as we just proved.

It remains to verify (31). For θ as given, (39) implies that for all integers
k ≥ 1, ∥∥∥∥∥∥∥ sup

0≤s6=t≤1:

2−k<k≤2−k+1

|X̄(s)− X̄(t)|
|s− t|θ

∥∥∥∥∥∥∥
Lp(P)

≤ C̃

2k(γ−θ)/p . (42)

Sum both sides of this inequality from k = 1 to infinity to deduce (31), and
hence the theorem. ut

Exercise 4.5. Suppose the conditions of Theorem 4.3 are met, but we have
the following in place of (30):

E (|X(t)−X(s)|p) ≤ h (|t− s|) , (43)

where h : [0 ,∞) → R+ is continuous and increasing, and h(0) = 0. Prove
that X has a continuous modification provided that∫ η

0

h(r)
r1+N

dr <∞ for some η > 0. (44)

Definition 4.6 (Hölder continuity). A function f : RN → R is said to be
globally Hölder continuous with index α if there exists a constant A such that
for all x, y ∈ RN ,

|f(x)− f(y)| ≤ A|x− y|α. (45)

It is said to be [locally] Hölder continuous with index α if for all compact sets
K ⊂ RN there exists a constant AK such that

|f(x)− f(y)| ≤ AK |x− y|α for all x, y ∈ K. (46)

Exercise 4.7. Suppose {X(t)}t∈T is a process indexed by a compact set T ⊂
RN that satisfies (30) for some C, p > 0 and γ > N . Choose and fix α ∈
(0 , (γ −N)/p). Prove that with probability one, X has a modification which
is Hölder continuous with index α.
2 This means that X(s) converges to X(t) in probability as s→ t.
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Exercise 4.8. Suppose {X(t)}t∈RN is a process indexed by RN . Suppose for
all compact T ⊂ RN there exist constants CT , pT > 0 and γ := γT > N such
that

E (|X(s)−X(t)|pT ) ≤ CT |s− t|γ , for all s, t ∈ T. (47)

Then, prove that X has a modification X̄ which is [locally] Hölder continuous
with some index εT . Warning: Mind your null sets!

Exercise 4.9 (Regularity of Gaussian processes). Suppose {X(t)}t∈T is
a Gaussian random field, and T ⊆ RN for some N ≥ 1. Then, check that for
all p > 0,

E (|X(t)−X(s)|p) = cp

[
E
(
|X(t)−X(s)|2

)]p/2
, (48)

where

cp :=
1

(2π)1/2

∫ ∞
−∞
|x|pe−x

2/2 dx =
2p/2

π1/2
Γ
(
p+ 1

2

)
. (49)

Suppose we can find ε > 0 with the following property: For all compact sets
K ⊂ T there exists a positive and finite constant A(K) such that

E
(
|X(t)−X(s)|2

)
≤ A(K)|t− s|ε for all t, s ∈ K. (50)

Then prove that X has a modification that is [locally] Hölder continuous of
any given order < ε/2.

Example 4.10 (Brownian motion). Let B := {B(t)}t≥0 denote a Brownian
motion. Note that for all s, t ≥ 0, X(t) − X(s) is normally distributed with
mean zero and variance |t− s|. Therefore, E(|X(t)−X(s)|2) = |t− s| for all
s, t ≥ 0. It follows that X has a modification that is Hölder of any given order
α < 1

2 . This is due to Wiener [31].

Warning: This is not true for α = 1
2 . Let B denote the modification as well.

[This should not be confusing.] Then, “the law of the iterated logarithm” of
[18] asserts that

P

{
lim sup
t↓s

|B(t)−B(s)|
(2(t− s) ln | ln(t− s)|)1/2

= 1

}
= 1 for all s > 0. (51)

In particular, for all s > 0,

P

{
lim sup
t↓s

|B(t)−B(s)|
|t− s|1/2

=∞

}
= 1. (52)

Thus, B is not Hölder continuous of order 1
2 at s = 0, for instance.
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Exercise 4.11. Let B denote N -parameter Brownian sheet. Prove that B
has a modification which is [locally] Hölder continuous with any nonrandom
index α ∈ (0 , 1

2 ). This generalized Wiener’s theorem on Brownian motion.

Exercise 4.12. Let B be a continuous Brownian motion, and define Ht to
be the smallest sigma algebra that makes the random variables {B(s)}s∈[0,t]

measurable. Then prove that the event in (51), whose probability is one, is
measurable with respect to ∨t≥0Ht. Do the same for the event in (52).

Theorem 4.3 and the subsequent exercises all deal with distances on RN

that are based on norms. We will need a version based on another distance as
well. This we state—without proof—in the case that N = 2.

Choose and fix some p ∈ (0 , 1] and an integer 1 ≤ k ≤ 1/p, and define for
all u, v, s, t ∈ [0 , 1],

|(s , t)− (u , v)| := |s− u|p + |t− v|kp. (53)

This defines a distance on [0 , 1]2, but it is inhomogeneous, when k > 1, in
the sense that it scales differently in different directions. The following is
essentially 1.4.1 of Kunita [23, p. 31]; see also Corollary A.3 of [6]. I omit the
proof.

Theorem 4.13. Let {Y (s , t)}s,t∈[0,1)2 be a 2-parameter stochastic process
taking value in R. Suppose that there exist C, p > 1 and γ > (k + 1)/k
such that for all s, t, u, v ∈ [0 , 1),

‖Y (s , t)− Y (u , v)‖Lp(P) ≤ C |(s , t)− (u , v)|γ . (54)

Then, Y has a Hölder-continuous modification Ȳ that satisfies the following
for every θ ≥ 0 which satisfies kγ − (k + 1)− kθ > 0:∥∥∥∥∥ sup

(s,t)6=(u,v)

|Y (s , t)− Y (u , v)|
|(s , t)− (u , v)|θ

∥∥∥∥∥
Lp(P)

<∞. (55)

5 Martingale measures

5.1 A white noise example

Let Ẇ be white noise on RN . We have seen already that Ẇ is not a signed
sigma-finite measure with any positive probability. However, it is not hard to
deduce that it has the following properties:

1. Ẇ (Ø) = 0 a.s.
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2. For all disjoint [nonrandom] sets A1, A2, . . . ∈ B(RN ),

P

{
Ẇ

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

Ẇ (Ai)

}
= 1, (56)

where the infinite sum converges in L2(P).

That is,

Proposition 5.1. White noise is an L2(P)-valued, sigma-finite, signed mea-
sure.

Proof. In light of Exercise 3.15 it suffices to prove two things: (a) If A1 ⊃
A2 ⊃ · · · are all in B(RN ) and ∩An = Ø, then Ẇ (An) → 0 in L2(P) as
n→∞; and (b) For all compact sets K, E[(Ẇ (K))2] <∞.

It is easy to prove (a) because E[(Ẇ (An))2] is just the Lebesgue measure
of An, and |An| → 0 because Lebesgue measure is a measure. (b) is even
easier to prove because E[(Ẇ (K))2] = |K| <∞ because Lebesgue measure is
sigma-finite. ut

Oftentimes in SPDEs one studies the “white-noise process” {Wt}t≥0 de-
fined by Wt(A) := Ẇ ([0 , t] × A), where A ∈ B(RN−1). This is a proper
stochastic process as t varies, but an L2(P)-type noise in A.

Let F be the filtration of the process {Wt}t≥0. By this I mean the fol-
lowing: For all t ≥ 0, we define Ft to be the sigma-algebra generated by
{Ws(A); 0 ≤ s ≤ t, A ∈ B(RN−1)}.

Exercise 5.2. Check that F := {Ft}t≥0 is a filtration in the sense that
Fs ⊆ Ft whenever s ≤ t.

Lemma 5.3. {Wt(A)}t≥0,A∈B(RN−1) is a “martingale measure” in the sense
that:

1. For all A ∈ B(RN−1), W0(A) = 0 a.s.;
2. If t > 0 then Wt is a sigma-finite, L2(P)-valued signed measure; and
3. For all A ∈ B(RN−1), {Wt(A)}t≥0 is a mean-zero martingale.

Proof. Note that E[(Wt(A))2] = t|A| where |A| denotes the (N−1)-dimensional
Lebesgue measure of A. Therefore, W0(A) = 0 a.s. This proves (1).

Equation (2) is proved in almost exactly the same way that Proposition
5.1 was. [Check the details!]

Finally, choose and fix A ∈ B(RN−1). Then, whenever t ≥ s ≥ u ≥ 0,

E
[

(Wt(A)−Ws(A))Wu(A)
]

= E
[(
Ẇ ([0 , t]×A)− Ẇ ([0 , s]×A)

)
Ẇ ([0 , u]×A)

]
= min(t , u)|A| −min(s , u)|A| = 0.

(57)



20 D. Khoshnevisan

Therefore, Wt(A)−Ws(A) is independent of Fs (Exercise 3.4, page 7). As a
result, with probability one,

E [Wt(A) | Fs] = E [Wt(A)−Ws(A) | Fs] +Ws(A)
= E [Wt(A)−Ws(A)] +Ws(A)
= Ws(A).

(58)

This is the desired martingale property. ut

Exercise 5.4. Choose and fix A ∈ B(RN−1) such that 1/c := |A|1/2 > 0.
Then prove that {cWt(A)}t≥0 is a Brownian motion.

Exercise 5.5 (Important). Suppose h ∈ L2(RN−1). Note that t−1/2Wt is
white noise on RN−1. Therefore, we can define Wt(h) :=

∫
h(x)Wt(dx) for

all h ∈ L2(RN−1). Prove that {Wt(h)}t≥0 is a continuous martingale with
quadratic variation

〈W•(h) , W•(h)〉t = t

∫
RN−1

h2(x) dx. (59)

It might help to recall that if {Zt}t≥0 is a continuous L2(P)-martingale, then
its quadratic variation is uniquely defined as the continuous increasing process
{〈Z ,Z〉t}t≥0 such that 〈Z ,Z〉0 = 0 and t 7→ Z2

t − 〈Z ,Z〉t is a continuous
martingale. More generally, if Z and Y are two continuous L2(P)-martingales
then ZtYt−〈Z , Y 〉t is a continuous L2(P)-martingale, and 〈Z , Y 〉t is the only
such “compensator.” In fact prove that for all t ≥ 0 and h, g ∈ L2(RN−1),
〈W•(h) ,W•(g)〉t = t

∫
RN−1 h(x)g(x) dx.

5.2 More general martingale measures

Let F := {Ft}t≥0 be a filtration of sigma-algebras. We assume that F is
right-continuous; i.e.,

Ft =
⋂
s>t

Fs for all t ≥ 0. (60)

[This ensures that continuous-time martingale theory works.]

Definition 5.6 (Martingale measures). A process {Mt(A)}t≥0,A∈B(Rn) is
a martingale measure [with respect to F ] if:

1. M0(A) = 0 a.s.;
2. If t > 0 then Mt is a sigma-finite L2(P)-valued signed measure; and
3. For all A ∈ B(Rn), {Mt(A)}t≥0 is a mean-zero martingale with respect

to the filtration F .

Exercise 5.7. Double-check that you understand that if Ẇ is white noise on
RN then Wt(A) defines a martingale measure on B(RN−1).
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Exercise 5.8. Let µ be a sigma-finite L2(P)-valued signed measure on B(Rn),
and F := {Ft}t≥0 a right-continuous filtration. Define µt(A) := E[µ(A) |Ft]
for all t ≥ 0 and A ∈ B(Rn). Then prove that {µt(A)}t≥0,A∈B(Rn) is a
martingale measure.

Exercise 5.9. Let {Mt(A)} be a martingale measure. Prove that for all T ≥
t ≥ 0, Mt(A) = E[MT (A) |Ft] a.s. Thus, every martingale measure locally
look like those of the preceding exercise.

It turns out that martingale measures are a good class of integrators. In order
to define stochastic integrals we follow [30, Chapter 2], and proceed as one
does when one constructs ordinary Itô integrals.

Definition 5.10. A function f : Rn ×R+ × Ω→ R is elementary if

f(x , t , ω) = X(ω)1(a,b](t)1A(x), (61)

where: (a) X is bounded and Fa-measurable; and (b) A ∈ B(Rn). Finite
[nonrandom] linear combinations of elementary functions are called simple
functions. Let S denote the class of all simple functions.

If M is a martingale measure and f is an elementary function of the form
(61), then we define the stochastic-integral process of f as

(f ·M)t(B)(ω) := X(ω) [Mt∧b(A ∩B)−Mt∧a(A ∩B)] (ω). (62)

Exercise 5.11 (Important). Prove that if f is an elementary function then
(f ·M) is a martingale measure. This constructs new martingale measures
from old ones. For instance, if f is elementary and Ẇ is white noise then
(f ·W ) is a martingale measure.

If f ∈ S then we can write f as f = c1f1 + · · · + ckfk where c1, . . . , ck ∈ R
and f1, . . . , fk are elementary. We can then define

(f ·M)t(B) :=
k∑
j=1

cj(fj ·M)t(B). (63)

Exercise 5.12. Prove that the preceding is well defined. That is, prove that
the definition of (f ·M) does not depend on a particular representation of f
in terms of elementary functions.

Exercise 5.13. Prove that if f ∈ S then (f ·M) is a martingale measure.
Thus, if Ẇ is white noise and f ∈ S then (f ·W ) is a martingale measure.

The right class of integrands are functions f that are “predictable.” That is,
they are measurable with respect to the “predictable sigma-algebra” P that
is defined next.
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Definition 5.14. Let P denote the sigma-algebra generated by all functions
in S . P is called the predictable sigma-algebra.

In order to go beyond stochastic integration of f ∈ S we need a technical
condition—called “worthiness”—on the martingale measure M . This requires
a little background.

Definition 5.15. Let M be a martingale measure. The covariance functional
of M is defined as

Qt(A ,B) := 〈M•(A) ,M•(B)〉t, for all t ≥ 0, A,B ∈ B(Rn). (64)

Exercise 5.16. Prove that:

1. Qt(A ,B) = Qt(B ,A) almost surely;
2. If B ∩ C = Ø then Qt(A ,B ∪ C) = Qt(A ,B) +Qt(A ,C) almost surely;
3. |Qt(A ,B)|2 ≤ Qt(A ,A)Qt(B ,B) almost surely; and
4. t 7→ Qt(A ,A) is almost surely non-decreasing.

Exercise 5.17. Let Ẇ be white noise on RN and consider the martingale
measure defined by Wt(A) := Ẇ ((0 , t]×A), where t ≥ 0 and A ∈ B(RN−1).
Verify that the quadratic functional of this martingale measure is described
by Qt(A ,B) := tλN−1(A ∩ B), where λk denotes the Lebesgue measure on
Rk.

Next we define a random set function Q, in steps, as follows: For all t ≥ s ≥ 0
and A,B ∈ B(Rn) define

Q (A ,B ; (s , t]) := Qt(A ,B)−Qs(A ,B). (65)

If Ai ×Bi × (si , ti] (1 ≤ i ≤ m) are disjoint, then we can define

Q

(
n⋃
i=1

(Ai ×Bi × (si , ti])

)
:=

n∑
i=1

Q (Ai , Bi ; (si , ti]) . (66)

This extends the definition of Q to rectangles. It turns out that, in general,
one cannot go beyond this; this will make it impossible to define a completely
general theory of stochastic integration in this setting. However, all works fine
if M is “worthy” [30]. Before we define worthy martingale measures we point
out a result that shows the role of Q.

Proposition 5.18. Suppose f ∈ S and M is a worthy martingale measure.
Then,

E
[
((f ·M)t(B))2

]
= E

 ∫∫∫
B×B×(0,t]

f(x , t)f(y , t)Q(dx dy dt)

 . (67)
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Question 5.19. Although Q is not a proper measure, the triple-integral is well-
defined. Why?

Proof. First we do this when f is elementary, and say has form (61). Then,

E
[
(f ·M)2

t (B)
]

= E
[
X2 (Mt∧b(A ∩B)−Mt∧a(A ∩B))2

]
= E

[
X2M2

t∧b(A ∩B)
]
− 2E

[
X2Mt∧b(A ∩B)Mt∧a(A ∩B)

]
+ E

[
X2M2

t∧a(A ∩B)
]
.

(68)

Recall that X is Fa-measurable. Therefore, by the definition of quadratic
variation,

E
[
X2
(
M2
t∧b(A ∩B)− 〈M(A ∩B) ,M(A ∩B)〉t∧b

)]
= E

[
X2
(
M2
t∧a(A ∩B)− 〈M(A ∩B) ,M(A ∩B)〉t∧a

)]
.

(69)

Similarly,

E
[
X2 (Mt∧b(A ∩B)Mt∧a(A ∩B)− 〈M(A ∩B) ,M(A ∩B)〉t∧a)

]
= E

[
X2
(
M2
t∧a(A ∩B)− 〈M(A ∩B) ,M(A ∩B)〉t∧a

)]
.

(70)

Combine to deduce the result in the case that f has form (61).
If f ∈ S then we can write f = c1f1 + · · · + ckfk where f1, . . . , fk

are elementary with disjoint support, and c1, . . . , ck are reals. [Why dis-
joint support?] Because E[(fj · M)t] = 0, we know that E[(f · M)2

t (B)] =∑k
j=1 c

2
jE[(fj ·M)2

t (B)]. The first part of the proof finishes the derivation. ut

Definition 5.20. A martingale measure M is worthy if there exists a random
sigma-finite measure K(A×B×C ,ω) —where A,B ∈ B(Rn), C ∈ B(R+),
and ω ∈ Ω – such that:

1. A×B 7→ K(A×B × C ,ω) is nonnegative definite and symmetric;
2. {K(A × B × (0 , t])}t≥0 is a predictable process (i.e., P-measurable) for

all A,B ∈ B(Rn);
3. For all compact sets A,B ∈ B(Rn) and t > 0,

E[K(A×B × (0 , t])] <∞;

4. For all A,B ∈ B(Rn) and t > 0,

|Q(A×B × (0 , t])| ≤ K(A×B × (0 , t]) a.s.

[As usual, we drop the dependence on ω.] If and when such a K exists then it
is called a dominating measure for M .
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Remark 5.21. If M is worthy then QM can be extended to a measure on
B(Rn)×B(Rn)×B(R+). This follows, basically, from the dominated con-
vergence theorem.

Exercise 5.22 (Important). Suppose Ẇ denotes white noise on RN , and
consider the martingale measure on B(RN−1) defined by Wt(A) = W ((0 , t]×
A). Prove that it is worthy. Hint: Try the dominating measure K(A×B×C) :=
λN−1(A ∩ B)λ1(C), where λk denotes the Lebesgue measure on Rk. Is this
different than Q?

Proposition 5.23. If M is a worthy martingale measure and f ∈ S , then
(f ·M) is a worthy martingale measure. If QN and KN respectively define
the covariance functional and dominating measure of a worthy martingale
measure N , then

Qf ·M (dx dy dt) = f(x , t)f(y , t)QM (dx dy dt),
Kf ·M (dx dy dt) = |f(x , t)f(y , t)|KM (dx dy dt).

(71)

Proof. We will do this for elementary functions f ; the extension to simple
functions is routine. In light of Exercise 5.11 it suffices to compute Qf ·M . The
formula for Kf ·M follows from this immediately as well.

Now, suppose f has the form (61), and note that for all t ≥ 0 and B,C ∈
B(Rn),

(f ·M)t(B)(f ·M)t(C)

= X2 [Mt∧b(A ∩B)−Mt∧a(A ∩B)]
× [Mt∧b(A ∩ C)−Mt∧a(A ∩ C)]

= martingale +X2 〈M(A ∩B) ,M(A ∩ C)〉t∧b
−X2 〈M(A ∩B) ,M(A ∩ C)〉t∧a

= martingale +X2QM ((A ∩B)× (A ∩B)× (s , t])

= martingale +
∫∫∫

B×C×(0 ,t]

f(x , s)f(y , s)QM (dx dy ds).

(72)

This does the job. ut

From now on we will be interested only in the case where the time variable
t is in some finite interval (0 , T ].

If KM is the dominating measure for a worthy martingale measure M ,
then we define ‖f‖M , for all predictable function f , via

‖f‖2M := E

 ∫∫∫
Rn×Rn×(0,T ]

|f(x , t)f(y , t)|KM (dx dy dt)

 . (73)

Let PM denote the collection of all predictable functions f such that E(‖f‖M )
is finite.
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Exercise 5.24. ‖ · ‖M is a norm on P, and PM is complete [hence a Banach
space] in this norm.

I will not prove the following technical result. For a proof see [30, p. 293,
Proposition 2.3].

Theorem 5.25. S is dense in PM .

Note from Proposition 5.18 that

E
[
(f ·M)2

t (B)
]
≤ ‖f‖2M for all t ∈ (0 , T ], f ∈ S , B ∈ B(Rn). (74)

Consequently, if {fm}∞m=1 is a Cauchy sequence in (S , ‖ · ‖M ) then the se-
quence {(fm ·M)t(B)}∞m=1 is Cauchy in L2(P). If fm → f in ‖ ·‖M then write
the L2(P)-limit of (fm ·M)t(B) as (f ·M)t(B). A few more lines imply the
following.

Theorem 5.26. Let M be a worthy martingale measure. Then for all f ∈
PM , (f ·M) is a worthy martingale measure that satisfies (71). Moreover,
for all t ∈ (0 , T ] and A,B ∈ B(Rn),

〈
(f ·M)(A) , (f ·M)(B)

〉
t

=
∫∫∫

A×B×(0,t]

f(x , s)f(y , s)QM (dx dy ds),

E
[
(f ·M)2

t (B)
]
≤ ‖f‖2M .

(75)

The above L2(P) bound has an Lp version as well.

Theorem 5.27 (Burkholder’s inequality [3]). For all p ≥ 2 there exists
cp ∈ (0 ,∞) such that for all predictable f and all t > 0,

E
[
|(f ·M)t(B)|p

]
≤ cpE


 ∫∫∫

Rn×Rn×(0,T ]

|f(x , t)f(y , t)|KM (dx dy dt)


p/2
 . (76)

Proof (Special Case). It is enough to prove that if {Nt}t≥0 is a martingale
with N0 := 0 and quadratic variation 〈N ,N〉t at time t, then

‖Nt‖pLp(P) ≤ cp‖〈N ,N〉t‖p/2Lp/2(P)
, (77)

but this is precisely the celebrated Burkholder inequality [3]. Here is why it is
true in the case that N is a bounded and continuous martingale. Recall Itô’s
formula [15; 16; 17]: For all f that is C2 a.e.,
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f(Nt) = f(0) +
∫ t

0

f ′(Ns) dNs +
1
2

∫ t

0

f ′′(Ns) d〈N ,N〉s. (78)

Apply this with f(x) := |x|p for p > 2 [f ′′(x) = p(p − 1)|x|p−2 a.e.] to find
that

|Nt|p =
p(p− 1)

2

∫ t

0

|Ns|p−2 d〈N ,N〉s + mean-zero martingale. (79)

Take expectations to find that

E (|Nt|p) ≤
p(p− 1)

2
E
(

sup
0≤u≤t

|Nu|p−2〈N ,N〉t
)
. (80)

Because |Nt|p is a submartingale, Doob’s maximal inequality asserts that

E
(

sup
0≤u≤t

|Nu|p
)
≤
(

p

p− 1

)p
E (|Nt|p) . (81)

Therefore, φp(t) := E(sup0≤u≤t |Nu|p) satisfies

φp(t) ≤
p(p− 1)

2

(
p

p− 1

)p
E
(

sup
0≤u≤t

|Nu|p−2〈N ,N〉t
)

:= apE
(

sup
0≤u≤t

|Nu|p−2〈N ,N〉t
)
.

(82)

Apply Hölder’s inequality to find that

φp(t) ≤ ap (φp(t))
(p−2)/p

(
E
[
〈N ,N〉p/2t

])2/p

. (83)

We can solve this inequality for φp(t) to finish. ut

Exercise 5.28. In the context of the preceding prove that for all p ≥ 2 there
exists cp ∈ (0 ,∞) such that for all bounded stopping times T ,

E
(

sup
0≤u≤T

|Nu|p
)
≤ cpE

(
〈N ,N〉p/2T

)
. (84)

In addition, prove that we do not need N to be a bounded martingale in order
for the preceding to hold. [Hint: Localize.]

Exercise 5.29 (Harder). In the context of the preceding prove that for all
p ≥ 2 there exists c′p ∈ (0 ,∞) such that for all bounded stopping times T ,

E
(
〈N ,N〉p/2T

)
≤ c′pE

(
sup

0≤u≤T
|Nu|p

)
. (85)

Hint: Start with 〈N ,N〉t = N2
t −

∫ t
0
Ns dNs ≤ N2

t + |
∫ t

0
Ns dNs|.
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From now on we adopt a more standard stochastic-integral notation:

(f ·M)t(A) :=
∫∫
A×(0,t]

f dM :=
∫∫
A×(0,t]

f(x , s)M(dx ds). (86)

[N.B.: The last f(x , s) is actually f(x , s , ω), but we have dropped the ω as
usual.] These martingale integrals have the Fubini–Tonelli property:

Theorem 5.30. Suppose M is a worthy martingale measure with dominating
measure K. Let (A ,A , µ) be a measure space and f : Rn×R+×Ω×A→ R
measurable such that the following expectation is finite:∫

· · ·
∫

Ω×Rn×Rn×[0,T ]×A

|f(x , t , ω , u)f(y , t , ω , u)|K(dx dy dt)µ(du) P(dω). (87)

Then almost surely,

∫
A

 ∫∫
Rn×[0,t]

f(x , s , • , u)M(dx ds)

 µ(du)

=
∫∫

Rn×[0,t]

(∫
A

f(x , s , • , u)µ(du)
)
M(dx ds).

(88)

It suffices to prove this for elementary functions of the form (61). You can do
this yourself, or consult the lecture notes of Walsh [30, p. 297].

6 A nonlinear heat equation

We are ready to try and study a class of nonlinear elliptic SPDEs that is an
example of the equations studied by Baklan [2], Daleckĭı [7], Dawson [8; 9],
Pardoux [24; 25], Krylov and Rozovski [20; 21; 22], and Funaki [13; 14]. It is
possible to adapt the arguments to study hyperbolic SPDEs as well. For an
introductory example see the paper by Cabaña [4]. The second chapter, by R.
C. Dalang, of this volume contains more advanced recent results on hyperbolic
SPDEs.

Let L > 0 be fixed, and consider∣∣∣∣∣∣∣∣∣∣

∂u

∂t
=
∂2u

∂x2
+ f(u)Ẇ , t > 0, x ∈ [0 , L],

∂u

∂x
(0 , t) =

∂u

∂x
u(L , t) = 0, t > 0,

u(x , 0) = u0(x), x ∈ [0 , L],

(89)
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where Ẇ is white noise with respect to some given filtration {Ft}t≥0, and
u0 : [0 , L] → R is a nonrandom, measurable, and bounded function. As
regards the function f : R→ R, we assume that

K := sup
0≤x 6=y≤L

|f(x)− f(y)|
|y − x|

+ sup
0≤x≤L

|f(x)| <∞. (90)

In other words, we assume that f is globally Lipschitz, as well as bounded.

Exercise 6.1. Recall that f : R → R is globally Lipschitz if there exists a
constant A such that |f(x)−f(y)| ≤ A|x−y| for all x, y ∈ R. Verify that any
globally Lipschitz function f : R → R satisfies |f(x)| = O(|x|) as |x| → ∞.
That is, prove that f has at most linear growth.

Now we multiply (89) by φ(x) and integrate [dt dx] to find (formally, again)
that for all φ ∈ C∞([0 , L]) with φ′(0) = φ′(L) = 0,∫ L

0

u(x , t)φ(x) dx−
∫ L

0

u0(x)φ(x) dx

=
∫ t

0

∫ L

0

∂2u

∂x2
(x , s)φ(x) dx ds+

∫ t

0

∫ L

0

f (u(x , s))φ(x)W (dx ds).

(91)

Certainly we understand the stochastic integral now. But ∂xxu is not well
defined. Therefore, we try and integrate by parts (again formally!): Because
φ′(0) = φ′(L) = 0, the boundary-values of ∂xu [formally speaking] imply that∫ t

0

∫ L

0

∂2u

∂x2
u(x , s)φ(x) dx ds =

∫ t

0

∫ L

0

u(x , s)φ′′(x) dx ds. (92)

And now we have ourselves a proper stochastic-integral equation: Find u such
that for all φ ∈ C∞([0 , L]) with φ′(0) = φ′(L) = 0,∫ L

0

u(x , t)φ(x) dx−
∫ L

0

u0(x)φ(x) dx

=
∫ t

0

∫ L

0

u(x , s)φ′′(x) dx ds+
∫ t

0

∫ L

0

f (u(x , s))φ(x)W (dx ds).

(93)

Exercise 6.2 (Important). Argue that if u solves (93), then for all C∞

functions ψ(x , t) with ∂xψ(0 , t) = ∂xψ(L , t) = 0,∫ L

0

u(x , t)ψ(x , t) dx−
∫ L

0

u0(x)ψ(x , 0) dx

=
∫ t

0

∫ L

0

u(x , s)
[
∂2u

∂x2
ψ(x , s) +

∂ψ

∂s
(x , s)

]
dx ds

+
∫ t

0

∫ L

0

f (u(x , s))ψ(x , s)W (dx ds).

(94)

This is formal, but important.
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Let Gt(x , y) denote the Green’s function for the linear heat equation. [The
subscript t is not a derivative, but a variable.] Then it follows from the method
of images that

Gt(x , y) =
∞∑

n=−∞

[
Γ(t ;x− y − 2nL) + Γ(t ;x+ y − 2nL)

]
, (95)

where Γ is the fundamental solution to the linear heat equation (89); i.e.,

Γ(t ; a) =
1

(4πt)1/2
exp

(
−a

2

4t

)
. (96)

Define for all smooth φ : [0 , L]→ R,

Gt(φ , y) :=
∫ L

0

Gt(x , y)φ(x) dx, (97)

if t > 0, and G0(φ , y) := φ(y). We can integrate (89)—with f(u , t) ≡ 0—by
parts for all C∞ functions φ : [0 , L] → R such that φ′(0) = φ′(L) = 0, and
obtain the following:

Gt(φ , y) = φ(y) +
∫ t

0

Gs (φ′′ − φ , y) ds. (98)

Fix t > 0 and define ψ(x , s) := Gt−s(φ , x) to find that ψ solves

∂2ψ

∂x2
(x , s) +

∂ψ

∂s
(x , s) = 0, ψ(x , t) = φ(x), ψ(x , 0) = Gt(φ , x). (99)

Use this ψ in Exercise 6.2 to find that any solution to (89) must satisfy∫ L

0

u(x , t)φ(x) dx−
∫ L

0

u0(y)Gt(φ , y) dy

=
∫ t

0

∫ L

0

f (u(y , s))Gt−s(φ , y)W (dy ds).

(100)

This must hold for all smooth φ with φ′(0) = φ′(L) = 0. Therefore, we would
expect that for Lebesgue-almost all (x , t),

u(x , t)−
∫ L

0

u0(y)Gt(x , y) dy

=
∫ t

0

∫ L

0

f (u(y , s))Gt−s(x , y)W (dy ds).

(101)

If Ẇ were smooth then this reasoning would be rigorous and honest. As things
are, it is still merely a formality. However, we are naturally led to a place where
we have an honest stochastic-integral equation.
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Definition 6.3. By a “solution” to the formal stochastic heat equation (89)
we mean a solution u to (101) that is adapted. Sometimes this is called a mild
solution.

With this nomenclature in mind, let us finally prove something.

Theorem 6.4. The stochastic heat equation (93) subject to (90) has an a.s.-
unique solution u that satisfies the following for all T > 0:

sup
0≤x≤L

sup
0≤t≤T

E
(
|u(x , t)|2

)
<∞. (102)

For its proof we will need the following well-known result.

Lemma 6.5 (Gronwall’s lemma). Suppose φ1, φ2, . . . : [0 , T ] → R+ are
measurable and non-decreasing. Suppose also that there exist a constant A
such that for all integers n ≥ 1, and all t ∈ [0 , T ],

φn+1(t) ≤ A
∫ t

0

φn(s) ds. (103)

Then,

φn(t) ≤ φ1(T )
(At)n−1

(n− 1)!
for all n ≥ 1 and t ∈ [0 , T ]. (104)

The preceding is proved by applying induction. I omit the details.

Remark 6.6. As a consequence of Gronwall’s lemma, any positive power of
φn(t) is summable in n. Also, if φn does not depend on n then it follows that
φn ≡ 0.

Proof (Theorem 6.4: Uniqueness). Suppose u and v both solve (101), and
both satisfy the integrability condition (102). We wish to prove that u and v
are modifications of one another. Let d(x , t) := u(x , t)− v(x , t). Then,

d(x , t) =
∫ t

0

∫ L

0

[
f(u(y , s))− f(v(y , s))

]
Gt−s(x , y)W (dy ds). (105)

According to Theorem 5.26 (p. 25) and (90),

E
(
|d(x , t)|2

)
≤ K2

∫ t

0

∫ L

0

E
(
|d(y , s)|2

)
G2
t−s(x , s) dy ds. (106)

Let H(t) := sup0≤x≤L sup0≤s≤t E[d2(x , s)]. The preceding implies that

H(t) ≤ K2

∫ t

0

H(s)

(∫ L

0

G2
t−s(x , y) dy

)
ds. (107)
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Now from (95) and the semigroup properties of Γ it follows that∫ L

0

Gt(x , y)Gs(y , z) dy = Gt+s(x , z), and Gt(x , y) = Gt(y , x). (108)

Consequently,
∫ L

0
G2
t (x , y) dy = G2t(x , x) = Ct−1/2. Hence,

H(t) ≤ CK2

∫ t

0

H(s)
|t− s|1/2

ds. (109)

Now choose and fix some p ∈ (1 , 2), let q be the conjugate to p [i.e., p−1+q−1 =
1], and apply Hölder’s inequality to find that there exists A = AT such that
uniformly for all t ∈ [0 , T ],

H(t) ≤ A
(∫ t

0

Hq(s) ds
)1/q

. (110)

We can apply Gronwall’s Lemma 6.5 with φ1 = φ2 = φ3 = · · · = Hq to find
that H(t) ≡ 0. ut

Proof (Theorem 6.4: Existence). Note from (95) that
∫ L

0
Gt(x , y) dy is a num-

ber in [0 , 1]. Because u0 is assumed to be bounded
∫ L

0
u0(y)Gt(x , y) dy is

bounded; this is the first term in (101). Now we proceed with a Picard-type
iteration scheme. Let u0(x , t) := u0(x), and then iteratively define

un+1(x , t)

=
∫ L

0

u0(y)Gt(x , y) dy +
∫ t

0

∫ L

0

f (un(y , s))Gt−s(x , y)W (dy ds).
(111)

Define dn(x , t) := un+1(x , t)− un(x , t) to find that

dn(x , t)

=
∫ t

0

∫ L

0

[f (un+1(y , s))− f (un(y , s))]Gt−s(x , y)W (dy ds).
(112)

Consequently, by (90),

E
(
|dn(x , t)|2

)
≤ K2

∫ t

0

∫ L

0

E
(
|dn−1(y , s)|2

)
G2
t−s(x , y) dy ds. (113)

Let H2
n(t) := sup0≤x≤L sup0≤s≤t E(|dn(x , s)|2) to find that

H2
n(t) ≤ CK2

∫ t

0

H2
n−1(s)
|t− s|1/2

ds. (114)
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Choose and fix p ∈ (0 , 2), and let q denote its conjugate so that q−1+p−1 = 1.
Apply Hölder’s inequality to find that there exists A = AT such that uniformly
for all t ∈ [0 , T ],

H2
n(t) ≤ A

(∫ t

0

H2q
n−1(s) ds

)1/q

. (115)

Apply Gronwall’s Lemma 6.5 with φn := H2q
n to find that

∑∞
n=1Hn(t) <∞.

Therefore, un(t , x) converges in L2(P) to some u(t , x) for each t and x. This
proves also that

lim
n→∞

∫ t

0

∫ L

0

f(un(y , s))Gt−s(x , y)W (dy ds)

=
∫ t

0

∫ L

0

f(u(y , s))Gt−s(x , y)W (dy ds),

(116)

where the convergence holds in L2(P). This proves that u is a solution to
(101). ut

We are finally ready to complete the picture by proving that the solution
to (89) is continuous [up to a modification, of course].

Theorem 6.7. There exists a continuous modification u(x , t) of (89).

Remark 6.8. In Exercise 6.9, on page 35 below, you will be asked to improve
this to the statement that there exists a Hölder-continuous modification.

Proof (Sketch). We need the following easy-to-check fact about the Green’s
function G:

Gt(x , y) = Γ(t ;x− y) +Ht(x , y), (117)

where Ht(x , y) is smooth in (t , x , y) ∈ R+×R×R, and Γ is the “heat kernel”
defined in (96). Define

U(x , t) :=
∫ t

0

∫ L

0

f(u(y , s))Γ(t− s ;x− y)W (dy ds). (118)

The critical step is to prove that U has a continuous modification. Because u0

is bounded it is then not too hard to complete the proof based on this, and
the fact that the difference between Γ and G is smooth and bounded. From
here on I prove things honestly.

Let 0 ≤ t ≤ t′ and note that

U(x , t′)− U(x , t)

=
∫ t

0

∫ L

0

f(u(y , s)) [Γ(t′ − s ;x− y)− Γ(t− s ;x− y)] W (dy ds)

+
∫ t′

t

∫ L

0

f(u(y , s))Γ(t′ − s ;x− y)W (dy ds).

(119)
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By Burkholder’s inequality (Theorem 5.27, page 25) and the elementary in-
equality |a+ b|p ≤ 2p|a|p + 2p|b|p,

E
(
|U(x , t)− U(x , t′)|p

)
≤ 2pcpE

(∫ t

0

∫ L

0

f2(u(y , s))Λ(s , t , t′ ;x , y) dy ds

)p/2
+ 2pcpE

(∫ t′

t

∫ L

0

f2(u(y , s))Γ2(t− s ;x− y) dy ds

)p/2 .
(120)

where
Λ(s , t , t′ ;x , y) := [Γ(t′ − s ;x− y)− Γ(t− s ;x− y)]2 . (121)

Because of (90), sup |f | ≤ K. Therefore,

E
(
|U(x , t)− U(x , t′)|p

)
≤ (2K)pcp

(∫ t

0

∫ ∞
−∞

Λ(s , t , t′ ;x , y) dy ds
)p/2

+ (2K)pcp

(∫ t′

t

∫ ∞
−∞

Γ2(t− s ;x− y) dy ds

)p/2
.

(122)

[Notice the change from
∫ L

0
to
∫∞
−∞.] Because

∫∞
−∞ Γ2(t−s ; a) da is a constant

multiple of |t− s|−1/2,(∫ t′

t

∫ ∞
−∞

Γ2(t− s ;x− y) dy ds

)p/2
= Cp|t′ − t|p/4. (123)

For the other integral we use a method that is motivated by the ideas in [5].
Recall Plancherel’s theorem: For all g ∈ L1(R) ∩ L2(R),

‖g‖2L2(R) =
1

2π
‖Fg‖2L2(R), (124)

where (Fg)(z) :=
∫∞
−∞ g(x)eixz dx denotes the Fourier transform in the space

variable. Because (FΓ)(t ; ξ) = exp(−tξ2),∫ ∞
−∞

[Γ(t′ − s ;x− y)− Γ(t− s ;x− y)]2 dy

=
1

2π

∫ ∞
−∞

[
e−(t′−s)ξ2 − e−(t−s)ξ2

]2
dξ

=
1

2π

∫ ∞
−∞

e−2(t−s)ξ2
[
1− e−(t′−t)ξ2

]2
dξ.

(125)
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Therefore,∫ t

0

∫ ∞
−∞

[Γ(t′ − s ;x− y)− Γ(t− s ;x− y)]2 dy ds

=
1

2π

∫ ∞
−∞

(∫ t

0

e−2(t−s)ξ2 ds

)[
1− e−(t′−t)ξ2

]2
dξ

=
1

4π

∫ ∞
−∞

1− e−2tξ2

ξ2

[
1− e−(t′−t)ξ2

]2
dξ.

(126)

A little thought shows that (1 − e−2tξ2)/ξ2 ≤ CT /(1 + ξ2), uniformly for all
0 ≤ t ≤ T . Also, [1− e−(t′−t)ξ2 ]2 ≤ 2 min[(t′ − t)ξ2 , 1]. Therefore,∫ t

0

∫ ∞
−∞

[Γ(t′ − s ;x− y)− Γ(t− s ;x− y)]2 dy ds

≤ CT
π

∫ ∞
0

min[(t′ − t)ξ2 , 1]
1 + ξ2

dξ

≤ CT
π

(∫ ∞
|t′−t|−1/2

dξ

ξ2
+
∫ |t′−t|−1/2

0

(t′ − t)ξ2

1 + ξ2
dξ

)
.

(127)

The first term is equal to A|t′ − t|1/2, and the second term is also bounded
above by |t′ − t|1/2 because ξ2/(1 + ξ2) ≤ 1. This, (122) and (123) together
prove that

E
(
|U(x , t)− U(x , t′)|p

)
≤ Cp|t′ − t|p/4. (128)

Similarly, we can prove that for all x, x′ ∈ [0 , L],

E
(
|U(x , t)− U(x′ , t)|p

)
≤ cpKp

(∫ t

0

∫ ∞
−∞

∣∣∣Γ(t− s ; y)− Γ(t− s ;x′ − x− y)
∣∣∣2 dy ds)p/2 . (129)

By Plancherel’s theorem, and because the Fourier transform of x 7→ g(x+ a)
is e−iξa(Fg)(ξ),∫ ∞

−∞

∣∣∣Γ(t− s ; y)− Γ(t− s ;x′ − x− y)
∣∣∣2 dy

=
1

2π

∫ ∞
−∞

e−2(t−s)ξ2
∣∣∣1− eiξ(x′−x)

∣∣∣2 dξ. (130)

Consequently, we can apply Tonelli’s theorem to find that∫ t

0

∫ ∞
−∞

∣∣∣Γ(t− s ; y)− Γ(t− s ;x′ − x− y)
∣∣∣2 dy ds

=
1

2π

∫ ∞
−∞

1− e−2tξ2

2ξ2

∣∣∣1− eiξ(x′−x)
∣∣∣2 dξ

=
1

4π

∫ ∞
0

1− e−2tξ2

ξ2
|1− cos(ξ(x′ − x))| dξ.

(131)
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We use the elementary bounds 1−exp(−|θ|) ≤ 1, and 1−cos θ ≤ min(1 , θ2)—
valid for all θ ∈ R—in order to bound the preceding, and obtain∫ t

0

∫ ∞
−∞

∣∣∣Γ(t− s ; y)− Γ(t− s ;x′ − x− y)
∣∣∣2 dy ds

≤ 1
4π

∫ ∞
0

ξ2(x′ − x)2 ∧ 1
ξ2

dξ.

(132)

We split the domain of integration into two domains: Where ξ < |x′ − x|−1;
and where ξ ≥ |x′ − x|−1. Each of the two resulting integrals is easy enough
to compute explicitly, and we obtain∫ t

0

∫ ∞
−∞

∣∣∣Γ(t− s ; y)− Γ(t− s ;x′ − x− y)
∣∣∣2 dy ds ≤ |x′ − x|

2π
(133)

as a result. Hence, it follows that

sup
t≥0

E
(
|U(x , t)− U(x′, t)|p

)
≤ ap|x′ − x|p/2. (134)

For all (x , t) ∈ R2 define |(x , t)| := |x|1/2 + |t|1/4. This defines a norm on
R2, and is equivalent to the usual Euclidean norm (x2 + t2)1/2 in the sense
that both generate the same topology. Moreover, we have by (128) and (134):
For all t, t′ ∈ [0 , T ] and x, x′ ∈ [0 , L],

E
(
|U(x , t)− U(x′, t′)|p

)
≤ A |(x , t)− (x′, t′)|p . (135)

This and Kolmogorov’s continuity theorem (Theorem 4.13, page 18) together
prove that U has a modification which is continuous, in our inhomogeneous
norm on (x , t), of any order < 1. Because our norm is equivalent to the usual
Euclidean norm, this proves continuity in the ordinary sense. ut

Exercise 6.9. Complete the proof. Be certain that you understand why we
have derived Hölder continuity. For example, prove that there is a modification
of our solution which is Hölder continuous in x of any given order < 1

2 ; and
it is Hölder continuous in t of any given order < 1

4 .

Exercise 6.10. Consider the constant-coefficient, free-space stochastic heat
equation in two space variables. For instance, here is one formulation: Let
Ẇ (x , t) denote white noise on (x , t) ∈ R2 ×R+, and consider∣∣∣∣∣∣∣

∂u

∂t
=
(
∂2u

∂x2
1

+
∂2u

∂x2
2

)
+ Ẇ t > 0, x ∈ R2,

u(x , 0) = 0 x ∈ R2.

(136)

Interpret the adapted solution to the preceding as
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u(x , t) =
∫ t

0

∫
R2

Γ(t− s ;x− y)W (dy ds), (137)

subject to (t , x) 7→ E[u2(t , x)] being continuous (say!). Here, Γ is the
heat kernel on R2; that is, Γ(t , x) := (4πt)−1 exp(−‖x‖2/(4t)). Prove that
E[u2(x , t)] = ∞ for all x ∈ R2 and t > 0. Prove also that if u(x , t) were a
proper stochastic process then it would have to be a Gaussian process, but
this cannot be because Gaussian processes have finite moments. Therefore, in
general, one cannot hope to find function-valued solutions to the stochastic
heat equation in spatial dimensions ≥ 2.

7 From chaos to order

Finally, I mention an example of SPDEs that produce smooth solutions for all
times t > 0, and yet the solution is white noise at time t = 0. In this way, one
can think of the solution to the forthcoming SPDE as a smooth deformation of
white noise, where the deformation is due to the action of the heat operator.

Now consider the heat equation on [0 , 1], but with random initial data
instead of random forcing terms. More specifically, we consider the stochastic
process {u(x , t)}0≤x≤1,t≥0 that is formally defined by∣∣∣∣∣∣∣∣∣

∂u

∂t
(x , t) =

∂2u

∂x2
(x , t) 0 < x < 1, t ≥ 0

u(0 , t) = u(1 , t) = 0 t > 0

u(x , 0) = Ẇ (x) 0 < x < 1,

(138)

where Ẇ denotes white noise.
A classical interpretation of (138) follows: Consider an infinitesimally-thin

wire of length one that has even density and width. Interpret this wire as the
interval [0 , 1], and apply totally random heat to the wire, the heat amount
at x being Ẇ (x) units. The endpoints of the wire are perfectly cooled. If
we watch the wire cool as time passes, then the amount of heat retained at
position x at time t > 0 is u(x , t).

If Ẇ were replaced by a square-integrable function then the solution is
classical, and is given by

u(x , t) =
√

2
∞∑
n=1

ξn sin(nπx) exp
(
−n2π2t

)
, (139)

where

ξn :=
√

2
∫ 1

0

Ẇ (x) sin(nπx) dx, (140)

and the infinite sum in (139) converges in L2(dx) for each t > 0, for example.
Although Ẇ is not a square-integrable function, one can first consider “weak
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solutions,” and then proceed to integrate by parts, and thus arrive at the mild
solution to (138). That is described by (139), but with (140) replaced by the
Wiener stochastic integrals

ξn :=
√

2
∫ 1

0

sin(nπx)W (dx), n = 1, 2, . . . . (141)

It follows from our construction of Wiener integrals that {ξn}∞n=1 is a mean-
zero Gaussian process. Thanks to the Wiener isometry (20), we also can com-
pute its covariance structure to find that

Cov(ξn , ξm) = 2
∫ 1

0

sin(nπx) sin(mπx) dx =

{
1 if m = n,

0 if m 6= n.
(142)

Consequently, {ξn}∞n=1 is an i.i.d. sequence of standard-normal variates. The
following lemma controls the rate of growth of the ξn’s.

Lemma 7.1. With probability one,

|ξn| = O
(√

lnn
)

as n→∞. (143)

Proof. We can apply Chebyshev’s inequality to find that for all a, λ > 0,

P{ξn ≥ a} ≤ e−λaE exp(λξ1) = exp
(
−λa+

λ2

2

)
. (144)

The optimal choice of λ is a/2, and this yields the following well-known bound:
P{ξn ≥ a} ≤ exp(−a2/2), valid for all a > 0. By symmetry,

P {|ξn| ≥ a} ≤ 2 exp(−a2/2) for all a > 0. (145)

We plug in a := 2
√

lnn and deduce (143) from∑
n≥100

P
{
|ξn| ≥ 2

√
lnn

}
≤
∑
n≥100

2
n2

<∞ (146)

and the Borel–Cantelli lemma. ut

Exercise 7.2. Improve Lemma 7.1 to the statement that

lim sup
n→∞

ξn√
2 lnn

= − lim inf
n→∞

ξn√
2 lnn

= 1 a.s. (147)

An immediate consequence of Lemma 7.1 is that for all fixed 0 < r < R,
the infinite series in (139) converges a.s., uniformly for (x , t) ∈ [0 , 1]× [r ,R].
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Among other things, this proves that u is infinitely differentiable in both
variables, away from time zero.

Thus, the random function u is smooth except near time zero, where its
behavior is chaotic. In words, the heat operator takes the pure-noise initial
condition “u(x , 0) = Ẇ (x)” and immediately smooths it to generate nice ran-
dom functions u(x , t), one for every t > 0. Thus, it is interesting to investigate
the transition from “chaos” [t = 0] to “order” [t > 0] in greater depth.

Here we study the mentioned blowup problem for average x-values, and
plan to prove that there is a sense in which the following holds for all “typical
values of x”:

u(x , t) ≈ t−1/4 when t ≈ 0. (148)

Define

E (t) :=
(∫ 1

0

|u(x , t)|2 dx
)1/2

. (149)

A classical interpretation of E (t) is the average heat—in the sense of L2(dx)—
in the wire at time t, where the wire at time 0 is subjected to heat amount
Ẇ (x) at position x ∈ [0 , 1]. The following rigorous interpretation of (148) is
a rather simple result that describes roughly the nature of the blowup of the
solution near time zero.

Theorem 7.3. With probability one,

lim
t↘0

t1/4E (t) =
1

(2π)3/4
. (150)

The proof of Theorem 7.3 relies on a lemma from calculus.

Lemma 7.4. The following holds:

lim
λ↘0

λ1/2
∞∑
n=1

e−n
2λ =

1
2
√
π
. (151)

Proof. Because
∫∞

0
exp(−x2λ) dx = 1/(2

√
πλ),∫ ∞

8

e−x
2λ dx = O(1) +

1
2
√
πλ

as λ↘ 0. (152)

Because
∑8
k=1 exp(−n2λ) = O(1) as λ↘ 0, it therefore suffices to prove that

T :=

∣∣∣∣∣
∞∑
n=9

e−n
2λ −

∫ ∞
8

e−x
2λ dx

∣∣∣∣∣ = o

(
1√
λ

)
as λ↘ 0. (153)

To prove this we first write T as



Stochastic partial differential equations 39

T =
∞∑
n=9

∫ n

n−1

e−x
2λ
(

1− e−(n2−x2)λ
)
dx. (154)

Because 1 − exp(−θ) ≤ 1 ∧ θ for all θ ≥ 0, and since n2 − x2 ≤ 4x for all
x ∈ [n− 1 , n] and n ≥ 1,

T ≤ 4
∫ ∞

8

e−x
2λ (1 ∧ xλ) dx

≤ 4√
λ

∫ ∞
0

e−y
2
(

1 ∧ y
√
λ
)
dy,

(155)

and this is o(1/
√
λ) by the dominated convergence theorem. This proves (153),

and hence the lemma. ut

Next we prove Theorem 7.3.

Proof (Theorem 7.3). Equation (142) and the uniform convergence of the
series in (139) together imply that for all t > 0,

E 2(t) =
∞∑
n=1

ξ2
ne
−2n2π2t a.s. (156)

Consequently, Lemma 7.4 implies that

E
(
|E (t)|2

)
=
∞∑
n=1

e−2n2π2t =
1 + o(1)

(2π)3/2
√
t

as t↘ 0. (157)

Because the ξn’s are independent, a second application of Lemma 7.4 yields

Var
(
|E (t)|2

)
= Var(ξ2

1)
∞∑
n=1

e−4n2π2t

= O
(

E
(
|E (t)|2

))
as t↘ 0.

(158)

These remarks, together with the Chebyshev inequality, yield two constants
C, ε > 0 such that for all t ∈ (0 , ε) and δ > 0,

P


∣∣∣∣∣∣ E 2(t)

E
(
|E (t)|2

) − 1

∣∣∣∣∣∣ > δ

 ≤ C√t. (159)

We can replace t by k−4, sum both sides from k = 1 to k = ∞, apply the
Borel–Cantelli lemma, and then finally deduce that

lim
k→∞

E 2
(
k−4

)
E
(
|E (k−4)|2

) = 1 a.s. (160)

Because E 2 is non-increasing, (157) and a monotonicity argument together
finish the proof. ut
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Exercise 7.5 (Rapid cooling). Prove that with probability one,

lim
t↗∞

exp
(
π2t
)
E (t) = 1. (161)

That is, the wire cools rapidly as time goes by, as it does for classical initial
heat profiles. Thus, the only new phenomenon occurs near time zero.

Exercise 7.6. Define the average heat flux in the wire as

F (t) :=

(∫ 1

0

∣∣∣∣∂u∂x (x , t)
∣∣∣∣2 dx

)1/2

. (162)

Describe the blowup rate of F (t) as t tends down to zero.

For a greater challenge try the following.

Exercise 7.7. Prove that as t↘ 0, and after suitable centering and normal-
ization, E (t) converges in distribution to a non-degenerate law. Describe that
law.

Exercise 7.8. Prove that {b(x)}0≤x≤1 is a Brownian bridge, where

b(x) :=
1√
π

∫ ∞
0

u(x , t)√
t

dt for all x ∈ [0 , 1]. (163)
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Summary. These notes give an overview of recent results concerning the non-linear
stochastic wave equation in spatial dimensions d ≥ 1, in the case where the driving
noise is Gaussian, spatially homogeneous and white in time. We mainly address
issues of existence, uniqueness and Hölder–Sobolev regularity. We also present an
extension of Walsh’s theory of stochastic integration with respect to martingale
measures that is useful for spatial dimensions d ≥ 3.
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1 Introduction

The stochastic wave equation is one of the fundamental stochastic partial dif-
ferential equations (SPDEs) of hyperbolic type. The behavior of its solutions
is significantly different from those of solutions to other SPDEs, such as the
stochastic heat equation. In this introductory section, we present two real-
world examples that can motivate the study of this equation, even though in
neither case is the mathematical technology sufficiently developed to answer
the main questions of interest. It is however pleasant to have such examples
in order to motivate the development of rigorous mathematics.

Example 1.1 (The motion of a strand of DNA). A DNA molecule can be
viewed as a long elastic string, whose length is essentially infinitely long com-
pared to its diameter. We can describe the position of the string by using a
parameterization defined on R+ × [0 , 1] with values in R3:

u(t , x) =

u1(t , x)
u2(t , x)
u3(t , x)

 . (1)

? Partially supported by the Swiss National Foundation for Scientific Research.
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Here, u(t, x) is the position at time t of the point labelled x on the string,
where x ∈ [0, 1] represents the distance from this point to one extremity of
the string if the string were straightened out. The unit of length is chosen so
that the entire string has length 1.

A DNA molecule typically “floats” in a fluid, so it is constantly in motion,
just as a particle of pollen floating in a fluid moves according to Brownian
motion. The motion of the string can be described by Newton’s law of motion,
which equates the sum of forces acting on the string with the product of the
mass and the acceleration. Let µ = 1 be the mass of the string per unit length.
The acceleration at position x along the string, at time t, is

∂2u
∂t2

(t , x), (2)

and the forces acting on the string are mainly of three kinds: elastic forces
F1, which include torsion forces, friction due to viscosity of the fluid F2, and
random impulses F3 due the the impacts on the string of the fluid’s molecules.
Newton’s equation of motion can therefore be written

1 · ∂
2u
∂t2

= F1 − F2 + F3. (3)

This is a rather complicated system of three stochastic partial differential
equations, and it is not even clear how to write down the torsion forces or the
friction term. Elastic forces are generally related to the second derivative in
the spatial variable, and the molecular forces are reasonably modelled by a
stochastic noise term.

The simplest 1-dimensional equation related to this problem, in which one
only considers vertical displacement and forgets about torsion, is the following
one, in which u(t, x) is now scalar valued:

∂2u

∂t2
(t , x) =

∂2u

∂x2
(t , x)−

∫ 1

0

k(x , y)u(t , y) dy + Ḟ (t , x), (4)

where the first term on the right-hand side represents the elastic forces, the
second term is a (non-local) friction term, and the third term Ḟ (t, y) is a
Gaussian noise, with spatial correlation k(· , ·), that is,

E(Ḟ (t , x) Ḟ (s , y)) = δ0(t− s) k(x , y), (5)

where δ0 denotes the Dirac delta function. The function k(· , ·) is the same in
the friction term and in the correlation.

Why is the motion of a DNA strand of biological interest? When a DNA
strand moves around and two normally distant parts of the string get close
enough together, it can happen that a biological event occurs: for instance,
an enzyme may be released. Therefore, some biological events are related to
the motion of the DNA string. Some mathematical results for equation (4)
can be found in [20]. Some of the biological motivation for the specific form
of equation (4) can be found in [8].
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Example 1.2 (The internal structure of the sun). The study of the internal
structure of the sun is an active area of research. One important international
project is known as Project SOHO (Solar and Heliospheric Observatory) [9].
Its objective was to use measurements of the motion of the sun’s surface to
obtain information about the internal structure of the sun. Indeed, the sun’s
surface moves in a rather complex manner: at any given time, any point on the
surface is typically moving towards or away from the center. There are also
waves going around the surface, as well as shock waves propagating through
the sun itself, which cause the surface to pulsate.

A question of interest to solar geophysicists is to determine the origin of
these shock waves. One school of thought is that they are due to turbulence,
but the location and intensities of the shocks are unknown, so a probabilistic
model can be considered.

A model that was proposed by P. Stark of U.C. Berkeley is that the main
source of shocks is located in a spherical zone inside the sun, which is assumed
to be a ball of radius R. Assuming that the shocks are randomly located on
this sphere, the equation (known as the Navier equation) for the dilatation
(see [6, Section 8.3]) throughout the sun would be

∂2u

∂t2
(t , x) = c2(x) ρ0(x)

(
∇ ·

(
1

ρ0(x)
∇u
)

+∇ · F(t , x)
)
, (6)

where x ∈ B(0 , R), the ball centered at the origin with radius R, c2(x) is the
speed of wave propagation at position x, ρ0(x) is the density at position x and
the vector F(t , x) models the shock that originates at time t and position x.

A model for F that corresponds to the description of the situation would
be 3-dimensional Gaussian noise concentrated on the sphere ∂B(0 , r), where
0 < r < R. A possible choice of the spatial correlation for the components of
F would be

δ(t− s) f(x · y), (7)

where x · y denotes the Euclidean inner product. A problem of interest is to
estimate r from the available observations of the sun’s surface. Some mathe-
matical results relevant to this problem are developed in [3].

2 The stochastic wave equation

Equation (6) is a wave equation for a medium with non-constant density.
The (simpler) constant coefficient stochastic wave equation with real-valued
noise that we will be studying in these notes reads as follows: For all (t , x) ∈
[0 , T ]×Rd,
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(
∂2u

∂t2
−∆u

)
(t , x) = σ(t , x , u(t , x)) Ḟ (t , x) + b(t , x , u(t , x)),

u(0 , x) = v0(x),
∂u

∂t
(0 , x) = ṽ0(x),

(8)

where Ḟ (t , x) is a (real-valued) Gaussian noise, which we take to be space-
time white noise for the moment, and σ, b : R+ ×Rd ×R→ R are functions
that satisfy standard properties, such as being Lipschitz in the third variable.
The term ∆u denotes the Laplacian of u in the x-variables.

Mild solutions of the stochastic wave equation

It is necessary to specify the notion of solution to (8) that we are considering.
We will mainly be interested in the notion of mild solution, which is the
following integral form of (8):

u(t , x)

=
∫

[0,t]×Rd

G(t− s , x− y) [σ(s , y , u(s , y)) Ḟ (s , y) + b(s , y , u(s , y))] ds dy

+
(
d

dt
G(t) ∗ v0

)
(x) + (G(t) ∗ ṽ0)(x). (9)

In this equation, G(t − s , x − y) is Green’s function of (8), which we discuss
next, and ∗ denotes convolution in the x-variables. For the term involving
Ḟ (s , y), a notion of stochastic integral is needed, that we will discuss later on.

Green’s function of a PDE

We consider first the case of an equation with constant coefficients. Let L be
a partial differential operator with constant coefficients. A basic example is
the wave operator

Lf =
∂2f

∂t2
−∆f. (10)

Then there is a (Schwartz) distribution G ∈ S ′(R+ × Rd) such that the
solution of the PDE

Lu = ϕ, ϕ ∈ S (Rd), (11)

is
u = G ∗(t,x)ϕ (12)

where ∗(t,x) denotes convolution in the (t , x)-variables. We recall that S (Rd)
denotes the space of smooth test functions with rapid decrease, and S ′(R+×
Rd) denotes the space of tempered distributions [15].
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When G is a function, this convolution can be written

u(t , x) =
∫
R+×Rd

G(t− s , x− y)ϕ(s , y) ds dy. (13)

We note that this is the solution with vanishing initial conditions.
In the case of an operator with non-constant coefficients, such as

Lf =
∂2f

∂t2
+ 2c(t , x)

∂f

∂t
+
∂2f

∂x2
(d = 1), (14)

Green’s function has the form G(t, x ; s, y) and the solution of

Lu = ϕ (15)

is given by the expression

u(t , x) =
∫
R+×Rd

G(t, x ; s, y)ϕ(s, y) ds dy. (16)

Example 2.1 (The heat equation). The partial differential operator L is

Lu =
∂u

∂t
−∆u, d ≥ 1, (17)

and Green’s function is

G(t , x) = (2πt)−d/2 exp
(
−|x|

2

2t

)
. (18)

This function is smooth except for a singularity at (0 , 0).

Example 2.2 (The wave equation). The partial differential operator L is

Lu =
∂2u

∂t2
−∆u. (19)

The form of Green’s function depends on the dimension d. We refer to [18]
for d ∈ {1, 2, 3} and to [7] for d > 3. For d = 1, it is

G(t , x) =
1
2

1{|x|<t}, (20)

which is a bounded but discontinuous function. For d = 2, it is

G(t , x) =
1√
2π

1√
t2 − |x|2

1{|x|<t}. (21)

This function is unbounded and discontinuous. For d = 3, the “Green’s func-
tion” is
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G(t , dx) =
1

4π
σt(dx)
t

, (22)

where σt is uniform measure on ∂B(0 , t), with total mass 4πt2. In particular,
G(t ,R3) = t. This Green’s function is in fact not a function, but a measure.
Its convolution with a test function ϕ is given by

(G ∗ ϕ)(t , x) =
1

4π

∫ t

0

ds

∫
∂B(0,s)

ϕ(t− s , x− y)
σs(dy)
s

=
1

4π

∫ t

0

ds s

∫
∂B(0,1)

ϕ(t− s , x− sy)σ1(dy).
(23)

Of course, the meaning of an expression such as∫
[0,t]×Rd

G(t− s , x− y)F (ds , dy) (24)

where G is a measure and F is a Gaussian noise, is now unclear: it is certainly
outside of Walsh’s theory of stochastic integration [10].

In dimensions greater than 3, Green’s function of the wave equation be-
comes even more irregular. For d ≥ 4, set

N(d) =


d− 3

2
if d is odd,

d− 2
2

if d is even.

(25)

For d even, set

σdt (dx) =
1√

t2 − |x|2
1{|x|<t} dx, (26)

and for d odd, let σdt (dx) be the uniform surface measure on ∂B(0, t) with
total mass td−1. Then for d odd, G(t, x) can formally be written

G(t , x) = cd

(
1
s

∂

∂s

)N(d) (
σds
s

)
ds, (27)

that is, for d odd,

(G ∗ ϕ)(t , x)

= cd

∫ t

0

ds

(
1
r

∂

∂r

)N(d)(∫
Rd

ϕ(t− s , x− y)
σdr (dy)
r

) ∣∣∣∣
r=s

,
(28)

while for d even,

(G ∗ ϕ)(t , x)

= cd

∫ t

0

ds

(
1
r

∂

∂r

)N(d)
(∫

B(0,r)

ϕ(t− s , x− y)
dy√

r2 − |y|2

)∣∣∣∣
r=s

.
(29)
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The meaning of
∫

[0,t]×Rd G(t− s , x− y) F (ds , dy) is even less clear in these
cases!

The case of spatial dimension one

Existence and uniqueness of the solution to the stochastic wave equation in
spatial dimension 1 is covered in [19, Exercise 3.7 p.323]. It is a good exercise
that we leave to the reader.

Exercise 2.3. Establish existence and uniqueness of the solution to the non-
linear wave equation on [0 , T ]×R, driven by space-time white noise :

∂2u

∂t2
− ∂2u

∂x2
= σ(u(t , x)) Ẇ (t , x), (30)

with initial conditions
u(0 , ·) =

∂u

∂t
(0 , ·) ≡ 0. (31)

The solution uses the following standard steps, which also appear in the study
of the semilinear stochastic heat equation (see [19] and [10]):

- define the Picard iteration scheme;
- establish L2-convergence using Gronwall’s lemma;
- show existence of higher moments of the solution, using Burkholder’s

inequality
E(|Mt|p) ≤ cp E

(
〈M〉p/2t

)
; (32)

- establish ρ-Hölder continuity of the solution, for ρ ∈ ]0, 1
2 [.

It is also a good exercise to do the following calculation.

Exercise 2.4. Let G be Green’s function of the wave equation, as defined in
Example 2.2. For d = 1 and d = 2, check that for ϕ ∈ C2([0,∞[×Rd),

u(t , x) =
∫ t

0

ds

∫
Rd

dy G(t− s , x− y)ϕ(s , y) (33)

satisfies
∂2u

∂t2
(t , x)−∆u(t , x) = ϕ(t , x). (34)
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Space-time white noise in dimension d = 2

Having solved the non-linear stochastic wave equation driven by space-time
white noise in dimension d = 1, it is tempting to attempt the same thing in
dimension d = 2. We are going to show that there is a fundamental obstacle
to doing this.

To this end, consider the linear case, that is, σ ≡ 1 and b ≡ 0. The mild
solution given in (9) is not an equation in this case, but a formula:

u(t , x) =
∫

[0,t]×R2
G(t− s , x− y) W (ds , dy)

=
∫

[0,t]×R2

1√
2π

1√
(t− s)2 − |y − x|2

1{|y−x|<t−s} W (ds , dy),
(35)

where W (ds , dy) is space-time white noise.
The first issue is whether this stochastic integral well-defined. For this, we

would need (see [10, Exercise 5.5]) to have∫ t

0

ds

∫
R2
dy G2(t− s , x− y) < +∞. (36)

The integral is equal to∫ t

0

ds

∫
|y−x|<t−s

dy

(t− s)2 + |y − x|2
=
∫ t

0

dr

∫
|z|<r

dz

r2 − |z|2

=
∫ t

0

dr

∫ r

0

dρ
2πρ

r2 − ρ2

= π

∫ t

0

dr ln(r2 − ρ2)
∣∣0
r

= +∞.

(37)

In particular, when d = 2, there is no mild solution to the wave equation (9)
driven by space-time white noise.

There have been some attempts at overcoming this problem (see [12], for
instance), but as yet, there is no satisfactory approach to studying non-linear
forms of the stochastic wave or heat equations driven by space-time white
noise in dimensions d ≥ 2.

A different tack is to consider spatially homogeneous noise with some con-
ditions on the spatial covariance. We introduce these notions in the next
section.
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3 Spatially homogeneous Gaussian noise

Let Γ be a non-negative and non-negative definite tempered measure on Rd,
so that Γ(dx) ≥ 0,∫

Rd

Γ(dx) (ϕ ∗ ϕ̃)(x) ≥ 0, for all ϕ ∈ S (Rd), (38)

where ϕ̃(x) def= ϕ(−x), and there exists r > 0 such that∫
Rd

Γ(dx)
1

(1 + |x|2)r
<∞. (39)

According to the Bochner–Schwartz theorem [15], there is a nonnegative
measure µ on Rd whose Fourier transform is Γ: we write Γ = Fµ. By defini-
tion, this means that for all ϕ ∈ S (Rd),∫

Rd

Γ(dx)ϕ(x) =
∫
Rd

µ(dη) Fϕ(η) . (40)

We recall that the Fourier transform of ϕ ∈ S (Rd) is

Fϕ(η) =
∫
Rd

exp(−i η · x) ϕ(x) dx, (41)

where η · x denotes the Euclidean inner product. The measure µ is called the
spectral measure.

Definition 3.1. A spatially homogeneous Gaussian noise that is white in time
is an L2(Ω ,F ,P)−valued mean zero Gaussian process(

F (ϕ), ϕ ∈ C∞0 (R1+d)
)
, (42)

such that
E(F (ϕ)F (ψ)) = J(ϕ ,ψ), (43)

where
J(ϕ ,ψ)

def
=
∫
R+

ds

∫
Rd

Γ(dx) (ϕ(s , ·) ∗ ψ̃(s , ·))(x). (44)

In the case where the covariance measure Γ has a density, so that Γ(dx) =
f(x) dx, then it is immediate to check that J(ϕ ,ψ) can be written as follows:

J(ϕ ,ψ) =
∫
R+

ds

∫
Rd

dx

∫
Rd

dy ϕ(s , x) f(x− y)ψ(s , y). (45)

Using the fact that the Fourier transform of a convolution is the product of
the Fourier transforms, this can also be written
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J(ϕ ,ψ) =
∫
R+

ds

∫
Rd

µ(dη) Fϕ(s)(η) Fψ(s)(η). (46)

Informally, one often writes

E
(
Ḟ (t , x)Ḟ (s , y)

)
= δ0(t− s) f(x− y), (47)

as though F (ϕ) were equal to
∫
R+×Rd ϕ(s, x)Ḟ (s, x) dsdx.

Example 3.2. (a) If Γ(dx) = δ0(x), where δ0 denotes the Dirac delta function,
then the associated spatially homogeneous Gaussian noise is simply space-time
white noise.

(b) Fix 0 < β < d and let

Γβ(dx) =
dx

|x|β
. (48)

One can check [17, Chapter 5] that Γβ = Fµβ , with

µβ(dη) = cd,β
dη

|η|d−β
. (49)

Exercise 3.3. Show that if β ↑ d, then the spatially homogeneous Gaussian
noise Fβ with the covariance measure Γβ converges weakly to space-time white
noise. (Hint. Find the weak limit of the spectral measure µβ and notice that
F (dη) = δ0.)

Extension of F (ϕ) to a worthy martingale measure

From the spatially homogenenous Gaussian noise, we are going to construct
a worthy martingale measure M = (Mt(A) , t ≥ 0 , A ∈ Bb(Rd)), where
Bb(Rd) denotes the family of bounded Borel subsets of Rd. For this, if A ∈
Bb(Rd), we set

Mt(A) def= lim
n→∞

F (ϕn), (50)

where the limit is in L2(Ω ,F ,P), ϕn ∈ C∞0 (Rd+1) and ϕn ↓ 1[0,t]×A.

Exercise 3.4. ([2]) Show that (Mt(A) , t ≥ 0 , A ∈ Bb(Rd)) is a worthy
martingale measure in the sense of Walsh; its covariation measure Q is given
by

Q(A×B×]s , t]) = (t− s)
∫
Rd

dx

∫
Rd

dy 1A(x) f(x− y) 1B(y), (51)

and its dominating measure is K ≡ Q.
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The key relationship between F and M is that

F (ϕ) =
∫
R+×Rd

ϕ(t , x)M(dt , dx), (52)

where the stochastic integral on the right-hand side is Walsh’s martingale
measure stochastic integral.

The underlying filtration (F t , t ≥ 0) associated with this martingale mea-
sure is given by

F t = σ
(
Ms(A), s ≤ t, A ∈ Bb(Rd)

)
∨ N , t ≥ 0, (53)

where N is the σ-field generated by all P -null sets.

4 The wave equation in spatial dimension 2

We shall consider the following form of the stochastic wave equation in spatial
dimension d = 2:(

∂2u

∂t2
−∆u

)
(t , x) = σ(u(t , x)) Ḟ (t , x), (t , x) ∈ ]0 , T ]×R2, (54)

with vanishing initial conditions. By a solution to (54), we mean a jointly mea-
surable adapted process (u(t, x)) that satisfies the associated integral equation

u(t , x) =
∫

[0,t]×R2
G(t− s , x− y)σ(u(s , y)) M(ds , dy), (55)

where M is the worthy martingale measure associated with Ḟ .

The linear equation

A first step is to examine the linear equation, which corresponds to the case
where σ ≡ 1: (

∂2u

∂t2
−∆u

)
(t , x) = Ḟ (t , x), (56)

with vanishing initial conditions. The mild solution should be

u(t , x) =
∫

[0,t]×R2
G(t− s , x− y) M(ds , dy). (57)

We know that the stochastic integral on the right-hand side is not defined for
space-time white noise, so let us determine for which spatially homogeneous
Gaussian noises it is well defined. This is the case if∫ t

0

ds

∫
R2

dy

∫
R2

dz G(t− s , x− y) f(y − z) G(t− s , x− z) < +∞, (58)

or, equivalently, if ∫ t

0

ds

∫
R2

µ(dη) |FG(s)(η)|2 < +∞. (59)
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Calculation of FG

In principle, Green’s function of a PDE solves the same PDE with δ(0,0)(t , x) =
δ0(t) δ0(x) as right-hand side :

∂2G

∂t2
−∆G = δ0(t) δ0(x). (60)

For fixed t 6= 0, the right-hand side vanishes. We shall take the Fourier trans-
form in x on both sides of this equation, but first, we observe that since

FG(t)(ξ) = Ĝ(t)(ξ) =
∫
R2

ei ξ·x G(t , x) dx, (61)

it is clear that

F

(
∂2G(t)
∂t

)
(ξ) =

∂2Ĝ(t)
∂t2

(ξ), (62)

and, using integration by parts, that

F (∆G(t))(ξ) =
∫
R2

ei ξ·x ∆G(t , x) dx

=
∫
R2

∆(ei ξ·x)G(t , x) dx

= −|ξ|2 FG(t) (ξ).

(63)

Therefore, we deduce from (60) that for t > 0,

∂2Ĝ(t)
∂t2

(ξ) + |ξ|2 Ĝ(t) (ξ) = δ0(t). (64)

For fixed ξ, the solution to the associated homogeneous ordinary differential
equation in t is

Ĝ(t)(ξ) = a(ξ)
sin(t|ξ|)
|ξ|

+ b(ξ)
cos(t|ξ|)
|ξ|

. (65)

The solution that we seek (see [18, Chapter I, Section 4] for an explanation)
is the one such that Ĝ(0)(ξ) = 0 and dĜ(0)

dt (ξ) = 1, so we conclude that for
t ≥ 0 and ξ ∈ R2,

FG(t) (ξ) =
sin(t|ξ|)
|ξ|

. (66)

This formula is in fact valid in all dimensions d ≥ 1.
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Condition on the spectral measure

Condition (59) for existence of a mild solution on [0 , T ] to the linear wave
equation (56) becomes∫ T

0

ds

∫
R2

µ(dη)
sin2(s|η|)
|η|2

< +∞. (67)

Using Fubini’s theorem, one can evaluate the ds-integral explicitly, or simply
check that

c1
1 + |η|2

≤
∫ T

0

ds
sin2(s|η|)
|η|2

≤ c2
1 + |η|2

, (68)

so condition (59) on the spectral measure becomes∫
R2

µ(dη)
1

1 + |η|2
< +∞. (69)

Example 4.1. Let d ≥ 1. Consider the case where f(x) = |x|−β , 0 < β < d.
In this case, µ(dη) = cd,β |η|β−d dη, so one checks immediately that condition
(69) holds (even when R2 is replaced by Rd) if and only if β < 2. In particular,
the spatially homogeneous Gaussian noise with the covariance function f is
defined for 0 < β < d, but a mild solution of the linear stochastic wave
equation (56) exists if and only if 0 < β < 2.

Reformulating (69) in terms of the covariance measure

Condition (69) on the spectral measure can be reformulated as a condition on
the covariance measure Γ.

Exercise 4.2. ([11]) Show that in dimension d = 2, (69) is equivalent to∫
|x|≤1

Γ(dx) ln
(

1
|x|

)
< +∞, (70)

while in dimensions d ≥ 3, (69) is equivalent to∫
|x| ≤1

Γ(dx)
1

|x|d−2
< +∞. (71)

In dimension d = 1, condition (69) is satisfied for any non-negative measure
µ such that Γ = Fµ is also a non-negative measure.
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The non-linear wave equation in dimension d = 2

We consider equation (54). The following theorem is the main result on exis-
tence and uniqueness.

Theorem 4.3. Assume d = 2. Suppose that σ is a Lipschitz continuous
function and that condition (69) holds. Then there exists a unique solution
(u(t , x), t ≥ 0, x ∈ R2) of (54) and for all p ≥ 1, this solution satisfies

sup
0≤t≤T

sup
x∈Rd

E (|u(t , x)|p) <∞. (72)

Proof. This proof follows a classical Picard iteration scheme. We set u0(t , x) =
0, and, by induction, for n ≥ 0,

un+1(t , x) =
∫

[0,t]×R2
G(t− s , x− y) σ(un(s , y)) M(ds , dy). (73)

Before establishing convergence of this scheme, we first check that for p ≥ 2,

sup
n≥0

sup
0≤s≤T

sup
x∈R2

E (|un(s , x)|p) < +∞. (74)

We apply Burkholder’s inequality (32) and use the explicit form of the
quadratic variation of the stochastic integral [10, Theorem 5.26] to see that

E (|un+1(t , x)|p) ≤ cE

[(∫ t

0

ds

∫
R2

dy

∫
R2

dz G(t− s , x− y) σ(un(s , y))

× f(y − z) G(t− s , x− z) σ(un(s , z))

)p/2]
. (75)

Since G ≥ 0 and f ≥ 0, we apply Hölder’s inequality in the form∣∣∣∣∫ f dµ

∣∣∣∣p ≤ (∫ 1 dµ
)p/q (∫

|f |p dµ
)
, where

p

q
= p− 1 (76)

and µ is a non-negative measure, to see that E (|un+1(t , x)|p) is bounded
above by

c

(∫ t

0

ds

∫
R2

dy

∫
R2

dz G(t− s , x− y) f(y − z) G(t− s , x− z)
) p

2−1

×
∫ t

0

ds

∫
R2

dy

∫
R2

dz G(t− s , x− y) f(y − z)G(t− s , x− z)

× E
(
|σ(un(s , y))σ(un(s , z))|

p
2

)
. (77)
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We apply the Cauchy–Schwarz inequality to the expectation and use the Lip-
schitz property of σ to bound this by

C

(∫ t

0

ds

∫
R2
µ(dη) |FG(t− s)(η)|2

) p
2−1

×
∫ t

0

ds

∫
R2

dy

∫
R2

dz G(t− s , x− y) f(y − z)G(t− s , x− z) (78)

× (E (1 + |un(s , y)|p))1/2 (E (1 + |un(s , z)|p))1/2
.

Let

J(t) =
∫ t

0

ds

∫
R2
µ(dη) |FG(t− s)(η)|2 ≤ C

∫
R2

µ(dη)
1

1 + |η|2
. (79)

Then

E (|un+1(t , x)|p)

≤ C (J(t))
p
2−1

∫ t

0

ds

(
1 + sup

y∈R2
E (|un(s , y)|p)

)
×
∫
R2
µ(dη) |FG(t− s)(η)|2

≤ C̃
∫ t

0

ds

(
1 + sup

y∈R2
E(|un(s , y)|p)

)
. (80)

Therefore, if we set
Mn(t) = sup

x∈R2
E (|un(t , x)|p) , (81)

then

Mn+1(t) ≤ C̃
∫ t

0

ds (1 +Mn(s)) . (82)

Using Gronwall’s lemma, we conclude that

sup
n∈N

sup
0≤t≤T

Mn(t) < +∞. (83)

We now check L2-convergence of the Picard iteration scheme. By the same
reasoning as above, we show that

sup
x∈R2

E (|un+1(t , x)− un(t , x)|p)

≤ C
∫ t

0

ds sup
y∈R2

E (|un(s , y)− un−1(s , y)|p) .
(84)

Gronwall’s lemma shows that (un(t , x), n ≥ 1) converges in L2(Ω ,F ,P),
uniformly in x ∈ R2.

Uniqueness of the solution follows in a standard way: see [10, Proof of
Theorem 6.4]. ut



58 R. C. Dalang

Hölder-continuity (d = 2)

In order to establish Hölder continuity of the solution to the stochastic wave
equation in spatial dimension 2, we first recall the Kolmogorov continuity
theorem. It is a good idea to compare this statement with the equivalent one
in [10, Theorem 4.3].

Theorem 4.4 (The Kolmogorov Continuity Theorem)). Suppose that
there is q > 0, ρ ∈ ]dq , 1[ and C > 0 such that for all x, y ∈ Rd,

E (|u(t , x)− u(t , y)|q) ≤ C |x− y|ρq. (85)

Then x 7→ u(t , x) has a ρ̃-Hölder continuous version, for any ρ̃ ∈ ]0 , ρ− d
q [.

In order to use the statement of this theorem to establish (ρ − ε)-Hölder
continuity, for any ε > 0, it is necessary to obtain estimates on arbitrarily
high moments of increments, that is, to establish (85) for arbitrarily large q.

Lq-moments of increments

From the integral equation (55), we see that

u(t , x)− u(s , y)

=
∫∫

(G(t− r , x− z)−G(s− r , y − z)) σ(u(r , z))M(dr , dz),
(86)

and so, by Burkholder’s inequality (32),

E (|u(t , x)− u(s , y)|p)

≤ CE
(∣∣∣∣ ∫ t

0

dr

∫
R2
dz

∫
R2
dv (G(t− r , x− z)−G(s− r , y − z)) f(z − v)

× (G(t− r , x− v)−G(s− r , y − v))σ(u(r , z))σ(u(r, v))
∣∣∣∣p/2)

≤ C
(∫

dr

∫
dz

∫
dv |G( )−G( )| f( ) |G( )−G( )|

) p
2−1

(87)

×
∫
dr

∫
dz

∫
dv |G( )−G( )| f( ) |G( )−G( )|

× E
(
|σ(u(r , z))|p/2 |σ(u(r , v))|p/2

)
,

where the omitted variables are easily filled in. The Lipschitz property of σ
implies a bound of the type “linear growth,” and so, using also the Cauchy–
Schwarz inequality, we see that the expectation is bounded by

C sup
r≤T, z∈R2

(1 + E(|u(r , z)|p)) . (88)



The Stochastic Wave Equation 59

Define

J(t , x ; s, y)

=
∫ t

0

dr

∫
R2
dz

∫
R2
dv |G(t− r , x− z)−G(s− r , y − z)| f(z − v)

× |G(t− r , x− v)−G(s− r , y − v)|.

(89)

We have shown that

E (|u(t , x)− u(s , y)|p) ≤ (J(t , x ; s, y))p/2 . (90)

Therefore, we will get Hölder-continuity provided that we can establish an
estimate of the following type for some γ > 0 and ρ > 0:

J(t , x ; s, y) ≤ c(|t− s|γ + |x− y|ρ). (91)

Indeed, this will establish γ1
2 -Hölder continuity in time, and ρ1

2 -Hölder conti-
nuity in space, for all γ1 ∈ ]0 , γ[ and ρ1 ∈ ]0 , ρ[.

Analysis of J(t , x ; s , y)

If there were no absolute values around the increments of G, then we could
use the Fourier transform to rewrite J(t , x ; s , y), in the case x = y and s > t,
for instance, as

J(t , x ; s , x) =
∫ s

0

dr

∫
R2

µ(dη) |FG(t− r)(η)−FG(s− r)(η)|2

+
∫ t

s

dr

∫
R2

µ(dη) |FG(t− r)(η)|2.
(92)

We could then analyse this using the specific form of FG in (66). However,
the presence of the absolute values makes this approach inoperable. By a
direct analysis of J(t , x ; s , x), Sanz-Solé and Sarrá [14] have established the
following results. If∫

R2
µ(dη)

1
(1 + |η|2)a

<∞, for some a ∈ ]0 , 1[, (93)

then t 7→ u(t , x) is γ1-Hölder continuous, for

γ1 ∈
]
0 ,

1
2
∧ (1− a)

[
, (94)

and x 7→ u(t , x) is γ2-Hölder continuous, for γ2 ∈ ]0 , 1− a[.
When µ(dη) = |η|−β dη, these intervals become

γ1 ∈
]
0 ,

1
2
∧ 2− β

2

[
and γ2 ∈

]
0 ,

2− β
2

[
. (95)

The best possible interval for γ1 is in fact ]0 , 2−β
2 [ ; see [5, Chapter 5].
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5 A function-valued stochastic integral

Because Green’s function in spatial dimension 3 is a measure and not a
function, the study of the wave equation in this dimension requires differ-
ent methods than those used in dimensions 1 and 2. In particular, we will use
a function-valued stochastic integral, developed in [4].

Our first objective is to define a stochastic integral of the form∫
[0,t]×Rd

G(s , x− y) Z(s , y) M(ds , dy), (96)

where G(s , ·) is Green’s function of the wave equation (see Example 2.2) and
Z(s , y) is a random field that plays the role of σ(u(s , y)).

We shall assume for the moment that d ≥ 1 and that the following condi-
tions are satisfied.

Hypotheses

(H1) For 0 ≤ s ≤ T, Z(s , ·) ∈ L2(Rd) a.s., Z(s , ·) is F s−measurable, and
s 7→ Z(s , ·) from R+ → L2(Rd) is continuous.

(H2) For all s ≥ 0,∫ T

0

ds sup
ξ∈Rd

∫
Rd

µ(dη) |FG(s)(ξ − η)|2 < +∞.

We note that FG(s)(ξ− η) is given in (66), so that (H2) is a condition on
the spectral measure µ, while (H1) is a condition on Z. In general, condition
(H2) is stronger than (59): see [13].

Fix ψ ∈ C∞0 (Rd) such that ψ ≥ 0, supp ψ ⊂ B(0, 1) and∫
Rd

ψ(x) dx = 1. (97)

For n ≥ 1, set
ψn(x) = nd ψ(nx). (98)

In particular, ψn → δ0 in S ′(Rd), and F ψn(ξ) = F ψ(ξ/n), so that
|F ψn(ξ)| ≤ 1. Define

Gn(s , ·) = G(s) ∗ ψn, (99)

so that Gn is a C∞0 -function. Then,

vGn,Z(t , x) def=
∫

[0,t]×Rd

Gn(s , x− y) Z(s , y) M(ds , dy) (100)

is well-defined as a Walsh-stochastic integral, and
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E
(
‖vGn,Z(t , ·)‖2L2(Rd)

)
= IGn ,Z , (101)

where

IGn,Z =
∫
Rd

dxE
(
(vGn,Z(t , x))2

)
=
∫
Rd

dx

∫ t

0

ds

∫
Rd

dy

∫
Rd

dz Gn(s , x− y)Z(s , y) f(y − z)

× Gn(s , x− z) Z(s , z).

(102)

Using the fact that the Fourier transform of a convolution (respectively prod-
uct) is the product (resp. convolution) of the Fourier transforms, one easily
checks that

IGn,Z

=
∫ t

0

ds

∫
Rd

dξ E
(
|FZ(s , ·)(ξ)|2

) ∫
Rd

µ(dη) |FGn(s , ·) (ξ − η)|2.
(103)

We note that:
(a) the following inequality holds:

IGn,Z ≤ ĨGn,Z , (104)

where

ĨGn,Z

def=
∫ t

0

ds E
(
‖Z(s , ·)‖2L2(Rd)

)
sup
ξ∈Rd

∫
Rd

µ(dη) |FGn(s , ·)(ξ − η)|2;
(105)

(b) the equality (101) plays the role of an isometry property;
(c) by elementary properties of convolution and Fourier transform,

ĨGn,Z ≤ ĨG,Z < +∞, (106)

by (H2) and (H1).
In addition, one checks that the stochastic integral

vG,Z(t) def= lim
n→∞

vGn,Z (107)

exists, in the sense that

E
(
‖vG,Z (t)− vGn,Z(t , ·)‖2L2(Rd)

)
−→ 0, (108)

and
E
(
‖vG,Z(t)‖2L2(Rd)

)
= IG,Z ≤ ĨG,Z . (109)
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We use the following notation for the stochastic integral that we have just
defined:

vG,Z(t) =
∫

[0,t]×Rd

G(s , · − y) Z(s , y) M(ds , dy). (110)

For t fixed, vG,Z(t) ∈ L2(Rd) is a square-integrable function that is defined
almost-everywhere.

The definition of the stochastic integral requires in particular that hypoth-
esis (H2) be satisfied. In the case where

Γ(dx) = kβ(x) dx, with kβ(x) = |x|−β , β > 0, (111)

this condition becomes∫ T

0

ds sup
ξ∈Rd

∫
Rd

dη |η|β−d sin2(s|ξ − η|)
|ξ − η|2

< +∞. (112)

Exercise 5.1. ([4]) Show that (112) holds if and only if 0 < β < 2.

6 The wave equation in spatial dimension d ≥ 1

We consider the following stochastic wave equation in spatial dimension d ≥ 1,
driven by spatially homogeneous Gaussian noise Ḟ (t , x) as defined in Section
3:
(
∂2u

∂t2
−∆u

)
(t , x) = σ(x , u(t , x)) Ḟ (t , x), t ∈ ]0 , T ], x ∈ Rd,

u(0 , x) = v0(x),
∂u

∂t
(0 , x) = ṽ0(x),

(113)

where v0 ∈ L2(Rd) and ṽ0 ∈ H−1(Rd). By definition, H−1(Rd) is the set of
square-integrable functions ṽ0 such that

‖ṽ0‖2H−1(Rd)
def=
∫
Rd

dξ
1

1 + |ξ|2
|F ṽ0(ξ)|2 < +∞. (114)

We shall restrict ourselves, though this is not really necessary (see [4]) to the
case where Γ(dx) is as in (111). In this case, Example 4.1 shows that the
further restriction 0 < β < 2 is needed.
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The past-light cone property

Consider a bounded domain D ⊂ Rd. A fundamental property of the wave
equation (see [18, Theorem 14.1]) is that u(T , x), x ∈ D, only depends on
v0|KD and ṽ0|KD , where

KD = { y ∈ Rd : d(y ,D) ≤ T} (115)

and d(y ,D) denotes the distance from y to the set D, and on the noise Ḟ (s , y)
for y ∈ KD(s), 0 ≤ s ≤ T , where

KD(s) =
{
y ∈ Rd : d(y ,D) ≤ T − s

}
. (116)

Therefore, the solution u(t , x) in D is unchanged if we take the SPDE(
∂2u

∂t2
−∆u

)
(t , x) = 1KD(t)(x) σ(x , u(t , x)) Ḟ (t , x). (117)

We shall make the following linear growth and Lipschitz continuity as-
sumptions on the function σ.

Assumptions.

(a) |σ(x , u)| ≤ c(1 + |u|) 1KD(T )(x), for all x ∈ Rd and u ∈ R;
(b) |σ(x , u)− σ(x , v)| ≤ c |u− v|, for all x ∈ Rd and u, v ∈ R.

Definition 6.1. An adapted and mean-square continuous L2(Rd)-valued pro-
cess (u(t), 0 ≤ t ≤ T ) is a solution of (113) in D if for all t ∈ ]0 , T ],

u(t) 1KD(t) = 1KD(t) ·
(
d

dt
G(t) ∗ v0 +G(t) ∗ ṽ0 (118)

+
∫

[0,t]×Rd

G(t− s , · − y) σ(y , u(s , y)) M(ds , dy)
)
.

Theorem 6.2. Let d ≥ 1. Suppose 0 < β < 2 ∧ d and that the assumptions
above on σ are satisfied. Then (113) has a unique solution (u(t), 0 ≤ t ≤ T )
in D.

Proof. We use a Picard iteration scheme. Set

u0(t , x) =
d

dt
G(t) ∗ v0 +G(t) ∗ ṽ0. (119)

We first check that u0(t) ∈ L2(Rd). Indeed,
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∥∥∥∥
L2(Rd)

=
∥∥∥∥F (

d

dt
G(t)

)
·Fv0

∥∥∥∥
L2(Rd)

=
∫
Rd

dξ

∣∣∣∣|ξ| cos(t|ξ|)
|ξ|

·Fv0(ξ)
∣∣∣∣2

≤ ‖v0‖L2(Rd) ,

(120)

and, similarly,
‖G(t) ∗ ṽ0‖L2(Rd) ≤ ‖ṽ0‖H−1(Rd) . (121)

One checks in a similar way that t 7→ u0(t) from [0 , T ] into L2(Rd) is contin-
uous.

We now define the Picard iteration scheme. For n ≥ 0, assume that
(un(t), 0 ≤ t ≤ T ) has been defined, and satisfies (H1). Set

un+1(t) = 1KD(t) · (u0(t) + vn+1(t)) , (122)

where

vn+1(t) =
∫

[0,t]×Rd

G(t− s , · − y) σ(y , un(s , y)) M(ds , dy). (123)

By induction, Zn(s , y) = σ(y , un(s , y)) satisfies (H1). Indeed, this process
is adapted, and since

‖σ(· , un(s , ·))− σ(·, un(t , ·))‖L2(Rd) ≤ C‖un(s , ·)− un(t , ·)‖L2(Rd), (124)

it follows that s 7→ un(s , ·) is mean-square continuous. One checks that un+1

also satisfies (H1): this uses assumption (a).
Therefore, the stochastic integral (123) is well-defined. Let

Mn(r) = sup
0≤t≤r

E
(
‖un+1(t)− un(t)‖2L2(KD(t))

)
(125)

= sup
0≤t≤r

E
(
‖vn+1(t)− vn(t)‖2L2(KD(t))

)
= sup

0≤t≤r
E
(∥∥∥ ∫

[0,t]×Rd

G(t− s, · − y)

× (σ(y , un(s , y))− σ(y , un−1(s , y))) M(ds, dy)
∥∥∥2

L2(KD(t))

)
≤ sup

0≤t≤r

∫ t

0

dsE
(
‖σ(· , un(s , ·))− σ(·, un−1(s , ·))‖2L2(KD(t))

)
J(t− s),

where

J(s) = sup
ξ∈Rd

∫
Rd

dη |η|β−d sin2(s|ξ − η|)
|ξ − η|2

. (126)

A direct calculation shows that
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sup
0≤s≤T

J(s) < +∞, (127)

since 0 < β < 2, so

Mn(r) ≤ C sup
0≤t≤r

∫ t

0

dsE
(
‖un(s , ·)− un−1(s , ·)‖2L2(KD(t))

)
, (128)

that is,

Mn(r) ≤ C
∫ r

0

Mn−1(s) ds. (129)

Because M0(T ) < +∞, Gronwall’s lemma implies that

+∞∑
n=0

(Mn(r))1/2 < +∞. (130)

Therefore, (un(t , ·) , n ∈ N) converges in L2(Ω×Rd , dP× dx), uniformly in
t ∈ [0 , T ], to a limit u(t , ·). Since un satisfies (H1) and un converges uniformly
in t to u(t , ·), it follows that u(t , ·) is a solution to (113): indeed, it suffices
to pass to the limit in (122) and (123).

Uniqueness of the solution follows by a standard argument. ut

7 Spatial regularity of the stochastic integral (d = 3)

We aim now to analyze spatial regularity of the solution to the 3-dimensional
stochastic wave equation (113) driven by spatially homogeneous Gaussian
noise, with covariance given by a Riesz kernel f(x) = |x|−β , where 0 < β < 2.
For this, we shall first examine the regularity in the x-variable of the function-
valued stochastic integral defined in Section 5 when d = 3.

We recall that studying regularity properties requires information on
higher moments. With these, one can use the Kolmogorov continuity theo-
rem (Theorem 4.4) or the Sobolev embedding theorem, which we now recall.

Theorem 7.1 (The Sobolev Embedding Theorem). Let O be an open
subset of Rd. Suppose that g ∈ W p,q(O). Then x 7→ g(x) is ρ̃-Hölder contin-
uous, for all ρ̃ ∈ ]0 , ρ− d

q [ .

We recall [16] that the norm in the space W p,q(O) is defined by

‖g‖qWp,q(O) = ‖g‖qLq(O) + ‖g‖qp,q,O , (131)

where

‖g‖qLq(O) =
∫

O

|g(x)|q dx

‖g‖qp,q,O =
∫

O

dx

∫
O

dy
|g(x)− g(y)|q

|x− y|d+ρq
.

(132)
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Our first objective is to determine conditions that ensure that

E
(
‖vG,Z‖qLq(O)

)
< +∞. (133)

For ε > 0, we let

Oε =
{
x ∈ R3 : ∃ z ∈ O with |x− z| < ε

}
(134)

denote the ε-enlargement of O, and use the notation

vtG,Z =
∫

[0,t]×R3
G(t− s , · − y) Z(s , y) M(ds , dy). (135)

An estimate in Lp-norm

Theorem 7.2. Suppose 0 < β < 2. Fix T > 0, q ∈ [2 ,+∞[ and let O ⊂ R3

be a bounded domain. There is a constant C <∞ with the following property.
Suppose that ∫ t

0

ds E
(
‖Z(s)‖qLq(Ot−s)

)
< +∞. (136)

Then

E
(
‖vtG,Z‖

q
Lq(O)

)
≤ C

∫ t

0

dsE
(
‖Z(s)‖qLq(Ot−s)

)
. (137)

Proof. We present the main ideas, omitting some technical issues that are han-
dled in [5, Proposition 3.4]. First, we check inequality (137) with G replaced
by Gn :

E
(
‖vtGn,Z‖

q
Lq(O)

)
=
∫

O

dxE

(∣∣∣∣∣
∫

[0,t]×R3
Gn(t− s , x− y) Z(s , y) M(ds , dy)

∣∣∣∣∣
q)

≤
∫

O

dxE

(∣∣∣∣∣
∫ t

0

ds

∫
R3
dy

∫
R3
dz Gn (t− s , x− y) Z(s , y) f(y − z)

×Gn(t− s , x− z)Z(s , z)

∣∣∣∣∣
q/2)

. (138)

Let

µn(t, x)

=
∫ t

0

ds

∫
R3
dy

∫
R3
dz Gn(t− s , x− y) f(y − z) Gn(t− s , x− z).

(139)
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Assume that
sup

n ,x, t≤T
µn(t , x) < +∞. (140)

By Hölder’s inequality, written in the form (76), we see, since Gn ≥ 0, that

E
(
‖vtGn,Z‖

q
Lq(O)

)
≤
∫

O

dx (µn(t , x))
q
2−1E

(∫ t

0

ds

∫
R3
dy

∫
R3
dz Gn(t− s , x− y)

× f(y − z) Gn(t− s , x− z) |Z(s , y)|q/2 |Z(s , z)|q/2
)

= I
Gn,|Z 1

Ot−s+1/n |q/2 .

(141)

We apply (104), then (105), to bound this by

Ĩ
Gn,|Z 1

Ot−s+1/n |q/2 =
∫ t

0

dsE
(∥∥∥ |Z(s)|q/2 1Ot−s+1/n

∥∥∥2

L2(R3)

)
× sup
ξ∈R3

∫
R3
µ(dη) |FGn(s , ·)(ξ − η)|2.

(142)

Since 0 < β < 2, the supremum over ξ is finite, therefore

E
(
‖vtGn,Z‖

q
Lq(O)

)
≤ C

∫ t

0

dsE
(
‖Z(s)‖q

Lq(Ot−s+1/n)

)
. (143)

By Fatou’s lemma,

E
(
‖vtG,Z‖

q
Lq(O)

)
≤ lim inf

k→∞
E
(
‖vtGnk,Z‖

q
Lq(O)

)
≤ lim inf

k→∞

∫ t

0

dsE
(
‖Z(s)‖q

Lq(Ot−s+1/nk )

)
=
∫ t

0

dsE
(
‖Z(s)‖qLq(Ot−s)

)
.

(144)

It remains to check that (140) holds. Since

|FGn(t− s)(η)|2 ≤ |FG(t− s)(η)|2 =
sin2((t− s)|η|)

|η|2
, (145)

it follows that for t ∈ [0 , T ] and x ∈ R3,

µn(t , x) ≤
∫ t

0

ds

∫
R3

dη |η|β−3 sin2((t− s)|η|)
|η|2

≤ C(T ), (146)

since 0 < β < 2. This completes the proof. ut
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An estimate in Sobolev norm

We consider here a spatially homogeneous Gaussian noise Ḟ (t , x), with co-
variance given by f(x) = |x|−β , where 0 < β < 2. We seek an estimate of
the Sobolev norm of the stochastic integral vtG,Z . We recall that the Sobolev
norm is defined in (131).

Theorem 7.3. Suppose 0 < β < 2. Fix T > 0, q ∈ ]3,+∞[, and let O ⊂ R3

be a bounded domain. Fix γ ∈ ]0, 1[, and suppose that∫ t

0

dsE
(
‖Z(s)‖qWγ,q(Ot−s)

)
< +∞. (147)

Consider

ρ ∈
]
0 , γ ∧

(
2− β

2
− 3
q

)[
. (148)

Then there exists C < +∞—depending on ρ but not on Z—such that

E
(
‖vtG,Z‖

q
ρ,q,O

)
≤ C

∫ t

0

dsE
(
‖Z(s)‖qWρ,q(Ot−s)

)
. (149)

Remark 7.4. In the case of the heat equation, spatial regularity of the stochas-
tic integral process, that is, of x 7→ vtG,Z(x), occurs because of regularity of
the heat kernel G, even if Z is merely integrable. Here, the spatial regularity
of vtG,Z is due to the regularity of Z.

Proof (Theorem 7.3). The key quantity that we need to estimate is

E

(∫
O

dx

∫
O

dy
|vtG,Z(x)− vtG,Z(y)|q

|x− y|3+ρq

)
. (150)

Let ρ̄ = ρ+ 3
q , so that 3+ρ q = ρ̄ q. If we replace G by Gn, then the numerator

above is equal to∣∣∣ ∫ t

0

ds

∫
R3

(Gn(t− s , x− u)−Gn(t− s , y − u)) Z(s , u) M(ds , du)
∣∣∣q,

so by Burkholder’s inequality (32),

E
(∣∣vtGn,Z(x)− vtGn,Z(y)

∣∣q)
≤ C E

(∣∣∣∣∣
∫ t

0

ds

∫
R3
du

∫
R3
dv Z(s , u) f(u− v) Z(s , v)

× (Gn(t− s , x− u)−Gn(t− s , y − u))

× (Gn(t− s , x− v)−Gn(t− s , y − v))

∣∣∣∣∣
q/2)

.

(151)
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If we had G instead of Gn, and if G were ρ-Hölder continuous with exponent
ρ, for instance, then we would get a bound involving |x− y|ρq, even if Z were
merely integrable.

Here we use a different idea: we shall pass the increments on the Gn over
to the factors Z f Z by changing variables. For instance, if there were only
one factor involving increments of Gn, we could use the following calculation,
where Gn is generically denoted g and Z f Z is denoted ψ:∫

R3
du (g(x− u)− g(y − u))ψ(u)

=
∫
R3
du g(x− u)ψ(u)−

∫
R3
du g(y − u)ψ(u)

=
∫
R3

dũ g(ũ)ψ(x− ũ)−
∫
R3

dũ g(ũ)ψ(y − ũ)
)

=
∫
R3

dũ g(ũ) (ψ(x− ũ)− ψ(y − ũ)).

(152)

Using this idea, it turns out that the integral on the right-hand side of (151)
is equal to

4∑
i=1

J ti,n (x , y), (153)

where

J ti,n(x , y)

=
∫ t

0

ds

∫
R3
du

∫
R3
dv Gn(s , u) Gn(s , v) hi(t , s , x , y , u , v),

(154)

and

h1(t , s , x , y , u , v) = f(y − x+ v − u) (Z(t− s , x− u)− Z(t− s , y − u))
× (Z(t− s , x− v)− Z(t− s, y − v),

h2(t , s , x , y , u , v) = Df(v − u , x− y)Z(t− s , x− u)
× (Z(t− s , x− v)− Z(t− s , y − v)),

(155)
h3(t , s , x , y , u , v) = Df(v − u , y − x)Z(t− s , y − v)

× (Z(t− s , x− u)− Z(t− s , y − u)),

h4(t , s, x , y , u , v) = −D2f (v − u , x− y) Z(t− s , x− u) Z(t− s , x− u),

and we use the notation

Df(u , x) = f(u+ x)− f(u),

D2f(u , x) = f(u− x)− 2 f(u) + f(u+ x).
(156)
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We can now estimate separately each of the four terms

T in(t ,O) =
∫

O

dx

∫
O

dy
E(|J ti,n(x , y)|q/2)
|x− y|ρ̄ q

, i = 1, . . . , 4. (157)

The term T 1
n(t ,O). Set

µn(x , y) = sup
s∈[0,T ]

∫
R3
du

∫
R3
dv Gn(s , u) Gn(s , v) f(y − x+ v − u)

= sup
s∈[0,T ]

∫
R3

µ(dη) ei η·(x−y)|FGn(s)(η)|2,
(158)

so that
sup
n,x,y

µn(x , y) < +∞, (159)

since β < 2. Therefore, since Gn(s , u) ≥ 0, by Hölder’s inequality,

E
(
|J t1,n(x, y)|q/2

)
≤ (T µn(x , y))

q
2−1

× E
(∫ t

0

ds

∫
R3
du

∫
R3
dv Gn(s , u) Gn(s , v) f(y − x+ v − u)

× |Z(t− s , x− u)− Z(t− s , y − u)|q/2

× |Z(t− s , x− v)− Z(t− s , y − v)|q/2
)
. (160)

Apply the Cauchy–Schwarz inequality with respect to the measure

dP dx dy ds du dv Gn(s , u)Gn(s , v) f(y − x+ v − u) (161)

to see that
T 1
n(t ,O) ≤

(
T 1,1
n (t ,O) T 1,2

n (t ,O)
)1/2

, (162)

where

T 1,1
n (t ,O)

=
∫ t

0

ds

∫
O

dx

∫
O

dy

∫
R3
du

∫
R3
dv Gn(s , u) Gn(s , v) f(y − x+ v − u)

× E (|Z(t− s , x− u)− Z(t− s , y − u)|q)
|x− y|ρ̄q

, (163)

and there is an analogous expression for T 1,2
n (t ,O). We note that for x ∈ O,

when Gn(s , u) > 0 (resp. for y ∈ O, when Gn(s , v) > 0), x − u ∈ Os(1+1/n)

(resp. y − u ∈ Os(1+1/n)), so
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T 1,1
n (t ,O) ≤

∫ t

0

dsE
(
‖Z(t− s)‖q

ρ,q,Os(1+1/n)

)
sup
n,x,y

µn(x , y). (164)

The same bound arises for the term T 1,2
n (t ,O), so this gives the desired esti-

mate for this term.
We shall not discuss the terms T 2

n(t ,O) and T 3
n(t ,O) here: the interested

reader may consult [5, Chapter 3], but we consider the term T 4
n(t ,O).

The term T 4
n(t ,O). In order to bound T 4

n(t ,O), we aim to bring the exponent
q/2 inside the ds du dv integral, in such a way that it only affects the Z factors
but not f .

Set

µn(x , y)

= sup
s∈[0,T ]

∫
R3
du

∫
R3
dv Gn(s , u) Gn(s , v)

|D2f(v − u , x− y)|
|x− y|2ρ̄

.
(165)

We will show below that

sup
n≥1, x,y∈O

µn(x , y) ≤ C < +∞, (166)

which will turn out to require a quite interesting calculation. Assuming this
for the moment, let p = q/2. Then, by Hölder’s inequality,

E
(
|J t4,n(x , y)|p

)
|x− y|2pρ̄

≤ sup
n,x,y

(µn(x , y))p−1
∫ t

0

ds

∫
R3
du

∫
R3
dv Gn(s , u) Gn(s , v)

× |D
2f(v − u , x− y)|
|x− y|2ρ̄

E (|Z(t− s , x− u)|p |Z(t− s , x− v)|p) .

(167)

This quantity must be integrated over O ×O. We apply the Cauchy–Schwarz
inequality to the measure ds du dv( · · · )dP, and this leads to

T 4
n(t ,O) ≤ sup

n,x,y
(µn(x , y))p

∫ t

0

dsE
(
‖Z(s)‖q

Lq(O(t−s)(1+1/n))

)
. (168)

This is the desired bound for this term.
It remains to check (166). The main difficulty is to bound the second-order

difference |D2f(v − u , x− y)|. We explain the main issues below.

Bounding symmetric differences

Let g : R→ R. Suppose that we seek a bound on
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D2g(x , h) = g(x− h)− 2g(x) + g(x+ h). (169)

Notice that if g is differentiable only once (g ∈ C1), then the best that we can
do is essentially to write

|D2g(x , h)| ≤ |g(x− h)− g(x)|+ |g(x+ h)− g(x)|
≤ c h.

(170)

On the other hand, if g is twice differentiable (g ∈ C2), then we can do better:

|D2g(x , h)| ≤ c h2. (171)

In the case of a Riesz kernel f(x) = |x|−β , x ∈ R3, we can write

|D2f(u , x)| =
∣∣ |u− x|−β − 2|u|−β + |u+ x|−β

∣∣
≤ C |f ′′(u)| |x|2

= C |u|−β−2 |x|2 .
(172)

Taking into account the definition of µn(x , y) in (165), this inequality leads
to the bound

µn(x , y)

≤ sup
s∈[0,T ]

(∫
R3
du

∫
R3
dv Gn(s , u) Gn(s , v) |u− v|−(β+2)

)
|x− y|2

|x− y|2ρ̄
.

(173)

However, the double integral converges to +∞ as n→∞, since β + 2 > 2.
Since differentiating once does not necessarily give the best bound possible

and differentiating twice gives a better exponent but with an infinite constant,
it is natural to want to differentiate a fractional number of times, namely just
under 2 − β times. If we “differentiate α times” and all goes well, then this
should give a bound of the form µn(x , y) ≤ C|x− y|α, for α ∈ ]0 , 2− β[. We
shall make this precise below.

Riesz potentials, their fractional integrals and Laplacians

Let α def= 2ρ̄. We recall that

ρ <
2− β

2
− 3
q

and ρ̄ = ρ+
3
q
, so α < 2− β. (174)

The Riesz potential of a function ϕ : Rd → R is defined by

(Ia ϕ)(x) =
1

γ(a)

∫
Rd

ϕ(y)
|x− y|d−a

dy, a ∈ ]0 , d[, (175)

where γ(a) = πd/22aΓ(a/2)/Γ( 1
2 (d−a)). Riesz potentials have many interest-

ing properties (see [17]), of which we mention the following:



The Stochastic Wave Equation 73

(1) Ia+b(ϕ) = Ia(Ib ϕ) if a+ b ∈ ]0 , d[. Further, Ia can be seen as a “frac-
tional integral of order a,” in the sense that

F (Ia ϕ)(ξ) = Fϕ(ξ) F

(
1

| · |d−a

)
(ξ) =

Fϕ(ξ)
|ξ|a

. (176)

(2) Our covariance function kβ(x) = |x|−β is a Riesz kernel. These kernels
have the following property:

|x|−d+a+b =
∫
Rd

dz kd−b(x− z) |z|−d+a (177)

= Ib
(
| · |−d+a

)
. (178)

This equality can be viewed as saying that |z|−d+a is “bth derivative (or Lapla-
cian)” of |z|−d+a+b, in the sense that

(−∆)b/2
(
|z|−d+a+b

)
= |z|−d+a . (179)

Indeed, taking Fourier transforms, this equality becomes simply

|ξ|b |ξ|−a−b = |ξ|−a . (180)

Recall the notation

Df(u , y) = f(u+ y)− f(u). (181)

From (177), one can easily deduce (see [5, Lemma 2.6]) that

Dkd−a−b(u , cx) = |c|b
∫
Rd

dw kd−a(u− cw) Dkd−b(w , x), (182)

and

|D2kd−a−b(u , x)| ≤ |x|b
∫
Rd

dw kd−a(u− |x|w) D2kd−b

(
w ,

x

‖x‖

)
. (183)

Set b = α = 2ρ̄ and a = 3−α−β, where α+β ∈ ]0, 2[ . Looking back to (165),
these two relations lead to the following estimate:

µn(x , y)

≤ sup
s∈ [0,T ]

1
|x− y|α

∫
R3
du

∫
R3
dv Gn(s , u) Gn(s, v) |x− y|α

×
∫
R3
dw kα+β(v − u− |y − x|w)×

∣∣∣∣D2k3−α

(
w ,

x

|x|

)∣∣∣∣
≤ sup
s∈ [0,T ]

(
sup
x,y,w

∫
R3
du

∫
R3
dv Gn(s , u) Gn(s , v) kα+β(v − u− |y − x|w)

)
× sup

x

∫
dw

∣∣∣∣D2k3−α

(
w ,

x

‖x‖

)∣∣∣∣ . (184)



74 R. C. Dalang

The double integral above is finite since α + β < 2. Indeed, taking Fourier
transforms, the shift −|y − x|w introduces a factor eiη·|y−x|w, which is of no
consequence. The second integral is finite (and does not depend on x). For
this calculation, see [5, Lemma 2.6]. This proves Theorem 7.3. ut

8 Hölder-continuity in the 3-d wave equation

We consider the stochastic wave equation (113) for d = 3, driven by spatially
homogeneous Gaussian noise with covariance f(x) = |x|−β , where 0 < β < 2.

The main idea for checking Hölder continuity of the solution is to go back
to the Picard iteration scheme that was used to construct the solution, start-
ing with a smooth function u0(t , x) (whose smoothness depends only on the
regularity of the initial conditions), and then check that regularity is preserved
at each iteration step and passes to the limit. The details are carried out in
[5, Chapter 4]. The main result is the following.

Theorem 8.1. Assume the following three properties:

(a) the initial value v0 is such that v0 ∈ C2(R3) and ∆v0 is Hölder continuous
with exponent γ1;

(b) the initial velocity ṽ0 is Hölder continuous with exponent γ2;
(c) the nonlinearities σ, b : R→ R are Lipschitz continuous.

Then, for any q ∈ [2 ,∞[ and

α ∈
]
0 , γ1 ∧ γ2 ∧

2− β
2

[
, (185)

there is C > 0 such that for all (t , x) , (s , y) ∈ [0 , T ]×D,

E (|u(t , x)− u(s , y)|q) ≤ C (|t− s|+ |x− y|)αq . (186)

In particular, (t , x) 7→ u(t , x) has a Hölder continuous version with exponent
α.

We observe that the presence of γ1∧γ2 in (185) can be interpreted by saying
that the (ir)regularity of the initial conditions limits the possible regularity
of the solution: there is no smoothing effect in the wave equation, contrary to
the heat equation.

We note that this result is sharp. Indeed, if we consider the linear wave
equation, in which we take σ ≡ 1 and b ≡ 0 in (113), with vanishing initial
condition v0 ≡ ṽ0 ≡ 0, then it is possible to show (see [5, Chapter 5] that

E
(
|u(t , x)− u(t , y)|2

)
≥ c1 |x− y|2−β (187)

and
E
(
|u(t , x)− u(s , x)|2

)
≥ c2 |t− s|2−β . (188)

This implies in particular that t 7→ u(t , x) and x 7→ u(t , x) are not γ-Hölder
continuous, for γ > 2−β

2 (see [5, Chapter 5]).
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Application of Malliavin Calculus to Stochastic
Partial Differential Equations

David Nualart?

University of Kansas
Department of Mathematics
Lawrence, Kansas, 66045, USA
Email: nualart@math.ku.edu
URL: http://www.math.ku.edu/~nualart/

1 Introduction

The aim of these notes is to provide an introduction to the Malliavin calculus
and its application to the regularity of the solutions of a class of stochastic
partial differential equations. The Malliavin calculus is a differential calculus
on a Gaussian space which has been developed from the probabilistic proof by
Malliavin of Hörmander’s hypoellipticity theorem (see [8]). In the next section
we present an introduction to the Malliavin calculus, and we derive the main
properties of the derivative and divergence operators. Section 3 is devoted
to establish the main criteria for the existence and regularity of density for a
random variable in a Gaussian space.

The last two sections are devoted to discuss the applications of the Malli-
avin calculus to stochastic partial differential equations. First we consider a
one-dimensional heat equation driven by a space-time white noise on the time
interval [0 , 1] with Dirichlet boundary conditions, and we show that for any
(t , x) ∈ (0 ,∞)×(0 , 1), the solution u(t , x) has an infinitely differentiable den-
sity if the coefficients are smooth and the diffusion coefficient is bounded away
from zero. The last section deals with a class of stochastic partial differential
equations perturbed by a Gaussian noise on [0 ,∞) ×Rd with homogeneous
spacial covariance, introduced by Dalang in [6]. We survey the results ob-
tained in some recent papers [13; 16; 17] on the regularity of the density for
the solution to this class of equations.

? Research supported in part by a grant from the National Science Foundation
number DMS-0604207.
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2 Malliavin calculus

The Malliavin calculus is an infinite dimensional calculus on a Gaussian space,
which is mainly applied to establish the regularity of the law of nonlinear
functionals of the underlying Gaussian process.

Suppose that H is a real separable Hilbert space with scalar product
denoted by 〈· , ·〉H . Consider a Gaussian family of random variables W =
{W (h), h ∈ H} defined in a complete probability space (Ω ,F ,P), with zero
mean and covariance

E(W (h)W (g)) = 〈h , g〉H . (1)

The mapping h → W (h) provides a linear isometry of H onto a closed sub-
space of H1 of L2(Ω).

Example 2.1. (Brownian motion) If B = {Bt, t ≥ 0} is a Brownian motion,
we take H = L2([0 ,∞)) and

W (h) =
∫ ∞

0

h(t)dBt. (2)

Example 2.2. (White noise) Suppose that H = L2(T,B, µ), where µ is a σ-
finite measure without atoms. In this case, for any set A ∈ B with µ(A) <∞
we make use of the notation W (A) = W (1A). Then, A 7→ W (A) is a Gaus-
sian measure with independent increments (Gaussian white noise). That is,
if A1, . . . , An are disjoint sets with finite measure, the random variables
W (A1), . . . ,W (An) are independent, and for any A ∈ B with µ(A) < ∞,
W (A) has the distribution N(0 , µ(A)). Then, any square integrable ran-
dom variable F ∈ L2(Ω ,F ,P) (assuming that the σ-field F is generated
by {W (h)}) admits the following Wiener chaos expansion

F = E(F ) +
∞∑
n=1

In(fn). (3)

In this formula fn is a symmetric function of L2(Tn) and In denotes the
multiple stochastic integral introduced by Itô in [7]. In particular I1(f1) =
W (f1). Furthermore (see Exercise 2.18),

E(F 2) = E(F )2 +
∞∑
n=1

n!‖fn‖2L2(Tn). (4)
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2.1 Derivative operator

Let S denote the class of smooth and cylindrical random variables of the
form

F = f(W (h1), . . . ,W (hn)), (5)

where f belongs to C∞p (Rn) (f and all its partial derivatives have polynomial
growth order), h1, . . . , hn are in H, and n ≥ 1.

The derivative of F is the H-valued random variable given by

DF =
n∑
i=1

∂f

∂xi
(W (h1) , . . . ,W (hn))hi. (6)

For example, D(W (h)) = h, and D(W (h)2) = 2W (h)h.
The following result is an integration-by-parts formula.

Proposition 2.3. Suppose that F is a smooth and cylindrical random variable
and h ∈ H. Then

E(〈DF, h〉H) = E(FW (h)). (7)

Proof. We can restrict the proof to the case where there exist orthonormal
elements of H, e1, . . . , en, such that h = e1 and

F = f(W (e1) , . . . ,W (en)), (8)

where f ∈ C∞p (Rn). Let φ(x) denote the density of the standard normal
distribution on Rn, that is,

φ(x) = (2π)−n/2 exp

(
−1

2

n∑
i=1

x2
i

)
. (9)

Then we have

E(〈DF, h〉H) = E
(
∂f

∂x1
(W (e1))

)
=
∫
Rn

∂f

∂x1
(x)φ(x)dx

=
∫
Rn

f(x)φ(x)x1dx

= E(FW (e1)),

(10)

which completes the proof. ut

Applying the previous result to a product FG, we obtain the following
consequence.
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Proposition 2.4. Suppose that F and G are smooth and cylindrical random
variables, and h ∈ H. Then we have

E(G〈DF, h〉H) = E(−F 〈DG,h〉H + FGW (h)). (11)

Proof. Use the formula D(FG) = FDG+GDF . ut

The integration-by-parts formula (11) is a useful tool to show the closabil-
ity of the derivative operator. In this sense, we have the following result.

Proposition 2.5. The operator D is closable from Lp(Ω) to Lp(Ω;H) for any
p ≥ 1.

Proof. Let {FN , N ≥ 1} be a sequence of random variables in S such that
FN converges to 0 in Lp(Ω), and DFN converges to η in Lp(Ω;H), as N tends
to infinity. Then, we claim that η = 0. Indeed, for any h ∈ H and for any
random variable F = f(W (h1), , . . . . . . ,W (hn)) ∈ S such that f and its
partial derivatives are bounded, and FW (h) is bounded, we have

E(〈η , h〉HF ) = lim
N→∞

E(〈DFN , h〉HF )

= lim
N→∞

E(−FN 〈DF, h〉H + FNFW (h))

= 0.

(12)

This implies that η = 0. ut

For any p ≥ 1 we denote by D1,p the closure of S with respect to the
seminorm

‖F‖1,p = [E(|F |p) + E (‖DF‖pH)]1/p . (13)

For p = 2, the space D1,2 is a Hilbert space with the scalar product

〈F ,G〉1,2 = E(FG) + E(〈DF ,DG〉H). (14)

We can define the iteration of the operator D in such a way that for a random
variable F ∈ S , the iterated derivative DkF is a random variable with values
in H⊗k. For every p ≥ 1 and any natural number k ≥ 1 we introduce the
seminorm on S defined by

‖F‖k,p =

E(|F |p) +
k∑
j=1

E
(
‖DjF‖pH⊗j

)1/p

. (15)

We denote by Dk,p the closure of S with respect to the seminorm ‖ · ‖k,p.
For any k ≥ 1 and p > q we have Dk,p ⊂ Dk,q. We set D∞ = ∩k,pDk,p.
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Remark 2.6. The above definitions can be exended to Hilbert-space-valued
random variables. That is, if V is a separable Hilbert space, then Dk,p(V )
is the completion of the set SV of V -valued smooth and cylindrical random
variables of the form F =

∑m
j=1 Fjvj , Fj ∈ S , vj ∈ V , with respect to the

seminorm

‖F‖k,p,V =

E (‖F‖pV ) +
k∑
j=1

E
(
‖DjF‖pH⊗j⊗V

)1/p

. (16)

The following result is the chain rule, and its proof is contained in Exercise
2.20.

Proposition 2.7. Let ϕ : Rm → R be a continuously differentiable function
with bounded partial derivatives, and fix p ≥ 1. Suppose that F = (F 1, . . . , Fm)
is a random vector whose components belong to the space D1,p. Then ϕ(F ) ∈
D1,p, and

D(ϕ(F )) =
m∑
i=1

∂ϕ

∂xi
(F )DF i. (17)

The following Hölder inequality implies that D∞ is closed by multiplica-
tion. We refer to Watanabe [19] and Exercise 2.21 for its proof.

Proposition 2.8. Let F ∈ Dk,p, G ∈ Dk,q for k ≥ 1, 1 < p, q <∞ and let r
be such that p−1 + q−1 = r−1. Then, FG ∈ Dk,r and

‖FG‖k,r ≤ cp,q,k ‖F ‖k,p ‖G‖k,q . (18)

Consider now the white noise case, that is, H = L2(T,B, µ). Then, the
derivative DF is a random element in L2(Ω;H) ∼ L2(Ω× T,F ⊗B,P× µ),
that is, it is a stochastic process parameterized by T , that we denote by
{DtF, t ∈ T}. Suppose that F is a square integrable random variable having
an orthogonal Wiener chaos expansion of the form

F = E(F ) +
∞∑
n=1

In(fn), (19)

where the kernels fn are symmetric functions of L2(Tn). The derivative DtF
can be easily computed using this expression.

Proposition 2.9. Let F ∈ L2(Ω) be a square integrable random variable with
a development of the form (19). Then F belongs to D1,2 if and only if

∞∑
n=1

nn!‖fn‖2L2(Tn) <∞ (20)
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and in this case we have

DtF =
∞∑
n=1

nIn−1(fn(·, t)). (21)

Proof. Suppose first that F = In(fn), where fn is a symmetric and elementary
function of the form

f(t1, . . . , tn) =
m∑

i1,...,in=1

ai1···in1Ai1×···×Ain (t1, . . . , tn), (22)

where A1, A2, . . . , Am are pair-wise disjoint sets with finite measure, and the
coefficients ai1···in are zero if any two of the indices i1, . . . , in are equal. Then

DtF =
n∑
j=1

m∑
i1,...,in=1

ai1···inW (Ai1) · · ·1Aij (t) · · ·W (Ain)

= nIn−1(fn(·, t)).

(23)

Then the result follows easily. ut

The preceding proposition leads to an heuristic interpretation of the deriva-
tive operator on multiple stochastic integrals. Suppose that F is a multiple
stochastic integral of the form In(fn), which can be denoted by

In(fn) =
∫
T

· · ·
∫
T

fn(t1, . . . , tn)W (dt1) · · ·W (dtn). (24)

Then, F belongs to the domain of the derivative operator and DtF is obtained
simply by removing one of the stochastic integrals, letting the variable t be
free, and multiplying by the factor n.

We will make use of the following result.

Lemma 2.10. Let {Fn, n ≥ 1} be a sequence of random variables converging
to F in Lp(Ω) for some p > 1. Suppose that supn ‖Fn‖k,p < ∞ for some
k ≥ 1. Then, F belongs to Dk,p.

Proof. We do the proof only in the case p = 2, k = 1 and assuming that
we are in the white noise context. There exists a subsequence {Fn(k), k ≥ 1}
such that the sequence of derivatives DFn(k) converges in the weak topology of
L2(Ω×T ) to some element α ∈ L2(Ω×T ). Then, for any h ∈ H the projections
of 〈h,DFn(k)〉H on any Wiener chaos converge in the weak topology of L2(Ω),
as k tends to infinity, to those of 〈h, α〉H . Consequently, Proposition 2.9 implies
F ∈ D1,2 and α = DF . Moreover, for any weakly convergent subsequence the
limit must be equal to α by the preceding argument, and this implies the weak
convergence of the whole sequence. ut
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Proposition 2.11. Let F be a random variable of the space D1,2 such that
DF = 0. Then F = E(F ).

Proof. In the white noise case, this proposition is obvious from the Wiener
chaos expansion of the derivative provided in Proposition 2.9. In the general
case the result is also true, even for random variables in D1,1 (see [12]). ut

Proposition 2.12. Let A ∈ F . Then the indicator function of A belongs to
D1,2 if and only if P(A) is equal to zero or one.

Proof. By the chain rule (Proposition 2.7) applied to a function ϕ ∈ C∞0 (R),
which is equal to x2 on [0 , 1], we have

D1A = D(1A)2 = 21AD1A (25)

and, therefore, D1A = 0 because from the above equality we get that this
derivative is zero on Ac and equal to twice its value on A. So, by Proposition
2.11 we obtain 1A = P(A). ut

2.2 Divergence operator

We denote by δ the adjoint of the operator D (divergence operator). That is,
δ is an unbounded operator on L2(Ω;H) with values in L2(Ω) such that:

(i) The domain of δ, denoted by Domδ, is the set of H-valued square inte-
grable random variables u ∈ L2(Ω;H) such that

|E(〈DF, u〉H)| ≤ c‖F‖2, (26)

for all F ∈ D1,2, where c is some constant depending on u.
(ii) If u belongs to Domδ, then δ(u) is the element of L2(Ω) characterized by

the duality relationship

E(Fδ(u)) = E(〈DF, u〉H) (27)

for any F ∈ D1,2.

Properties of the divergence

1. E(δ(u)) = 0 (take F = 1 in the duality formula (27)).
2. Suppose that u ∈ SH is an H-valued cylindrical and smooth random

variable of the form u =
∑n
j=1 Fjhj , where the Fj ∈ S , and hj ∈ H.

Then, Proposition 2.4 implies that u belongs to the domain of δ and

δ(u) =
n∑
j=1

FjW (hj)−
n∑
j=1

〈DFj , hj〉H . (28)
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We will make use of the notation DhF = 〈DF, h〉H , for any h ∈ H and
F ∈ D1,2.

Three basic formulas

Suppose that u, v ∈ SH , F ∈ S and h ∈ H. Then, if {ei} is a complete
orthonormal system in H:

E(δ(u)δ(v)) = E(〈u , v〉H) + E

 ∞∑
i,j=1

Dei〈u , ej〉HDej 〈v , ei〉H

 , (29)

Dh(δ(u)) = δ(Dhu) + 〈h, u〉H , (30)
δ(Fu) = Fδ(u)− 〈DF, u〉H . (31)

Proof (of (30)). Assume u =
∑n
j=1 Fjhj . Then

Dh(δ(u)) = Dh

 n∑
j=1

FjW (hj)−
n∑
j=1

〈DFj , hj〉H


=

n∑
j=1

Fj 〈h, hj〉H +
n∑
j=1

(
DhFjW (hj)− 〈Dh (DFj) , hj〉H

)
= 〈u, h〉H + δ(Dhu).

(32)

This completes the proof. ut

Proof (of (29)). Using the duality formula (27) and (30) yields

E (δ(u)δ(v))) = E (〈v ,D(δ(u))〉H)

= E

( ∞∑
i=1

〈v , ei〉H Dei(δ(u))

)

= E

( ∞∑
i=1

〈v , ei〉H (〈u , ei〉H + δ(Deiu))

)

= E (〈u , v〉H) + E

 ∞∑
i,j=1

Dei 〈u , ej〉H Dej 〈v , ei〉H

 .

(33)

Hence follows (29). ut

Proof (of (31)). For any smooth random variable G ∈ S we have

E (〈DG,Fu〉H) = E (〈u ,D(FG)−GDF 〉H)
= E ((δ(u)F − 〈u ,DF 〉H)G) .

(34)

This verifies (31). ut
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Remark 2.13. Property (29) implies the estimate

E
(
δ(u)2

)
≤ E

(
‖u‖2H

)
+ E

(
‖Du‖2H⊗H

)
= ‖u‖21,2,H . (35)

As a consequence, D1,2(H) ⊂ Dom δ.

Remark 2.14. Properties (29), (30) and (31) hold under more general condi-
tions:

1. u ∈ D1,2(H) for (29).
2. u ∈ D1,2(H) and Dhu belongs to Dom δ for (30).
3. F ∈ D1,2, u ∈ Dom δ, Fu ∈ L2(Ω;H), and Fδ(u)−〈DF, u〉H ∈ L2(Ω) for

(31).

Consider the case of a Gaussian white noise H = L2(T,B, µ). The next
proposition tells us that the second summand in the right-hand side of formula
(31) cancels when F and u are independent.

Proposition 2.15. Fix a set A ∈ B with finite measure. Let FAc be the
σ-field generated by the random variables {W (B), B ⊂ Ac}. Suppose that
F ∈ L2(Ω ,FAc , P ). Then F1A belongs to the domain of the divergence and

δ(F1A) = FW (A). (36)

Proof. If F is a cylindrical and smooth random variable, then

δ(F1A) = FW (A)− 〈DF,1A〉H

= FW (A)−
∫
A

DtFµ(dt)

= FW (A),

(37)

because DtF = 0 if t ∈ A. The general case follows easily. ut
Consider the particular case T = [0 ,∞). Then Bt = W (1[0,t]) is a

Brownian motion. Let Ft be the σ-field generated by the random variables
{Bs, 0 ≤ s ≤ t}. We say that a stochastic process {ut, t ≥ 0} is adapted if
for all t ≥ 0 the random variable ut is Ft measurable. Then, the class L2

a of
adapted stochastic processes such that E

(∫∞
0
u2
t dt
)
< ∞ is included in the

domain of the divergence and δ(u) coincides with the Itô stochastic integral:

δ(u) =
∫ ∞

0

ut dBt. (38)

This is a consequence of Proposition 2.15 and the fact that the operator δ is
closed.

The following theorem is based on Meyer inequalities and it is a central
result in Malliavin Calculus. It tells us that the operator δ can be extended
continuously from the space Dk,p(H) to the space Dk−1,p for all p > 1 and
k ≥ 1. We refer to Watanabe [20] and Nualart [12, Proposition 1.5.7] for its
proof.
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Theorem 2.16. The operator δ is continuous from Dk,p(H) into Dk−1,p for
all p > 1 and k ≥ 1. That is,

‖δ(u)‖k−1,p ≤ Ck,p‖u‖k,p. (39)

In the particular case k = 1, the p norm of the divergence δ(u) can be
dominated by ‖u‖1,p. Actually, this domination can be made more precise as
it is shown in the next proposition (see [12] for the proof).

Proposition 2.17. Let u be an element of D1,p(H), p > 1. Then we have

‖δ(u)‖p ≤ cp
(
‖E(u)‖H + ‖Du‖Lp(Ω;H⊗H)

)
. (40)

Exercise 2.18. Show Equation (4). Hint : Use the orthogonality of multiple
stochastic integrals of different order and the variance formula (see Itô [7]):
E(In(fn)In(gn)) = n!〈fn, gn〉L2(Tn), for all n ≥ 0.

Exercise 2.19. Show that if H = Rn, then the spaces Dk,p can be identified
as weighted Sobolev spaces of functions on Rn such that that together with
their k first partial derivatives have moments of order p with respect to the
standard normal law.

Exercise 2.20. Prove Proposition 2.7. Hint : Approximate the components
of the random vector F by smooth and cylindrical random variables and the
function ϕ by ϕ ∗ ψn, where ψn is an approximation of the identity.

Exercise 2.21. Prove Proposition 2.8.

Exercise 2.22. Let F ∈ Dk,2 be given by the expansion F = E(F ) +∑∞
n=1 In(fn). Show that for all k ≥ 1,

Dk
t1,...,tk

F =
∞∑
n=k

n(n− 1) · · · (n− k + 1)In−k(fn(· , t1, . . . , tk)), (41)

and

E
(
‖DkF‖2L2(Tk)

)
=
∞∑
n=k

(n!)2

(n− k)!
‖fn‖2L2(Tn). (42)

Exercise 2.23 (Stroock’s formula, see Stroock [18]). Suppose that F =
E(F ) +

∑∞
n=1 In(fn) is a random variable belonging to the space D∞,2 =

∩kDk,2. Show that fn = E(DnF )/n! for every n ≥ 1.
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Exercise 2.24. Let F = exp(W (h) − 1
2

∫
T
h2
sµ(ds)), h ∈ L2(T ). Show that

the iterated derivatives of F are given by

Dn
t1,...,tnF = Fh(t1) · · ·h(tn). (43)

Using Exercise 2.23, show that the kernels of the expansion of F into the
Wiener chaos are fn(t1, . . . , tn) = 1

n!h(t1) · · ·h(tn).

Exercise 2.25. Let F ∈ D1,2 be a random variable such that E(|F |−2) <∞.
Then P{F > 0} is zero or one.

Exercise 2.26. Suppose that H = L2(T ). Let δk be the adjoint of the oper-
ator Dk. That is, a multiparameter process u ∈ L2(Ω × T k) belongs to the
domain of δk if and only if there exists a random variable δk(u) such that

E
(
Fδk(u)

)
= E

(
〈u ,DkF 〉L2(Tk)

)
(44)

for all F ∈ Dk,2. Show that a process u ∈ L2(Ω× T k) with an expansion

ut = E(ut) +
∞∑
n=1

In(fn(· , t)), t ∈ T k, (45)

belongs to the domain of δk if and only if the series

δk(u) =
∫
T

E(ut) dWt +
∞∑
n=1

In+k(fn) (46)

converges in L2(Ω). For more details, see Nualart and Zakai [14].

Exercise 2.27. Let {Wt, t ∈ [0 , 1]} be a one-dimensional Brownian motion.
Using Exercise 2.23 find the Wiener chaos expansion of the random variables

F1 =
∫ 1

0

(
t3W 3

t + 2tW 2
t

)
dWt, F2 =

∫ 1

0

teWtdWt. (47)

Answer: The kernels of the Wiener chaos expansion of F1 are

f1(t1) = 2t1

f2(t1, t2) =
3
2

max(t1, t2)3

f3(t1, t2, t3) = max(t1, t2, t3)3 +
2
3

max(t1, t2, t3)

f4(t1, t2, t3, t4) =
1
4

max(t1, t2, t3, t4)3,

and those of F2 are

fn(t1, . . . , tn) =
1
n!

max(t1, . . . , tn)e
1
2 max(t1,...,tn).
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3 Application of Malliavin calculus to regularity of
probability laws

The integration-by-parts formula leads to the following explicit expression for
the density of a one-dimensional random variable.

Proposition 3.1. Let F be a random variable in the space D1,2. Suppose that
DF/‖DF‖2H belongs to the domain of the operator δ in L2(Ω). Then the law
of F has a continuous and bounded density given by

p(x) = E
[
1{F>x}δ

(
DF

‖DF‖2H

)]
. (48)

Proof. Let ψ be a nonnegative smooth function with compact support, and
set ϕ(y) =

∫ y
−∞ ψ(z)dz. We know that ϕ(F ) belongs to D1,2, and making the

scalar product of its derivative with DF yields

〈D(ϕ(F )), DF 〉H = ψ(F )‖DF‖2H . (49)

Using the duality formula (27) we obtain

E[ψ(F )] = E
[〈
D(ϕ(F )) ,

DF

‖DF‖2H

〉
H

]
= E

[
ϕ(F )δ

(
DF

‖DF‖2H

)]
.

(50)

By an approximation argument, Equation (50) holds for ψ(y) = 1[a,b](y),
where a < b. As a consequence, we apply Fubini’s theorem to get

P(a ≤ F ≤ b) = E

[(∫ F

−∞
ψ(x)dx

)
δ

(
DF

‖DF‖2H

)]

=
∫ b

a

E
[
1{F>x}δ

(
DF

‖DF‖2H

)]
dx,

(51)

which implies the desired result. ut

Notice that Equation (48) still holds under the hypotheses F ∈ D1,p and
DF/‖DF‖2H ∈ D1,p′(H) for some p, p′ > 1.

From expression (48) we can deduce estimates for the density. Fix p and
q such that p−1 + q−1 = 1. By Hölder’s inequality we obtain

p(x) ≤ (P(F > x))1/q

∥∥∥∥δ( DF

‖DF‖2H

)∥∥∥∥
p

. (52)

In the same way, taking into account the relation E[δ(DF/‖DF‖2H)] = 0 we
can deduce the inequality
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p(x) ≤ (P(F < x))1/q

∥∥∥∥δ( DF

‖DF‖2H

)∥∥∥∥
p

. (53)

As a consequence, we obtain

p(x) ≤ (P(|F | > |x|))1/q

∥∥∥∥δ( DF

‖DF‖2H

)∥∥∥∥
p

, (54)

for all x ∈ R. Now using the Lp(Ω) estimate of the operator δ established in
Proposition 2.17 we obtain∥∥∥∥δ( DF

‖DF‖2H

)∥∥∥∥
p

≤ cp

(∥∥∥∥E
(

DF

‖DF‖2H

)∥∥∥∥
H

+
∥∥∥∥D( DF

‖DF‖2H

)∥∥∥∥
Lp(Ω;H⊗H)

)
.

(55)

We have

D

(
DF

‖DF‖2H

)
=

D2F

‖DF‖2H
− 2

〈
D2F,DF ⊗DF

〉
H⊗H

‖DF‖4H
, (56)

and, hence, ∥∥∥∥D( DF

‖DF‖2H

)∥∥∥∥
H⊗H

≤
3
∥∥D2F

∥∥
H⊗H

‖DF‖2H
. (57)

Finally, from the inequalities (54), (55) and (57) we deduce the following
estimate.

Proposition 3.2. Let q, α, β be three positive real numbers such that q−1 +
α−1 + β−1 = 1. Let F be a random variable in the space D2,α, such that
E(‖DF‖−2β

H ) <∞. Then the density p(x) of F can be estimated as follows

p(x) ≤ cq,α,β (P(|F | > |x|))1/q

×
(

E(‖DF‖−1
H ) +

∥∥D2F
∥∥
Lα(Ω;H⊗H)

∥∥∥‖DF‖−2
H

∥∥∥
β

)
. (58)

Suppose now that F = (F 1, . . . , Fm) is a random vector whose com-
ponents belong to the space D1,1. We associate to F the following random
symmetric nonnegative definite matrix:

γF = (〈DF i, DF j〉H)1≤i,j≤m. (59)

This matrix will be called the Malliavin matrix of the random vector F . The
basic condition for the absolute continuity of the law of F will be that the
matrix γF is invertible a.s. In this sense we have the following criterion which
was proved by Bouleau and Hirsch (see [2]) using techniques of geometric
measure theory.
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Theorem 3.3. Let F = (F 1, . . . , Fm) be a random vector verifying the fol-
lowing conditions:

(i) F i ∈ D1,2 for all i = 1, . . . ,m .
(ii)The matrix γF safistifes det γF > 0 almost surely.

Then the law of F is absolutely continuous with respect to the Lebesgue
measure on Rm.

Condition (i) in Theorem 3.3 implies that the measure (det(γF )·P)◦F−1 is
absolutely continuous with respect to the Lebesgue measure on Rm. In other
words, the random vector F has an absolutely continuous law conditioned by
the set {det(γF ) > 0}; that is,

P{F ∈ B ,det(γF ) > 0} = 0 (60)

for any Borel subset B of Rm of zero Lebesgue measure.
The regularity of the density requires under stronger conditions, and for

this we introduce the following definition.

Definition 3.4. We say that a random vector F = (F 1, . . . , Fm) is nonde-
generate if it satisfies the following conditions:

(i) F i ∈ D∞ for all i = 1, . . . ,m.
(ii)The matrix γF satisfies E[(det γF )−p] <∞ for all p ≥ 2.

Using the techniques of Malliavin calculus we will establish the following
general criterion for the smoothness of densities.

Theorem 3.5. Let F = (F 1, . . . , Fm) be a nondegenerate random vector in
the sense of Definition 3.4. Then the law of F possesses an infinitely differ-
entiable density.

In order to prove Theorem 3.5 we need some technical results. Set ∂i =
∂/∂xi, and for any multiindex α ∈ {1, . . . ,m}k, k ≥ 1, we denote by ∂α the
partial derivative ∂k/(∂xα1 · · · ∂xαk).

Let γ be an m × m random matrix that is invertible a.s., and whose
components belong to D1,p for all p ≥ 2. Denote by A(γ) the adjoint matrix
of γ. Applying the derivative operator to the expression A(γ)γ = det γI, where
I is the identity matrix, we obtain

D(det γ)I = D(A(γ))γ +A(γ)Dγ, (61)

which implies
D(A(γ)) = D(det γ)γ−1 −A(γ)Dγγ−1. (62)
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Lemma 3.6. Suppose that γ is an m × m random matrix that is invertible
a.s. and such that |det γ|−1 ∈ Lp(Ω) for all p ≥ 1. Suppose that the entries
γij of γ are in D∞. Then

(
γ−1

)ij belongs to D∞ for all i, j, and

D
(
γ−1

)ij
= −

m∑
k,l=1

(
γ−1

)ik (
γ−1

)lj
Dγkl. (63)

Proof. First notice that the event {det γ > 0} has probability zero or one (see
Exercise 2.25). We will assume that det γ > 0 a.s. For any ε > 0 define

γ−1
ε = (det γ + ε)−1A(γ). (64)

Note that (det γ + ε)−1 belongs to D∞ because it can be expressed as the
composition of det γ with a function in C∞p (R). Therefore, the entries of

γ−1
ε belong to D∞. Furthermore, for any i, j,

(
γ−1
ε

)ij converges in Lp(Ω) to(
γ−1

)ij as ε tends to zero. Then, in order to check that the entries of γ−1

belong to D∞, it suffices to show (taking into account Lemma 2.10) that the
iterated derivatives of

(
γ−1
ε

)ij are bounded in Lp(Ω), uniformly with respect
to ε, for any p ≥ 1. This boundedness in Lp(Ω) holds from Leibnitz rule
for the operator Dk, because (det γ)γ−1 belongs to D∞, and the fact that
(det γ + ε)−1 has bounded ‖ · ‖k,p norms for all k, p, due to our hypotheses.

Finally, from (64) we deduce (63) by first applying the derivative operator
D using (62), and then letting ε tend to zero. ut

Proposition 3.7. Let F = (F 1, . . . , Fm) be a nondegenerate random vector.
Let G ∈ D∞ and let ϕ be a function in the space C∞p (Rm). Then for any
multiindex α ∈ {1, . . . ,m}k, k ≥ 1, there exists an element Hα(F ,G) ∈ D∞

such that
E [∂αϕ(F )G] = E [ϕ(F )Hα(F ,G)] , (65)

where the elements Hα(F ,G) are recursively given by

H(i)(F ,G) =
m∑
j=1

δ
(
G
(
γ−1
F

)ij
DF j

)
, (66)

Hα(F ,G) = Hαk(F,H(α1,...,αk−1)(F ,G)). (67)

Proof. By the chain rule (Proposition 2.7) we have

〈D(ϕ(F )), DF j〉H =
m∑
i=1

∂iϕ(F )〈DF i, DF j〉H

=
m∑
i=1

∂iϕ(F )γijF ,

(68)



92 D. Nualart

and, consequently,

∂iϕ(F ) =
m∑
j=1

〈D(ϕ(F )), DF j〉H(γ−1
F )ji. (69)

Taking expectations and using the duality relationship (27) between the
derivative and the divergence operators we get

E [∂iϕ(F )G] = E
[
ϕ(F )H(i)(F ,G)

]
, (70)

where H(i) equals to the right-hand side of Equation (66). Notice that the
continuity of the operator δ (Theorem 2.16), and Lemma 3.6 imply that H(i)

belongs to D∞. Equation (67) follows by recurrence. ut

As a consequence, there exist constants β, γ > 1 and integers n, m such
that

‖Hα(F ,G)‖p ≤ cp,q
∥∥det γ−1

F

∥∥m
β
‖DF‖nk,γ ‖G‖k,q . (71)

Proof (Theorem 3.5). Equality (65) applied to the multiindex α = (1, 2, . . . ,m)
yields

E [G∂αϕ(F )] = E[ϕ(F )Hα(F ,G)]. (72)

Notice that

ϕ(F ) =
∫ F 1

−∞
· · ·
∫ Fm

−∞
∂αϕ(x) dx. (73)

Hence, by Fubini’s theorem we can write

E [G∂αϕ(F )] =
∫
Rm

∂αϕ(x)E
[
1{F>x}Hα(F ,G)

]
dx. (74)

We can take as ∂αϕ any function in C∞0 (Rm). Then Equation (74) implies
that the random vector F has a density given by

p(x) = E
[
1{F>x}Hα(F, 1)

]
. (75)

Moreover, for any multiindex β we have

E [∂β∂αϕ(F )] = E[ϕ(F )Hβ(F,Hα(F, 1)))]

=
∫
Rm

∂αϕ(x)E
[
1{F>x}Hβ(Hα)

]
dx.

(76)

Hence, for any ξ ∈ C∞0 (Rm)∫
Rm

∂βξ(x)p(x)dx =
∫
Rm

ξ(x)E
[
1{F>x}Hβ(F,Hα(F, 1))

]
dx. (77)

Therefore p(x) is infinitely differentiable, and for any multiindex β we have

∂βp(x) = (−1)|β|E
[
1{F>x}Hβ(F, (Hα(F, 1))

]
. (78)

This completes the proof. ut
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3.1 Properties of the support of the law

The Malliavin calculus is also useful to derive properties of the topological
support of the law of a random variable. We will illustrate this application in
this section. Given a random vector F : Ω→ Rm, the topological support of
the law of F is defined as the set of points x ∈ Rm such that P(|x−F | < ε) > 0
for all ε > 0. The support is a closed set because clearly its complement is
open. On the other hand, the support of the law of F coincides with the
intersection of all closed sets C in Rm such that P (F ∈ C) = 1.

The following result asserts the connectivity property of the support of a
smooth random vector.

Proposition 3.8. Let F = (F 1, . . . , Fm) be a random vector whose compo-
nents belong to D1,2. Then, the topological support of the law of F is a closed
connected subset of Rm.

Proof. If the support of F is not connected, it can be decomposed as the union
of two nonempty disjoint closed sets A and B. For each integer M ≥ 2 let
ψM : Rm → R be an infinitely differentiable function such that 0 ≤ ψM ≤ 1,
ψM (x) = 0 if |x| ≥M , ψM (x) = 1 if |x| ≤M −1, and supx,M |∇ψM (x)| <∞.
Set AM = A ∩ {|x| ≤ M} and BM = B ∩ {|x| ≤ M}. For M large enough
we have AM 6= Ø and BM 6= Ø, and there exists an infinitely differentiable
function fM such that 0 ≤ fM ≤ 1, fM = 1 in a neighborhood of AM , and
fM = 0 in a neighborhood of BM . The sequence (fMψM )(F ) converges a.s.
and in L2(Ω) to 1{F∈A} as M tends to infinity. On the other hand, we have

D [(fMψM )(F )] =
m∑
i=1

[
(ψM∂ifM )(F )DF i + (fM∂iψM )(F )DF i

]
=

m∑
i=1

(fM∂iψM )(F )DF i.

Hence,

sup
M
‖D [(fMψM )(F )]‖H ≤

m∑
i=1

sup
M
‖∂iψM‖∞

∥∥DF i∥∥
H
∈ L2(Ω). (79)

By Lemma 2.10 we get that 1{F∈A} belongs to D1,2, and by Proposition 2.12
this is contradictory because 0 < P(F ∈ A) < 1. ut

As a consequence, the support of the law of a random variable F ∈ D1,2

is a closed interval. On the other hand, a random variable F which takes only
finitely many different values has a disconnected support, and, therefore, it
cannot belong to D1,2.

The next result provides sufficient conditions for the density of F to be
nonzero in the interior of the support.
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Proposition 3.9. Let F ∈ D1,p, p > 2, and suppose that F possesses a
density p(x) which is locally Lipschitz in the interior of the support of the law
of F . Let a be a point in the interior of the support of the law of F . Then
p(a) > 0.

Proof. Suppose p(a) = 0. Set r = 2p/(p + 2) > 1. From Proposition 2.12 we
know that 1{F>a} 6∈ D1,r because 0 < P(F > a) < 1. Fix ε > 0 and set

ϕε(x) =
∫ x

−∞

1
2ε

1[a−ε,a+ε](y) dy. (80)

Then ϕε(F ) converges to 1{F>a} in Lr(Ω) as ε ↓ 0. Moreover, ϕε(F ) ∈ D1,r

and
D(ϕε(F )) =

1
2ε

1[a−ε,a+ε](F )DF. (81)

We have

E (‖D(ϕε(F ))‖rH)

≤ (E(‖DF‖pH)2/(p+2)

(
1

(2ε)2

∫ a+ε

a−ε
p(x)dx

)p/(p+2)

.
(82)

The local Lipschitz property of p implies that p(x) ≤ K|x−a|, and we obtain

E (‖D(ϕε(F ))‖rH) ≤ (E(‖DF‖pH)2/(p+2) 2−rKp/(p+2). (83)

By Lemma 2.10 this implies 1{F>a} ∈ D1,r, resulting in a contradiction. ut

The following example shows that, unlike the one-dimensional case, in
dimension m > 1 the density of a nondegenerate random vector may vanish
in the interior of the support.

Example 3.10. Let h1 and h2 be two orthonormal elements of H. Define X =
(X1, X2), X1 = arctanW (h1), and X2 = arctanW (h2). Then, Xi ∈ D∞ and

DXi = (1 +W (hi)2)−1hi, (84)

for i = 1, 2, and

det γX =
[
(1 +W (h1)2)(1 +W (h2)2)

]−2
. (85)

The support of the law of the random vector X is the rectangle
[
−π2 ,

π
2

]2,
and the density of X is strictly positive in the interior of the support. Now
consider the vector Y = (Y1 , Y2) given by

Y1 =
(
X1 +

3π
2

)
cos (2X2 + π) ,

Y2 =
(
X1 +

3π
2

)
sin (2X2 + π) .
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We have that Yi ∈ D∞ for i = 1, 2, and

det γY = 4
(
X1 +

3π
2

)2 [
(1 +W (h1)2)(1 +W (h2)2)

]−2
. (86)

This implies that Y is a nondegenerate random vector. Its support is the set
{(x , y) : π2 ≤ x2 + y2 ≤ 4π2}, and the density of Y vanishes on the points
(x , y) in the support such that −2π < y < −π and y = 0.

Exercise 3.11. Prove Proposition 3.2.

Exercise 3.12. Show that if F ∈ D2,4 satisfies E(‖DF‖−8) < ∞, then
DF/‖DF‖2 ∈ Dom δ and

δ

(
DF

‖DF‖2H

)
=

δ(DF )
‖DF‖2H

− 2
〈DF ⊗DF,D2F 〉H⊗H

‖DF‖4H
. (87)

Exercise 3.13. Let F be a random variable in D1,2 such that GkDF/‖DF‖2H
belongs to Dom δ for any k = 0, . . . , n, where G0 = 1 and

Gk = δ

(
Gk−1

DF

‖DF‖2H

)
(88)

if 1 ≤ k ≤ n+ 1. Show that F has a density of class Cn and

f (k)(x) = (−1)kE
[
1{F>x}Gk+1

]
, (89)

0 ≤ k ≤ n.

Exercise 3.14. Set Mt =
∫ t

0
u(s) dWs, where W = {W (t), t ∈ [0 , T ]} is a

Brownian motion and u = {u(t), t ∈ [0 , T ]} is an adapted process such that
|u(t)| ≥ ρ > 0 for some constant ρ, E

(∫ T
0
u(t)2 dt

)
<∞, u(t) ∈ D2,2 for each

t ∈ [0 , T ], and

λ := sup
s,t∈[0,T ]

E(|Dsut|p) + sup
r,s∈[0,T ]

E

(∫ T

0

∣∣D2
r,sut

∣∣p dt)p/2
 <∞, (90)

for some p > 3. Show that the density of Mt, denoted by pt(x) satisfies

pt(x) ≤ c√
t
P(|Mt| > |x|)

1
q , (91)

for all t > 0, where q > p/(p− 3) and the constant c depends on λ, ρ and p.
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Exercise 3.15. Let F ∈ D3,α, α > 4, be a random variable such that
E(‖DF‖−pH ) < ∞ for all p ≥ 2. Show that the density p(x) of F is con-
tinuously differentiable, and compute p′(x).

Exercise 3.16. Show that the random variable F =
∫ 1

0
t2 arctan(Wt) dt,

where W is a Brownian motion, has a C∞ density.

Exercise 3.17. Let W = {W (s , t), (s , t) ∈ [0 ,∞)2} be a two-parameter
Wiener process. That is, W is a zero mean Gaussian field with covariance

E (W (s , t)W (s′, t′)) = (s ∧ s′)(t ∧ t′). (92)

Show that F = sup(s,t)∈[0,1]2 W (s , t) has an absolutely continuous distribu-
tion. Show also that the density of F is strictly positive in (0,+∞).

4 Stochastic heat equation

Suppose that W = {W (A), A ∈ B(R2), |A| < ∞} is a Gaussian family of
random variables with zero mean and covariance

E(W (A)W (B)) = |A ∩B|. (93)

That is, W is a Gaussian white noise on the plane. Then, if we set W (t , x) =
W ([0 , t] × [0 , x]), for t, x ≥ 0, W = {W (t , x), (t , x) ∈ [0 ,∞)2} is a two-
parameter Wiener process (see Exercise 3.17).

For each t ≥ 0 we will denote by Ft the σ-field generated by the random
variables {W (s , x), s ∈ [0 , t], x ≥ 0} and the P-null sets. We say that a random
field {u(t , x), t ≥ 0, x ≥ 0)} is adapted if for all (t , x) the random variable
u(t , x) is Ft-measurable.

Consider the following stochastic partial differential equation on [0 ,∞)×
[0 , 1]:

∂u

∂t
=
∂2u

∂x2
+ b(u(t , x)) + σ(u(t , x))

∂2W

∂t∂x
(94)

with initial condition u(0 , x) = u0(x), and Dirichlet boundary conditions
u(t , 0) = u(t , 1) = 0. We will assume that u0 ∈ C([0 , 1]) satisfies u0(0) =
u0(1) = 0.

Equation (94) is formal because the derivative ∂2W/(∂t∂x) does not exist,
and we will replace it by the following integral equation:

u(t , x) =
∫ 1

0

Gt(x , y)u0(y) dy +
∫ t

0

∫ 1

0

Gt−s(x , y)b(u(s , y)) dy ds

+
∫ t

0

∫ 1

0

Gt−s(x , y)σ(u(s , y))W (dy , ds),
(95)
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where Gt(x , y) is the fundamental solution of the heat equation on [0 , 1] with
Dirichlet boundary conditions:

∂G

∂t
=
∂2G

∂y2
, G0(x , y) = δx(y). (96)

The kernel Gt(x , y) has the following explicit formula:

Gt(x , y) =
1√
4πt

∞∑
n=−∞

{
exp
(
− (y − x− 2n)2

4t

)
− exp

(
− (y + x− 2n)2

4t

)}
.

(97)

On the other hand, Gt(x , y) coincides with the probability density at point y
of a Brownian motion with variance 2t starting at x and killed if it leaves the
interval [0 , 1]:

Gt(x , y) =
d

dy
Ex{Bt ∈ dy,Bs ∈ (0 , 1) ∀s ∈ [0 , t]}. (98)

This implies that

Gt(x , y) ≤ 1√
4πt

exp
(
−|x− y|

2

4t

)
. (99)

Therefore, for any β > 0 we have∫ 1

0

Gt(x , y)β dy ≤ (4πt)−β/2
∫
R

e−β|x|
2/(4t) dx = Cβt

(1−β)/2. (100)

The solution in the the particular case u0 = 0, b = 0, σ = 1 is

u(t , x) =
∫ t

0

∫ 1

0

Gt−s(x , y)W (ds , dy). (101)

This stochastic integral exists and it is a Gaussian centered random variable
with variance ∫ t

0

∫ 1

0

Gt−s(x , y)2 dy ds =
∫ t

0

G2s(x , x) ds <∞, (102)

because (99) implies that G2s(x , x) ≤ Cs−1/2. Notice that in dimension d ≥ 2,
G2s(x , x) ∼ Cs−1 and the variance is infinite. For this reason, the study of
space-time white noise driven parabolic equations is restricted to the one-
dimensional case.

The following well-known result asserts that Equation (95) has a unique
solution if the coefficients are Lipschitz continuous (see Walsh [19, Theorem
3.2], and Theorem 6.4 in the first chapter).
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Theorem 4.1. Suppose that the coefficients b and σ are globally Lipschitz
functions. Let u0 ∈ C([0 , 1]) be such that u0(0) = u0(1) = 0. Then there is a
unique adapted process u = {u(t , x), t ≥ 0, x ∈ [0 , 1]} such that for all T > 0

E

(∫ T

0

∫ 1

0

u(t , x)2 dx dt

)
<∞, (103)

and satisfies (95). Moreover, the solution u satisfies

sup
(t,x)∈[0,T ]×[0,1]

E (|u(t , x)|p) <∞. (104)

Furthermore, one can obtain the following moment estimates for the incre-
ments of the solution (see Walsh [19, Corollary 3.4], Nualart [12, Proposition
2.4.3], and Theorem 6.7 in the first chapter):

E (|u(t , x)− u(s , y)|p) ≤ CT,p
(
|t− s|(p−6)/4 + |x− y|(p−6)/2

)
, (105)

for all s, t ∈ [0 , T ], x, y ∈ [0 , 1], p ≥ 2, assuming the that initial condition is
Hölder continuous of order 1

2 . As a consequence, for any ε > 0 the trajectories
of the process u(t , x) are Hölder continuous of order 1

4 − ε in the variable t
and Hölder continuous of order 1

2 − ε in the variable x.

4.1 Regularity of the probability law of the solution

The aim of this section is to show that under a suitable nondegeneracy
condition on the coefficient σ, the solution u(t , x) of Equation (95) has a
regular density. First we will discuss the differentiability in the sense of
Malliavin calculus of the random variable u(t , x), and we will show that it
belongs to the space D1,p for all p. Here the underlying Hilbert space is
H = L2([0 ,∞)× [0 , 1]), and the derivative of a random variable F ∈ D1,p is
a two-parameter stochastic process {Ds,yF, (s , y) ∈ [0 ,∞)× [0 , 1]}.

Remark 4.2. Consider an adapted stochastic process v = {v(t , x), (t , x) ∈
[0 ,∞) × [0 , 1]} satisfying E

( ∫∞
0

∫ 1

0
v(t , x)2 dx dt

)
< ∞. Then, v belongs to

the domain of the divergence operator and δ(v) equals to the Itô stochastic
integral

∫∞
0

∫ 1

0
v(t , x)W (dt , dx).

Proposition 4.3. Let b and σ be C1 functions with bounded derivatives.
Then, for all p ≥ 2, u(t , x) ∈ D1,p, and the derivative Ds,yu(t , x) satisfies

Ds,yu(t , x) = Gt−s(x , y)σ(u(s , y))

+
∫ t

s

∫ 1

0

Gt−r(x , z)b′(u(r , z))Ds,yu(r , z) dz dr (106)

+
∫ t

s

∫ 1

0

Gt−r(x , z)σ′(u(r , z))Ds,yu(r , z)W (dr , dz)
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if s < t, and Ds,yu(t , x) = 0 if s > t. Moreover, for all t ∈ [0 , T ], we have

sup
(r,z)∈[0,t]×[0,1]

E (‖D(r , z)‖pH) < CT,pt
p/4. (107)

Furthermore, if the coefficients b and σ are infinitely differentiable with
bounded derivatives of all orders, then u(t , x) belongs to the space D∞.

Notice that for each fixed (s , y), {Ds,yu(t , x), t ≥ s} is the solution of the
stochastic heat equation

∂Ds,yu

∂t
=

∂2Ds,yu

∂x2
+ b′(u)Ds,yu+ σ′(u)Ds,yu

∂2W

∂t∂x
(108)

on [s,∞) × [0 , 1], with Dirichlet boundary conditions and initial condition
σ(u(s , y))δ0(x− y).

On the other hand, if the coefficients are Lipschitz continuous it is also
true that u(t , x) belongs to the space D1,p for all p ≥ 2, and Equation (106)
holds but replacing b′(u(t , x)) and σ′(u(t , x)) by some bounded and adapted
processes.

Proof. Consider the Picard iteration scheme defined by

u0(t , x) =
∫ 1

0

Gt(x , y)u0(y) dy (109)

and

un+1(t , x) = u0(t , x) +
∫ t

0

∫ 1

0

Gt−r(x , z)b(un(r , z)) dz dr

+
∫ t

0

∫ 1

0

Gt−r(x , z)σ(un(r , z))W (dz , dr),
(110)

n ≥ 0. It holds that un(t , x) converges in Lp to u(t , x) for all p ≥ 2, and

sup
n

sup
(t,x)∈[0,T ]×[0,1]

E (|u(t , x)|p) <∞. (111)

Fix a time interval [0 , T ]. Suppose that for all (t , x) ∈ [0 , T ]× [0 , 1] and p ≥ 2
we have un(t , x) ∈ D1,p and

Vn(t) := sup
x∈[0,1]

E

[(∫ t

0

∫ 1

0

|Ds,yun(t , x)|2 dy ds
)p/2]

<∞. (112)

By Remark 4.2, the Itô stochastic integral∫ t

0

∫ 1

0

Gt−r(x , z)σ(un(r , z))W (dz , dr) (113)
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coincides with the divergence of the adapted stochastic process{
Gt−r(x , z)σ(un(r , z))1[0,t](r), (r , z) ∈ [0,∞)× [0 , 1]

}
. (114)

As a consequence, we can compute the derivative of this stochastic integral
using property (30) and we obtain for s < t

Ds,y

(∫ t

0

∫ 1

0

Gt−r(x , z)σ(un(r , z))W (dz , dr)
)

= Gt−s(x , y)σ(un(s , y))

+
∫ t

0

∫ 1

0

Gt−r(x , z)σ′(un(r , z))Ds,yun(r , z)W (dr , dz).

(115)

Notice that the stochastic integral in the right-hand side of Equation (115)
vanishes if r ≤ s, because u(r , z) is Fr-measurable.

Hence, applying the operator D to Eq. (110), and using that un(t , x) ∈
D1,p and (112), we obtain that un+1(t , x) ∈ D1,p and that

Ds,yun+1(t , x)
= Gt−s(x , y)σ(un(s , y))

+
∫ t

s

∫ 1

0

Gt−r(x , z)b′(un(r , z))Ds,yun(r , z) dz dr

+
∫ t

s

∫ 1

0

Gt−r(x , z)σ′(un(r , z))Ds,yun(r , z)W (dr , dz).

(116)

By Hölder’s inequality, (100) and (111) we obtain

E

[(∫ t

0

∫ 1

0

Gt−s(x , y)2σ(un(s , y))2 dy ds

)p/2]

≤
(∫ t

0

∫ 1

0

Gt−s(x , y)2 dy ds

)p/2
sup

(t,x)∈[0 ,T ]×[0,1]

E (|σ(un(t , x))|p)

≤ C1t
p/4,

(117)

for some constant C1 > 0. On the other hand, Burkholder’s inequality for
Hilbert-space-valued stochastic integrals, and Hölder inequality yield
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E

(∫ t

0

∫ 1

0

(∫ t

s

∫ 1

0

Gt−r(x , z)σ′(un(r , z))Ds,yun(r , z)W (dr , dz)
)2

dy ds

)p/2
≤ cpE

[(∫ t

0

∫ 1

0

∫ r

0

∫ 1

0

Gt−r(x , z)2σ′(un(r , z))2 |Ds,yun(r , z)|2 dy ds dz dr
)p/2]

≤ cp ‖σ′‖
p
∞ E

[(∫ t

0

∫ 1

0

Gt−r(x , z)2

(∫ r

0

∫ 1

0

|Ds,yun(r , z)|2 dy ds
)
dz dr

)p/2]

≤ cp ‖σ′‖
p
∞

(∫ t

0

∫ 1

0

Gt−r(x , z)2 dz dr

)(p/2)−1

×
∫ t

0

∫ 1

0

Gt−r(x , z)2E

[(∫ r

0

∫ 1

0

|Ds,yun(r , z)|2 dy ds
)p/2]

dr dz. (118)

A similar estimate can be obtained for the second summand in the right-hand
side of Equation (116). Then, from (117) and (118) we obtain

E

[(∫ t

0

∫ 1

0

|Ds,yun+1(t , x)|2 dy ds
)p/2]

≤ C2

(
tp/4 + t

p
4−

1
2

∫ t

0

∫ 1

0

Gt−r(x , z)2E

[(∫ r

0

∫ 1

0

|Ds,yun(r , z)|2 dy ds
)p/2]

dr dz

)
.

≤ C3

(
tp/4 + t

p
4−

1
2

∫ t

0

(t− r)− 1
2 sup
z∈[0,1]

E

[(∫ r

0

∫ 1

0

|Ds,yun(r , z)|2 dy ds
)p/2]

dr

)
.

Then, using (112) we get

Vn+1(t) ≤ C3

(
tp/4 + t

p
4−

1
2

∫ t

0

Vn(θ)(t− θ)− 1
2 dθ

)
≤ C4

(
tp/4 + t

p
4−

1
2

∫ t

0

∫ θ

0

Vn−1(u)(t− θ)− 1
2 (θ − u)−

1
2 du dθ

)

≤ C5

(
tp/4 + t

p
4−

1
2

∫ t

0

Vn−1(u) du
)
<∞.

By iteration this implies that

Vn(t) < Ctp/4, (119)

where the constant C does not depend on n. Taking into account that un(t , x)
converges to u(t , x) in Lp(Ω) for all p ≥ 2, we deduce that u(t , x) ∈ D1,p,
and Dun(t , x) converges to Du(t , x) in the weak topology of Lp(Ω;H) (see
Lemma 2.10). Finally, applying the operator D to both members of Eq. (95),
we deduce the desired result. ut
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In order to show the existence of negative moments, we will make use of
the following lemma.

Lemma 4.4. Let F be a nonnegative random variable. Then, E(F−p) < ∞
for all p ≥ 2 if an only if for all q ≥ 2 there exists an ε0(q) > 0 such that for
P(F < ε) ≤ Cεq, for all ε ≤ ε0.

We can now state and prove the following result on the regularity of the
density of the random variable u(t , x).

Theorem 4.5. Assume that the coefficients b and σ are infinitely differen-
tiable functions with bounded derivatives. Suppose that u0 is a Hölder con-
tinuous function of order 1

2 which satisfies the Dirichlet boundary conditions.
Then, if |σ(r)| > c > 0 for all r ∈ R, u(t , x) has a C∞ density for all (t , x)
such that t > 0 and x ∈ (0 , 1).

Proof. From the general criterion for smoothness of densities (see Theorem
3.5), it suffices to show that E(γ−pu(t,x)) <∞ for all p ≥ 2, where γu(t,x) denote
the Malliavin matrix of the random variable u(t , x). By Lemma 4.4 it is
enough to show that for any q ≥ 2 there exists an ε0(q) > 0 such that for all
ε ≤ ε0

P
(∫ t

0

∫ 1

0

(Ds,yu(t , x))2
dy ds < ε

)
≤ Cεq. (120)

We fix δ > 0 sufficiently small and write∫ t

0

∫ 1

0

(Ds,yu(t , x))2
dy ds

≥ 1
2

∫ t

t−δ

∫ 1

0

|Gt−s(x , y)σ(u(s , y))|2 dy ds− Iδ,
(121)

where

Iδ =
∫ t

t−δ

∫ 1

0

∣∣∣∣∫ t

s

∫ 1

0

Gt−r(x , z)σ′(u(r , z))Ds,yu(r , z)W (dr , dz)

+
∫ t

s

∫ 1

0

Gt−r(x , z)b′(u(r , z))Ds,yu(r , z) dz dr
∣∣∣∣2 dy ds.

(122)

Using (97) yields∫ t

t−δ

∫ 1

0

|Gt−s(x , y)σ(u(s , y))|2 dy ds ≥ c2
∫ t

t−δ

∫ 1

0

G2
t−s(x , y) dy ds

= c2
∫ δ

0

G2s(x , x) ds

≥ c2√
2π

√
δ.

(123)
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Hence,

P
(∫ t

0

∫ 1

0

(Ds,yu(t , x))2
dy ds < ε

)
≤ P

(
Iδ ≥

c2√
2π

√
δ − ε

)
≤
(

c2√
2π

√
δ − ε

)−p
E (|Iδ|p) ,

(124)

for any p > 0. The term Iδ can be bounded by 2(Iδ,1 + Iδ,2), where

Iδ,1 (125)

=
∫ t

t−δ

∫ 1

0

∣∣∣∣∫ t

s

∫ 1

0

Gt−r(x , z)σ′(u(r , z))Ds,yu(r , z)W (dr , dz)
∣∣∣∣2 dy ds,

and

Iδ,2

=
∫ t

t−δ

∫ 1

0

∣∣∣∣∫ t

s

∫ 1

0

Gt−r(x , z)b′(u(r , z))Ds,yu(r , z) dz dr
∣∣∣∣2 dy ds. (126)

Therefore, by Burkholder’s inequality for Hilbert-space-valued stochastic in-
tegrals with respect to two-parameter processes and Hölder’s inequality we
obtain

E (|Iδ,1|p)

≤ cpE

[(∫ t

t−δ

∫ 1

0

∫ t

s

∫ 1

0

[Gt−r(x , z)σ′(u(r , z))Ds,yu(r , z)]2 dz dr dy ds
)p]

≤ cp ‖σ′‖
p
∞

(∫ δ

0

∫ 1

0

Gr(x , z)2 dz dr

)p
sup

(r,z)∈[0,δ]×[0,1]

E (‖D(r , z)‖pH)

≤ Ccp ‖σ′‖
p
∞

(∫ δ

0

G2r(x , x) dr

)p
δp/4

≤ Cδ(p/2)+(p/4). (127)

As a consequence, choosing δ = 4πε2/c4 and using (124) and (127) yields

P
(∫ t

0

∫ 1

0

(Ds,yu(t , x))2
dy ds < ε

)
≤ Cεp/2, (128)

which allows us to conclude the proof. ut

In [15] Pardoux and Zhang proved that u(t , x) has an absolutely continu-
ous distribution for all (t , x) such that t > 0 and x ∈ (0 , 1), if the coefficients
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b and σ are Lipschitz continuous and σ(u0(y)) 6= 0 for some y ∈ (0 , 1). The
regularity of the density under this more general nondegeneracy assumption
is an open problem.

Bally and Pardoux considered in [3] the Equation (95) with Neumann
boundary conditions on [0 , 1], assuming that the coefficients b and σ are in-
finitely differentiable functions, which are bounded together with their deriva-
tives. The main result of this paper says that the law of any vector of the
form (u(t , x1), . . . , u(t , xd)), 0 ≤ x1 ≤ · · · ≤ xd ≤ 1, t > 0, has a smooth
and strictly positive density with respect to the Lebesgue measure on the set
{σ > 0}d.

Exercise 4.6. Prove Lemma 4.4.

Exercise 4.7. Let u be the solution to the linear stochastic differential equa-
tion

∂u

∂t
=
∂2u

∂x2
+ u

∂2W

∂t∂x
, (129)

with initial condition u0(x) and Dirichler boundary conditions on [0 , 1]. Find
the Wiener chaos expansion of u(t , x).

5 Spatially homogeneous SPDEs

We are interested in the following general class of stochastic partial differential
equations

Lu(t , x) = σ(u(t , x))Ẇ (t , x) + b(u(t , x)), (130)

t ≥ 0, x ∈ Rd, where L denotes a second order differential operator, and we
impose zero initial conditions.

We assume that the noise W is a zero mean Gaussian family W =
{W (ϕ), ϕ ∈ C∞0 (Rd+1)} with covariance

E(W (ϕ)W (ψ)) =
∫ ∞

0

∫
Rd

∫
Rd

ϕ(t , x)f(x− y)ψ(t , y) dx dy dt, (131)

where f is a non-negative continuous function of Rd\{0} such that it is the
Fourier transform of a non-negative definite tempered measure µ on Rd. That
is,

f(x) =
∫
Rd

exp(−x · ξ)µ(dξ), (132)

and there is an integer m ≥ 1 such that∫
Rd

(1 + |ξ|2)−mµ(dξ) <∞. (133)

Then, the covariance (131) can also be written, using Fourier transform, as
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E(W (ϕ)W (ψ)) =
∫ ∞

0

∫
Rd

Fϕ(s)(ξ) Fψ(s)(ξ)µ(dξ) ds. (134)

This class of equations has been studied, among others, by Dalang (see
([6]) and the references therein). They include the stochastic heat equation
on Rd, and the wave equation in dimension less or equal than 3. We are going
to make the following assumption on the differential operator L:

Hypothesis H. The fundamental solution of the operator L, denoted by G,
is a non-negative distribution with rapid decrease such that such that for all
T > 0

sup
0≤t≤T

G(t,Rd) ≤ CT <∞ (135)

and ∫ T

0

∫
Rd

|FG(t)(ξ)|2 µ(dξ) dt <∞. (136)

Here are two basic examples where condition (136) holds:

Example 5.1. (The wave equation) Let Gd be the fundamental solution of the
wave equation

∂2u

∂t2
−∆u = 0. (137)

We know that

G1(t) =
1
2
1{|x|<1},

G2(t) = c2(t2 − |x|2)−1/2
+ ,

G3(t) =
1

4π
σt,

(138)

where σt denotes the surface measure on the 3-dimensional sphere of radius
t. Furthermore, for all dimensions d

FGd(t)(ξ) =
sin(t|ξ|)
|ξ|

. (139)

Notice that only in dimensions d = 1, 2, 3, Gd is a measure. We can show that
there are positive constants c1 and c2 depending on T such that

c1
1 + |ξ|2

≤
∫ T

0

sin2(t|ξ|)
|ξ|2

dt ≤ c2
1 + |ξ|2

. (140)

Therefore, Gd satisfies Hypothesis H if and only if∫
Rd

µ(dξ)
1 + |ξ|2

<∞. (141)
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Example 5.2. (The heat equation) Let G be the fundamental solution of the
heat equation

∂u

∂t
− 1

2
∆u = 0. (142)

Then,

G(t , x) = (2πt)−d/2 exp
(
−|x|

2

2t

)
(143)

and
FG(t)(ξ) = exp(−t|ξ|2). (144)

Because ∫ T

0

exp(−t|ξ|2) dt =
1
|ξ|2

(1− exp(−T |ξ|2)), (145)

we conclude that Hypothesis H holds if an only if (136) holds. We can also
express condition (136) in terms of the covariance function f (see Exercise
5.9).

By definition, the solution to (130) on [0 , T ] is an adapted stochastic
process u = {u(t , x), (t , x) ∈ [0 , T ]×Rd} satisfying

u(t , x) =
∫ t

0

∫
Rd

G(t− s , x− y)σ(u(s , y))W (ds , dy)

+
∫ t

0

∫
Rd

b(u(t− s , x− y))G(s , dy).
(146)

The stochastic integral appearing in formula (146) requires some care because
the integrand is a measure. In [6] Dalang constructed stochastic integrals
of measure-valued processes on this type using the techniques of martingale
measures. Actually, this stochastic integral is also a particular case of the
integral with respect to a cylindrical Wiener proces. We will describe the
construction of these integrals in the next section.

5.1 Existence and uniqueness of solutions

Fix a time interval [0 , T ]. The completion of the Schwartz space S (Rd) of
rapidly decreasing C∞ functions, endowed with the inner producrt

〈ϕ,ψ〉H =
∫
Rd

Fϕ(ξ) Fψ(ξ)µ(dξ)

=
∫
Rd

∫
Rd

ϕ(x)f(x− y)ψ(y) dx dy
(147)

is denoted by H . Notice that H may contain distributions. Set HT =
L2([0 , T ]; H ).
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The Gaussian family {W (ϕ), ϕ ∈ C∞0 ([0 , T ] × Rd)} can be extended to
the completion HT = L2([0 , T ]; H ) of the space C∞0 ([0 , T ]×Rd) under the
scalar product

〈ϕ,ψ〉HT
=
∫ T

0

∫
Rd

Fϕ(t)(ξ) Fψ(t)(ξ)µ(dξ) dt. (148)

We will also denote by W (g) the Gaussian random variable associated with
an element g ∈ L2([0 , T ]; H ).

Set Wt(h) = W (1[0,t]h) for any t ≥ 0 and h ∈H . Then, {Wt, t ∈ [0 , T ]} is
a cylindrical Wiener process in the Hilbert space H . That is, for any h ∈H ,
{Wt(h), t ∈ [0 , T ]} is a Brownian motion with variance ‖h‖2H , and

E(Wt(h)Ws(g)) = (s ∧ t) 〈h , g〉H . (149)

Then (see, for instance, [5]), we can define the stochastic integral of H -
valued square integrable predictable processes. We denote by Ft the σ-field
generated by the random variables {Ws(h), 0 ≤ s ≤ t, h ∈ H }. The σ-field
on Ω×[0 , T ] generated by elements of the form 1(s,t]X, where X is a bounded
Fs-measurable random variable, is called the predictable σ-field and denoted
by P.

For any predictable process g ∈ L2(Ω × [0 , T ]; H ) we denote its integral
with respect to the cylindrical Wiener process W by∫ T

0

∫
Rd

g dW = g ·W, (150)

and we have the isometry property

E
(
|g ·W |2

)
= E

(∫ T

0

‖gt‖2H dt

)
. (151)

Then, Mt(A) = Wt(1A) defines a martingale measure associated to the
noise W in the sense of Walsh (see [19] and [6]) and the stochastic integral
(150) coincides with the integral defined in the work of Dalang [6].

The following result provides examples of random distributions that can
be integrated with respect to W .

Proposition 5.3. Let Z = {Z(t , x), (t , x) ∈ [0 , T ] × Rd} be a predictable
process such that

CZ := sup
(t ,x)∈[0 ,T ]×Rd

E
(
|Z(t , x)|2

)
<∞. (152)

Then, the random element G = G(t , dx) = Z(t , x)G(t , dx) is a predictable
process in the space L2(Ω× [0 , T ]; H ), and

E(‖G‖2HT
) ≤ CZ

∫ T

0

∫
Rd

|FG(t)(ξ)|2 µ(dξ) dt. (153)
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Proof. First notice that G belongs to HT , and

‖G‖2HT
=
∫ T

0

∫
Rd

|FG(t)(ξ)|2 µ(dξ) dt. (154)

We can assume that Z is nonnegative. For any k > 0 and any t ∈ [0 , T ] we
have ∫

Rd

(1 + |x|2)k/2Z(t , y)G(t , dy) <∞. (155)

This implies that G belongs to the space of distributions with rapid decrease,
almost surely. Finally, the result follows by a regularization argument (see
Proposition 3.3 in [13]). ut

Under the assumptions of Proposition 5.3, suppose in addition that

sup
(t ,x)∈[0 ,T ]×Rd

E(|Z(t , x)|p) <∞, (156)

for some p ≥ 2. Then one can show the following estimate for the p moment
of the stochastic integral, using the Burkholder and Hölder inequalities:

E

(∣∣∣∣∣
∫ T

0

∫
Rd

G(t , dx)Z(t , x)W (dt , dx)

∣∣∣∣∣
p)

≤ cp(νt)(p/2)−1

∫ T

0

(
sup
x∈Rd

E (|Z(t , x)|p)
)∫

Rd

|FG(s)(ξ)|2 µ(dξ) ds,

(157)

where

νt =
∫ t

0

∫
Rd

|FG(s)(ξ)|2 µ(dξ) ds. (158)

The construction of the stochastic integral can be extended to processes
taking values in a Hilbert space. Let A be a separable real Hilbert space with
inner-product and norm denoted by 〈· , ·〉A and ‖ · ‖A , respectively. Let K =
{K(t , x), (t , x) ∈ [0 , T ]×Rd} be an A -valued predictable process satisfying
the following condition:

sup
(t,x)∈[0,T ]×Rd

E
(
‖K(t , x)‖2A

)
<∞. (159)

Set Γ(t , dx) = G(t , dx)K(t , x) ∈ L2(Ω×[0 , T ]; H ⊗A ), where G satisfies the
hypothesis of Proposition 5.3. Then, if {ej , j ≥ 0} is a complete orthonormal
system of A we define

Γ ·W =
∑
j≥0

(∫ T

0

∫
Rd

G(s , y)〈K(s , x), ej〉A W (ds , dy)

)
ej . (160)

Condition (159) and Proposition 5.3 imply that the above series is convergent
and G ·W defines an element of L2(Ω; A ). Moreover, the following estimate
for the moments of G ·W is analogous to (157):
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E
(
‖Γ ·W‖pA

)
≤ Cp(νT )

p
2−1

∫ T

0

sup
x∈Rd

E(‖K(s , x)‖pA )
∫
Rd

|FG(s)(ξ)|2 µ(dξ) ds,
(161)

for all p ≥ 2.
The following theorem gives the existence and uniqueness of a solution for

Equation (130) (see Dalang [6]).

Theorem 5.4. Suppose that the coefficients b and σ are Lipschitz continuous,
and tthe fundamental solution of Lu = 0 satisfies Hypothesis H. Then (130)
has a unique solution u(t , x) which is continuous in L2 and satisfies

sup
(t,x)∈[0,T ]×Rd

E
(
|u(t , x)|2

)
<∞, (162)

for all T > 0.

5.2 Regularity of the law

We will show that under suitable nondegeneracy conditions, the solution to
Equation (146), at any point (t , x) ∈ (0, T ]×Rd, is a random variable whose
law admits a density with respect to Lebesgue measure on R, and the density
is smooth. We will make use of the techniques of the Malliavin calculus.
Notice that the underlying Hilbert space here is HT = L2([0 , T ]; H ).

The first step is to study the differentiability of u(t , x), for all fixed (t , x) ∈
(0, T ] ×Rd. For any random variable F in D1,p, the derivative DF defines
an HT -valued random variable, or an H -valued stochastic process denoted
by {DsF, s ≥ 0}. The proof of the following proposition is similar to that of
Proposition 4.3 (see Theorem 2 in [16], and also Proposition 4.4 in [13]).

Proposition 5.5. Assume that G satisfies Hypothesis H. Suppose also that
the coefficients b and σ are C1 functions with bounded Lipschitz continuous
derivatives. Then, for any (t , x) ∈ [0 , T ] × Rd, u(t , x) belongs to D1,p, for
any p ≥ 2. Moreover, the derivative Du(t , x) satisfies the following linear
stochastic differential equation:

Dru(t , x) =σ(u(r, ·))G(t− r, x− ·)

+
∫ t

r

∫
Rd

G(t− s , x− y)σ′(u(s , y))Dru(s , y)W (ds , dy)

+
∫ t

r

∫
Rd

b′(u(s , x− y))Dru(s , x− y)G(t− s , dy) ds, (163)

for all r ∈ [0 , T ]. Moreover,

sup
(t,x)∈[0,T ]×Rd

E
(
‖D(t , x)‖pHT

)
<∞. (164)
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Furthermore if the coefficients b and σ are infinitely differentiable with bounded
derivatives of all orders, then u(t , x) belongs to the space D∞.

We can now show the regularity of the density of u(t , x) under ellipticity
conditions.

Theorem 5.6. Assume that G satisfies Hypothesis H, the coefficients σ and b
are C∞ functions with bounded derivatives of any order greater than or equal
to one and |σ(z)| ≥ c > 0, for all z ∈ R. Moreover, suppose that there exist
γ > 0 such that for all τ > 0,∫ τ

0

∫
Rd

|FG(s)(ξ)|2 µ(dξ) ds ≥ Cτγ , (165)

for some positive constant C. Then, for all (t , x) ∈ (0, T ] × Rd, the law of
u(t , x) has a C∞ density with respect to Lebesgue measure on R.

Proof. From the general criterion for smoothness of densities (see Theorem
3.5), it suffices to show that the inverse of the Malliavin matrix of u(t , x) has
moments of all order, that is

E

∣∣∣∣∣
∫ T

0

‖Dsu(t , x)‖2H ds

∣∣∣∣∣
−q
 < +∞, (166)

for all q ≥ 2. Then, by Lemma 4.4 it is enough to show that for any q ≥ 2
there exists an ε0(q) > 0 such that for all ε ≤ ε0

P
(∫ t

0

‖Dsu(t , x)‖2H ds < ε

)
≤ Cεq. (167)

For δ > 0 sufficiently small we have∫ t

0

‖Dsu(t , x)‖2H ds ≥ 1
2

∫ t

t−δ
‖G(t− s , x− ·)σ(u(s , ·))‖2H ds− Iδ, (168)

where

Iδ =
∫ t

t−δ

∥∥∥∥∫ t

s

∫
Rd

G(t− r , x− z)σ′(u(r , z))Dsu(r , z)W (dr , dz)

+
∫ t

s

∫
Rd

G(t− r , dz)b′(u(r , x− z))Dsu(r , x− z)dr
∥∥∥∥2

H

ds.

(169)

In order to get a lower bound for the first term in the right-hand side of
Equation (168), we regularize the measures G and G(t , x − ·)σ(u(t − s , ·))
with an approximation to the identity {ψn}:
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Gn(t) = ψn ∗G(t),
Jn(t , s) = ψn ∗G(t , x− ·)σ(u(t− s , ·)).

(170)

Then, by the non-degeneracy assumption on σ, we have∫ t

t−δ
‖G(t− s , x− ·)σ(u(s , ·))‖2H ds

=
∫ δ

0

‖G(s , x− ·)σ(u(t− s , ·))‖2H ds

= lim
n→∞

∫ δ

0

‖Jn(t , s)‖2H ds

= lim
n→∞

∫ δ

0

∫
Rd

∫
Rd

Jn(t , s , y)f(y − z)Jn(t , s , z) dy dz ds

≥ c2 lim
n→∞

∫ δ

0

∫
Rd

∫
Rd

Gn(s , x− y)f(y − z)Gn(s , x− z)

= c2 lim
n→∞

∫ δ

0

‖Gn(s , x− ·)‖2H ds

= c2
∫ δ

0

‖G(s , x− ·)‖2H ds

= c2g(δ),

(171)

where

g(δ) :=
∫ δ

0

∫
Rd

|FG(s)(ξ)|2 µ(dξ) ds. (172)

Substituting (171) into (168) yields

P
(∫ t

0

‖Dsu(t , x)‖2H ds < ε

)
≤ P

(
Iδ ≥

c2

2
g(δ)− ε

)
≤
(
c2

2
g(δ)− ε

)−p
E(|Iδ|p),

(173)

for any p > 0.
The term Iδ can be bounded by 2(Iδ,1 + Iδ,2), with

Iδ,1 =
∫ δ

0

∥∥∥∥∫ t

t−s

∫
Rd

G(t− r, x− z)σ′(u(r , z))Dt−su(r , z)W (dr , dz)
∥∥∥∥2

H

ds,

Iδ,2 =
∫ δ

0

∥∥∥∥∫ t

t−s

∫
Rd

G(t− r , dz)b′(u(r , x− z))Dt−su(r , x− z) dr
∥∥∥∥2

H

ds.

We need to find upper bounds for E(|Iδ,i|)p, i = 1, 2. On one hand, owing to
Hölder’s inequality and (161) we get
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E(|Iδ,1|p) = E

(∫ δ

0

‖Zx,s,t‖2H ds

)p

≤ δp−1E

(∫ δ

0

‖Zx,s,t‖2pH ds

)

≤ δp−1(g(δ))p sup
(s,y)∈[0,T ]×Rd

E
(∫ s

0

‖Dru(s , y)‖2pH dr

)
,

(174)

where

Zx,s,t =
∫ t

t−s

∫
Rd

G(t− r , x− z)σ′(u(r , z))Dt−su(r , z)W (dr , dz). (175)

The above estimate (174) together with (164) let us conclude that

E(|Iδ,1|p) ≤ Cδp−1(g(δ))p. (176)

On the other hand, using similar arguments but for the Hilbert-space-valued
pathwise integral one proves that E(|Iδ,2|p) may be bounded, up to some
positive constant, by δp−1(g(δ))p. Thus, we have proved that

P
(∫ t

0

‖Dsu(t , x)‖2H ds < ε

)
≤ C

(
c2

2
g(δ)− ε

)−p
δp−1(g(δ))p. (177)

At this point, we choose δ = δ(ε) in such a way that g(δ) = 4ε/c2. By (165),
this implies that 4ε/c2 ≥ Cδγ , that is δ ≤ Cε1/γ . Hence,

P
(∫ t

0

‖Dsu(t , x)‖2H ds < ε

)
≤ Cε(p−1)/γ , (178)

and it suffices to take p sufficiently large such that (p− 1)/γ ≥ q. ut

Remark 5.7. Assume that G satisfies Hypothesis H. Suppose also that the co-
efficients b and σ are C1 functions with bounded Lipschitz continuous deriva-
tives and that |σ(z)| ≥ c > 0, for all z ∈ R and some positive constant c.
Then, for all t > 0 and x ∈ Rd, the random variable u(t , x) has an absolutely
continuous law with respect to Lebesgue measure on R. This result can be
proved using the criterion for absolute continuity given in Theorem 3.3 (see
Theorem 3 in the reference [16] and Theorem 5.2 in [13], in the case of the
three dimensional wave equation).

Exercise 5.8. If G is the fundamental solution of the wave equation in Rd,
with d = 1, 2, 3, show that condition (165) is satisfied with γ = 3. On the
other hand, if G is the fundamental solution of the heat equation on Rd ,
d ≥ 1, show that condition (165) is satisfied, with any γ ≥ 1 (see Lemma 3.1
in [9]).
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Exercise 5.9. Show that for the heat equation, condition (136) is always true
when d = 1; for d = 2, (136) holds if and only if∫

|x|≤1

f(x) log
(

1
|x|

)
dx <∞, (179)

and for d ≥ 3, (136) holds if and only if∫
|x|≤1

f(x)
|x|d−2

dx <∞. (180)
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Some Tools and Results for Parabolic
Stochastic Partial Differential Equations

Carl Mueller?

Department of Mathematics, University of Rochester,
Rochester, NY 14627,
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Summary. These notes give an informal introduction to parabolic stochastic par-
tial differential equations. We emphasize material coming from particle systems,
including duality and the Dawson–Watanabe superprocess. We also deal with large
deviations and comparison theorems. Applications include blow-up, hitting theo-
rems, and compact support.

1 Introduction

1.1 Outline of the notes

The goal of these notes is to explain a set of ideas in stochastic partial dif-
ferential equations (SPDE) which I have found useful. The notes are meant
for graduate students, so they are not written in a formal style. Sometimes I
will explain an idea in a simple case, and leave it to the reader to develop the
topic more broadly.

I will begin with some general thoughts on the field. SPDE, and perhaps
PDE as well, find their primary motivations in science and engineering. It is
best not to think of SPDE as objects in pure mathematics, but as models for
physical phenomena. To study SPDE it is not necessary to have a Ph.D. in
biology, for example, but it is often helpful to think of an SPDE in terms of a
population of organisms. Similar helpful motivations come from other sciences
as well. When thinking of the heat equation, with or without noise, it helps
to visualize a physical object with varying temperature. It would be foolish to
set forth a foundation for the entire field of SPDE, but my goal is to explain
some tools which others may find useful.
? Research supported in part by grants from the National Science Foundation and

National Security Agency.
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Both ordinary differential equations (ODE) and partial differential equa-
tions (PDE) play a fundamental role in describing reality. However, any model
of the real world must take into account uncertainty or random fluctuations.
It is therefore surprising that while stochastic ODE were studied intensively
throughout the twentieth century, SPDE only received attention much later.
Some early work stemmed from the Zakai equation in filtering theory, see [32],
and on the theoretical side there was the work of Pardoux [31] and Krylov
and Rozovskii [17]. Much of this early work centered on foundational questions
such as setting up the appropriate function spaces for studying solutions, or
using such analytic tools as the method of monotonicity [31]. Later, Walsh
[38] introduced the notion of martingale measures as an alternative framework.
The diverse origins of SPDE have led to a lively interplay of viewpoints. Some
people feel that SPDE should be based on such tools as Sobolev spaces, as
is the case for PDE. Others, with a background in probability, feel that an
SPDE describes a special kind of stochastic process. Applied mathematicians
may feel that the study of SPDE should follow the ideas used in their domain.

By a historical accident, particle systems, which may be considered as
discrete SPDE, were studied much earlier than SPDE. Such pioneers as Ted
Harris and Frank Spitzer laid the groundwork for this theory. Their research
was also influenced by results in percolation, by such mathematicians as Harry
Kesten. Particle systems has changed its emphasis over the years, and some
of this early work is being forgotten. However, I believe that the main meth-
ods of particle systems will always be relevant to SPDE. In particular, I will
introduce the method of duality. Unfortunately, there was no time in the
course to discuss percolation, which I also believe has fundamental impor-
tance for SPDE. Both duality and percolation, as well as many other ideas,
are described in more detail in three classics: [21; 22] give detailed technical
accounts of the field, and [9] provides a lively intuitive treatment.

Secondly, Watanabe and Dawson found that the scaling limit of critical
branching Brownian motions give a fundamentally important model, called
the Dawson–Watanabe process or superprocess. Because this model involves
independently moving particles, there are powerful tools for studying its be-
havior, and many of these tools help in the study of SPDE. For example, the
heat equation can be thought of as the density of a cloud of Brownian parti-
cles. Any SPDE which involves a density of particles can be studied via the
Dawson–Watanabe process. There is a huge literature in this area, but two
useful surveys are written by Dawson [6] and Perkins [33].

Thirdly, as one might expect, tools from PDE are useful for SPDE. Of
course, Sobolev spaces and Hilbert spaces play a role, as in the work of Da
Prato and Zabczyk [8] and Krylov [19]. But here I wish to concentrate on
qualitative tools, such as the maximum principle. In particular, comparison
theorems hold for many SPDE. Given two solutions, suppose that one is ini-
tially larger than the other. Then that relationship will continue to hold for
later times.
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Finally, tools from probability also find applications in SPDE. For example,
the theory of large deviations of dynamical systems developed by Wentzell and
Freidlin [13] also applies to SPDE. If the noise is small, we can estimate the
probability that the solutions of the SPDE and corresponding PDE (without
noise) differ by more than a given amount. Unfortunately, I had no time to
discuss questions of coupling and invariant measures, which play a large role
in the study of the stochastic Navier–Stokes equation.

After introducing these ideas, I give some applications to properties of
parabolic SPDE.

1.2 Some comments on the current state of SPDEs

To finish this introduction, let me indicate some of the current directions in
SPDE. The subject is expanding in many directions, so all I can do is give a
personal view.

I believe that the foundations of SPDE are settled. One can use either
Walsh’s approach [38] using martingale measures, the Hilbert space approach
of Da Prato and Zabczyk [8], or Krylov’s Lp theory [19]. The goal should be
to study properties of the equations.

Furthermore, the “naive” study of qualitative properties of SPDE, involv-
ing the superprocess or simple variants of the heat equation, is also largely
finished. I do recommend learning the main ideas of this theory, as well as
the foundational approaches mentioned earlier, since they can help us study
of more complicated equations.

Luckily, finally, scientists are jumping into the field with a vengeance, and
SPDE is expanding chaotically in all directions. I believe that the sciences will
continue to provide important SPDE models and conjectures. For example,
the reader can consult [7] for polymer models, and [3] for SPDEs in the physics
of surfaces. There is broad interest in the stochastic Navier–Stokes equation
[23]. Scientists seem to have finally grasped the importance of SPDE models,
so the reader should stay alert for new developments.

2 Basic framework

Expanding on Chapter 1, Section 6 of this book, we will mostly consider
parabolic equations of the form

∂u

∂t
= ∆u+ a(u) + b(u) Ẇ (t , x), (1)

u(0 , x) = u0(x).

where Ẇ (t , x) is d + 1 parameter white noise and x ∈ Rd. This set-up has
been used for a long time, see [38] or [8]. If we expect our noise to arise from
many small influences which are independent at different positions in space



118 C. Mueller

and time, then white noise is a good model. As with stochastic differential
equations (SDE), the solution u(t , x) is not differentiable in t or x, so (1)
does not make sense as written. In Da Prato and Zabczyk’s approach, we
regard (1) as a stochastic differential equation (SDE) in function space. In
Walsh’s theory, which we will adopt here, we regard (1) as a shorthand for
the following integral equation, which is often called the mild form of the
equation. This is also explained in Chapter 1, Section 6. Of course, Da Prato
and Zabczyk’s theory can deal with the mild form as well.

u(t , x) =
∫
Rd

G(t , x− y)u0(y) dy +
∫ t

0

∫
Rd

G(t− s , x− y)a(u(s , y)) dy ds

+
∫ t

0

∫
Rd

G(t− s , x− y)b(u(s , y))W (dy ds). (2)

Here G(t , x) is the heat kernel,

G(t , x) =
1

(4πt)d/2
exp

(
−|x|

2

4t

)
, (3)

and the final integral in (2) is a stochastic integral in the sense of Walsh
[38], see Chapter 1 of this book. Since there is a unique time direction t, such
integrals can be constructed along the lines of Ito’s theory, and their properties
are mostly the same as for the Ito integral. Let Ft denote the σ-field generated
by the noise W up to time t. That is, Ft is generated by the integral∫ t

0

∫
Rd

g(s , y)W (dy ds), (4)

for deterministic function g ∈ L2(dyds). For convenience, when f(s, y) is
nonanticipating with respect to Ft and

E

∫ t

0

∫
Rd

G2(t− s , x− y)f2(s , y) dy ds <∞, (5)

we often write

N(t , x) =
∫ t

0

∫
Rd

G(t− s , x− y)f(s , y)W (dy ds), (6)

so that if f(s , y) = b(u(s , y)), then N(t , x) is the “noise term” in (2). Then,
in particular,

E
[
N(t , x)2

]
=
∫ t

0

∫
Rd

E
[
G2(t− s , x− y)f(s , y)2

]
dy ds. (7)

Exercise 2.1. For f(s , y) :=, show that for any t > 0 and x ∈ Rd,

E
[
N(t , x)2

] {
<∞ if d = 1,
=∞ if d > 1. (8)
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Thus, if d ≥ 2, (1) is likely to have solutions which are generalized func-
tions, but do not exist as functions in L2(dP ), for instance. But then nonlinear
functions such as a(u), b(u) are hard to define. Since we live in a 3-dimensional
world, this situation gives rise to many difficulties. One common solutions is
to smooth the noise, perhaps by convolving it with another function of the
variable x. Such noise is called colored noise. Another possibility is to replace
Rd by a lattice, and replace the Laplacian by the discrete Laplacian. It would
be nice to deal with (1) more directly; maybe you have an idea of how to do
this.

Actually, some authors deal with solutions to (1) which are generalized
functions over Wiener space. Usually, generalized functions are defined in
terms of integrals against a test function. Thus, we would have to define our
solution in terms of an integral over all points in the probability space. But
in the physical world, we are doomed to experience only a single point in
the probability space. Maybe I’m being too pessimistic here, since repeated
experiments sample different points in the probability space; readers can form
their own conclusion.

Another point is that for x fixed, the process t → u(t , x) is Hölder con-
tinuous with parameter 1/4 − ε for every ε > 0, and therefore is not a semi-
martingale. Therefore there is no Ito’s lemma in the usual sense, and this has
caused a lot of problems for the theory. However, if φ(x) is an L2 function,
then

Xt =
∫
Rd

u(t , x)φ(x) dx (9)

is a semimartingale with quadratic variation

〈X〉t =
∫ t

0

∫
Rd

[∫
Rd

φ(x)G(t− s , x− y) dx
]2

b(u(s , y))2dy ds. (10)

Note that the inner integral smoothes out the singularity of G(t− s , x− y).
Since it doesn’t fit in elsewhere in this paper, let me mention a very

nice survey by Ferrante and Sanz-Solé [12] which deals with SPDE driven
by colored noise. For a colored noise Ḟ (t , x), the covariance in x is not the
δ-function as in the case of white noise, so heuristically E[Ḟ (t, x)Ḟ (s, y)] =
δ(t− s)R(x− y) for some covariance function R.

Finally two recent books, Chow [4] and Rockner [34], also give nice intro-
ductions to SPDE. Both deal with the functional analytic approach similar to
Da Prato and Zabczyk [8].

3 Duality

3.1 Definitions

The reader might wonder why I am devoting so much space to duality, since
there are only a few papers on SPDE with that word in the title. I firmly
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believe that many SPDE should be viewed as limits of particle systems, and
duality is perhaps the leading method in particle systems. Secondly, the most
important tool in superprocesses is the Laplace functional, which is a form of
duality. Thirdly, duality is getting relatively little attention, but it remains a
powerful tool.

Duality is a relationship between two stochastic processes which allows us
to use information from one process in analyzing the other. There are at least
two kinds of duality. One involves a duality function, and the other arises from
studying the ancestry of particles in a particle system.

I will describe the functional form of duality first; details can be found
in [10], pages 188–189. Two processes Xt, Yt are said to be in duality with
respect to a function H(x , y) if, for all t in some interval [0 , T ] we have

E
[
H (Xt , Y0)

]
= E

[
H (X0 , Yt)

]
. (11)

All probabilists know simple examples of duality, although they may not
realize it. Let u(t , x) satisfy the heat equation

∂u

∂t
=

1
2

∆u, (12)

and let Bt be Brownian motion. It is well known that under the appropriate
conditions,

u(t , x) = Ex
[
u(0 , Bt)

]
. (13)

Thus, the processes u(t , ·) and Bt are in duality with respect to the function
H(u ,B) = u(B). Note that deterministic processes such as u(t , x) still count
as processes.

3.2 Duality for Feller’s diffusion

Feller derived the following SDE as a limit for critical birth and death pro-
cesses; a critical birth and death process has expected offspring size equal to
1, so that the expected number of particles does not change:

dX =
√
X dB. (14)

Now consider a function v(t) which satisfies

v′ = −1
2
v2. (15)

Explicit solutions v(t) are easy to find. Next, Ito’s lemma implies that for
0 < t < T , if

Mt = exp (−Xtv(T − t)) , (16)

then



Parabolic stochastic partial differential equations 121

dM = M · (−
√
X dB) +

1
2
M ·Xv2 dt−M · 1

2
Xv2 dt

= M · (−
√
X dB).

(17)

Thus Mt is a martingale, and

exp (−X0v(T )) = M0 = E[MT ] = E [exp (−XT v(0))] . (18)

So, Xt and v(t) are in duality with respect to the function H(x , v) =
exp(−xv). In this case, duality gives us the Laplace transform of Xt. Duality
implies that Xt is unique in law, provided X0 is specified.

Exercise 3.1. Explicitly solve for v(t) and hence find the Laplace transform
of Xt.

3.3 Duality for the Wright–Fisher SDE

Next, let Xt satisfy the following SDE, named after Fisher and Wright. We can
think of a population of constant size, consisting of 2 subpopulations whose
percentages of the total are X and 1−X. Due to competition, the population
fluctuates randomly, and the variance of the fluctuations are proportional to
the number of encounters between the two types. This leads to a standard
deviation of

√
X(1−X), and gives rise to the following SDE.

dX =
√
X(1−X) dB

X0 = x0 ∈ [0 , 1].

For n a nonnegative integer, Ito’s formula gives

dXn = nXn−1
√
X(1−X) dB +

n(n− 1)
2

Xn−2X(1−X) dt

= mart−
(
n

2

)
(Xn −Xn−1) dt,

(19)

where “mart” indicates a martingale term whose expectation is 0 when inte-
grated. The final term in (19) has the intuitive meaning that Xn is replaced
by Xn−1 at rate

(
n
2

)
, except that there is a negative sign.

Let Nt be a process taking values in the nonnegative integers, and inde-
pendent of Xt. We think of Nt as the number of particles present at time t,
and let each pair of particles coalesce at rate 1. In other words, Nt is a Markov
process such that as h→ 0,

P(Nt+h = Nt |Nt) = 1−
(
Nt
2

)
h+ o(h)

P(Nt+h = Nt − 1 |Nt) =
(
Nt
2

)
h+ o(h).

(20)
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Thus, for x ∈ [0 , 1], one has

E
[
xNt+h − xNt

∣∣∣∣Nt]
= xNt

(
−
(
Nt
2

)
h+ o(h)

)
+ xNt−1

((
Nt
2

)
h+ o(h)

)
= −

(
Nt
2

)(
xNt − xNt−1

)
h+ o(h).

(21)

Exercise 3.2. Prove (21).

Note that the last lines in (19) and (21) match. Then Xt, Nt are in duality
with respect to the function H(x , n) = xn. In other words,

E
[
XN0
t

]
= E

[
XNt

0

]
. (22)

This allows us to compute the moments of Xt in terms of X0 and Nt.

Exercise 3.3. Prove (22).

We can regard duality relations of this kind as a means of calculating
moment. Note that since Nt is a nonincreasing process, (22) implies that the
nth moment of Xt only depends on Xk

0 for k ≤ n. Physicists and others
often compute moments by finding systems of differential equations which
they solve recursively. These equations are called closed if the derivative of
the nth moment only depends on kth moments for k ≤ n.

Exercise 3.4. Show that in the above example, the moment equations are
closed. Modify this example so that the moment equations are not closed.

If the moment equations are not closed, we may still have a duality rela-
tionship, but the process Nt may not be nonincreasing. Thus, even if a system
of moment equations is not closed, we may still be able to find a dual pro-
cess and draw certain conclusions. One may view duality arguments as an
attractive packaging for the idea of moment equations.

One important use of duality is the study of uniqueness. Suppose that
processes Xt, Yt are in duality with respect to the function H(x , y). This
relationship is often enough to show that Xt is unique in law, at least if
X0 = x0 is specified. Indeed, let Xt, X̃t be two processes with the same initial
value x0, and assume that both Xt, X̃t are in dual to Yt with respect to
H(x , y). Then

E
[
H(X̃t , Y0)

]
= E

[
H(X̃0 , Yt)

]
= E

[
H(X0 , Yt)

]
= E

[
H(Xt , Y0)

]
.

(23)
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If (23) is true for many initial values Y0, we can often conclude that Xt and X̃t

are equal in law. Using the Markov property (if Xt is Markov) and repeating
this procedure gives us the uniqueness of the finite dimensional distributions.
Then the Kolmogorov extension theorem shows that Xt is unique in law.

3.4 The voter model and the contact process

The voter model and contact process were some of the first models studied in
particle systems. Although interest has largely shifted to other models, these
processes give a useful introduction to duality. For more details, see [9] or
[21; 22].

First we describe the voter model. In keeping with the style of these notes,
our description is informal. The state space is the set of functions F : Zd →
{0 , 1}, with d fixed. We imagine that there is a voter at each site of Zd, whose
opinion is either 0 (Republican) or 1 (Democrat). Let Ed denote the set of
directed edges connecting nearest neighbors of Zd. In other words, each nearest
neighbor pair p, q ∈ Zd is associated with two edges, which either point from
p to q or vice versa. If the edge e points from p to q, we set e0 = p and e1 = q.
To each edge e ∈ Ed we associate an independent rate-one Poisson process
Ne
t . At the times τe of the Poisson process Ne

t , we change the opinion of e1 to
equal the opinion at e0, that is, we redefine Fτe(e1) to equal Fτe(e0). Another
common notation for the voter model involves the set ξt of sites p ∈ Zd where
voters have opinion 1, i.e., Ft(p) = 1. One needs to show that this procedure
gives a consistent definition of a stochastic process, and this is done in [22]
and other places.

The dual process of the voter model is given in terms of the ancestry of
opinions. Fix a site p ∈ Zd and a time T > 0. We wish to define a process
Xp
t , which traces the history of the opinion found at position p at time T .

We will let time t run backwards in the definition of Xp
t , so that t measures

the amount of time before T . To be specific, let τe be the most recent Poisson
time involving an edge e with e1 = p. For 0 ≤ t < T − τe let Xp

t = p, and let
XT−τe = e0. Now we repeat the construction for the site e0 and time τe, until
t = T .

Considering our definition of the voter model in terms of Poisson events, we
see that Xp

t is a continuous-time nearest neighbor simple random walk on Zd,
with transition rate 2d. In fact, {Xp

t : p ∈ Zd} is a collection of independent
coalescing random walks. That is, they evolve independently, but each pair
of random walks merge as soon as they land on the same site. One can also
view this process in terms of the directed edges. Xp

t starts at p, and moves
backwards through time starting at time T . Whenever it encounters an edge
e, it moves from e1 to e0 if it finds itself at e1. So, it moves along the edges
in the reverse orientation.

Exercise 3.5. Convince yourself that our description of the dual for the voter
model is correct.
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This form of duality can also be expressed in terms of a function H(A , ξ).
Here, ξt is the set of sites with opinion 1 at time 0, and At is the set of sites
where particles of the coalescing system of random walks are found at time t.

Exercise 3.6. What is the duality function H which matches our previous
description? The answer is in [9, p. 23].

A beautiful application of duality for the voter model is the study of clus-
tering. Clustering means that for a set of sites S ⊂ Zd, if time t is large, then
with high probability all of the sites have the same opinion. This will certainly
happen if opinions at the sites in S all come from a common ancestor. For
simplicity, consider the case of 2 sites, S = {x , y}. Certainly ξt(x) = ξt(y)
if in the dual process, the random walks starting at x and y have coalesced
by time t. But in dimensions 1 or 2, this coalescence occurs with probability
1. The probability is less than one in higher dimensions, and it is not hard
to show that clustering does not occur in higher dimensions. We leave these
details to the reader, who can also consult [9].

3.5 The biased voter model

We might modify the voter model by assuming that one opinion is stronger
than another. Using the same notation as for the unbiased voter model, for
each directed edge e we construct 2 Poisson processes Ne,1

t , Ne,2
t with rates

λ1, λ2 respectively. Recall that the edge e points from the e0 to e1. Suppose
that at time t there is an event of the Poisson process Ne,1

t . Then, at time t
the point e1 takes on the opinion at e0. Secondly, suppose that at time t there
is an event of the Poisson process Ne,2

t . In this case, if e0 has opinion 1, then
e1 changes its opinion to 1 as well. On the other hand, if e0 has opinion 0 at
time t, then nothing happens. Thus, the opinion 1 is stronger than opinion 0.
As of today (January 2006) we could say that 1 means the voter is a democrat.

Exercise 3.7. Verify that the ancestry of opinions is as described below, and
construct an appropriate dual process.

The path of ancestry of the opinion at position x at time t should go
backward in time, and if for an edge e pointing toward x the process Ne,1

t has
an event, it should follow that edge in the reverse direction to a new site. On
the other hand, if Ne,2

t has an event, then the ancestral path should split, with
one branch staying at the same point, and another branch following the edge
e backwards. If at time 0 the cloud of ancestral particles meets a 1, then the
original site has opinion 1. Otherwise it has opinion 0. The various branches
of the ancestry are meant to sample all possible occurrences of 1.
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3.6 The contact process

In the contact process, there are particles at various sites in Zd. Particles
die at exponential rate 1. At rate λ > 0, they give birth. When a particle
at site x gives birth, the new particle chooses a site y at random among the
nearest neighbors of x. If site y is already occupied, then the birth is aborted.
Otherwise, the new particle moves to position y.

Exercise 3.8. Using the preceding ideas, verify that tracing the ancestry of
particles gives us another contact process, and hence the contact process is
self-dual.

3.7 The Dawson–Watanabe superprocess

The Dawson–Watanabe superprocess, which we will simply call the super-
process, arose as a limit in the theory of spatial branching processes, more
specifically in population biology. It is one of the few nonlinear SPDE with
solutions in the space of generalized functions or Schwartz distributions. There
are several good introductions to superprocesses; [20] is a classic of clear ex-
position. See also Etheridge’s book [11] and the surveys of Dawson [6] and
Perkins [33], to name a few. Since there are so many good sources, we will not
systematically develop the theory of superprocesses, but rather describe the
applications to SPDE.

Here is the intuition. Let µ be a given finite nonnegative measure on Rd;
the finiteness condition can be weakened. Fix a natural number m, and let
{B(i)

t }
N(t)
i=1 be a collection of critical branching Brownian motions taking values

in Rd. We assume that the Brownian particles are independent. N(t) is the
number of particles existing at time t, and critical branching means that each
particle splits in two or dies with equal probability. We assume that the times
between branching are independently distributed exponential variables with
mean 1/m. We define a measure-valued process by putting a delta function
at the location of each particle, and then dividing by m:

X
(m)
t (A) =

1
m

N(t)∑
i=1

δ
B

(i)
t

(A). (24)

Here δx is the delta measure centered at x. Suppose that X(m)
0 converges

weakly to µ as m→∞. The main existence theorem for superprocesses asserts
that in the appropriate topology, X(m)

t converges weakly to a limiting process
Xt.

The limiting superprocess Xt has many fascinating properties. For exam-
ple, in Rd with d ≥ 2, with probability one Xt is a measure whose support
has Hausdorff dimension 2. However, in R2 the measure Xt is singular with
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respect to Lebesgue measure. In fact, Perkins has determined the exact Haus-
dorff measure function, and we can loosely say that the Hausdorff dimension
of the support is infinitesimally less than 2, meaning that the exact Hausdorff
measure function is x2 with extra logarithmic terms. These properties and
more can be found in [6] and [33].

One important tool is the martingale problem formulation. For appropriate
functions ϕ on Rd, we denote

Zt(ϕ) = Xt(ϕ)−
∫ t

0

1
2
Xs(∆ϕ) ds. (25)

Then Zt(ϕ) is a continuous martingale with quadratic variation

〈Z〉t =
∫ t

0

Xs(ϕ2) ds. (26)

If ν is a measure, we write ν(ϕ) =
∫
ϕ(x) ν(dx). The martingale problem

allows us to use Ito calculus. Indeed, since Zt(ϕ) is a continuous martingale
with quadratic variation given by (26), we can use Ito calculus for Zt(ϕ). But
(25) gives Xt(ϕ) in terms of Zt(ϕ).

Even more important than the martingale problem is the Laplace func-
tional. It is an expansion of the duality relation for Feller’s diffusion explained
in Subsection 3.2. Suppose that v(t , x) satisfies

∂v

∂t
=

1
2

∆v − 1
2
v2 (27)

We can solve (27) for a wide variety of initial functions v(0, x), but suppose
v(0, x) is bounded and nonnegative, say 0 ≤ v(0, x) ≤M . Then we can replace
(27) by

∂v

∂t
=

1
2

∆v − M

2
v (28)

which is a linear equation and can be solved by standard PDE theory.

Exercise 3.9. Show that if 0 ≤ v(0, x) ≤ M , then a solution of (28) also
solves (27).

Under the appropriate conditions on v(0, x) and X0, for 0 ≤ t ≤ T ,

Mt = exp (−Xt(v(T − t , ·))) (29)

is a martingale. For example, we could assume that v(0, x) is nonnegative and
bounded.

Exercise 3.10. Under the assumption that v(0, x) is nonnegative and bounded,
show that Mt is a martingale.
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Therefore

E
[

exp (−XT (v(0 , ·)))
]

= exp (−X0(v(T , ·))) . (30)

In other words, Xt and v(t , ·) are in duality with respect to the function

H(X , v) = exp (−X(v)) . = exp
(
−
∫
v(x)X(dx)

)
. (31)

Exercise 3.11. Verify the above duality relation.

This duality relation gives very useful information about the Laplace trans-
form of Xt, and also proves uniqueness in law for the superprocess.

For x ∈ R1, the superprocess has a density Xt(dx) = u(t , x)dx which
satisfies

∂u

∂t
=

1
2

∆u+
√
u Ẇ (t , x). (32)

Thus, we have uniqueness in law for this equation. Almost sure uniqueness is
an unsolved problem which has attracted the attention of many of the best
probabilists, and I have heard at least two announcements of false proofs. The
lack of Ito’s lemma hurts us here.

3.8 Branching Brownian motion and a population equation

Consider a population with two types of genes, and let u(t , x) be the popula-
tion density of one type of individual at time t at position x. We assume that
individuals perform independent Brownian motions, so the population density
might be modeled by the heat equation. Due to mating between individuals,
there might be a random contribution to the population density. The vari-
ance of this random contribution should be proportional to the product of the
two population densities, namely u(1 − u). Therefore, its standard deviation
should be

√
u(1− u). This leads us to the following model on t ≥ 0, x ∈ R.

∂u

∂t
= ∆u+

√
u(1− u) Ẇ (t , x)

u(0 , x) = u0(x),
(33)

where 0 ≤ u0(x) ≤ 1. If there were no dependence on x, this equation would be
identical to (19). Using the duality we derived for (19), it is not hard to guess
that u(t , x) will be dual to a system of Brownian motions {Bi(t)}N(t)

i=1 , where
each pair of particles Bi(t), Bj(t) coalesce at exponential rate 1, measured with
respect to the local time at 0 for the process Bi(t)−Bj(t). To be specific, let
τ be an independent exponential variable with parameter 1, and let `i,j(t) be
the local time at 0 of Bi(t)−Bj(t). If there were no other particles, then the
particles Bi(t), Bj(t) would coalesce at time t for which `i,j(t) = τ . One has
the duality relation
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H
(
u , {bi}Ni=1

)
=

N∏
i=1

(1− u(bi)) , (34)

so that

E

N(0)∏
i=1

(
1− u(t , Bi(0))

) = E

N(t)∏
i=1

(
1− u(0 , Bi(t))

) . (35)

See [37] for details. Since we can choose {Bi(0)}N(0)
i=1 , this gives us a formula

for the moments of u(t , x). Notice that the moment equations are closed, since
there cannot be more particles at time t than at time 0.

Exercise 3.12. Compute the moments of u.

Also, if u(0 , x) ≈ 1, then the right side of (35) is close to 0 if there are
any particles near x. This gives us a way of relating the size of u(t , x) to the
probabilities of the Brownian particles.

Among other things, this duality relation gives uniqueness in law for (37).
In [27], this duality was used to study the width D(t) of the interface where
0 < u(t , x) < 1, assuming that u(0 , x) = 1(−∞,0](x). This interface was
proved to have stochastically finite width, that is

lim
λ→∞

sup
t≥0

P(D(t) > λ) = 0. (36)

At about the same time, and independently, Cox and Durrett [5] proved a
similar result for the long-range voter model. They also used duality.

3.9 Branching coalescing Brownian motion and the KPP equation
with noise

The KPP equation is one of the simplest equations exhibiting traveling wave
solutions.

∂u

∂t
= ∆u+ u(1− u),

u(0 , x) = u0(x).
(37)

Often, one takes u0(x) = 1(−∞,0](x). One can prove that there is a function
h(x) with limx→∞ h(x) = 0 and limx→−∞ h(x) = 1, and a function v(t)
satisfying limt→∞ v(t)/t = 2 for which

lim
t→∞

sup
x∈R
|u(t , x)− h(x− v(t))| = 0. (38)

Detailed properties of this equation have been derived by Bramson [1; 2] using
the Feynman-Kac formula. Suppose that {Bi(t)}∞i=1 is a collection of Brownian
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motions. At exponential rate 1, each particle splits in two. Then u(t , x) and
{Bi(t)}∞i=1 are in duality, and the duality function H(· , ·) is the same as in
(34). As a thought exercise, the reader may wish to verify that the cloud of
particles spread at about the same rate as u(t , x). Hint: fix x0 > 0, and let T
be the first time t that u(t , x) = 1/2. Start a single particle at position x0 at
time 0, and write down the duality equation.

If we consider the population model in the previous section, but suppose
that one type kills the other, there might be a drift term proportional to the
frequency of interactions, which is proportional to u(1 − u). This would give
us the equation

∂u

∂t
= ∆u+ u(1− u) +

√
u(1− u) Ẇ (t , x),

u(0 , x) = u0(x).
(39)

Combining the two previous types of duality, we might conjecture that
u(t , x) is dual to a system of Brownian particles, in which pairs of particles
Bi(t), Bj(t) coalesce at rate 1 according to the local time where Bi(t)−Bj(t) =
0, and each particle splits in two at an exponential rate with parameter 1.

This kind of duality is not easy to work with, but it does prove uniqueness
for (39). In [26], the traveling wave behavior for (39) was studied.

4 Large deviations for SPDEs

Roughly speaking, large deviations measures how far the solution of an SPDE
can get from the solution of the corresponding PDE. Either noise or time is
taken to be small. From another point of view, we might wish to see how
large the solution of an SPDE can be. If we know how large the solution of
the corresponding PDE is, then large deviations can give an upper bound for
the SPDE.

There are many excellent books on large deviations; our goal here is to
give an overview with emphasis on intuition. To start at the basic level, we
give a tail estimate for a N(0 , 1) random variable Z.

P(Z > λ) =
∫ ∞
λ

1√
2π

exp
(
−x

2

2

)
dx. (40)

Note that for a > 0 fixed,

lim
x→∞

exp
(
−(x+ a)2/2

)
exp (−x2/2)

= 0. (41)

So it seems reasonable that for large λ, the integral in (40) will be dominated
by values of x very close to λ, since the other values of the integrand are very
small in comparison. Then as λ→∞,
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− log P(Z > λ) ∼ − log
(

1√
2π

exp
(
−λ

2

2

))
∼ λ2

2
, (42)

in the sense that the ratio of the two sides tends to 1.

Exercise 4.1. Prove (42).

The large deviations philosophy states that as some parameter tends to 0
or ∞, the probability in question will be determined by a single point in the
probability space, along with a small neighborhood around it. In our example,
the point would be where Z = λ.

For SPDE, consider the following setup. Let

N(t , x) =
∫ t

0

∫
R

G(t− s , x− y)f(s , y)W (dy ds), (43)

where f(s , y) is a predictable random function, with the almost sure bound

sup
s,y
|f(s , y)| ≤ K. (44)

Here is our large deviations theorem.

Theorem 4.2. Let M > 0. There exist constants C1, C2 > 0 such that for all
T,K, λ > 0,

P

(
sup

0≤t≤T
sup
|x|≤M

|N(t , x)| > λ

)
≤ C1 exp

(
− C2λ

2

T 1/2K2

)
. (45)

Proof (Theorem 4.2). The reader should go back to Chapter 1, Chapter 4.2
of this book to see the similarities between Theorem 4.2 and Kolmogorov’s
continuity theorem. Theorem 4.2 can be proved from the Garsia–Rodemich–
Rumsey lemma [14], and the proof has much in common with similar ideas
from Gaussian processes. We prefer to give a proof from first principles, which
duplicates part of the proof of the Garsia–Rodemich–Rumsey lemma.

We need the fact that N(t , x) is continuous with probability 1. Actually,
this can be deduced from our proof below, but for simplicity, we refer the
reader to [38].

Next, observe that by scaling we can assume that K = 1. By cutting up
the x-axis into intervals of size 1 and adding the corresponding estimates, we
can reduce to the case where the supremum over x is taken on the interval
[0 , 1].

Furthermore, G and W have the following scaling for x ∈ R.

aG(a2t, ax) = G(t , x),

W (d(ax) , d(a2t)) D= a3/2W (dx , dt).
(46)
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By taking a = t−1/2 and using the above scaling and setting t = T , the reader
can verify that we need only prove the theorem for T = 1.

To summarize, we must show that if

sup
t,x
|f(t , x)| ≤ 1 almost surely, (47)

then there exist constants C1, C2 such that for all λ > 0 we have

P
(

sup
0≤t≤T,

sup
0≤x≤1

|N(t , x)| > λ

)
≤ C1 exp

(
−C2λ

2
)
. (48)

Recall that we have reduced to 0 ≤ x ≤ 1 by chopping up the interval
[−M,M ].

To prove (48), we need the following estimates.

Lemma 4.3. There exists a constant C such that for all 0 < s < t < 1 and
x, y ∈ [−1, 1] we have∫ t

0

∫
R

[Gt(x− z)−Gt(y − z)]2 dz ds ≤ C|x− y|,∫ t

s

Gt−r(z)2 dz dr ≤ C|t− s|1/2,∫ s

0

[Gt−r(z)−Gs−r(z)]2 dz dr ≤ C|t− s|1/2.

(49)

The proof of Lemma 4.3 is an exercise in calculus or perhaps real analysis.

Exercise 4.4. Verify Lemma 4.3.

The details can also be found in [38]. Observe that Lemma 4.3 has the
following corollary.

Corollary 4.5. Assume that |f(t , x)| ≤ 1 almost surely for all t, x. Then
there exist constants C1, C2 such that for all 0 < s < t < 1, x, y ∈ [−1 , 1],
and λ > 0,

P (|N(t , x)−N(t , y)| > λ) ≤ C1 exp
(
− C2λ

2

|x− y|

)
,

P (|N(t , x)−N(s , x)| > λ) ≤ C1 exp
(
− C2λ

2

|t− s|1/2

)
.

(50)

Proof. We prove only the first assertion of Corollary 4.5, leaving the second
assertion to the reader. Let
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N̄t(s , x) =
∫ s

0

∫
R

G(t− r , x− y)f(r , y)W (dy dr), (51)

and note that N̄t(t, x) = N(t, x). In other words, we have frozen the variable t
which occurs inside G, in order for the stochastic integral to be a martingale.
Let

Ms = N̄t(s , x)− N̄t(s , y) (52)

and note that Mt = N(t, x) − N(t, y). Thus Ms is a continuous martingale
and hence a time-changed Brownian motion, see [36]. By Lemma 4.3, we have

〈M〉t ≤ C|x− y|. (53)

Readers should convince themselves that the time scale of the time changed
Brownian motion is given by 〈M〉t. In other words, there is a Brownian motion
Bt such that Mt = B〈M〉t . Hence by the reflection principle for Brownian
motion,

P(N(t , x)−N(t , y) > λ) ≤ P(BC|x−y| > λ)

≤ C1 exp
(
− C2λ

2

|x− y|

)
.

(54)

The assertion in Corollary 4.5 then follows by making a similar estimate for
P(−N(t , x) +N(t , y) > λ). ut

Continuing with the proof of Theorem 4.2, we define the grid

Gn =
{(

j

22n
,
k

2n

)
: 0 ≤ j ≤ 22n, 0 ≤ k ≤ 2n

}
. (55)

We write (
t
(n)
j , x

(n)
k

)
=
(

j

22n
,
k

2n

)
. (56)

Two points (t(n)
ji
, x

(n)
ki

) : i = 1, 2 are nearest neighbors if either

1. j1 = j2 and |k1 − k2| = 1, or
2. |j1 − j2| = 1 and k1 = k2

Claim 1 Let p ∈ Gn for some n. There exists a path (0, 0) = p0, p1, . . . , pN =
p of points in Gn such that each pair pi−1, pi are nearest neighbors in some
grid Gm,m ≤ n. Furthermore, at most 4 such pairs are nearest neighbors in
any given grid Gm.

We will prove a one-dimensional version of the claim for x ∈ [0, 1], and
leave the rest to the reader. Let Hn = {k/2n : k = 0, . . . , 2n} denote the
dyadic rational numbers of order n lying in [0 , 1].



Parabolic stochastic partial differential equations 133

Claim 2 Let x ∈Hn. There exists a path 0 = p0, p1, . . . , pN = x of points in
Hn such that each pair pi−1, pi are nearest neighbors in some grid Hm,m ≤
n. Furthermore, at most one such pair consists of points which are nearest
neighbors in any given grid Hm.

Proof (Claim 2). Let
x = 0.x1x2 · · ·xn (57)

denote the binary expansion of x, that is, its expansion in base 2, and let

pm = 0.x1x2 · · ·xm. (58)

Then Claim 2 follows. Claim 1 is proved using a similar argument, where we
write p = (t, x), take the binary expansion of x, and the base 4 expansion of
t. ut

Exercise 4.6. Prove Claim 1.

Next, let K,α > 0, and let A(n , λ) be the event that for all nearest
neighbors p, q ∈ Gn we have

|N(p)−N(q)| ≤ λK2−(2−α)n. (59)

By Corollary 4.5, for each pair of nearest neighbors p, q ∈ Gn, we have

P
(
|N(p)−N(q)| > λK2−(2−α)n

)
≤ C1 exp

(
−C2λ

22(2−α)n
)
. (60)

Since there are 23n nearest neighbors in Gn, we have

P(Ac(n, λ)) ≤ C123n exp
(
−C2λ

22(2−α)n
)

≤ C3 exp
(
−C4λ

22(2−α)n
)
,

(61)

for appropriate constants C3, C4. Let A(λ) = ∪∞n=0A(n , λ). Summing the
previous estimates over n, we get

P(A(λ)c) ≤ C1 exp
(
−C2λ

2
)
, (62)

where C1, C2 might be different than before. Let p = (t , x). If A(λ) holds,
then using the path 0 = p0, . . . , pN = (t , x), we have

|N(t , x)| = |N(t , x)−N(0 , 0)| ≤
N∑
j=1

|N(pj−1)−N(pk)|

≤ 4
∞∑
j=1

λK2−(2−α)j ≤ CKλ ≤ λ,
(63)

with the appropriate choice of K. This proves (48) and hence finishes the
proof of Theorem 4.2. ut
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Exercise 4.7. Modify the proof of Theorem 4.2 to get the following modulus
of continuity for u(t, x): For all ε, T,M > 0 there exists K = K(ω, ε, T,M)
such that for all 0 ≤ s < t ≤ T and −M ≤ x < y ≤M , we have

|u(t , x)− u(s , x)| ≤ K|t− s|1/4−ε

|u(t , x)− u(t , y)| ≤ K|x− y|1/2−ε

5 A comparison theorem

The maximum principle is a powerful method for studying elliptic and
parabolic equations, and it can be used to prove comparison theorems of
the following type. For simplicity, let C be the circle [0 , 1] with endpoints
identified. Consider two solutions u1(t , x) and u2(t , x), t ≥ 0, x ∈ C , of the
heat equation

∂u

∂t
= ∆u. (64)

Here we assume that u(t , x) has periodic boundary conditions on [0, 1], that
is u(t , 0) = u(t , 1) and ux(t , 0) = ux(t , 1). Suppose that u1(0 , x) ≤ u2(0 , x).
Then for every t > 0 and x ∈ C , u1(t , x) ≤ u2(t , x). Indeed, let v(t , x) =
u1(t , x) − u2(t , x). Then v(0 , x) is nonpositive, and the maximum principle
states that since v satisfies the heat equation, its maximum must be attained
on the boundary of the domain, namely at t = 0. Thus, v(t , x) ≤ 0 for all
t ≥ 0 and x ∈ C , so u1(t , x) ≤ u2(t , x). This argument can be extended to
many semilinear heat equations, see [35].

For stochastic equations, comparison principles for finite dimensional diffu-
sions are known, see [16, Theorem 1.1, Chapter VI]. For example, suppose that
a(x), b(x) are Lipschitz functions, and that x0 ≤ y0. Suppose that X(t), Y (t)
satisfy

dX = a(X) dt+ b(X) dB,
dY = a(Y ) dt+ b(Y ) dB,
X0 = x0,

Y0 = y0.

(65)

Then with probability 1, for all t ≥ 0 we have Xt ≤ Yt.

Theorem 5.1. Let a(u), b(u) be Lipschitz functions on R, and consider solu-
tions u1(t , x), u2(t , x), t ≥ 0, x ∈ C to the SPDE

∂u

∂t
= ∆u+ a(u) + b(u)Ẇ , (66)

with u1(0 , x) ≤ u2(0 , x). Then with probability 1, for all t ≥ 0, x ∈ C , we
have

u1(t , x) ≤ u2(t , x). (67)
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Proof. We will only give an outline of the proof, and only for fixed t. A special
case is treated in [28, Section 3], but the proof carries over to our situation.
For other approaches, see [30] and [37].

All such proofs follow the same strategy: discretize the SPDE and then
use the comparison result for diffusions. Fix N > 0 and for k = 1, . . . , N let

ui,k,N (0) = N

∫ (k+1)/N

k/N

ui(0 , x) dx, (68)

where the interval [k/N , (k + 1)/N ] is taken to be a subset of C . Also, let

Bk(t) = N1/2

∫ t

0

∫ (k+1)/N

k/N

W (dx ds), (69)

and note that Bk(t) is a standard Brownian motion. Define the operator ∆(N)

by
∆(N)ui,k,N = N2 (ui,k+1,N − 2ui,k,N + ui,k−1,N ) . (70)

In other words, ∆(N) is the discrete Laplacian. Because of our periodic bound-
ary conditions, we let ui,N,N = ui,0,N .

We will construct ui,k,N (t) in stages. For j/N2 < t < (j + 1)/N2 and
j ≥ 0, let ui,k,N (t) satisfy

dui,k,N = a(ui,k,N ) dt+N1/2b(ui,k,N ) dBk. (71)

For t = j/N2, let

ui,k,N (t) = ui,k,N (t−) +
1
N2

∆(N)ui,k,N (t−) (72)

where the operator ∆(N) acts on k. Finally, for∣∣∣∣x− k

N2

∣∣∣∣ < 1
2N2

(73)

let vi,N (t, x) = ui,k,N (t). It can be shown that for any T > 0,

lim
N→∞

E

[∫ T

0

∫
C

|ui(t , x)− vi,N (t , x)|2 dx dt

]
= 0. (74)

Exercise 5.2. Verify (74).

Furthermore, the comparison theorem for diffusions from [16, Theorem
1.1, Chapter VI], and the positivity of the operator ∆(N) shows that with
probability 1, u1,k,N (t) ≤ u2,k,N (t). See [28, Section 3] for details.

Modulo the missing details, this gives us our comparison theorem. ut
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6 Applications

We give several applications of the preceding ideas.

6.1 Blow-up

Blow-up in finite time is a well-studied property for PDE, arising in such
applications as flame propagation and the shrinkage of an elastic string to a
point. In this section we will show that a certain SPDE does not blow up
in finite time. The basic idea is to show that if supx u(t , x) is large, then it
is more likely to decrease than increase. This intuitive idea is implemented
by comparison with a random walk whose steps have negative expectation.
Probabilities are controlled using large deviations. We express the solution as
a sum of two terms, bound one by large deviations, and bound the other by
elementary heat kernel estimates.

Consider the following SPDE on the circle C , which we take to be [0 , 1]
with endpoints identified. We impose periodic boundary conditions. Let γ ≥ 1.
Assume that u0(x) is a continuous and nonnegative function on C .

∂u

∂t
= ∆u+ uγẆ ,

u(0 , x) = u0(x) ≥ 0.
(75)

For this subsection, let G(t , x , y) denote the heat kernel on the circle. Equiva-
lently, we could consider G(t , x , y) to be the heat kernel on [0, 1] with periodic
boundary conditions.

Exercise 6.1. Show that

G(t , x , y) =
∑
n∈Z

[
G(t , x− y + 2n) +G(t , x+ y + 2n)

]
, (76)

where G(t , x) is the heat kernel on R.

As earlier, the rigorous meaning of (75) is given in terms of an integral
equation. Since we are concerned about blowup, we will truncate uγ . Let

uN (t , x) =
∫

C

G(t , x , y)u0(y) dy

+
∫ t

0

∫
C

G(t− s , x , y)(uN ∧N)γ(s , y)W (dy ds).
(77)

Since (uN∧N)γ is a Lipschitz function of N , the usual theory implies existence
and uniqueness for solutions uN to (77). See [38], Chapter 3, for example. Let
τN be the first time t ≥ 0 that uN (t , x) ≥ N for some x ∈ [0 , 1]. Then
we can construct uN : N = 1, 2, . . . on the same probability space, and the
limit τN ↑ τ exists almost surely. Note that almost surely, um(t , x) = un(t , x)
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as long as t < τm ∧ τn. Then we may define u(t, x) for t < τ by setting
u(t , x) = un(t, x) whenever t < τn for some n, and we see that τ ∈ [0 ,∞] is
the time at which supx u(t , x) =∞, and τ =∞ if u(t , x) never reaches ∞.

Definition 6.2. We say that u(t , x) blows up in finite time if τ <∞.

Then we have

Theorem 6.3. If γ < 3/2 then with probability 1, u(t , x) does not blow up in
finite time.

We remark that Krylov [18] has a different proof of Theorem 6.3, including
generalizations, based on his Lp theory of SPDE.

Proof (Theorem 6.3). First, we claim that

U(t) :=
∫

C

u(t , x) dx (78)

is a local martingale. It suffices to show that UN (t) :=
∫ 1

0
uN (t , x) dx is a

martingale for each N . Of course∫
C

G(t , x , y) dx = 1. (79)

Integrating (77) over x and using the stochastic Fubini’s lemma [38], we get

UN (t) =
∫

C

u0(y) dy +
∫ t

0

∫
C

(uN ∧N)γ(s , y)W (dy ds), (80)

which is a martingale.
Since U(t) is a nonnegative continuous local martingale, it must be

bounded, and so
U(t) ≤ K = K(ω). (81)

for some K(ω) < ∞ almost surely. We would like to study the maximum of
u(t, x) over x,

M(t) = sup
x∈C

u(t , x). (82)

Our goal is to show that M(t) does not reach∞ in finite time, with probability
1. To that end, we define a sequence of stopping times τn : n ≥ 0 as follows.
Let τ0 = 0, and for simplicity assume that M(0) = 1. Given τn, let τn+1 be
the first time t > τn such that M(t) equals either 2M(τn) or (1/2)M(τn).
The reader can easily verify that τn is well defined for all values of n. Next,
we wish to show that if M(τn) is large enough, say M(τn) > 2N0 for some
N0 > 0, then

P
(
M(τn+1) = 2M(τn)

∣∣∣Fn

)
<

1
3
. (83)
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Assuming (83), we can compare Zn = log2[M(τn)−N0] to a nearest-neighbor
random walk Rn, with P(Rn+1 = Rn + 1) = 1/3. In particular we claim
that Zn, Rn can be constructed on the same probability space such that the
following comparison holds. Let σn be the first time n such that Zn ≤ N0.
Then almost surely, for all n ≤ σN0 ,

Zn ≤ Rn.

Such a random walk Rn always returns to 0 if R0 > 0.

Exercise 6.4. Fill in the details of the above comparison.

Therefore, Zn either visits the level 2N0 infinitely often, or tends to 0.
If Zn → 0, then clearly u(t, x) does not blow up, either in finite or infinite
time. On the other hand, suppose Zn visits the level 2N0 infinitely often, at
the times τnk : k = 1, 2, . . .. We claim that there exists a constant C > 0
such that E[τnk+1 − τnk |Fn] > C for all k. This follows from the strong
Markov property of solutions, namely, if Ft is the σ-field generated by the
noise Ẇ (s, x) for time s ≤ t, then our solution u(t, x) is a Markov process.
It is intuitively clear that the heat equation starts afresh at any given time,
with the current solution as new initial value.

Exercise 6.5. Prove the Markov property of u(t , x) from (77).

Exercise 6.6. Give a full proof of the existence of the constant C mentioned
above.

Therefore limt→∞ τnk = ∞, and so with probability 1, u(t , x) does not
blow up in finite time.

Now we turn to the proof of (83). It suffices to consider u2m+1(t , x). Sup-
pose that M(τn) = 2m and let v(t , x) = u2m+1(τn + t, x). Using the strong
Markov property for u(t , x), and the fact that v(t , x) ≤ 2m+1, we have

v(t , x) =
∫

C

G(t , x , y)v(0 , y) dx

+
∫ t

0

∫
C

G(t− s , x , y)v(s , y)γW (y , s) dy ds

=: V1(t , x) + V2(t , x).

(84)

Note that by the maximum principle, supx V1(t, x) is nonincreasing. Our goal
is to choose a nonrandom time T such that for m large enough,

P
(

sup
0≤t≤T

sup
x∈C

V2(t , x) > 2m/4
)
<

1
3

(85)

and
sup
x∈C

V1(t , x) ≤ 2m/4. (86)
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Exercise 6.7. Check that (85) and (86) imply (83).

Now for the heat kernel G(t, x) on x ∈ R,

G(t , x− y) =
1√
4πt

exp
(
− (x− y)2

4t

)
≤ Ct−1/2 (87)

for C = (4π)−1/2.

Exercise 6.8. Use (76) and (87) to show that for some constant C > 0, the
heat kernel G(t , x , y) on C satisfies

G(t , x , y) ≤ Ct−1/2 (88)

for all t > 0, x, y ∈ C .

So for all x ∈ C we have

V1(t , x) ≤ Ct−1/2

∫
C

v(t , y) dy ≤ CKt−1/2, (89)

where K = K(ω) was our upper bound for the integral of u(t , x) over x.
Now choose K0 such that if A = {K(ω) > K0} then

P(A ) <
1
6
. (90)

Also choose
T = C2K2

02−m/2−6. (91)

This choice of T gives us (86).
Next we prove (85). Note that

u2m+1(t , x)γ ≤ C32γm (92)

We ask the reader to believe that Theorem 4.2 also holds for equations on C .
If this is granted, we have

P
(

sup
0≤t≤T

sup
x∈C

V2(t , x) > 2m/4
)

≤ P(A c) + C0 exp
(
− C1(2m/4)2

T 1/2(C32γm)1/2

)
≤ 1

6
+ C0 exp

(
−C42(m/2)(1−γ+(1/2))

)
(93)

But if γ < 3/2 then 1− γ + (1/2) > 0, and the above probability is less than
1/6 for m > m0 and m0 large enough.

This verifies (86), and finishes the proof of Theorem 6.3. ut
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6.2 Hitting zero

Next we determine the critical drift for an SPDE to hit 0, given that the
initial function is strictly positive and bounded away from 0. The argument is
similar to the proof of Theorem 6.3. We show that if infx u(t , x) is small, then
it is more likely to increase than decrease. We express the solution as a sum of
two terms, bound one by large deviations, and bound the other by elementary
heat kernel estimates. For t > 0, x ∈ C , we consider solutions u(t , x) to

∂u

∂t
= ∆u+ u−α + Ẇ (t , x)

u(0 , x) = u0(x)
(94)

where 0 < c < u0(x) < C for some constants c, C. The term u−α is singular
at u = 0, so once again we must restrict to 0 < t < τ where τ is the first time
t such that u(t, x) = 0. If there is no such time, we let τ =∞.

Theorem 6.9. Let A be the event that τ <∞, that is, u hits 0 in finite time.

1. If α > 3 then P(A ) = 0.
2. If α < 3 then P(A ) > 0.

Proof. We will only prove assertion (1). For (2) the reader can consult [25].
As in the previous section, our strategy is to compare infx log2 u(t , x) to a

nearest-neighbor random walk. To verify assertion (1), we need to show that
for u small enough, the random walk has a higher probability of moving up
than down.

Let I(t) = infx∈C u(t , x). We construct a sequence of stopping times τn :
n ≥ 0. Let τ0 = 0. Given τn, let τn+1 be the first time t > τn such that
I(t) = 2I(τn) or I(t) = (1/2)I(τn). Let Zn = log2 I(τn). Fix n, and let
v(t , x) = u(τn + t , x). Let An be the event that Zn+1 = Zn − 1. We claim
that for Zn small enough,

P
(
A c
n

∣∣∣Fτn

)
<

1
3
. (95)

First, by the comparison principle of Theorem 5.1, it is enough to show
(95) for v(0 , x) = I(τn). Let I(τn) = 2−m. Using the strong Markov property,
we can write

v(t , x) =
∫

C

G(t , x , y)v(0 , y) dx

+
∫ t

0

∫
C

G(t− s , x , y)v(s , y)−α dy ds

+
∫ t

0

∫
C

G(t− s , x , y)W (dy ds) dy ds

=: 2−m + V1(t , x) + V2(t , x).

(96)



Parabolic stochastic partial differential equations 141

Fix δ > 0, and let
T = 2−4m−2δ. (97)

Let B = B(T , τn) be the event that

sup
0≤t≤T

sup
x∈C
|V2(t , x)| ≤ 2−m−1. (98)

By Theorem 4.2 (for C ), we have

P (Bc) ≤ C0 exp
(
−C1(2−m−1)2

T 1/2

)
≤ C0 exp

(
−C22δm

)
<

1
3
,

(99)

if m is large enough.
We claim that on B,

sup
0<t<T

sup
x∈C
|V1(t , x)| ≤ 2m−1. (100)

Indeed, let vm(t , x) satisfy

vm(t , x) =
∫

C

G(t , x , y)v(0 , y) dx

+
∫ t

0

∫
C

G(t− s , x , y)
(
vm(s , y) ∨ 2−m−1

)−α
dy ds

+
∫ t

0

∫
C

G(t− s , x , y)W (dy ds).

(101)

Then vm(t , x) = v(t , x) for all x ∈ C and for all 0 < t < σm, where σm is the
first time s that

inf
x∈C

vm(s , x) ≤ 2−m−1. (102)

However, on the event B, since v(0 , x) ≡ 2−m, we see that

inf
0<t<T

inf
x∈C

vm(t , x) ≥ 2−m − sup
0<t<T

sup
x∈C
|V1(t , x)|

≥ 2−m−1,
(103)

by the definition of B. Therefore, on B, vm(t , x) = v(t , x) for 0 < t < T and
x ∈ C . It follows that on B, v(t , x) ≥ 2−m−1 for 0 < t < T and x ∈ C . It
follows that on B and for 0 < t < T and x ∈ C ,
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v(t , x) ≤
∫

C

G(t , x , y)v(0 , y) dx

+
∫ t

0

∫
C

G(t− s , x , y)
(
2−m−1

)−α
dy ds

+
∫ t

0

∫
C

G(t− s , x , y)W (dy ds)

≤ 2−m + CT2mα + 2−m−1

< 2−m+1.

(104)

for m large enough. Thus, if m is large enough,

P
(
Zn+1 = Zn + 1

∣∣∣Fn

)
≤ P(B) <

1
3
. (105)

This proves the comparison of Zn with a random walk, and finishes the proof
of Theorem 6.9. ut

Remark 6.10. Recently, Zambotti [39; 40] has found remarkable connections
between the problem of hitting 0 and the random string, which is a vector-
valued solution of the heat equation with noise.

6.3 Compact support

We all know that nonnegative solutions to the heat equation which are not
identically zero have support on all of Rd. It is therefore of great interest
that certain stochastic heat equations have solutions with compact support.
Intuitively, at the edge of the support the noise term dominates, so it has a
chance to push the solution to 0.

Consider solutions u(t , x), 0 ≤ t <∞, x ∈ R, to

∂u

∂t
= ∆u+ uγẆ (t , x)

u(0 , x) = u0(x),
(106)

where u0(x) is a continuous nonnegative function of compact support, and

1
2
< γ < 1. (107)

By an ingenious argument using duality, Mytnik [29] has proved uniqueness in
law. Actually, approximate duality is used, not exact duality. Roughly speak-
ing, the dual process v(t , x) satisfies

∂v

∂t
= ∆v + v1/γL̇(t , x)

v(0 , x) = v0(x) ≥ 0,
(108)
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where L̇(t , x) is a one-sided Lévy noise with positive jumps, of index 2γ. For
details, see [29]. Mytnik’s duality relation is

H(u , v) = exp
(
−
∫
R

u(x)v(x) dx
)
, (109)

which is one of the standard duality functions. (At least this last part is easy
to guess).

Theorem 6.11. With probability 1, u(t , x) has compact support in x for all
t ≥ 0.

Proof. We will mainly discuss the proof for γ = 1/2, which is much easier.
This argument is essentially due to Iscoe [15]. Let

v(x) =
{

12(x+R)−2 for x > −R
∞ for x ≤ −R. (110)

and note that for x > −R,

∆v(x) =
1
2
v(x)2. (111)

Define 0 · ∞ = 0, and let

Mt = exp
(
−
∫
R

v(x)u(t , x) dx
)
. (112)

By Ito’s lemma (see (9) and (10)), we have

dMt = Mt

(
−
∫
x∈R

[
v(x)∆u(t , x) +

1
2
v(x)2u(t , x)

]
dx

)
dt

−Mt

∫
x∈R

v(x)u(t , x)1/2W (dx dt)

= −Mt

∫
x∈R

v(x)u(t , x)1/2W (dx dt).

(113)

Here we have used the martingale problem formulation to do integration by
parts, ie to replace v∆u by u∆v. Then we used (111) to substitute for ∆v. Ac-
tually, to justify this calculation, we must truncate v(x) and let the truncation
level tend to ∞. We leave these details to the reader.

Thus Mt is a local martingale. Fix T > 0, and let τ be the infimum of
times t ≤ T for which ∫ R

−∞
u(t , x) dx > 0 (114)

and let τ = T if there is no such time. If τ < T , we say that u charges (−∞ , R]
before time T . Since 0 ≤Mt ≤ 1, we can apply the optional sampling theorem
to conclude that
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M0 = EMτ . (115)

Let A be the event that u does not charge (−∞ , R] before time T . Note that
on A c we have Mτ = 0, while on A we have Mτ ≤ 1. Therefore,

P(A ) ≥ EMτ = M0 = exp
(
−
∫
R

v(x)u(0 , x) dx
)

(116)

From (111) we see that v(x) = v(R , x) → 0 uniformly on compact intervals.
Since u(0 , x) is continuous with compact support, it follows that the right
hand side tends to 0 as R→∞. ut

For 1/2 < γ < 1, Mueller and Perkins [24] gave a more complicated
argument proving compact support in this situation, but one which gave in-
formation which has proved useful for other problems.

Note 6.12. Compact support can also occur in deterministic heat equations
such as

∂u

∂t
= ∆u− uρ (117)

when ρ < 1. Assume that u(t , x) is nonnegative. For small values of u, we
have uρ � u, so the final term can push the equation to 0. More complicated
equations of this type appear in chemical engineering, and the region where
u(t , x) = 0 is called a dead zone. Chemical engineers try to minimize the dead
zone, since no reactions take place there, and this leads to inefficient use of
the reactor vessel.

6.4 Noncompact support

On the other hand, some stochastic heat equations have solutions whose sup-
port is all of Rd. Note that in the following equation, no matter what the size
of u, the noise term is comparable to the other terms in the equation.

Theorem 6.13. Suppose that u(t , x), t ≥ 0, x ∈ R satisfies

∂u

∂t
= ∆u+ uẆ (t, x)

u(0 , x) = u0(x),
(118)

for u0(x) continuous, nonnegative, and not identically 0. Then with probability
1, u(t , x) > 0 for all t > 0, x ∈ R.

The assertion seems intuitively obvious, since solutions to the heat equa-
tion have support on all of R. However, the previous section shows that certain
heat equations can have solutions of compact support.
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Proof. Working with x ∈ R gives rise to technical complications, so let us
suppose that u(t, x) : x ∈ [−2R , 2R] satisfies

∂u

∂t
= ∆u+ uẆ (t , x),

u(t ,−2R) = u(t , 2R) = 0,
u(0 , x) = u0(x).

(119)

As before, we would give rigorous meaning to this equation in terms of the
following integral equation.

u(t , x) =
∫ 2R

−2R

GD(t , x , y)u0(y) dy

+
∫ t

0

∫ 2R

−2R

GD(t− s , x , y)u(s , y)W (dy ds),

(120)

where GD(t , x , y) is the fundamental solution to the heat equation on
[−2R , 2R] with Dirichlet boundary conditions. It is a standard fact that

GD(t , x , y) ≤ G(t , x− y). (121)

It is not hard to modify the proof of the comparison theorem, Theorem 5.1, to
show that the solution to (119) is less than or equal to the solution of (118).
From now on, let u(t , x) denote the solution to (119). It is enough to show
that with probability 1, u(t , x) satisfies

supp(u(t , ·)) ⊃ [−R ,R] (122)

for all t > 0.
Note that the equation is linear, so v(t , x) = cu(t , x) satisfies the same

equation, with different initial conditions, of course. We will subdivide time
into stages, and show that with high probability, at each stage the support
expands a little more.

Translating u(0 , x) if necessary, we may assume that u(0 , x) ≥ δ1[−a,a]

for some δ, a > 0. For simplicity, assume that a = 1. Let

St = supp(u(t , ·)) (123)

It suffices to show that for T,R, δ > 0,

[−R ,R] ⊂ ST . (124)

For simplicity we will present the proof for T = 1 and R > 2. Fix N > 0 and
let tk = Tk/N . Let Ak be the event that

u(tk , x) ≥ δIk(x) (125)

for some δ, where
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Ik(x) = 1
(
−1− Rk

N
≤ x ≤ 1 +

Rk

N

)
. (126)

Note that
IN (x) ≥ 1[−R,R](x). (127)

We wish to show that for all ε > 0, we can choose N so large that for all
k = 1, . . . , N

P
(
A c
k+1

∣∣∣A1 ∩ · · · ∩Ak

)
<

ε

N
. (128)

Note that A0 occurs by assumption. It would then follow that

P (A c
N ) ≤

N−1∑
k=0

P
(
A c
k+1

∣∣∣A1 ∩ · · · ∩Ak

)
≤ ε.

(129)

But
P
(
S1 ⊂ [−R ,R]

)
≥ P (AN ) ≥ 1− ε. (130)

and since ε is arbitrary, we would be done.
Now we turn to the proof of (128). Assuming that Ak occurs, we have

u(tk , x) ≥ δIk(x). By the comparison theorem, Theorem 5.1, it is enough to
show (128) assuming that u(tk, x) = δIk(x). Now let

vk(t , x) = (1/δ)u(tk + t , x), (131)

so that vk(t , x) satisfies (118), and vk(0 , x) = Ik(x). Let

η(N, k) =
∫ 2R

−2R

G(t , 1 + (k + 1)/N − y)vk(0 , y) dy, (132)

and let
η(N) = inf

0≤k≤N
η(N, k). (133)

We leave it to the reader to show that η(N, k) is increasing in k, so that
η(N) = η(N, 0) and that

η := inf
N
η(N) > 0. (134)

Hint: roughly speaking, the heat kernel spreads a distance 1/N1/2 in time
1/N , so it must be close to 1 at distance 1/N from the edge of the support of
the indicator function.

Next, let wk(t , x) satisfy

wk(t , x) =
∫ 2R

−2R

GD(t , x , y)Ik(y) dy

+
∫ t

0

∫ 2R

−2R

GD(t− s , x , y)u(s , y)W (dy ds),

(135)
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and let

Nw(t , x) =
∫ t

0

∫ 2R

−2R

GD(t− s , x , y)u(s , y)W (dy ds). (136)

In the same way as for Theorem 4.2, it is not hard to prove that if 0 < M < R,
then there exist constants C1, C2 > 0 such that for all T,K, λ > 0,

P

(
sup

0≤t≤T
sup
|x|≤M

|Nw(t , x)| > λ

)
≤ C1 exp

(
− C2λ

2

T 1/2K2

)
. (137)

Now let λ = η/2, and let T = 1/N . Thus, given ε, we can choose N so large
that the right hand side of (137) is less than ε.

This proves (128), and so finishes the proof of Theorem 6.13. ut
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Zürich, Birkhäuser-Verlag, Basel

[21] Thomas M. Liggett (1999). Stochastic Interacting Systems: Contact,
Voter and Exclusion Processes, Springer-Verlag, Berlin

[22] Thomas M. Liggett (2005). Interacting Particle Systems, Springer-Verlag,
Berlin. Reprint of the 1985 original.

[23] Jonathan C. Mattingly (2003). On recent progress for the stochastic
Navier Stokes equations, In: Journées “Équations aux Dérivées Par-
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Summary. Anisotropic Gaussian random fields arise in probability theory and in
various applications. Typical examples are fractional Brownian sheets, operator-
scaling Gaussian fields with stationary increments, and the solution to the stochastic
heat equation.

This paper is concerned with sample path properties of anisotropic Gaussian
random fields in general. Let X = {X(t), t ∈ RN} be a Gaussian random field
with values in Rd and with parameters H1, . . . , HN . Our goal is to characterize the
anisotropic nature of X in terms of its parameters explicitly.

Under some general conditions, we establish results on the modulus of continuity,
small ball probabilities, fractal dimensions, hitting probabilities and local times of
anisotropic Gaussian random fields. An important tool for our study is the various
forms of strong local nondeterminism.

1 Introduction

Gaussian random fields have been extensively studied in probability theory
and applied in a wide range of scientific areas including physics, engineer-
ing, hydrology, biology, economics and finance. Two of the most important
Gaussian random fields are respectively the Brownian sheet and fractional
Brownian motion.

The Brownian sheet W = {W (t), t ∈ RN
+}, which was first introduced by

a statistician J. Kitagawa in 1951, is a centered Gaussian random field with
values in Rd and covariance function given by

E
[
Wi(s)Wj(t)

]
= δij

N∏
k=1

(sk ∧ tk), ∀s, t ∈ RN
+ , (1)
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where δij = 1 if i = j and 0 if i 6= j. When N = 1, W is the ordinary
Brownian motion in Rd. For N ≥ 2, W has independent increments over
disjoint intervals in RN

+ and such increments are stationary. We refer to [1; 49]
for systematic accounts on properties of the Brownian sheet and to [94] and the
articles in this volume for its important roles in stochastic partial differential
equations.

For a fixed constant 0 < α < 1, an (N, d)-fractional Brownian motion
with index α is a centered Gaussian random field Xα = {Xα(t), t ∈ RN}
with values in Rd and covariance function given by

E
[
Xα
i (s)Xα

j (t)
]

=
1
2
δij

(
|s|2α + |t|2α − |s− t|2α

)
, ∀s, t ∈ RN , (2)

where |·| denotes the Euclidean norm in RN . The existence of Xα follows from
the positive semi-definiteness of the kernel on the right hand side of (2); see
[82] for a proof. When N = 1 and α = 1/2, Xα is again the Brownian motion
in Rd; when N > 1, α = 1/2 and d = 1, it is the multiparameter Brownian
motion introduced by P. Lévy; see [46; 82] for more historical information,
probabilistic and statistical properties of fractional Brownian motion.

By using (2) one can verify that Xα is self-similar with exponent α, i.e.
for every constant c > 0,{

Xα(ct), t ∈ RN
} d=

{
cαXα(t), t ∈ RN

}
, (3)

where d= means equality in finite dimensional distributions. Moreover, Xα has
stationary increments in the strong sense; see Section 8.1 of [82]. In particular,
X is isotropic in the sense that the distribution of X(s)−X(t) depends only on
the Euclidean distance |s−t|. Fractional Brownian motion is naturally related
to long range dependence which makes it important for modelling phenomena
with self-similarity and/or long memory properties. In the last decade the lit-
erature on statistical analysis and applications of fractional Brownian motion
has grown rapidly [30].

On the other hand, many data sets from various areas such as image pro-
cessing, hydrology, geostatistics and spatial statistics have anisotropic nature
in the sense that they have different geometric and probabilistic characteris-
tics along different directions, hence fractional Brownian motion is not ade-
quate for modelling such phenomena. Many people have proposed to apply
anisotropic Gaussian random fields as more realistic models [11; 18; 29].

Several classes of anisotropic Gaussian random fields have been intro-
duced for theoretical and application purposes. For example, Kamont [47]
introduced fractional Brownian sheets [see the definition in Section 2.1] and
studied some of their regularity properties. Benassi et al. [10] and Bonami
and Estrade [18] considered some anisotropic Gaussian random fields with
stationary increments. Biermé et al. [17] constructed a large class of opera-
tor self-similar Gaussian or stable random fields with stationary increments.
Anisotropic Gaussian random fields also arise naturally in stochastic partial
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differential equations [20; 73; 74; 75]; and in studying the most visited sites
of symmetric Markov processes [35]. Hence it is of importance in both theory
and applications to investigate the probabilistic and statistical properties of
anisotropic random fields.

This paper is concerned with sample path properties of anisotropic Gaus-
sian random fields in general. From the recent works on fractional Brownian
sheets [see Section 2.1 for a list of references] it is known that the behavior of
anisotropic Gaussian random fields may differ significantly from those of the
Brownian sheet and fractional Brownian motion. Our objective is to gather
and develop some general methods for studying the analytic and geometric
properties of anisotropic Gaussian fields. In particular our results are appli-
cable to the solutions of stochastic partial differential equations including the
stochastic heat and wave equations. In a similar vein, Pitt and Robeva [78],
Robeva and Pitt [79], Balan and Kim [8] have proposed to study the Markov
properties of (anisotropic) Gaussian random fields and the solutions to the
stochastic heat equations.

The rest of this paper is organized as follows. Section 2 contains definitions
and basic properties of several classes of anisotropic Gaussian random fields
including fractional Brownian sheets, Gaussian random fields with stationary
increments and solutions to stochastic partial differential equations. We also
provide the general conditions [i.e., Conditions (C1), (C2), (C3) and (C3′)]
for the Gaussian random fields that will be studied in this paper.

An important technical tool in this paper is the properties of strong local
nondeterminism for anisotropic Gaussian random fields, extending the con-
cept of local nondeterminism first introduced by Berman [14] for Gaussian
processes. In Section 3, we recall the recent result of Wu and Xiao [97] on
the property of sectorial local nondeterminism for fractional Brownian sheets;
and we prove a sufficient condition for an anisotropic Gaussian field with sta-
tionary increments to be strongly locally nondeterministic (with respect to an
appropriate metric).

Section 4 is concerned with analytic and asymptotic properties of the sam-
ple functions of anisotropic Gaussian fields. We summarize three methods for
deriving a sharp modulus of continuity for any anisotropic Gaussian random
field satisfying Condition (C1). The first method is to use an extension, due
to Arnold and Imkeller [2], Funaki, Kikuchi and Potthoff [39], Dalang, Khosh-
nevisan and Nualart [22], of the powerful Garsia-Rodemich-Rumsey continuity
lemma; the second is the “minorizing metric” method of Kwapień and Risiński
[60]; and the third is based on the Gaussian isoperimetric inequality. While
the first two methods have wider applicability, the third method produces
more precise results for Gaussian random fields.

Section 5 provides an application of strong local nondeterminism in study-
ing small ball probabilities of anisotropic Gaussian fields.

In Section 6, we consider the Hausdorff and packing dimensions of the
range X([0 , 1]N ) = {X(t) : t ∈ [0 , 1]N} and graph GrX([0 , 1]N ) = {(t,X(t)) :
t ∈ [0 , 1]N} of X. Due to anisotropy, these results are different from the
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corresponding results for fractional Brownian motion and the Brownian sheet.
We also establish an explicit formula for the Hausdorff dimension of the image
X(E) in terms of the generalized Hausdorff dimension of E (with respect to an
appropriate metric) and the Hurst index H. Moreover, when H = (α, . . . , α) ∈
(0 , 1)N , we prove the following uniform Hausdorff dimension result for the
images of X: If N ≤ αd, then with probability one,

dimH X(E) =
1
α

dimH E for all Borel sets E ⊆ (0 ,∞)N . (4)

This extends the previous results of [51; 70; 72] for fractional Brownian motion
and the Brownian sheet, respectively, and is another application of the strong
local nondeterminism.

In Section 7, we determine the Hausdorff and packing dimensions of the
level sets, and establish estimates on the hitting probabilities of Gaussian
random fields X satisfying Conditions (C1) and (C2).

In Section 8, we study the existence and joint continuity of local times of
anisotropic Gaussian random fields under Conditions (C3) and (C3′). More-
over, we discuss local and uniform Hölder conditions of the local times in
the set variable and show their applications in evaluating the exact Hausdorff
measure of the level sets of X.

We end the Introduction with some notation. Throughout this paper, the
underlying parameter space is RN or RN

+ = [0,∞)N . We use | · | to denote the
Euclidean norm in RN . The inner product and Lebesgue measure in RN are
denoted by 〈·, ·〉 and λN , respectively. A typical parameter, t ∈ RN is written
as t = (t1, . . . , tN ), or as 〈c〉 if t1 = · · · = tN = c. For any s, t ∈ RN such
that sj < tj (j = 1, . . . , N), [s, t] =

∏N
j=1 [sj , tj ] is called a closed interval

(or a rectangle). We will let A denote the class of all closed intervals in RN .
For two functions f and g, the notation f(t) � g(t) for t ∈ T means that
the function f(t)/g(t) is bounded from below and above by positive constants
that do not depend on t ∈ T .

We will use c to denote an unspecified positive and finite constant which
may not be the same in each occurrence. More specific constants in Section i
are numbered as c

i,1 , ci,2 , . . . .

2 Examples and general assumptions

In this section, we give some important examples of anisotropic Gaussian
random fields, among them, fractional Brownian sheets are the most studied.
We will show that the methods for studying fractional Brownian sheets can
be modified to investigate sample path properties of anisotropic Gaussian
random fields in general. In §2.4, we provide the general conditions for the
Gaussian random fields that will be studied in this paper.
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Even though anisotropic random fields generally do not satisfy the or-
dinary self-similarity (3), they may have certain operator-scaling properties.
Following the terminology of Biermé et al. [17], we say that a random field
X = {X(t), t ∈ RN} is operator-self-similar [or operator-scaling ] in the time
variable if there exist a linear operator A on RN with positive real parts of
the eigenvalues and some constant β > 0 such that{

X(cA t), t ∈ RN
} d=

{
cβ X(t), t ∈ RN

}
∀ c > 0. (5)

In the above, cA is the linear operator defined by cA =
∑∞
n=0(ln c)nAn/n!.

The linear operator A is called a self-similarity exponent [which may not be
unique].

There is also a notion of operator-self-similarity in the space variable [65;
98]. We will not discuss this topic in this paper.

2.1 Fractional Brownian sheets

Fractional Brownian sheets were first introduced by Kamont [47], who also
studied some of their regularity properties. For H = (H1, . . . ,HN ) ∈ (0 , 1)N ,
an (N , 1)-fractional Brownian sheet BH0 = {BH0 (t), t ∈ RN} with Hurst index
H is a real-valued, centered Gaussian random field with covariance function
given by

E
[
BH0 (s)BH0 (t)

]
=

N∏
j=1

1
2

(
|sj |2Hj + |tj |2Hj −|sj− tj |2Hj

)
, s, t ∈ RN . (6)

It follows from (6) that BH0 (t) = 0 a.s. for every t ∈ RN with at least one
zero coordinate.

Note that if N = 1, then BH0 is a fractional Brownian motion in R with
Hurst index H1 ∈ (0 , 1); if N > 1 and H = 〈1/2〉, then BH is the Brow-
nian sheet in R. Hence BH0 can be regarded as a natural generalization of
one parameter fractional Brownian motion as well as a generalization of the
Brownian sheet.

It follows from (6) that BH0 has the following operator-scaling property:
For all constants c > 0,{

BH0 (cAt), t ∈ RN
} d=

{
cN BH0 (t), t ∈ RN

}
, (7)

where A = (aij) is the N × N diagonal matrix with aii = 1/Hi for all 1 ≤
i ≤ N and aij = 0 if i 6= j. Thus, BH0 is operator-self-similar with exponent
A and β = N .

The covariance structure of BH0 is more complicated than those of frac-
tional Brownian motion and the Brownian sheet. The following stochastic
integral representations are useful. They were established by Ayache et al. [4]
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and Herbin [43], respectively, and can be verified by checking the covariance
functions.
• Moving average representation:

BH0 (t) = κ−1
H

∫ t1

−∞
· · ·
∫ tN

−∞
g(t , s)W (ds), (8)

where W = {W (s), s ∈ RN} is a standard real-valued Brownian sheet and

g(t, s) =
N∏
j=1

[(
(tj − sj)+

)Hj−1/2 −
(
(−sj)+

)Hj−1/2
]

with s+ = max{s , 0}, and where κ
H
> 0 is a normalization constant.

To give a harmonizable representation for BH0 , let us recall briefly the
definition of a complex-valued Gaussian measure. Let (E,E ,∆) be a measure
space and let A = {A ∈ E : ∆(A) < ∞}. We say that M̃ is a centered
complex-valued Gaussian measure on (E,E ,∆) if {M̃ (A), A ∈ A } is a cen-
tered complex-valued Gaussian process satisfying

E
(
M̃ (A)M̃ (B)

)
= ∆(A ∩B) and M̃ (−A) = M̃ (A), (9)

for all A, B ∈ A . The measure ∆ is called the control measure of M̃ .
For any complex valued function f̃ ∈ L2(E,E ,∆), the stochastic integral∫
E
f̃(ξ) M̃ (dξ) can be defined; see, e.g., Section 7.2.2 of [82]. With this no-

tion, we give the following:

• Harmonizable representation:

BH0 (t) = K−1
H

∫
RN

ψt(λ) W̃ (dλ), (10)

where W̃ is a centered complex-valued Gaussian random measure in RN with
Lebesgue control measure and

ψt(λ) =
N∏
j=1

eitjλj − 1
|λj |Hj+

1
2
, (11)

where K
H
> 0 is a constant. Recently, Wang [95] gives another stochastic

integral representation for BH0 .
Let BH1 , . . . , B

H
d be d independent copies of BH0 . Then the (N, d)-fractional

Brownian sheet with Hurst index H = (H1, . . . ,HN ) is the Gaussian random
field BH = {BH(t) : t ∈ RN} with values in Rd defined by

BH(t) =
(
BH1 (t), . . . , BHd (t)

)
, t ∈ RN . (12)
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Several authors have studied various properties of fractional Brownian
sheets. For example, Ayache et al. [4] provided the moving average represen-
tation (8) for BH0 and studied its sample path continuity as well as its con-
tinuity in H. Dunker [32], Mason and Shi [66], Belinski and Linde [9], Kühn
and Linde [59] studied the small ball probabilities of BH0 . Mason and Shi
[66] also computed the Hausdorff dimension of some exceptional sets related
to the oscillation of the sample paths of BH0 . Ayache and Taqqu [5] derived
an optimal wavelet series expansion for fractional Brownian sheet BH0 ; see
also [33; 59] for other optimal series expansions for BH0 . Øksendal and Zhang
[75], and Hu, Øksendal and Zhang [45] studied stochastic partial differential
equations driven by fractional Brownian sheets.

For fractal properties, Kamont [47] and Ayache [3] studied the box and
Hausdorff dimensions of the graph set of an (N, 1)-fractional Brownian sheet.
Ayache and Xiao [7] investigated the uniform and local asymptotic properties
of BH by using wavelet methods, and determined the Hausdorff dimensions
of the image BH([0 , 1]N ), the graph GrBH([0 , 1]N ) and the level set Lx =
{t ∈ (0 ,∞)N : BH(t) = x}, where x ∈ Rd. Further results on the geometric
and Fourier analytic properties of the images of BH can be found in Wu and
Xio [97].

Xiao and Zhang [110] studied the existence of local times of an (N, d)-
fractional Brownian sheet BH and proved a sufficient condition for the joint
continuity of the local times. Ayache, Wu and Xiao [6] established the joint
continuity of the local times under the optimal condition and studied the local
and uniform Hölder conditions for the maximum local times. Related to the
above results, we mention that Tudor and Xiao [93] have obtained results
on Hausdorff dimensions of the sample paths, local times and their chaos
expansion for (N, d)-bifractional Brownian sheets.

2.2 Anisotropic Gaussian random fields with stationary increments

Let X = {X(t), t ∈ RN} be a real-valued, centered Gaussian random field
with X(0) = 0. We assume that X has stationary increments and continu-
ous covariance function R(s , t) = E

[
X(s)X(t)

]
. According to Yaglom [111],

R(s, t) can be represented as

R(s, t) =
∫
RN

(ei〈s,ξ〉 − 1)(e−i〈t,ξ〉 − 1)∆(dξ) + 〈s ,Θt〉, (13)

where 〈x , y〉 is the ordinary inner product in RN , Θ is an N×N non-negative
definite matrix and ∆(dξ) is a nonnegative symmetric measure on RN\{0}
that satisfies ∫

RN

|ξ|2

1 + |ξ|2
∆(dξ) <∞. (14)

The measure ∆ and its density (if it exists) f(ξ) are called the spectral measure
and spectral density of X, respectively.
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It follows from (13) that X has the following stochastic integral represen-
tation:

X(t) =
∫
RN

(
ei〈t,ξ〉 − 1

)
M̃ (dξ) + 〈Y, t〉, (15)

where Y is anN -dimensional Gaussian random vector with mean 0 and covari-
ance matrix Θ, and where M̃ is a centered complex-valued Gaussian random
measure in RN with control measure ∆, which is independent of Y. Since
the linear term 〈Y, t〉 in (15) will not have any effect on the problems consid-
ered in this paper, we will from now on assume Y = 0. This is equivalent to
assuming Θ = 0 in (13). Consequently, we have

σ2(h) = E
[(
X(t+ h)−X(t)

)2] = 2
∫
RN

(
1− cos 〈h , ξ〉

)
∆(dξ). (16)

It is important to note that σ2(h) is a negative definite function [12] and, by
the Lévy-Khintchine formula, can be viewed as the characteristic exponent of
a symmetric infinitely divisible distribution.

If the function σ2(h) depends only on |h|, then X is called an isotropic ran-
dom field. We say that a Gaussian random field X is approximately isotropic
if σ2(h) � φ(|h|) in a neighborhood of h = 0 for some nonnegative function
φ. Sample path properties of such Gaussian random fields have been studied
widely. See [83; 102; 108] and the references therein for more information. The
results in [7; 97] on fractional Brownian sheets indicate that the properties
of anisotropic Gaussian random fields can be very different and often more
difficult to be established.

Many Gaussian random fields can be constructed by choosing the spectral
measures appropriately. For example, if we consider the spectral density

f(ξ) =
1(∑N

j=1 |ξj |Hj
)2+Q

∀ξ ∈ RN\{0}, (17)

where the constants Hj ∈ (0 , 1) for j = 1, . . . , N and Q =
∑N
j=1H

−1
j , then

the corresponding Gaussian random field X has stationary increments and is
operator-self-similar with exponent A = (aij), where aii = H−1

i and aij = 0
if i 6= j and β = 1. This Gaussian random field is similar to that in Example
3 of [18].

The following class of Gaussian random fields constructed by Biermé,
Meerschaert and Scheffler [17, Section 4] is more general.

Theorem 2.1. Let A be a real N ×N matrix with the real parts of the eigen-
values 1 < a1 ≤ a2 ≤ · · · ≤ aN and let Q = trace(A). If ψ : RN → [0 ,∞) is a
continuous, A′-homogeneous function [i.e., ψ(cA

′
ξ) = cψ(ξ) for all c > 0 and

ξ ∈ RN . Here A′ denotes the transpose of A] such that ψ(ξ) > 0 for ξ 6= 0.
Then the Gaussian random field

Xψ(t) = Re
∫
RN

(
ei〈t,ξ〉 − 1

) W̃ (dξ)
ψ(ξ)1+Q/2

, x ∈ RN , (18)
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where W̃ is a centered complex-valued Gaussian random measure in RN

with Lebesgue control measure, has stationary increments and is operator-
self-similar in the sense of (5) with exponent A and β = 1.

Compared with (15), we see that the spectral measure of Xψ is ∆(dξ) =
ψ(ξ)−(2+Q) dξ. As the results of this paper will suggest, the sample functions
of Xψ share many properties with fractional Brownian sheets and many of
them can be described in terms of the real parts of the eigenvalues of A. See
[15] for more details.

2.3 Solutions to stochastic partial differential equations

Gaussian random fields arise naturally as solutions to stochastic partial dif-
ferential equations. In the following we list as examples the solutions to the
stochastic heat equation and stochastic wave equation, and discuss possible
ways to study their sample path properties using general methods for Gaus-
sian random fields. We refer to [20; 21; 22; 23; 24; 27; 28; 73; 94], and the
articles in this volume for more information.

2.3.1 The stochastic heat equation
Funaki’s model for random string in R is specified by the following stochas-

tic heat equation:
∂u(t , x)
∂t

=
∂2u(t , x)
∂x2

+ Ẇ , (19)

where Ẇ (x , t) is an R-valued space-time white noise, which is assumed to be
adapted with respect to a filtered probability space (Ω,F ,Ft,P), where F
is complete and the filtration {Ft, t ≥ 0} is right continuous [38; 73].

Recall from [73] that a solution of (19) is defined as an Ft-adapted, con-
tinuous random field {u(t , x), t ∈ R+, x ∈ R} with values in R satisfying the
following properties:

(i) u(0 , ·) ∈ Eexp almost surely and is adapted to F0, where Eexp = ∪λ>0Eλ
and

Eλ =
{
f ∈ C(R) : |f(x)| e−λ|x| → 0 as |x| → ∞

}
;

(ii) For every t > 0, there exists λ > 0 such that u(s , ·) ∈ Eλ for all s ≤ t,
almost surely;

(iii) For every t > 0 and x ∈ R, the following Green’s function representation
holds

u(t , x) =
∫
R

G(t , x−y)u(0 , y) dy+
∫ t

0

∫
R

G(t− r , x−y)W (dy dr), (20)

where G(t , x) = (4πt)−1/2 exp{−x2/(4t)} is the fundamental solution of
the heat equation.



160 Y. Xiao

We call each solution {u(t , x), t ∈ R+, x ∈ R} of (19) a random string
process with values in R, or simply a random string as in [73]. Note that, in
general, a random string may not be Gaussian, a powerful step in the proofs of
[73] is to reduce the problems about a general random string process to those
of the stationary pinned string U0 = {U0(t , x), t ∈ R+, x ∈ R}, obtained by
taking the initial function u(0, ·) in (20) to be defined by

u(0 , x) =
∫ ∞

0

∫
R

(G(r , x− z)−G(r , z)) Ŵ (dz dr), (21)

where Ŵ is a space-time white noise independent of the white noise Ẇ . Con-
sequently, the stationary pinned string is a continuous version of the following
Gaussian field

U0(t , x) =
∫ ∞

0

∫
R

(
G(t+ r , x− z)−G(t+ r , z)

)
Ŵ (dz dr)

+
∫ t

0

∫
R

G(r , x− z)W (dz dr),
(22)

Mueller and Tribe [73] proved that the Gaussian field U0 = {U0(t , x), t ∈
R+, x ∈ R} has stationary increments and satisfies the Conditions (C1) and
(C2) in Section 2.4. Let U1, . . . , Ud be d independent copies of U0, and consider
the Gaussian random field U = {U(t , x), t ∈ R+, x ∈ R} with values in Rd

defined by U(t , x) = (U1(t , x) , . . . , Ud(t , x)). Mueller and Tribe [73] found
necessary and sufficient conditions [in terms of the dimension d] for U to hit
points or to have double points of various types. They also studied the question
of recurrence and transience for {U(t , x), t ∈ R+, x ∈ R}. Continuing the
work of Mueller and Tribe [73], Wu and Xiao [96] studied the fractal properties
of various random sets generated by the random string processes. Further
results on hitting probabilities of non-linear stochastic heat equations can be
found in [22; 23].

On the other hand, Robeva and Pitt [79, Proposition 3] showed that the
Gaussian random field

u0(t , x) =
1

2π

∫
R2

ei(ξ1t+ξ2x) − 1
iξ1 + ξ2

2

W̃ (dξ1 dξ2), ∀ t ∈ R+, x ∈ R (23)

is another solution to (19) satisfying u0(0 , 0) = 0. Here, W̃ is a centered
complex Gaussian random measure in R2 with Lebesgue control measure.
This Gaussian random field has stationary increments with spectral density

f(ξ) =
1

ξ2
1 + ξ4

2

. (24)

This density function is comparable to (17) with H1 = 1/4, H2 = 1/2
and Q = 6. Hence, it follows from Theorem 3.2 that the Gaussian field
{u0(t , x), t ∈ R+, x ∈ R} satisfies the Conditions (C1) and (C3′) in §2.4.
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If we define a (2 , d)-Gaussian random field {u(t , x), t ∈ R+, x ∈ R} by
u(t , x) = (u1(t , x) , . . . , ud(t , x)), where u1, . . . , ud are independent copies of
u0, then many of its sample path properties follow from the results in later
sections of this paper.

If x ∈ RN and N ≥ 2, the stochastic heat equation (19) has no process
solution [the solution is a random Schwartz distribution]. It might be helpful to
remark that our random field notation is different from that in the references
on s.p.d.e.’s: now the parameter (t , x) ∈ RN+1 and Rd is reserved for the
state space of random fields.

The approach of Dalang [20] is to replace Ẇ by a Gaussian noise Ḟ which
is white in time and has spatial covariance induced by a kernel f [not to be
confused with the spectral density above], which is the Fourier transform of a
tempered measure µ in RN . The covariance of F is of the form

E
(
F (dt dx)F (ds dy)

)
= δ(t− s)f(x− y), (25)

where δ(·) is the Dirac delta function. The case f(r) = δ(r) would correspond
to the case of space-time white noise. More precisely, let D(RN+1) be the
topological space of functions φ ∈ C∞0 (RN+1) with the topology that cor-
responds to the following notion of convergence: φn → φ if and only if the
following two conditions hold:

(i) There exists a compact set K ⊆ RN+1 such that supp(φn − φ) ⊆ K for
all n ≥ 1, and

(ii) limn→∞Daφn = Daφ uniformly on K for every multi-index a.

Let F = {F (φ), φ ∈ D(RN+1)} be an L2(Ω,F ,P)-valued, centered Gaussian
process with covariance of the form (φ, ψ) 7→ E

(
F (φ)F (ψ)

)
= J(φ, ψ), where

J(φ, ψ) =
∫
R+

dt

∫
RN

dx

∫
RN

φ(t , x)f(x− y)ψ(t , y) dy. (26)

As shown by Dalang [20], φ 7→ F (φ) can be extended to a worthy mar-
tingale measure (t, A) 7→Mt(A) in the sense of Walsh [94, pp. 289–290], with
covariance measure

Q([0, t]×A×B) = 〈M(A);M(B)〉t

= t

∫
RN

dx

∫
RN

1A(x)f(x− y)1B(y) dy,
(27)

and dominating measure K ≡ Q such that

F (φ) =
∫
R+

∫
RN

φ(t , x)M(dt dx), ∀φ ∈ D(RN+1). (28)

Moreover, Dalang [20] constructed generalized stochastic integrals with re-
spect to the martingale measure M .
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Now we consider the stochastic heat equation with vanishing initial con-
ditions, written formally as

∂u(t , x)
∂t

= ∆u(t , x) + Ḟ , ∀(t , x) ∈ (0 , T )×RN (29)

and u(0, ·) ≡ 0. Here T > 0 is any fixed constant and Ḟ is the Gaussian noise
defined above.

Dalang [20] proved that (29) has a process solution if and only if∫
RN

1
1 + |ξ|2

µ(dξ) <∞. (30)

Under this condition, the mean zero Gaussian field u = {u(t , x); t ∈ [0, T ], x ∈
RN} defined by

u(t , x) =
∫ T

0

∫
RN

G(t− s , x− y)M(ds dy) (31)

is the process solution of the stochastic heat equation (29) with vanishing
initial condition. In the above, G(r , x) = (4πr)−N/2 exp(−|x|2/(4r)) (r >
0, x ∈ RN ) is the fundamental solution of the heat equation.

Many interesting examples can be constructed by choosing µ(dξ) suitably
[8; 20]. As we mentioned in the Introduction, [8; 79] studied the Markov
property of the solution of stochastic heat equation (29). In view of the results
in this paper, it would be interesting to see when the solutions of (29) satisfy
Conditions (C3) or (C3′) in §2.4.

2.3.2 The stochastic wave equation
The stochastic wave equation in one spatial dimension [i.e., N = 1]

∂2u(t , x)
∂2t

− ∂2u(t , x)
∂x2

= Ẇ (t , x), t > 0, x ∈ R, (32)

driven by the white noise was considered by Walsh [94] and many other au-
thors [21; 24]. In spatial dimension two or higher, however, the stochastic wave
equation driven by the white noise has no solution in the space of real valued
measurable processes [94].

For N = 2, Dalang and Frangos [21] considered the stochastic wave equa-
tion driven by the Gaussian noise Ḟ with covariance (25):

∂2u(t , x)
∂t2

= ∆u(t , x) + Ḟ ,

u(0 , x) = 0, ∀(t , x) ∈ (0 ,∞)×R2.

∂u

∂t
(0 , x) = 0,

(33)
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They proved that (33) has a process solution u = {u(t , x) : t ≥ 0, x ∈ R2} if
and only if ∫

0+

f(r) r log
(1
r

)
dr <∞, (34)

where f is the kernel in (25). Under the latter condition, u = {u(t , x) : t ≥
0, x ∈ R2} can be represented as

u(t , x) =
∫ t

0

∫
R2
S(t− s , x− y)M(ds dy), (35)

where S(t , x) = (2π)−1(t2 − |x|2)−1/21{|x|<t}. Sample path regularity of the
solution {u(t , x) : t ≥ 0, x ∈ R2} has been investigated by Dalang and Frangos
[21] and Dalang and Sanz-Solé [27].

For the stochastic wave equation with spatial dimension three, we refer to
[24; 28] for information on the existence of a process solution and its sample
path regularities. It seems that, in all the cases considered so far, the questions
on fractal properties, existence and regularity of the local times of the solutions
remain to be investigated.

2.4 General assumptions

Let X = {X(t), t ∈ RN} be a Gaussian random field in Rd defined on some
probability space (Ω,F ,P) by

X(t) =
(
X1(t) , . . . , Xd(t)

)
, t ∈ RN , (36)

where X1, . . . , Xd are independent copies of X0. We assume that X0 is a mean
zero Gaussian random field with X0(0) = 0 a.s.

Let (H1, . . . ,HN ) ∈ (0 , 1)N be a fixed vector. In order to study anisotropic
Gaussian fields, we have found the following metric ρ on RN is often more
convenient than the Euclidean metric:

ρ(s, t) =
N∑
j=1

|sj − tj |Hj , ∀ s, t ∈ RN . (37)

For any r > 0 and t ∈ RN , we denote by Bρ(t, r) = {s ∈ RN : ρ(s , t) ≤ r}
the closed (or open) ball in the metric ρ.

Let I ∈ A be a fixed closed interval, and we will consider various sample
path properties of X(t) when t ∈ I. For simplicity we will mostly assume
I = [ε , 1]N , where ε ∈ (0 , 1) is fixed. Typically, the assumption for I to be
away from the axis is only needed for Gaussian fields similar to fractional
Brownian sheets. Even in these later cases, many results such as those on
Hausdorff and packing dimensions remain to be true for I = [0 , 1]N .

Many sample path properties of X can be determined by the following
function:

σ2(s , t) = E
(
|X0(s)−X0(t)|2

)
, ∀s, t ∈ RN . (38)

In this paper, we will make use of the following general conditions on X0:
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(C1) There exist positive constants c2,1 , . . . , c2,4 such that

c2,1 ≤ σ2(t) := σ2(0 , T ) ≤ c2,2 ∀ t ∈ I (39)

and

c2,3

N∑
j=1

|sj − tj |2Hj ≤ σ2(s , t) ≤ c2,4
N∑
j=1

|sj − tj |2Hj , (40)

for all s, t ∈ I. It may be helpful to note that (40) is in terms of ρ(s , t)2.
(C2) There exists a constant c2,5 > 0 such that for all s, t ∈ I,

Var
(
X0(t)

∣∣X0(s)
)
≥ c2,5 ρ(s , t)2.

Here and in the sequel, Var(Y |Z) denotes the conditional variance of Y
given Z.

(C3) There exists a constant c2,6 > 0 such that for all integers n ≥ 1 and all
u, t1, . . . , tn ∈ I,

Var
(
X0(u) | X0(t1), . . . , X0(tn)

)
≥ c2,6

N∑
j=1

min
0≤k≤n

∣∣uj − tkj ∣∣2Hj ,
where t0j = 0 for every j = 1, . . . , N .

(C3′) There exists a constant c2,7 > 0 such that for all integers n ≥ 1 and all
u, t1, . . . , tn ∈ I,

Var
(
X0(u) | X0(t1), . . . , X0(tn)

)
≥ c2,7 min

0≤k≤n
ρ(u, tk)2,

where t0 = 0.

Remark 2.2. The following are some remarks about the above conditions.

• Conditions (C1)–(C3) can be significantly weakened and/or modified in
various parts of the paper to obtain more general results. The present for-
mulation of these conditions has the advantage that it is more convenient
and produces cleaner results.

• Condition (39) assumes that X is non-degenerate on I. If (40) holds for
s = 0 as well, then (39) is true automatically.

• Under condition (C1), X has a version which has continuous sample func-
tions on I almost surely. Henceforth we will assume without loss of gener-
ality that the Gaussian random field X has continuous sample paths.

• Conditions (C1) and (C2) are related. It is easy to see that (C1) implies
that Var(X0(t) |X0(s)) ≤ c2,4

∑N
j=1 |sj − tj |2Hj for all s, t ∈ I and, on

the other hand, (C2) implies σ2(s, t) ≥ c2,5
∑N
j=1 |sj − tj |2Hj . Moreover,

if the function σ(0, t) satisfies certain smoothness condition, say, it has
continuous first order derivatives on I, then one can show that (C1) implies
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(C2) by using the following fact [which can be easily verified]: If (U , V ) is
a Gaussian vector, then

Var(U |V ) =

(
ρ2
U,V − (σU − σV )2

)(
(σU + σV )2 − ρ2

U,V

)
4σ2

V

, (41)

where ρ2
U,V = E[(U − V )2], σ2

U = E(U2) and σ2
V = E(V 2).

• Pitt [77] proved that fractional Brownian motion Xα satisfies Condition
(C3′) for all I ∈ A with H = 〈α〉; Khoshnevisan and Xiao [55] proved
that the Brownian sheet satisfies the property (C3) with H = 〈1/2〉 for
all I ∈ A which are away from the boundary of RN

+ . It has been proved
in [7; 97] that, for every ε ∈ (0 , 1), fractional Brownian sheets satisfy
Conditions (C1), (C2) and (C3) for all I ⊆ [ε ,∞)N .

• Let X be a Gaussian random field with stationary increments and spectral
density comparable to (17). Then one can verify that X satisfies Condition
(C1). In the next section, we will prove that X satisfies Condition (C3′)
[thus it also satisfies (C2)]. Therefore, all the results in this paper are
applicable to such Gaussian random fields.

• Note that Condition (C3′) implies (C3). It can be verified that the converse
does not even hold for the Brownian sheet [this is an exercise]. Roughly
speaking, when H = 〈α〉, the behavior of a Gaussian random field X sat-
isfying conditions (C1) and (C3′) is comparable to that of a fractional
Brownian motion of index α; while the behavior of a Gaussian random
field X satisfying conditions (C1) and (C3) [but not (C3′)] is comparable
to that of a fractional Brownian sheet. Hence, in analogy to the terminol-
ogy respectively for fractional Brownian motion and the Brownian sheet,
Condition (C3′) will be called the strong local nondeterminism [in metric
ρ] and Condition (C3) will be called the sectorial local nondeterminism.

• It is well-known that there is a close relation between Gaussian processes
and operators in Hilbert spaces [62]. Recently Linde [64] has extended the
notion of strong local nondeterminism to a linear operator u : H → C(T ),
where H is a real Hilbert space and C(T ) is the Banach space of contin-
uous functions on the compact metric space T , and applied this property
to derive a lower bound for the entropy number of u. As examples, Linde
[64] showed that the integral operators related to fractional Brownian mo-
tion and fractional Brownian sheets are strongly locally nondeterministic
in his sense. Following this line, it would be interesting to further study
the properties of strong local nondeterminism analogous to (C3) and (C3′)
for linear operators related to anisotropic Gaussian random fields such as
the solutions to the stochastic heat and wave equations.
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3 Properties of strong local nondeterminism

One of the main difficulties in studying sample path properties of anisotropic
Gaussian random fields such as fractional Brownian sheets is the complex-
ity of their dependence structure. For example, unlike fractional Brownian
motion which is locally nondeterministic [77] or the Brownian sheet which
has independent increments, a fractional Brownian sheet has neither of these
properties. The same is true for anisotropic Gaussian random fields in general.
The main technical tool which we will apply to study anisotropic Gaussian
random fields is the properties of strong local nondeterminism [SLND] and
sectorial local nondeterminism.

Recall that the concept of local nondeterminism was first introduced by
Berman [14] to unify and extend his methods for studying local times of
real-valued Gaussian processes, and then extended by Pitt [77] to Gaussian
random fields. The notion of strong local nondeterminism was later developed
to investigate the regularity of local times, small ball probabilities and other
sample path properties of Gaussian processes and Gaussian random fields. We
refer to [107; 108] for more information on the history and applications of the
properties of local nondeterminism.

For Gaussian random fields, the aforementioned properties of local non-
determinism can only be satisfied by those with approximate isotropy. It is
well-known that the Brownian sheet does not satisfy the properties of lo-
cal nondeterminism in the senses of Berman or Pitt. Because of this, many
problems for fractional Brownian motion and the Brownian sheet have to be
investigated using different methods.

Khoshnevisan and Xiao [55] have recently proved that the Brownian sheet
satisfies the sectorial local nondeterminism [i.e., (C3) with H = 〈1/2〉] and
applied this property to study various analytic and geometric properties of
the Brownian sheet; see also [51].

Wu and Xiao [97] extended the result of [55] and proved that fractional
Brownian sheet BH0 satisfies Condition (C3).

Theorem 3.1. Let BH0 = {BH0 (t), t ∈ RN} be an (N, 1)-fractional Brownian
sheet with index H = (H1, . . . ,HN ) ∈ (0 , 1)N . For any fixed number ε ∈
(0 , 1), there exists a positive constant c3,1 , depending on ε,H and N only,
such that for all positive integers n ≥ 1, and all u, t1, . . . , tn ∈ [ε, ∞)N , we
have

Var
(
BH0 (u)

∣∣ BH0 (t1) , . . . , BH0 (tn)
)
≥ c3,1

N∑
j=1

min
0≤k≤n

∣∣uj − tkj ∣∣2Hj , (42)

where t0j = 0 for j = 1, . . . , N .

Proof. While the argument of [55] relies on the property of independent
increments of the Brownian sheet and its connection to Brownian motion, the
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proof for BH0 is based on a Fourier analytic argument in [46, Chapter 18] and
the harmonizable representation (10) of BH0 . We refer to [97] for details. ut

Now we prove a sufficient condition for an anisotropic Gaussian random
field with stationary increments to satisfy Condition (C3′).

Theorem 3.2. Let X = {X(t), t ∈ RN} be a centered Gaussian random field
in R with stationary increments and spectral density f(λ). Assume that there
is a vector H = (H1, . . . ,HN ) ∈ (0 , 1)N such that

f(λ) � 1(∑N
j=1 |λj |Hj

)2+Q
∀λ ∈ RN\{0}, (43)

where Q =
∑N
j=1

1
Hj

. Then there exists a constant c3,2 > 0 such that for all
n ≥ 1, and all u, t1, . . . , tn ∈ RN ,

Var
(
X(u)

∣∣X(t1) , . . . , X(tn)
)
≥ c3,2 min

0≤k≤n
ρ(u , tk)2, (44)

where t0 = 0.

Remark 3.3. The following are some comments about Theorem 3.2.

(i) When H1 = · · · = HN , (44) is of the same form as the SLND of fractional
Brownian motion [77]. As shown by Xiao [102; 108] and Shieh and Xiao
[83], many sample path properties of such Gaussian random fields are
similar to those of fractional Brownian motion.

(ii) Condition (43) can be significantly weakened. In particular, one can prove
that similar results hold for Gaussian random fields with stationary incre-
ments and discrete spectrum measures; see [109] for details.

(iii) It would be interesting to study under which conditions the solutions to
the stochastic heat and wave equations (29) and (33) are strongly local
nondeterministic.

Proof of Theorem 3.2. Denote r ≡ min
0≤k≤n

ρ(u , tk). Since the conditional vari-

ance in (44) is the square of the L2(P)-distance of X(u) from the subspace
generated by {X(t1) , . . . , X(tn)}, it is sufficient to prove that for all ak ∈ R
(1 ≤ k ≤ n),

E

∣∣∣∣∣X(u)−
n∑
k=1

akX(tk)

∣∣∣∣∣
2
 ≥ c3,2 r2, (45)

and c3,2 > 0 is a constant which may only depend on H and N .
By the stochastic integral representation (15) of X, the left hand side of

(45) can be written as
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E

∣∣∣∣∣X(u)−
n∑
k=1

akX(tk)

∣∣∣∣∣
2


=
∫
RN

∣∣∣∣∣ei〈u,λ〉 − 1−
n∑
k=1

ak

(
ei〈t

k, λ〉 − 1
)∣∣∣∣∣

2

f(λ) dλ.

(46)

Hence, we need to only show that∫
RN

∣∣∣ei〈u,λ〉 − n∑
k=0

ak e
i〈tk, λ〉

∣∣∣2 f(λ) dλ ≥ c3,2 r2, (47)

where t0 = 0 and a0 = −1 +
∑n
k=1 ak.

Let δ(·) : RN → [0 , 1] be a function in C∞(RN ) such that δ(0) = 1 and
it vanishes outside the open ball Bρ(0 , 1) in the metric ρ. Denote by δ̂ the
Fourier transform of δ. Then δ̂(·) ∈ C∞(RN ) as well and δ̂(λ) decays rapidly
as |λ| → ∞.

Let E be the diagonal matrix with H−1
1 , . . . ,H−1

N on its diagonal and
let δr(t) = r−Qδ(r−Et). Then the inverse Fourier transform and a change of
variables yield

δr(t) = (2π)−N
∫
RN

e−i〈t,λ〉 δ̂(rEλ) dλ. (48)

Since min{ρ(u, tk) : 0 ≤ k ≤ n} ≥ r, we have δr(u−tk) = 0 for k = 0, 1, . . . , n.
This and (48) together imply that

J :=
∫
RN

(
ei〈u,λ〉 −

n∑
k=0

ak e
i〈tk,λ〉

)
e−i〈u,λ〉 δ̂(rEλ) dλ

= (2π)N
(
δr(0)−

n∑
k=0

ak δr(u− tk)
)

= (2π)N r−Q.

(49)

On the other hand, by the Cauchy–Schwarz inequality and (46), we have

J2 ≤
∫
RN

∣∣∣ei〈u,λ〉 − n∑
k=0

ak e
i〈tk,λ〉

∣∣∣2 f(λ) dλ ·
∫
RN

1
f(λ)

∣∣∣δ̂(rEλ)
∣∣∣2 dλ

≤ E

∣∣∣∣∣X(u)−
n∑
k=1

akX(tk)

∣∣∣∣∣
2
 · r−Q ∫

RN

1
f(r−E λ)

∣∣∣δ̂(λ)
∣∣∣2 dλ

≤ cE

∣∣∣∣∣X(u)−
n∑
k=1

akX(tk)

∣∣∣∣∣
2
 · r−2Q−2,

(50)

where c > 0 is a constant which may only depend on H and N .
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We square both sides of (49) and use (50) to obtain

(2π)2N r−2Q ≤ c r−2Q−2 E

∣∣∣∣∣X(u)−
n∑
k=1

akX(tk)

∣∣∣∣∣
2
 . (51)

Hence (47) holds. This finishes the proof of the theorem.

Given a Gaussian vector (Z1, . . . , Zn), we denote the determinant of its
covariance matrix by det Cov

(
Z1, . . . , Zn

)
. If det Cov

(
Z1, . . . , Zn

)
> 0, then

we have the identity

(2π)n/2

det Cov
(
Z1, . . . , Zn

) =
∫
Rn

E exp

(
−i

n∑
k=1

uk Zk

)
du1 · · · dun. (52)

By using the fact that, for every k, the conditional distribution of Zk given
Z1, . . . , Zk−1 is still Gaussian with mean E(Zk |Z1, . . . , Zk−1) and variance
Var(Zk |Z1, . . . , Zk−1), one can evaluate the integral in the right-hand side of
(52) and thus verify the following formula:

det Cov(Z1, . . . , Zn) = Var(Z1)
n∏
k=2

Var
(
Zk
∣∣Z1, . . . , Zk−1

)
. (53)

A little thought reveals that (53) still holds when det Cov
(
Z1, . . . , Zn

)
= 0.

Note that the left-hand side of (53) is permutation invariant for Z1, . . . , Zn,
one can represent det Cov(Z1, . . . , Zn) in terms of the conditional variances in
n! different ways.

Combined with (42) or (44), the identity (53) can be applied to estimate
the joint distribution of the Gaussian random variables X(t1), . . . , X(tn),
where t1, . . . , tn ∈ RN . This is why the properties of strong local nondeter-
minism are not only essential in this paper, but will also be useful in studying
self-intersection local times, exact Hausdorff measure of the sample paths and
other related problems [68; 69].

The following simple result will be needed in Section 8.

Lemma 3.4. Let X be a Gaussian random field satisfying Condition (C3′)
[resp., (C3)]. Then for all integers n ≥ 1 and for all distinct points t1, . . . , tn ∈
[ε , 1]N [resp., all points t1, . . . , tn ∈ [ε , 1]N with distinct coordinates, i.e.,
tki 6= tlj when (i , k) 6= (j , l)], the Gaussian random variables X(t1), . . . , X(tn)
are linearly independent.

Proof. We assume Condition (C3′) holds and let t1, . . . , tn ∈ [ε , 1]N be n
distinct points. Then it follows from (53) that det Cov

(
X(t1), . . . , X(tn)

)
>

0. This proves the lemma. Similar conclusion holds when Condition (C3) is
satisfied. ut
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4 Modulus of continuity

It is sufficient to consider real-valued Gaussian random fields. Ayache and
Xiao [7] established a sharp modulus of continuity (i.e., including the loga-
rithmic correction) for fractional Brownian sheets as a consequence of their
wavelet expansion for BH0 . Since the wavelet method depends on the stochas-
tic integral representation (8), it can not be easily applied to Gaussian random
fields in general. In this section, we describe several ways to establish sharp
modulus of continuity for all anisotropic Gaussian random fields satisfying
Condition (C1). The first two methods, i.e., the extended Garsia-Rodemich-
Rumsey continuity lemma and the minorization metric method of Kwapień
and Rosiński [60], can be applied to random fields which are not necessarily
Gaussian. Hence they can be more convenient when applied to solutions of
stochastic partial differential equations. The third method, which is based on
Dudley’s entropy theorem and the Gaussian isoperimetric inequality, provides
a stronger result in the sense that the upper bound is a constant instead of a
random variable [cf. (69)].

Theorem 4.1 is an extension of the well-known Garsia-Rodemich-Rumsey
continuity lemma [40]. It follows from Theorem 2.1 of [39], which is slightly
more general [because of its freedom in choosing the function p] than an
analogous result of [2]. A similar result can also be found in [22].

For our purpose, we have formulated Theorem 4.1 in terms of the metric
ρ defined in (37). Let T ⊆ RN be a fixed closed interval. For any r > 0 and
s ∈ T , recall that Bρ(s, r) =

{
t ∈ T : ρ(t, s) ≤ r} denotes the closed ball (in

T ) with center s and radius r in the metric ρ.

Theorem 4.1. Suppose that Y : T → R is a continuous mapping. If there
exist two strictly increasing functions Ψ and p on R+ with Ψ(0) = p(0) = 0
and lim

u→∞
Ψ(u) =∞ such that

K :=
∫
T

∫
T

Ψ
(
|Y (s)− Y (t)|
p(ρ(s , t))

)
ds dt <∞. (54)

Then for all s, t ∈ T , we have

∣∣Y (s)− Y (t)
∣∣ ≤ 8 max

z∈{s,t}

∫ ρ(s,t)

0

Ψ−1

(
4K

λN
(
Bρ(z , u)

)2) p̃(du), (55)

where p̃(u) = p(4u) for all u ∈ R+.

Applying Theorem 4.1, we prove the following theorem on the modulus of
continuity of an anisotropic Gaussian random field.

Theorem 4.2. Let X = {X(t), t ∈ RN} be a centered Gaussian field in R
satisfying Condition (C1). Then, almost surely, there exists a random variable
A depending on N and (H1, . . . ,HN ) only such that A has finite moments of
all orders and for all s, t ∈ I,
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|X(s)−X(t)| ≤ Aρ(s , t)
√

log
(
1 + ρ(s , t)−1

)
. (56)

Proof. In Theorem 4.1, let T = I and we choose the functions Ψ(x) =
exp

(
x2

4c2,3

)
− 1 and p(x) = x, where c2,3 > 0 is the constant in (40). It follows

from Condition (C1) that the random variable K in (54) has finite moments
of all orders and

E(K) = E
∫
I

∫
I

Ψ
(
|X(s)−X(t)|

ρ(s , t)

)
ds dt

≤
∫
I

∫
I

EΨ
(
c |ξ|

)
ds dt = c4,1 <∞.

(57)

In the above ξ is a standard normal random variable. Note that Ψ−1(u) =√
4c2,3 log(1 + u) and λN

(
Bρ(z , u)

)
� uQ is independent of z. Hence by The-

orem 4.1 we have

|X(s)−X(t)| ≤ c
∫ ρ(s,t)

0

√
log
(

1 +
4K
uQ

)
du

≤ Aρ(s, t)
√

log(1 + ρ(s , t)−1),

(58)

where A is a random variable depending on K and we can choose it so that
A ≤ c max{1, logK}. Thus all moments of A are finite. This finishes the proof
of Theorem 4.2. ut

Let X = {X(t), t ∈ T} be a stochastic process defined on a separable met-
ric space (T, d) and let ψ be a Young function [that is, ψ is strictly increasing,
convex and ψ(0) = 0]. Recently, Kwapień and Rosiński [60] investigated the
following problem: When can one find an appropriate metric τ on T such that
the implication

sup
s,t∈T

Eψ
(
|X(s)−X(t)|

d(s , t)

)
<∞ ⇒ sup

s,t∈T

|X(s)−X(t)|
τ(s , t)

<∞, a.s.

(59)
holds? Their results can be applied to derive sharp modulus of continuity for
a large class of stochastic processes including Gaussian random fields [but not
stable random fields].

Recall from [60] that a probability measure m on T is called a weakly
majorizing measure relative to ψ and the metric d if for all s, t ∈ T ,∫ d(s,t)

0

ψ−1

(
1

m(Bd(s , r))

)
dr <∞, (60)

where ψ−1 denotes the inverse function of ψ and Bd(s , r) = {t ∈ T : d(t , s) ≤
r}. For every weakly majorizing measure m, the “minorizing metric” τ =
τψ,d,m on T relative to ψ, d and m is defined as
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τ(s , t) = max

{∫ d(s,t)

0

ψ−1

(
1

m(Bd(s, r))

)
dr,

∫ d(t,s)

0

ψ−1

(
1

m(Bd(t, r))

)
dr

}
.

(61)

The following theorem of [60] gives a sufficient condition for (59) to hold.

Theorem 4.3. Let ψ be a Young function satisfying the following growth con-
dition:

ψ(x)ψ(y) ≤ ψ(c4,2(x+ y)) for all x, y ≥ 0, (62)

where c4,2 > 0 is a constant. Let m be a weakly majorizing measure relative
to ψ and d on T . Then there exists a positive constant c4,3 depending only on
ψ such that for every stochastic process X = {X(t), t ∈ T},

Eψ
(
c4,3 sup

s,t∈T

|X(s)−X(t)|
τ(s , t)

)
≤ 1 + sup

s,t∈T
Eψ
(
|X(s)−X(t)|

d(s , t)

)
, (63)

where τ is the minorizing metric relative to ψ, d and m.

Note that, for any α > 0, the function ψ(x) = xα does not satisfy the
growth condition (62), hence Theorem 4.3 is not applicable to stable random
fields.

By applying Theorem 4.3 to the metric space (I, ρ) in our setting, we can
provide more information about the random variable A in Theorem 4.2.

Corollary 4.4. Let X = {X(t), t ∈ RN} be a centered Gaussian field in R
satisfying Condition (C1). Then there exists a constant c4,4 > 0 such that

E exp

(
c4,4 sup

s,t∈I

|X(s)−X(t)|2

ρ2(s , t) log
(
1 + ρ(s , t)−1

)) <∞. (64)

Proof. This can be verified by showing that the Lebesgue measure on I is a
weakly majorizing measure relative to the Young function ψ(x) = ex

2 −1 and
the metric ρ; and the corresponding minorizing metric τ(s , t) satisfies

c4,5 ρ(s , t)
√

log
(
1 + ρ(s, t)−1

)
≤ τ(s , t) ≤ c4,6 ρ(s , t)

√
log
(
1 + ρ(s, t)−1

)
,

(65)
for all s, t ∈ I. We leave the details to an interested reader. ut

As a third method, we mention that it is also possible to obtain a uniform
modulus of continuity for a Gaussian random field satisfying Condition (C1)
by using the Gaussian isoperimetric inequality [85, Lemma 2.1]. To this end,
we introduce an auxiliary Gaussian random field Y = {Y (s , t) : t ∈ I, s ∈
[0, h]} defined by Y (t, s) = X(t + s) − X(t), where h ∈ (0 , 1)N . Then the
canonical metric d on T := I × [0, h] associated with Y satisfies the following
inequality:
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d
(
(t, s), (t′, s′)

)
≤ c min

{
ρ(0, s) + ρ(0, s′), ρ(s, s′) + ρ(t, t′)

}
. (66)

Denote the d-diameter of T byD. It follows from (66) thatD ≤ c4,7
∑N
j=1 h

Hj
j =

c4,7 ρ(0, h), and the d-covering number of T satisfies

Nd(T, ε) ≤ c
(

1
ε

)Q N∏
j=1

(
hj

ε1/Hj

)
≤ c4,8 ε−2Q.

One can verify that∫ D

0

√
logNd(T, ε) dε ≤ c4,9 ρ(0, h)

√
log
(
1 + ρ(0, h)−1

)
. (67)

It follows from Lemma 2.1 in [85] that for all u ≥ 2c4,9 ρ(0, h)
√

log
(
1 + ρ(0, h)−1

)
,

P
{

sup
(t,s)∈T

∣∣X(t+ s)−X(t)
∣∣ ≥ u} ≤ exp

(
− u2

D2

)
. (68)

By using (68) and a standard Borel-Cantelli argument, we can prove that

lim sup
|h|→0

supt∈I,s∈[0,h] |X(t+ s)−X(t)|
ρ(0, h)

√
log(1 + ρ(0, h)−1)

≤ c4,10 , (69)

where c4,10 > 0 is a finite constant depending on c2,4 , I and H only.
We believe that, for Gaussian random fields satisfying (C1), the rate func-

tion in (56) is sharp. This has been partly verified by Meerschaert, Wang and
Xiao [68] who proved that, if a Gaussian field X satisfies Conditions (C1) and
(C3), then

c4,11 ≤ lim sup
|h|→0

supt∈I,s∈[0,h] |X(s)−X(t)|
ρ(0, h)

√
log(1 + ρ(0, h)−1)

≤ c4,12 , (70)

where c4,11 and c4,12 are positive constants depending on c2,3 , c2,4 , I and H
only.

On the other hand, we can also use the above metric entropy method to
prove that, for all t0 ∈ I and u > 0 large enough,

P
{

sup
s∈[0,h]

∣∣X(t0 + s)−X(t0)
∣∣ ≥ ρ(0, h)u

}
≤ exp

(
− c4,13 u2

)
, (71)

where c4,13 is a positive constant depending on c2,4 , I and H only.
By using (71) and the Borel-Cantelli lemma, we derive the following local

modulus of continuity for Gaussian random fields satisfying (C1): There exists
a positive constant c4,14 such that for every t0 ∈ I,

lim sup
|h|→0

sups∈[0,h] |X(t0 + s)−X(t0)|
ρ(0, h)

√
log log(1 + ρ(0, h)−1)

≤ c4,14 , a.s. (72)
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Under certain mild conditions, it can be shown that (72) is sharp. For
example, Meerschaert, Wang and Xiao [68] proved that, if X is a Gaussian
random field with stationary increments and satisfies (C1), then for every
t0 ∈ I,

lim sup
|h|→0

sups∈[0,h] |X(t0 + s)−X(t0)|
ρ(0, h)

√
log log(1 + ρ(0, h)−1)

= c4,15 , a.s., (73)

where c4,15 is a positive constant.
We should mention that one can also study the uniform and local moduli

of continuity in terms of the increments of X over intervals. Related results
of this type for fractional Brownian sheets have been obtained by Wang [95].

In the special case when X is a direct sum of independent fractional Brow-
nian motions of indices H1, . . . ,HN , that is,

X(t) = X1(t1) + · · ·+XN (tN ), ∀ t = (t1, . . . , tN ) ∈ RN , (74)

where X1, . . . , XN are independent fractional Brownian motions in R of in-
dices H1, . . . ,HN , respectively, Kôno [58] established integral tests for the
uniform and local upper and lower classes. It is natural to ask whether his
results hold for more general anisotropic Gaussian random fields.

5 Small ball probabilities

In recent years, there has been much interest in studying the small ball prob-
abilities of Gaussian processes [62; 63]. Small ball properties of fractional
Brownian sheets have been considered by Dunker [32], Mason and Shi [66],
Belinski and Linde [9].

The small ball behavior of operator-scaling Gaussian random fields with
stationary increments and the solution to the stochastic heat equation is dif-
ferent, as shown by the following general result.

Theorem 5.1. Let X = {X(t), t ∈ RN} be a centered Gaussian field in R
satisfying Conditions (C1) and (C3′) on I = [0 , 1]N . Then there exist positive
constants c5,1 and c5,2 such that for all ε > 0,

exp
(
−
c5,1
εQ

)
≤ P

{
max

t∈[0,1]N
|X(t)| ≤ ε

}
≤ exp

(
−
c5,2
εQ

)
, (75)

where Q =
∑N
j=1

1
Hj

.

In order to prove the lower bound in (75), we will make use of the following
general result of [84], see also [61, p. 257].
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Lemma 5.2. Let Y = {Y (t), t ∈ T} be a real-valued Gaussian process with
mean zero and let d be the canonical metric on T defined by

d(s , t) =
{

E
(
|Y (s)− Y (t)|2

)}1/2
, s, t ∈ T, (76)

and denote by Nd(T, ε) the smallest number of d-balls of radius ε > 0 needed
to cover T . Assume that there is a nonnegative function ψ on R+ such that
Nd(T, ε) ≤ ψ(ε) for ε > 0 and such that

c5,3ψ(ε) ≤ ψ
(ε

2

)
≤ c5,4ψ(ε) (77)

for some constants 1 < c5,3 ≤ c5,4 <∞ and all ε > 0. Then there is a constant
c5,5 > 0 such that

P
{

sup
t,s∈T

|Y (t)− Y (s)| ≤ ε
}
≥ exp

(
− c5,5ψ(ε)

)
. (78)

Proof of Theorem 5.1. It follows from (C1) that for all ε ∈ (0 , 1),

Nρ(I, ε) ≤ c ε−Q := ψ(ε). (79)

Clearly ψ(ε) satisfies the condition (77). Hence the lower bound in (75) follows
from Lemma 5.2.

The proof of the upper bound in (75) is based on Condition (C3′) and a
conditioning argument in [71]. For any integer n ≥ 2, we divide [0 , 1]N into
nQ rectangles of side-lengths n−1/Hj (j = 1, . . . , N). We denote the lower-left
vertices of these rectangles (in any order) by tn,k (k = 1, 2, . . . , nQ). Then

P
{

max
t∈[0 ,1]N

|X(t)| ≤ ε
}
≤ P

{
max

1≤k≤nQ
|X(tn,k)| ≤ ε

}
. (80)

It follows from Condition (C3′) that for every 1 ≤ k ≤ nQ,

Var
(
X(tn,k)

∣∣X(tn,i), 1 ≤ i ≤ k − 1
)
≥ c n−1. (81)

This and Anderson’s inequality for Gaussian measures imply the following
upper bound for the conditional probabilities

P
{
|X(tn,k)| ≤ ε

∣∣∣ X(tn,j), 1 ≤ j ≤ k − 1
}
≤ Φ (cεn) , (82)

where Φ(x) is the distribution function of a standard normal random variable.
It follows from (80) and (82) that

P
{

max
t∈[0 ,1]N

|X(t)| ≤ ε
}
≤ [Φ(cεn)]n

Q

. (83)

By taking n = (cε)−1, we obtain the upper bound in (75).
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Remark 5.3. If H1 = H2 = · · · = HN , then (75) is of the same form as
the small ball probability estimates for multiparameter fractional Brownian
motion [62; 85].

Among many applications, Theorem 5.1 can be applied to establish Chung-
type laws of the iterated logarithm for anisotropic Gaussian random fields.
Moreover, it would also be interesting to investigate the small ball probabilities
ofX in other norms such as the L2 or Hölder norms; see [62; 63] for information
on Gaussian processes.

6 Hausdorff and packing dimensions of the range and
graph

In this section, we study the Hausdorff and packing dimensions of the range
X([0 , 1]N ) = {X(t) : t ∈ [0 , 1]N} and the graph GrX([0 , 1]N ) = {(t,X(t)) :
t ∈ [0 , 1]N} of a Gaussian random fieldX satisfying Condition (C1) on [0 , 1]N .

Hausdorff dimension and Hausdorff measure have been extensively used
in describing thin sets and fractals. For any set E ⊆ Rd and γ > 0, we will
denote the Hausdorff dimension and the γ-dimensional Hausdorff measure of
E by dimH E and H γ(E), respectively [36; 46; 67]. More generally, for any
nondecreasing, right continuous function ϕ : [0 , 1] → [0 ,∞) with ϕ(0) = 0,
one can define the Hausdorff measure of E with respect to ϕ and denoted it
by H ϕ(E). We say that a function ϕ is an exact Hausdorff measure function
for E if 0 < H ϕ(E) <∞.

Now we recall briefly the definition of capacity and its connection to Haus-
dorff dimension. A kernel κ is a measurable function κ : Rd ×Rd → [0 ,∞].
For a Borel measure µ on Rd, the energy of µ with respect to the kernel κ (in
short, κ energy of µ) is defined by

Eκ(µ) =
∫∫

κ(x , y)µ(dx)µ(dy). (84)

For any Borel set E ⊆ Rd, the capacity of E with respect to κ, denoted by
Cκ(E), is defined by

Cκ(E) =
[

inf
µ∈P(E)

Eκ(µ)
]−1

, (85)

where P(E) is the family of probability measures carried by E, and, by
convention,∞−1 = 0. Note that Cκ(E) > 0 if and only if there is a probability
measure µ on E with finite κ-energy. We will mostly consider the case when
κ(x, y) = f(|x−y|), where f is a non-negative and non-increasing function on
R+. In particular, if

f(r) =

{
r−α if α > 0,
log
( e

r ∧ 1

)
if α = 0, (86)
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then the corresponding Eκ(µ) and Cκ(E) will be denoted by Eα(µ) and
Cα(E)respectively; and the former will be called the α-energy of µ and the
latter will be called the Bessel–Riesz capacity of E of order α. The capacity
dimension of E is defined by

dimc(E) = sup{α > 0 : Cα(E) > 0}. (87)

The well-known Frostman’s theorem (see [46, p. 133] or [49]) states that
dimH E = dimc(E) for every compact set E in Rd. This result provides a
very useful analytic way for the lower bound calculation of Hausdorff dimen-
sion. That is, for E ⊆ Rd in order to show dimH E ≥ α, one only needs to
find a measure µ on E such that the α-energy of µ is finite. For many deter-
ministic and random sets such as self-similar sets or the range of a stochastic
process, there are natural choices of µ. This argument is usually referred to
as the capacity argument.

Packing dimension and packing measure were introduced by Tricot [92] and
Taylor and Tricot [89] as dual concepts to Hausdorff dimension and Hausdorff
measure. We only recall briefly a definition of packing dimension, which will
be denoted by dimP . For any ε > 0 and any bounded set F ⊆ Rd, let N(F, ε)
be the smallest number of balls of radius ε needed to cover F . Then the upper
box-counting dimension of F is defined as

dimBF = lim sup
ε→0

logN(F, ε)
− log ε

. (88)

The packing dimension of F can be defined by

dimPF = inf
{

sup
n

dimBFn : F ⊆
∞⋃
n=1

Fn

}
. (89)

It is known that for any bounded set F ⊆ Rd,

dimH F ≤ dimPF ≤ dimBF ≤ d. (90)

Further information on packing dimension and packing measure can be found
in [36; 67]. We mention that various tools from fractal geometry have been ap-
plied to studying sample path properties of stochastic processes since 1950’s.
The survey papers [88] and [106] summarize various fractal properties of ran-
dom sets related to sample paths of Markov processes.

Throughout the rest of this paper, we will assume that

0 < H1 ≤ . . . ≤ HN < 1. (91)

Theorem 6.1. Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian field satisfy-
ing Condition (C1) on I = [0 , 1]N . Then, with probability 1,
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dimH X
(
[0 , 1]N

)
= dimPX

(
[0 , 1]N

)
= min

{
d;

N∑
j=1

1
Hj

}
(92)

and

dimH GrX
(
[0 , 1]N

)
= dimP GrX

(
[0 , 1]N

)
= min

{ k∑
j=1

Hk

Hj
+N − k + (1−Hk)d, 1 ≤ k ≤ N ;

N∑
j=1

1
Hj

}
(93)

=

{∑N
j=1H

−1
j , if

∑N
j=1H

−1
j ≤ d,∑k

j=1(Hk/Hj) +N − k + (1−Hk)d, if
∑k−1
j=1 H

−1
j ≤ d <

∑k
j=1H

−1
j ,

where
∑0
j=1H

−1
j := 0.

The last equality in (93) is verified by the following lemma, whose proof
is elementary and is omitted. Denote

κ := min


k∑
j=1

Hk

Hj
+N − k + (1−Hk)d , 1 ≤ k ≤ N ;

N∑
j=1

1
Hj

 . (94)

Lemma 6.2. Assume (91) holds. We have

(i) If d ≥
∑N
j=1H

−1
j , then κ =

∑N
j=1H

−1
j .

(ii) If
∑`−1
j=1H

−1
j ≤ d <

∑`
j=1H

−1
j for some 1 ≤ ` ≤ N , then

κ =
∑̀
j=1

H`

Hj
+N − `+ (1−H`)d (95)

and κ ∈ (N − `+ d ,N − `+ d+ 1].

Because of (90) we can divide the proof of Theorem 6.1 into proving the
upper bounds for the upper box dimensions and the lower bounds for the
Hausdorff dimensions separately. The proofs are similar to those in [7] for
fractional Brownian sheets. In the following, we first show that the upper
bounds for dimBX([0 , 1]N ) and dimBGrX([0 , 1]N ) follow from Theorem 4.2
and a covering argument.
Proof of the upper bounds in Theorem 6.1. In order to prove the upper bound
in (92), we note that clearly dimBX([0 , 1]N ) ≤ d a.s., so it suffices to prove
the following inequality:

dimBX
(
[0 , 1]N

)
≤

N∑
j=1

1
Hj

, a.s. (96)
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For any constants 0 < γj < Hj (1 ≤ j ≤ N), it follows from Theorem 4.2
that there is a random variable A of finite moments of all orders such that for
almost all ω ∈ Ω,

sup
s,t∈[0 ,1]N

|X(s , ω)−X(t , ω)|∑N
j=1 |sj − tj |γj

≤ A(ω). (97)

We fix an ω such that (97) holds and then suppress it. For any integer
n ≥ 2, we divide [0 , 1]N into mn sub-rectangles {Rn,i} with sides parallel to
the axes and side-lengths n−1/Hj (j = 1, . . . , N), respectively. Then

mn ≤ c6,1 n
PN
j=1(1/Hj) (98)

and X([0 , 1]N ) can be covered by X(Rn,i) (1 ≤ i ≤ mn). By (97), we see that
the diameter of the image X(Rn,i) satisfies

diamX(Rn,i) ≤ c6,2 n−1+δ, (99)

where δ = max{(Hj−γj)/Hj , 1 ≤ j ≤ N}. Consequently, for εn = c6,2 n
−1+δ,

X([0 , 1]N ) can be covered by at most mn balls in Rd of radius εn. That is,

N
(
X
(
[0 , 1]N

)
, εn

)
≤ c6,1 n

PN
j=1(1/Hj). (100)

This implies

dimBX
(
[0 , 1]N

)
≤ 1

1− δ

N∑
j=1

1
Hj

, a.s. (101)

By letting γj ↑ Hj along rational numbers, we have δ ↓ 0 and (96) follows
from (101).

Now we turn to the proof of the upper bound in (93). We will show that
there are several different ways to cover GrX([0 , 1]N ) by balls in RN+d of the
same radius, each of which leads to an upper bound for dimBGrX([0 , 1]N ).

For each fixed integer n ≥ 2, we have

GrX
(
[0 , 1]N

)
⊆

mn⋃
i=1

Rn,i ×X(Rn,i). (102)

It follows from (99) and (102) that GrX([0 , 1]N ) can be covered by mn balls
in RN+d with radius c6,2 n

−1+δ and the same argument as the above yields

dimBGrX
(
[0 , 1]N

)
≤

N∑
j=1

1
Hj

, a.s. (103)

We fix an integer 1 ≤ k ≤ N . Observe that each Rn,i × X(Rn,i) can be
covered by `n,k balls (or cubes) in RN+d of radius (or side-length) n−(1/Hk),
where by (97) we have
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`n,k ≤ c n
PN
j=k(H−1

k −H
−1
j ) × n(H−1

k −1+δ)d, a.s. (104)

Hence GrX([0 , 1]N ) can be covered by mn × `n,k balls in RN+d with radius
n−(1/Hk). Consequently,

dimBGrX
(
[0 , 1]N

)
≤

k∑
j=1

Hk

Hj
+N − k + (1−Hk + δHk)d, a.s. (105)

Letting γj ↑ Hj along rational numbers, we derive that for every k = 1, . . . , N ,

dimBGrX
(
[0 , 1]N

)
≤

k∑
j=1

Hk

Hj
+N − k + (1−Hk)d. (106)

Combining (103) and (106) yields the upper bound in (93).

For proving the lower bounds in Theorem 6.1, we will make use of the
following elementary Lemmas 6.3 and 6.4. The former is proved in [110, p.
212] which will be used to derive a lower bound for dimH X([0 , 1]N ); the
latter is proved in [7] which will be needed for determining a lower bound for
dimH GrX([0 , 1]N ). Both lemmas will be useful in the proof of Theorem 7.1
in Section 7.

Lemma 6.3. Let 0 < α < 1 and ε > 0 be given constants. Then for any
constants δ > 2α, M > 0 and p > 0, there exists a positive and finite constant
c6,3 , depending on ε, δ, p and M only, such that for all 0 < A ≤M ,∫ 1

ε

ds

∫ 1

ε

dt(
A+ |s− t|2α

)p ≤ c6,3 (A−(p− 1
δ ) + 1

)
. (107)

Lemma 6.4. Let α, β and η be positive constants. For A > 0 and B > 0, let

J := J(A,B) =
∫ 1

0

dt

(A+ tα)β(B + t)η
. (108)

Then there exist finite constants c6,4 and c6,5 , depending on α, β, η only, such
that the following hold for all real numbers A, B > 0 satisfying A1/α ≤ c6,3 B:

(i) If αβ > 1, then

J ≤ c6,5
1

Aβ−α−1Bη
; (109)

(ii) If αβ = 1, then

J ≤ c6,5
1
Bη

log
(
1 +BA−1/α

)
; (110)
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(iii) If 0 < αβ < 1 and αβ + η 6= 1, then

J ≤ c6,5
( 1
Bαβ+η−1

+ 1
)
. (111)

Proof of of the lower bounds in Theorem 6.1. First we prove the lower bound
in (92). Note that for any ε ∈ (0 , 1), dimH X([0 , 1]N ) ≥ dimH X([ε , 1]N ).
It is sufficient to show that dimH X([ε , 1]N ) ≥ γ a.s. for every 0 < γ <

min{d,
∑N
j=1

1
Hj
}.

Let µX be the image measure of the Lebesgue measure on [ε , 1]N under
the mapping t 7→ X(t). Then the energy of µX of order γ can be written as∫

Rd

∫
Rd

µX(dx)µX(dy)
|x− y|γ

=
∫

[ε ,1]N

∫
[ε,1]N

ds dt

|X(s)−X(t)|γ
.

Hence by Frostman’s theorem [46, Chapter 10], it is sufficient to show that
for every 0 < γ < min{d,

∑N
j=1

1
Hj
},

Eγ =
∫

[ε,1]N

∫
[ε,1]N

E
(

1
|X(s)−X(t)|γ

)
ds dt <∞. (112)

Since 0 < γ < d, we have 0 < E(|Ξ|−γ) < ∞, where Ξ is a standard d-
dimensional normal vector. Combining this fact with Condition (C1), we have

Eγ ≤ c
∫ 1

ε

ds1

∫ 1

ε

dt1 · · ·
∫ 1

ε

dsN

∫ 1

ε

dtN(∑N
j=1 |sj − tj |2Hj

)γ/2 . (113)

We choose positive constants δ2, . . . , δN such that δj > 2Hj for each 2 ≤ j ≤ N
and

1
δ2

+ · · ·+ 1
δN

<
γ

2
<

1
2H1

+
1
δ2

+ · · ·+ 1
δN

. (114)

This is possible since γ <
∑N
j=1(1/Hj). By applying Lemma 6.3 to (113) with

A =
N−1∑
j=1

|sj − tj |2Hj and p = γ/2, (115)

we find that Eγ is at most c6,6 plus c6,6 times∫ 1

ε

ds1 · · ·
∫ 1

ε

dsN−1

∫ 1

ε

dtN−1(∑N−1
j=1 |sj − tj |2Hj

)(γ/2)−(1/δN )
. (116)

By repeatedly using Lemma 6.3 to the integral in (116) for N − 2 steps, we
deduce that
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Eγ ≤ c6,7 + c6,7

∫ 1

ε

ds1

∫ 1

ε

dt1(
|s1 − t1|2H1

)(γ/2)−((1/δ2)+···+(1/δN ))
. (117)

Since the δj ’s satisfy (114), we have 2H1[γ/2 − (δ−1
2 + · · · + δ−1

N )] < 1. Thus
the integral in the right hand side of (117) is finite. This proves (112), and
(92) follows.

Now we prove the lower bound in (93). Since dimH GrX([0 , 1]N ) ≥
dimH X([0 , 1]N ) always holds, we only need to consider the case when

k−1∑
j=1

1
Hj
≤ d <

k∑
j=1

1
Hj

for some 1 ≤ k ≤ N. (118)

Here and in the sequel,
∑0
j=1(1/Hj) = 0.

Let 0 < ε < 1 and 0 < γ <
∑k
j=1(Hk/Hj) + N − k + (1 − Hk)d be

fixed, but arbitrary, constants. By Lemma 6.2, we may and will assume γ ∈
(N − k + d ,N − k + d + 1). In order to prove dimH GrX([ε , 1]N ) ≥ γ a.s.,
again by Frostman’s theorem, it is sufficient to show

Gγ =
∫

[ε,1]N

∫
[ε,1]N

E

[
1(

|s− t|2 + |X(s)−X(t)|2
)γ/2

]
ds dt <∞. (119)

Since γ > d, we note that for a standard normal vector Ξ in Rd and any
number a ∈ R,

E

[
1(

a2 + |Ξ|2
)γ/2

]
≤ c6,8 a−(γ−d), (120)

see [46, p. 279]. Consequently, we derive that

Gγ ≤ c6,8
∫

[ε,1]N

∫
[ε,1]N

ds dt

σ(s , t)d |s− t|γ−d
, (121)

where σ2(s , t) = E
[
(X1(s) − X1(t))2

]
. By Condition (C1) and a change of

variables, we have

Gγ ≤ c6,9
∫ 1

0

dtN · · ·
∫ 1

0

dt1(∑N
j=1 t

Hj
j

)d (∑N
j=1 tj

)γ−d . (122)

In order to show the integral in (122) is finite, we will integrate [dt1], . . . , [dtk]
iteratively. Furthermore, we will assume k > 1 in (118) [If k = 1, we can use
(111) to obtain (126) directly].

We integrate [dt1] first. Since H1d > 1, we can use (109) of Lemma 6.4
with A =

∑N
j=2 t

Hj
j and B =

∑N
j=2 tj to get

Gγ ≤ c6,10
∫ 1

0

dtN · · ·
∫ 1

0

dt2(∑N
j=2 t

Hj
j

)d−(1/H1) (∑N
j=2 tj

)γ−d . (123)
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We can repeat this procedure for integrating dt2, . . . , dtk−1. Note that if d =∑k−1
j=1 (1/Hj), then we need to use (110) to integrate [dtk−1] and obtain

Gγ ≤ c6,11
∫ 1

0

dtN · · ·
∫ 1

0

1(∑N
j=k tj

)γ−d log
(

1 +
1∑N
j=k tj

)
dtk <∞. (124)

Note that the last integral is finite since γ − d < N − k + 1. On the other
hand, if d >

∑k−1
j=1 (1/Hj), then (109) gives

Gγ ≤ c6,12
∫ 1

0

dtN · · ·
∫ 1

0

dtk(∑N
j=k t

Hj
j

)d−Pk−1
j=1 (1/Hj) (∑N

j=k tj
)γ−d . (125)

We integrate [dtk] in (125) and by using (111), we see that Gγ is bounded
above by

c6,13

[ ∫ 1

0

dtN · · ·
∫ 1

0

dtk+1(∑N
j=k+1 tj

)γ−d+Hk(d−
Pk−1
j=1 (1/Hj))−1

+ 1
]
<∞, (126)

since γ − d+Hk(d−
∑k−1
j=1 (1/Hj))− 1 < N − k. Combining (124) and (126)

yields (119). This completes the proof of Theorem 6.1.

There are several possible ways to strengthen and extend Theorem 6.1. For
example, it would be interesting to determine the exact Hausdorff and pack-
ing measure functions for the range X([0 , 1]N ) and graph GrX([0 , 1]N ) for
anisotropic Gaussian random fields. When X is the Brownian sheet or a frac-
tional Brownian motion, the problems on exact Hausdorff measure functions
have been considered by Ehm [34], Talagrand [85; 86], Xiao [99; 101; 102].
Here is a summary of the known results:

(i) Let Xα = {Xα(t), t ∈ RN} be an (N, d)-fractional Brownian motion of
index α. If N < αd, then ϕ1(r) = rN/α log log 1/r ia an exact Haus-
dorff measure function for the range and graph of Xα. If N > αd, then
Xα([0 , 1]N ) a.s. has positive Lebesgue measure and interior points; and

ϕ2(r) = rN+(1−α)d
(

log log 1/r
)αd
N is an exact Hausdorff measure function

for the graph of Xα. If N = αd, then H ϕ3(Xα([0 , 1]N )) is σ-finite almost
surely, where ϕ3(r) = rd log(1/r) log log log 1/r. In the latter case the same
is also true for the Hausdorff measure of the graph set of Xα(t). However,
the lower bound problems for the Hausdorff measure of the range and
graph remain open.

(ii) Let W = {W (t), t ∈ RN
+} be the Brownian sheet in Rd. If 2N < d, then

ϕ4(r) = r2N
(

log log 1/r
)N ia an exact Hausdorff measure function for the

range and graph of W . If 2N > d, then W ([0 , 1]N ) a.s. has interior points
and ϕ5(r) = rN+ d

2 (log log 1/r)
d
2 is an exact Hausdorff measure function for

the graph of W . When 2N = d, the problems for finding exact Hausdorff
measure functions for the range and graph of W are completely open.
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It is interesting to notice the subtle differences in the exact Hausdorff functions
for the range and graph sets of fractional Brownian motion and the Brownian
sheet, respectively. I believe the differences are a reflection of the two different
types of local nondeterminism that they satisfy.

We remark that the methods in the aforementioned references rely respec-
tively on specific properties of the Brownian sheet and fractional Brownian
motion, and it is not clear whether these methods are applicable to Gaus-
sian random fields satisfying (C3) or (C3′). It would be interesting to develop
general methods that are applicable to larger classes of (Gaussian) random
fields.

The problems on exact packing measure functions for X([0 , 1]N ) and
GrX([0 , 1]N ) are related to the liminf properties of the occupation mea-
sures of X and are more difficult to study. When X is an (N, d)-fractional
Brownian motion of index α and N < αd, Xiao [100; 105] proved that
ϕ6(r) = rN/α(log log 1/r)−N/(2α) is an exact packing measure function for
X([0 , 1]N ) and GrX([0 , 1]N ). For all the other Gaussian fields including the
Brownian sheet, the corresponding problems remain to be open.

On the other hand, it is a natural question to find dimH X(E) when E ⊆
RN is an arbitrary Borel set, say a fractal set. It is not hard to see that, due to
the anisotropy of X, the Hausdorff dimension of X(E) can not be determined
by dimH E and the index H alone, as shown by Example 6.6 below. This is in
contrast with the cases of fractional Brownian motion or the Brownian sheet.

We start with the following Proposition 6.5 which determines dimH X(E)
when E belongs to a special class of Borel sets in RN . Since the proof is
almost the same as that of Proposition 3.1 in [97], we omit the proof.

Proposition 6.5. Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian random
field satisfying Condition (C1) on I = [0 , 1]N with parameters (H1, . . . ,HN ).
Assume that Ej (j = 1, . . . , N) are Borel subsets of (0 , 1) satisfying the follow-
ing property: ∃ {j1, . . . , jN−1} ⊆ {1, . . . , N} such that dimH Ejk = dimPEjk
for k = 1, . . . , N − 1. Let E = E1 × · · · × EN ⊆ RN , then we have

dimH X(E) = min
{
d;

N∑
j=1

dimH Ej
Hj

}
, a.s. (127)

The following simple example illustrates that, in general, dimH E alone is
not enough to determine the Hausdorff dimension of X(E).

Example 6.6. Let X = {X(t), t ∈ R2} be a (2, d)-Gaussian field with index
H = (H1, H2) and H1 < H2. Let E = E1 × E2 and F = E2 × E1, where
E1 ⊆ (0 , 1) satisfies dimH E1 = dimPE1 and E2 ⊆ (0 , 1) is arbitrary. It is
well known that

dimH E = dimH E1 + dimH E2 = dimH F. (128)

See [36, p. 94]. However, by Proposition 6.5 we have
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dimH X(E) = min
{
d ;

dimH E1

H1
+

dimH E2

H2

}
, (129)

and

dimH X(F ) = min
{
d ;

dimH E2

H1
+

dimH E1

H2

}
. (130)

We see that dimH X(E) 6= dimH X(F ) in general unless dimH E1 = dimH E2.

Example 6.6 shows that for determining dimH X(E), we need to have more
information about the geometry of E than its Hausdorff dimension.

In order to solve the problem for finding the Hausdorff dimension of the
image BH(E) of fractional Brownian sheet BH , Wu and Xiao [97] applied a
measure-theoretic approach and introduced a notion of Hausdorff dimension
contour for finite Borel measures and Borel sets.

Recall that the Hausdorff dimension of a Borel measure µ on RN (or lower
Hausdorff dimension as it is sometimes called) is defined by

dimH µ = inf
{

dimH F : µ(F ) > 0 and F ⊆ RN is a Borel set
}
. (131)

Hu and Taylor [44] proved the following characterization of dimH µ: If µ
is a finite Borel measure on RN , then

dimH µ = sup

{
γ ≥ 0 : lim sup

r→0+

µ
(
B(t , r)

)
rγ

= 0 for µ-a.e. t ∈ RN

}
, (132)

where B(t , r) = {s ∈ RN : |s− t| ≤ r}. It can be verified that for every Borel
set E ⊆ RN , we have

dimH E = sup
{

dimH µ : µ ∈M +
c (E)

}
, (133)

where M +
c (E) denotes the family of finite Borel measures on E with compact

support in E.
From (132), we note that dimH µ only describes the local behavior of µ

in an isotropic way and is not quite informative if µ is highly anisotropic. To
overcome this difficulty, Wu and Xiao [97] introduce the following notion of
“dimension” for E ⊆ (0 ,∞)N that is natural for studying X(E).

Definition 6.7. Given a Borel probability measure µ on RN , we define the
set Λµ ⊆ RN

+ by

Λµ =
{
λ = (λ1, . . . , λN ) ∈ RN

+ : lim sup
r→0+

µ (R(t , r))
r〈λ,H−1〉 = 0 for µ-a.e. t ∈ RN

}
,

where R(t , r) =
∏N
j=1[tj − r1/Hj , tj + r1/Hj ] and H−1 = (H−1

1 , . . . ,H−1
N ).

The following lemma is proved in [97], which summarizes some basic prop-
erties of Λµ. Recall that H1 = min{Hj : 1 ≤ j ≤ N}.
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Lemma 6.8. Λµ has the following properties:

(i) The set Λµ is bounded:

Λµ ⊆
{
λ = (λ1, . . . , λN ) ∈ RN

+ : 〈λ ,H−1〉 ≤ N

H1

}
. (134)

(ii) For all β ∈ (0 , 1]N and λ ∈ Λµ, the Hadamard product of β and λ,
β ◦ λ = (β1λ1, . . . , βNλN ) ∈ Λµ.

(iii)Λµ is convex; i.e., bλ+ (1− b)η ∈ Λµ for all λ, η ∈ Λµ and 0 < b < 1.
(iv) For every a ∈ (0 ,∞)N , supλ∈Λµ 〈λ , a〉 is achieved on the boundary of Λµ.

We call the boundary of Λµ, denoted by ∂Λµ, the Hausdorff dimension
contour of µ. See [97] for some examples for determining ∂Λµ.

For any Borel set E ⊆ RN , we define

Λ(E) =
⋃

µ∈M+
c (E)

Λµ. (135)

Similar to the case for measures, we call the set ∪µ∈M+
c (E)∂Λµ the Haus-

dorff dimension contour of E. It follows from Lemma 6.8 that, for every
a ∈ (0 ,∞)N , the supermum supλ∈Λ(E) 〈λ, a〉 is determined by the Hausdorff
dimension contour of E.

The same proof of Theorem 3.10 in [97] yields the following result.

Theorem 6.9. Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian random field
satisfying Condition (C1) on I = [0 , 1]N . Then for every Borel set E ⊆
[0 , 1]N ,

dimH X(E) = min{d, s(H,E)} a.s., (136)

where s(H,E) = supλ∈Λ(E) 〈λ ,H−1〉 = supµ∈M+
c (E) sµ(E).

In the following, we give a more direct approach. Our results yield more
geometric information about the quantity s(H,E) as well.

For an arbitrary vector (H1, . . . ,HN ) ∈ (0 , 1)N , we consider the metric
space (RN , ρ), where ρ is defined by (37). For any β > 0 and E ⊆ RN , define
the β-dimensional Hausdorff measure [in the metric ρ] of E by

H β
ρ (E) = lim

δ→0
inf
{ ∞∑
n=1

(2rn)β : E ⊆
∞⋃
n=1

Bρ(rn), rn ≤ δ
}
. (137)

This is a metric outer measure and all Borel sets are H β
ρ -measurable. The

corresponding Hausdorff dimension of E is defined by

dimρ
H
E = inf

{
β > 0 : H β

ρ (E) = 0
}
. (138)

In some special cases, Hausdorff measure and dimension of this type have
been applied by Kaufman [48], Hawkes [42], Taylor and Watson [90], and Tes-
tard [91] to study the hitting probability of space-time processes of Brownian
motion and other processes.
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Note that the metric space (RN , ρ) is complete and separable. Hence the
following generalized Frostman’s lemma is a consequence of Theorem 8.17 in
[67] and a remark on page 117 of the same reference. It can also be proved by
using a 1977 result of Assouad [46, p. 137] on the quasi-helix and the classical
Frostman’s lemma; see [91, p. 4] for a special case.

Lemma 6.10. For any Borel set E ⊆ RN , H β
ρ (E) > 0 if and only if there

exist a Borel probability measure on E and a positive constant c such that
µ(Bρ(x , r)) ≤ c rβ for all x ∈ RN and r > 0.

We can now prove an equivalent result to Theorem 6.9, which extends the
Hausdorff dimension result for the range of X in Theorem 6.1.

Theorem 6.11. Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian random
field satisfying Condition (C1) on I = [0 , 1]N . Then for every Borel set E ⊆
[0 , 1]N ,

dimH X(E) = min{d ; dimρ
H
E} a.s. (139)

Proof. Since the idea for proving (139) is quite standard, we only give a sketch
of it. For any γ > dimρ

H
E, there is a covering {Bρ(rn), n ≥ 1} of E such

that
∑∞
n=1(2rn)γ ≤ 1. Note that X(E) ⊆ ∪∞n=1X

(
Bρ(rn)

)
and the uniform

modulus of continuity of X implies that the diameter of X
(
Bρ(rn)

)
is at most

cr1−δ
n , where δ ∈ (0 , 1) is a constant. We can show that dimH X(E) ≤ γ/(1−δ)

almost surely. The desired upper bound follows from the arbitrariness of γ and
δ.

To prove the lower bound, let γ ∈ (0 ,min{d ; dimρ
H
E}) be fixed. Then

by using the generalized Frostman’s lemma [Lemma 6.10] one can show that
there exists a probability measure µ on E such that∫ ∫

1
ρ(s, t)γ

µ(ds)µ(dt) <∞. (140)

This and Condition (C1) immediately imply

E
∫ ∫

µ(ds)µ(dt)
|X(s)−X(t)|γ

<∞. (141)

Hence dimH X(E) ≥ min{d ; dimρ
H
E} almost surely. ut

Combining Theorems 6.9 and 6.11, the invariance properties of dimρ
H
E

and s(H,E), we can derive the following alternative expression for s(H,E). Of
course, this can also be proved directly by using measure-theoretic methods.

Corollary 6.12. For every Borel set E ⊆ RN , we have dimρ
H
E = s(H,E).
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As in the case of fractional Brownian sheets considered by Wu and Xiao
[97], the image X(E) has rich Fourier analytic and topological properties. For
example, by modifying the proofs in [97], one can prove that if X is a Gaussian
random field with stationary increments and spectral density satisfying (43)
then X(E) is a Salem set [46; 67] whenever dimρ

H
E ≤ d, and X(E) has interior

points whenever dimρ
H
E > d [It is an exercise to work out the details].

Finally, we consider the special case when H = 〈α〉. Theorem 6.11 implies
that for every Borel set E ⊆ [0 , 1]N ,

dimH X(E) = min
{
d ,

1
α

dimH E

}
a.s. (142)

The following theorem gives us a uniform version of (142).

Theorem 6.13. Let X = {X(t), t ∈ RN} be as in Theorem 6.11 with H =
〈α〉. If N ≤ αd and X satisfies either Condition (C3) or (C3′), then with
probability 1

dimH X(E) =
1
α

dimH E for all Borel sets E ⊆ I, (143)

and
dimPX(E) =

1
α

dimPE for all Borel sets E ⊆ I. (144)

The proof of Theorem 6.13 is reminiscent to those in [51; 70; 97]. The key
step is to apply Condition (C3) or (C3′) to prove the following lemma. For
simplicity, assume I = [0 , 1]N .

Lemma 6.14. Suppose the assumptions of Theorem 6.13 hold, and let δ > 0
and 0 < 2α− δ < β < 2α be given constants. Then with probability 1, for all
integers n large enough, there do not exist more than 2nδd distinct points of
the form tj = 4−n kj, where kj ∈ {1, 2, . . . , 4n}N , such that∣∣X(ti)−X(tj)

∣∣ < 3 · 2−nβ for i 6= j. (145)

Proof. A proof of Lemma 6.14 under Condition (C3) is given in [97]; see also
[51]. The proof under (C3′) is similar and is left to the reader as an exercise.

ut

Both (142) and Theorem 6.13 imply that sometimes one can determine
the packing dimension of the image X(E) by the packing dimension of E.
However, it is known that the conclusion is false if N > αd [87]. The method in
[103] shows that if X = {X(t), t ∈ RN} is a Gaussian random field satisfying
(C1) with H = 〈α〉 then for every Borel set E ⊆ I,

dimPX(E) =
1
α

Dim
αd
E a.s., (146)

where DimsE is the packing dimension profile of E defined by Falconer and
Howroyd [37]. However, the analogous problem for general anisotropic Gaus-
sian random fields has not been settled.
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7 Hausdorff dimension of the level sets and hitting
probabilities

Under Conditions (C1) and (C2), we can study fractal properties of the level
set Lx = {t ∈ I : X(t) = x} (x ∈ Rd) and the hitting probabilities of
Gaussian random field X.

The following result determines the Hausdorff and packing dimensions of
the level set.

Theorem 7.1. Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian random field
satisfying Conditions (C1) and (C2) on I = [ε , 1]N .

(i) If
∑N
j=1H

−1
j < d, then for every x ∈ Rd, Lx = Ø a.s.

(ii)If
∑N
j=1H

−1
j > d, then for every x ∈ Rd,

dimH Lx = dimPLx

= min
{ k∑
j=1

Hk

Hj
+N − k −Hkd, 1 ≤ k ≤ N

}

=
k∑
j=1

Hk

Hj
+N − k −Hkd if

k−1∑
j=1

1
Hj
≤ d <

k∑
j=1

1
Hj

,

(147)

with positive probability.

Remark 7.2. In the critical case when
∑N
j=1H

−1
j = d, it is believed that Lx =

Ø a.s. In the Brownian sheet case, this was proved by Orey and Pruitt [76,
Theorem 3.4]. It also follows from a potential theoretic result of [50]. If X is
a fractional Brownian motion of index α ∈ (0 , 1), then an argument of [86]
can be modified to show Lx = Ø a.s. However, the problem whether Lx = Ø
a.s. for more general Gaussian random fields remains open. A proof would
require Condition (C3) or (C3′) and some extra conditions on the function
E(|X1(t)−X1(s)|2).

Proof of Theorem 7.1. Similar to the proof of Theorem 5 in [7], we divide
the proof of Theorem 7.1 into two steps. In Step one, we prove (i) and the
upper bound for dimPLx in (147); and in Step two we prove the lower bound
for dimH Lx by constructing a random measure on Lx and using a capacity
argument. Moreover, the last equality in (147) follows from Lemma 6.2.

First we prove

dimBLx ≤ min


k∑
j=1

Hk

Hj
+N − k −Hkd , 1 ≤ k ≤ N

 a.s. (148)

and Lx = Ø a.s. whenever the right hand side of (148) is negative. It can be
verified that the latter is equivalent to

∑N
j=1H

−1
j < d.
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For an integer n ≥ 1, divide the interval [ε , 1]N into mn sub-rectangles
Rn,` of side lengths n−1/Hj (j = 1, · · · , N). Then mn ≤ c n

PN
j=1(1/Hj). Let

0 < δ < 1 be fixed and let τn,` be the lower-left vertex of Rn,`. Then

P
{
x ∈ X(Rn,`)

}
≤ P

{
max

s,t∈Rn,`
|X(s)−X(t)| ≤ n−(1−δ); x ∈ X(Rn,`)

}
+ P

{
max

s,t∈Rn,`
|X(s)−X(t)| > n−(1−δ)

}
(149)

≤ P
{
|X(τn,`)− x| ≤ n−(1−δ)

}
+ e−c n

2δ

≤ c n−(1−δ)d.

In the above we have applied Lemma 2.1 in [85] to get the second inequality.
If
∑N
j=1H

−1
j < d, we choose δ > 0 such that (1 − δ)d >

∑N
j=1H

−1
j . Let Nn

be the number of rectangles Rn,` such that x ∈ X(Rn,`). It follows from (??)
that

E(Nn) ≤ c n
PN
j=1(1/Hj)n−(1−δ)d → 0 as n→∞. (150)

Since the random variables Nn are integer-valued, (150) and Fatou’s lemma
imply that a.s. Nn = 0 for infinitely many integers n ≥ 1. Therefore Lx = Ø
almost surely.

Now we assume
∑N
j=1H

−1
j > d and define a covering {R′n,`} of Lx by

R′n,` = Rn,` if x ∈ X(Rn,`) and R′n,` = Ø otherwise. We will show that there
are N different ways to cover Lx by using cubes of the same side-lengths and
each of these ways leads to an upper bound for dimBLx.

For every 1 ≤ k ≤ N , R′n,` can be covered by n
PN
j=k+1(H−1

k −H
−1
j ) cubes of

side-length n−1/Hk . Thus we can cover the level set Lx by a sequence of cubes
of side-length n−1/Hk . Denote the number of such cubes by Mn,k. Using (??)
again, we have

E(Mn,k) ≤ c7,1 n
PN
j=1H

−1
j n−(1−δ)d · n

PN
j=k+1(H−1

k −H
−1
j )

= c7,1 n
(N−k)H−1

k +
Pk
j=1H

−1
j −(1−δ)d.

(151)

Now let η be the constant defined by

η = (N − k)H−1
k +

k∑
j=1

H−1
j − (1− 2δ)d. (152)

We consider the sequence of integers ni = 2i (i ≥ 1). Then by (151), the
Markov inequality and the Borel-Cantelli lemma we see that almost surely
Mni,k ≤ c n

η
i for all i large enough. This implies that dimBLx ≤ Hk η almost

surely. Letting δ ↓ 0 along rational numbers, we have

dimBLx ≤
k∑
j=1

Hk

Hj
+N − k −Hkd a.s. (153)
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Optimizing (153) over k = 1, . . . , N yields (148).
In order to prove the lower bound for dimH Lx in (147), we assume that∑k−1
j=1 H

−1
j ≤ d <

∑k
j=1H

−1
j for some 1 ≤ k ≤ N . Let δ > 0 be a small

constant such that

γ :=
k∑
j=1

Hk

Hj
+N − k −Hk(1 + δ)d > N − k. (154)

This is possible by Lemma 6.2. Note that if we can prove that there is a
constant c7,2 > 0, independent of δ, such that

P
{

dimH Lx ≥ γ
}
≥ c7,2 , (155)

then the lower bound in (147) will follow by letting δ ↓ 0.
Our proof of (155) is based on the capacity argument due to Kahane [46].

Similar methods have been used by Adler [1], Testard [91], and Xiao [98] to
certain Gaussian and stable random fields.

Let M +
γ be the space of all non-negative measures on RN with finite γ-

energy [recall (84)]. It is known [1] that M +
γ is a complete metric space under

the metric

‖µ‖γ =
∫∫

µ(dt)µ(ds)
|t− s|γ

. (156)

We define a sequence of random positive measures µn := µn(x , •) on the Borel
sets C of [ε , 1]N by

µn(C) =
∫
C

(2πn)d/2 exp
(
−n |X(t)− x|2

2

)
dt

=
∫
C

∫
Rd

exp
(
−|ξ|

2

2n
+ i〈ξ ,X(t)− x〉

)
dξ dt.

(157)

It follows from [46, p. 206] or [91, p. 17] that if there exist positive and
finite constants c7,3 , c7,4 and c7,5 such that

E
(
‖µn‖

)
≥ c7,3 , E

(
‖µn‖2

)
≤ c7,4 , (158)

E
(
‖µn‖γ

)
≤ c7,5 , (159)

where ‖µn‖ = µn([ε , 1]N ) denotes the total mass of µn, then there is a sub-
sequence of {µn}, say {µnk}, such that µnk → µ in M +

γ and µ is strictly
positive with probability ≥ c2

7,3
/(2c7,4). In this case, it follows from (157) that

µ has its support in Lx almost surely. Moreover, (159) and the monotone
convergence theorem together imply that the γ-energy of µ is finite. Hence
Frostman’s theorem yields (155) with c7,2 = c2

7,3
/(2c7,4).

It remains to verify (158) and (159). By Fubini’s theorem we have
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E
(
‖µn‖

)
=
∫

[ε,1]N

∫
Rd

e−i〈ξ ,x〉 exp
(
− |ξ|

2

2n

)
E exp

(
i〈ξ ,X(t)〉

)
dξ dt

=
∫

[ε,1]N

∫
Rd

e−i〈ξ ,x〉 exp
(
− 1

2
(n−1 + σ2(t))|ξ|2

)
dξ dt

=
∫

[ε,1]N

(
2π

n−1 + σ2(t)

)d/2
exp

(
− |x|2

2(n−1 + σ2(t))

)
dt

≥
∫

[ε,1]N

(
2π

1 + σ2(t)

)d/2
exp

(
− |x|2

2σ2(t)

)
dt := c7,3 .

(160)

Denote by I2d the identity matrix of order 2d and Cov(X(s) , X(t)) the
covariance matrix of the random vector (X(s) , X(t)). Let Γ = n−1I2d +
Cov(X(s), X(t)) and (ξ , η)′ be the transpose of the row vector (ξ , η). Then
E(‖µn‖2) is equal to∫

[ε,1]N

∫
[ε,1]N

∫
Rd

∫
Rd

e−i〈ξ+η, x〉 exp
(
− 1

2
(ξ , η) Γ (ξ , η)′

)
dξ dη ds dt

=
∫

[ε,1]N

∫
[ε,1]N

(2π)d√
detΓ

exp
(
− 1

2
(x , x) Γ−1 (x , x)′

)
ds dt

≤
∫

[ε,1]N

∫
[ε,1]N

(2π)d[
det Cov(X0(s) , X0(t))

]d/2 ds dt.
(161)

It follows from Conditions (C1), (C2) and (53) that for all s, t ∈ [ε , 1]N ,

det Cov
(
X0(s) , X0(t)

)
≥ c7,6

N∑
j=1

|sj − tj |2Hj . (162)

We combine (161), (162) and then apply Lemma 6.3, repeatedly, to obtain

E(‖µn‖2) ≤ c7,7
∫

[ε,1]N

∫
[ε,1]N

ds dt[∑N
j=1 |sj − tj |2Hj

]d/2 := c7,4 <∞. (163)

This is similar to (113)–(117) in the proof of Theorem 6.1. Thus we have
shown (158) holds.

Similar to (161), we find that E(‖µn‖γ) is equal to∫
[ε,1]N

∫
[ε,1]N

ds dt

|s− t|γ

×
∫
Rd

∫
Rd

e−i〈ξ+η, x〉 exp
(
− 1

2
(ξ , η) Γ (ξ , η)′

)
dξdη

≤ c7,8
∫

[ε,1]N

∫
[ε,1]N

ds dt(∑N
j=1 |sj − tj |

)γ(∑N
j=1 |sj − tj |2Hj

)d/2
≤ c7,9

∫ 1

0

dtN · · ·
∫ 1

0

dt1(∑N
j=1 t

Hj
j

)d (∑N
j=1 tj

)γ ,
(164)
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where the two inequalities follow from (162) and a change of variables. Note
that the last integral in (164) is similar to (122) and can be estimated by using
Lemma 6.4 in the same way as in the proof of (123) – (126). Moreover, we
can take δ small enough, say δ < δ0, so that the γ defined in (154) is bounded
away from N − k and N − k + 1. This implies that E

(
‖µn‖γ

)
≤ c7,9 which is

independent of δ. This proves (159) and hence Theorem 7.1.

In light of Theorem 7.1, it is of interest to further study the following
question about fractal properties of the level sets.

Question 7.3. Determine the exact Hausdorff and packing measure functions
for the level set Lx.

Questions 7.3 is closely related to the regularity properties such as the laws
of the iterated logarithm of the local times of X. The latter will be considered
in Section 8. When X is an (N, d)-fractional Brownian motion with index α,
Xiao [102] proved that ϕ7(r) = rN−αd(log log 1/r)αd/N is an exact Hausdorff
measure function for Lx. In Theorem 8.11 we give a partial result [i.e., lower
bound] for the exact Hausdorff measure of the level set Lx. It seems that the
method in [102] may be modified to determine an exact Hausdorff measure
function for the level sets of Gaussian random fields satisfying (C3) or (C3′).

So far no exact packing measure results have been proved for the level sets
of fractional Brownian motion or the Brownian sheet. These problems are
related to the liminf behavior of the local times of X which are more difficult
to study.

More general than level sets, one can consider the following questions:

Question 7.4. Given a Borel set F ⊆ Rd, when is P{X(I)∩F 6= Ø} positive?

Question 7.5. If P
{
X(I) ∩ F 6= Ø

}
> 0, what are the Hausdorff and packing

dimensions of the inverse image X−1(F ) ∩ I?

Question 7.4 is an important question in potential theory of random fields.
Complete answer has only been known for a few types of random fields with
certain Markov structures. We mention that Khoshnevisan and Shi [50] proved
that if X is an (N, d)-Brownian sheet, then for every Borel set F ⊆ Rd,

P
{
X(I) ∩ F 6= Ø

}
> 0⇐⇒ Cd−2N (F ) > 0. (165)

Recall that Cα denotes the Bessel-Riesz capacity of order α. Dalang and Nu-
alart [26] have recently extended the methods of [50] and proved similar results
for the solution of a system of d nonlinear hyperbolic stochastic partial dif-
ferential equations with two variables. In this context, we also mention that
Khoshnevisan and Xiao [52; 53; 54; 56] and Khoshnevisan, Xiao, and Zhong
[57] have established systematic potential theoretical results for additive Lévy
processes in Rd. The arguments in the aforementioned work rely on the mul-
tiparameter martingale theory [49].
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For random fields with general dependence structures, it is more difficult
to solve Question 7.4 completely. Instead, one can look for sufficient conditions
and necessary conditions on F so that P

{
X(I) ∩ F 6= Ø

}
> 0. For example,

when X is an (N, d)-fractional Brownian motion, Testard [91] and Xiao [104]
proved the following results:

Cd−N/α(F ) > 0⇒ P
{
X(I) ∩ F 6= Ø

}
> 0⇒H d−N/α(F ) > 0. (166)

Similar results for the solution to a non-linear stochastic heat equation with
multiplicative noise have been proved recently by Dalang, Khoshnevisan and
Nualart [23].

The following theorem is an analogue of (166) for all Gaussian random
fields X satisfying Conditions (C1) and (C2).

Theorem 7.6. Assume that an (N, d)-Gaussian random field X = {X(t), t ∈
RN} satisfies Conditions (C1) and (C2) on I and d > Q. Then for every
Borel set F ⊆ Rd,

c7,10 Cd−Q(F ) ≤ P
{
X(I) ∩ F 6= Ø

}
≤ c7,11 Hd−Q(F ), (167)

where Q =
∑N
j=1H

−1
j , c7,10 and c7,11 are positive constants depending on I, F

and H only.

Remark 7.7. When d < Q, Theorem 7.1 tells us that X hits points, hence
(167) holds automatically. When d = Q, our proof below shows that the lower
bound in (167) remains to be true provided C0 means the logarithmic capacity
[see (86)]. This can be seen by estimating the integral in (173) when d = Q.
However, if C0(F ) > 0, then the upper bound in (167) becomes ∞, thus not
informative.

Proof of Theorem 7.6. The lower bound in (167) can be proved by using a
second moment argument. In fact one can follow the method in [26; 50; 91]
to prove the lower bound in (167).

In the following, we provide an alternative proof for the lower bound which
is similar to that of Theorem 7.1. For any Borel probability measure κ on F
with Ed−Q(κ) <∞ and for all integers n ≥ 1, we consider a family of random
measures νn on I defined by∫

I

f(t) νn(dt) =
∫
I

∫
Rd

(2πn)d/2 exp
(
− n |X(t)− x|2

)
f(t)κ(dx) dt

=
∫
I

∫
Rd

∫
Rd

exp
(
−|ξ|

2

2n
+ i〈ξ ,X(t)− x〉

)
f(t) dξ κ(dx) dt,

(168)

where f is an arbitrary measurable function on I. We claim that the following
two inequalities hold:

E
(
‖νn‖

)
≥ c7,12 , E

(
‖νn‖2

)
≤ c7,13Ed−Q(κ), (169)



Anisotropic Gaussian Random Fields 195

where the constants c7,12 and c7,13 are independent of κ and n.
Since the proof of the first inequality in (169) is very similar to (160) in

the proof of Theorem 7.1, we only prove the second inequality in (169).
Denote by I2d the identity matrix of order 2d and Cov(X(s) , X(t)) the

covariance matrix of the random vector (X(s) , X(t)). Let Γn = n−1I2d +
Cov(X(s) , X(t)) and (ξ , η)′ be the transpose of the row vector (ξ , η). Since
Γn is positive definite, we have

E
(
‖νn‖2

)
=
∫
I

∫
I

∫
R2d

∫
R2d

e−i(〈ξ ,x〉+〈η, y〉)

× exp
(
− 1

2
(ξ , η) Γn (ξ , η)′

)
dξdη κ(dx)κ(dy) ds dt

=
∫
I

∫
I

∫
R2d

(2π)d√
detΓn

exp
(
− 1

2
(x , y) Γ−1

n (x , y)′
)
κ(dx)κ(dy) ds dt.

(170)

By modifying an argument from [91], we can prove that, under conditions
(C1) and (C2), we have

(2π)d√
detΓn

exp
(
− 1

2
(x , y) Γ−1

n (x , y)′
)
≤

c7,14
max{ρd(s , t), |x− y|d}

(171)

for all s, t ∈ I and x, y ∈ Rd; see [16] for details. Hence, it follows from (170)
and (171) that

E
(
‖νn‖2

)
≤ c7,14

∫
I

∫
I

∫
R2d

1
max{ρd(s , t), |x− y|d}

κ(dx)κ(dy) ds dt. (172)

We can verify that for all x, y ∈ Rd,∫
I

∫
I

ds dt

max{ρd(s , t) , |x− y|d}
≤ c7,15 |x− y|−(d−Q), (173)

where c7,15 > 0 is a constant. This can be done by breaking the integral in
(173) over the regions {(s , t) ∈ I × I : ρ(s , t) ≤ |x− y|} and {(s , t) ∈ I × I :
ρ(s , t) > |x − y|}, and estimate them separately. It is clear that (170), (173)
and Fubini’s theorem imply the second inequality in (169).

By using (169) and the Paley-Zygmund inequality [46], one can verify
that there is a subsequence of {νn, n ≥ 1} that converges weakly to a finite
measure ν which is positive with positive probability [depending on c7,12 and
c7,13 only] and ν also satisfies (169). Since ν is supported on X−1(F ) ∩ I, we
use the Paley-Zygmund inequality again to derive

P
{
X(I) ∩ F 6= Ø

}
≥ P

{
‖ν‖ > 0

}
≥
[
E(‖ν‖)

]2
E
[
‖ν‖2

] ≥ c7,16
Ed−Q(κ)

, (174)

where c7,16 = c2
7,12

/c7,13 . This implies the lower bound in (167).
Our proof of the upper bound in (167) relies on the following lemma on

the hitting probability of X, whose proof will be deferred to the end of this
section.
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Lemma 7.8. Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian random field
satisfying Conditions (C1) and (C2) on I. Then there exists a constant c7,17 >
0 such that for all x ∈ I and y ∈ Rd,

P
{

inf
t∈Bρ(x,r)

∣∣X(t)− y
∣∣ ≤ r} ≤ c7,17 rd. (175)

Now we proceed to prove the upper bound in (167) by using a simple
covering argument. Choose and fix an arbitrary constant γ > Hd−Q(F ). By
the definition of Hd−Q(F ), there is a sequence of balls {B(yj , rj), j ≥ 1} in
Rd such that

F ⊆
∞⋃
j=1

B(yj , rj) and
∞∑
j=1

(2rj)d−Q ≤ γ. (176)

Clearly we have{
F ∩X(I) 6= Ø

}
⊆
∞⋃
j=1

{
B(yj , rj) ∩X(I) 6= Ø

}
. (177)

For every j ≥ 1, we divide the interval I into c r−Qj intervals of side-lengths

r
−1/H`
j (` = 1, . . . , N). Hence I can be covered by at most c r−Qj many balls

of radius rj in the metric ρ. It follows from Lemma 7.8 that

P
{
B(yj , rj) ∩X(I) 6= Ø

}
≤ c rd−Qj . (178)

Combining (177) and (178) we derive that P
{
F ∩ X(I) 6= Ø

}
≤ cγ. Since

γ > Hd−Q(F ) is arbitrary, the upper bound in (167) follows.

The following are some further remarks and open questions related to
Theorem 7.6.

Remark 7.9. For any Borel set F ⊆ Rd, Theorem 7.6 provides a sufficient con-
dition and a necessary condition for P{X−1(F )∩ I 6= Ø} > 0. It is interesting
to determine the Hausdorff and packing dimensions of X−1(F ) when it is not
empty. Recently, Biermé, Lacaux and Xiao (2007) determined the Hausdorff
dimension of X−1(F ). Namely, they proved that if dimH F > d−

∑N
`=1(1/H`),

then∥∥dimH

(
X−1(F ) ∩ I

)∥∥
L∞(P)

= min
1≤k≤N

{ k∑
j=1

Hk

Hj
+N − k −Hk

(
d− dimH F

)}
,

(179)

where, for all nonnegative random variables Y ,

‖Y ‖L∞(P) = sup
{
θ : Y ≥ θ on an event E with P(E) > 0

}
. (180)

However, except for the special case of F = {x}, there have been no results
on the packing dimension of X−1(F ) for a given Borel set F ⊆ Rd.
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Remark 7.10. Note that the event on which (179) holds depends on F . Moti-
vated by the results in [70], we may ask the following natural question: When∑N
`=1H

−1
` > d, is it possible to have a single event Ω1 ⊆ Ω of positive prob-

ability such that on Ω1 (179) holds for all Borel sets F ⊆ Rd?
Here are some partial answers. If in addition to Conditions (C1) and (C2),

we also assume Condition (C3) or (C3′) holds and H1 = H2 = · · · = HN ,
then one can modify the proofs in [70] to show that the answer to the above
question is affirmative. In general, it can be proved that, when

∑N
`=1H

−1
` > d,

the upper bound in (179) holds almost surely for all Borel sets F ⊆ Rd. But
it is likely that the lower bound may not hold uniformly due to the anisotropy
of X.

Remark 7.11. The method for proving Theorem 7.6 may be extended to pro-
vide necessary conditions and sufficient conditions for P{X(E)∩F 6= Ø} > 0,
where E ⊆ (0 ,∞)N and F ⊆ Rd are arbitrary Borel sets. Some difficul-
ties arise when both E and F are fractal sets. Testard [91] obtained some
partial results for fractional Brownian motion and, for every fixed Borel set
E ⊆ (0 ,∞)N (or F ⊆ Rd), Xiao [104] characterized the “smallest” set F (or
E) such that P{X(E)∩F 6= Ø} > 0. No such results on anisotropic Gaussian
random fields have been proved.

Finally, let us prove Lemma 7.8. There are two ways to prove (175). One
is to use the argument in the proof of Proposition 4.4 of [22] and the other
is reminiscent to the proof of Lemma 3.1 in [100]. While the former method
is slightly simpler, the latter can be adapted to establish hitting probability
estimates of the form (194) below for anisotropic Gaussian random fields.
Hence we will use an argument similar to that in [100].

Proof of Lemma 7.8. For every integer n ≥ 1, let εn = r exp(−2n+1) and
denote by Nn = Nρ(Bρ(x , r) , εn) the minimum number of ρ-balls of radius
εn that are needed to cover Bρ(x , r). Note that Nn ≤ c exp(Q2n+1) [recall
that Q =

∑N
`=1(1/H`)].

Let {t(n)
i , 1 ≤ i ≤ Nn} be a set of the centers of open balls with radius εn

that cover Bρ(x, r). Denote

rn = βεn 2(n+1)/2, (181)

where β ≥ c4,10 is a constant to be determined later. Here c4,10 is the constant
in (69).

For all integers n ≥ 1, 1 ≤ j ≤ n and 1 ≤ i ≤ Nn, we consider the following
events

A
(j)
i =

{∣∣X(t(j)i )− y
∣∣ ≤ r +

∞∑
k=j

rk

}
,

A(n) =
n⋃
j=1

Nj⋃
i=1

A
(j)
i = A(n−1) ∪

Nn⋃
i=1

A
(n)
i .

(182)
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Then by a chaining argument, the triangle inequality and (69), we have

P
{

inf
t∈Bρ(x,r)

∣∣X(t)− y
∣∣ ≤ r} ≤ lim

n→∞
P
(
A(n)

)
. (183)

By (182), we have

P
(
A(n)

)
≤ P

(
A(n−1)

)
+ P

(
A(n)\A(n−1)

)
(184)

and

P
(
A(n)\A(n−1)

)
≤

Nn∑
i=1

P
(
A

(n)
i \A

(n−1)
i′

)
, (185)

where i′ is chosen so that ρ(t(n)
i , t

(n−1)
i′ ) < εn−1. Note that

P
(
A

(n)
i \A

(n−1)
i′

)
= P

{∣∣X(t(n)
i )− y

∣∣ < r +
∞∑
k=n

rk ,
∣∣X(t(n−1)

i′ )− y
∣∣ > r +

∞∑
k=n−1

rk

}

≤ P
{∣∣X(t(n)

i )− y
∣∣ < r +

∞∑
k=n

rk ,
∣∣X(t(n)

i )−X(t(n−1)
i′ )

∣∣ ≥ rn−1

}
.

(186)

By the elementary properties of Gaussian random variables, we can write

X(t(n)
i )−X(t(n−1)

i′ )

σ(t(n)
i , t

(n−1)
i′ )

= η
X(t(n)

i )

σ(t(n)
i )

+
√

1− η2 Ξ , (187)

where

η =
E
[(
X1(t(n)

i )−X1(t(n−1)
i′ )

)
X1(t(n)

i )
]

σ(t(n)
i , t

(n−1)
i′ )σ(t(n)

i )
(188)

and where Ξ is a centered Gaussian random vector in Rd with the identity
matrix as its covariance matrix and, moreover, Ξ is independent of X(t(n)

i ).
We observe that

r +
∞∑
k=n

rk ≤ r +
∞∑
k=0

rk ≤
(

1 + c

∫ ∞
0

exp(−αx2) dx
)
r := c7,18 r. (189)

It follows from Condition (C1) that (186) is bounded by

P

{∣∣X(t(n)
i )− y

∣∣ ≤ c7,18 r , |Ξ| ≥ 1√
1− η2

[
rn−1

ρ(t(n)
i , t

(n−1)
i′ )

− η X(t(n)
i )

σ(t(n)
i )

]}

≤ P
{
|X(t(n)

i )− y| ≤ c7,18r , |Ξ| ≥
βd

2
2n/2

}
(190)

+ P

{
|X(t(n)

i )− y| ≤ c7,18r , η
|X(t(n)

i )|
σ(t(n)

i )
≥ βd

2
2n/2

}
:= I1 + I2.
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By the independence of Ξ and X(t(n)
i ), we have

I1 = P
{∣∣X(t(n)

i )− y
∣∣ ≤ c7,18 r} · P{|Ξ| ≥ βd2−1+(n/2)

}
≤ c7,19 rd exp

(
− (βd)2

16
2n
)
.

(191)

On the other hand,

I2 ≤
∫
{|u−y|≤c7,18 r, |u|≥βd2−1+(n/2)σ(t

(n)
i )}

(
1

2π

)d/2 1

σd(t(n)
i )

exp
(
− |u|2

2σ2(t(n)
i )

)
du

≤ c7,20
∫
{|u−y|≤c7,18r}

1

σd(t(n)
i )

exp
(
− |u|2

4σ2(t(n)
i )

)
du · exp

(
− (βd)2

16
2n
)

≤ c7,21 rd exp
(
− (βd)2

16
2n
)
. (192)

Combining (184) through (192) and choosing β ≥ c4,10 satisfying (βd)2 > 32,
we obtain

P
(
A(n)

)
≤ P

(
A(n−1)

)
+ c7,22 Nn r

d exp
(
− (βd)2

16
2n
)

≤ c7,23

[ ∞∑
k=0

Nk exp
(
− (βd)2

16
2k
)]

rd

≤ c7,24 rd.

(193)

Therefore, (175) follows from (183) and (193).

When X is an (N, d)-fractional Brownian motion of index α, Xiao [104]
proved the following hitting probability result: If N < αd, then there exist
positive and finite constants c7,25 and c7,26 , depending only on N , d and α,
such that for any r > 0 small enough and any y ∈ Rd with |y| ≥ r, we have

c7,25

(
r

|y|

)d−Nα
≤ P

{
∃ t ∈ RN such that |X(t)− y| < r

}
≤ c7,26

(
r

|y|

)d−Nα
.

(194)

It would be interesting and useful to establish analogous results for all Gaus-
sian random fields satisfying Conditions (C1) and (C2). Such an estimate will
be useful in studying the escape rate and exact packing measure of the sam-
ple paths of Gaussian random fields; see [105] for the special case of fractional
Brownian motion.



200 Y. Xiao

8 Local times and their joint continuity

We start by briefly recalling some aspects of the theory of local times. For
excellent surveys on local times of random and deterministic vector fields, we
refer to [31; 41].

Let X(t) be a Borel vector field on RN with values in Rd. For any Borel
set T ⊆ RN , the occupation measure of X on T is defined as the following
Borel measure on Rd:

µ
T

(•) = λN{t ∈ T : X(t) ∈ •}. (195)

If µ
T

is absolutely continuous with respect to the Lebesgue measure λd,
we say that X(t) has a local time on T , and define its local time, L(• , T ), as
the Radon–Nikodým derivative of µ

T
with respect to λd, i.e.,

L(x , T ) =
dµ

T

dλd
(x) ∀x ∈ Rd. (196)

In the above, x is the so-called space variable, and T is the time variable.
Sometimes, we write L(x , t) in place of L(x , [0 , t]). It is clear that if X has
local times on T , then for every Borel set S ⊆ T , L(x , S) also exists.

By standard martingale and monotone class arguments, one can deduce
that the local times of X have a version, still denoted by L(x , T ), such that
it is a kernel in the following sense:

(i) For each fixed S ⊆ T , the function x 7→ L(x , S) is Borel measurable in
x ∈ Rd.

(ii) For every x ∈ Rd, L(x , ·) is Borel measure on B(T ), the family of Borel
subsets of T .

Moreover, L(x , T ) satisfies the following occupation density formula: For every
Borel set T ⊆ RN and for every measurable function f : Rd → R+,∫

T

f(X(t)) dt =
∫
Rd

f(x)L(x , T ) dx. (197)

See [41, Theorems 6.3 and 6.4].
Suppose we fix a rectangle T =

∏N
i=1[ai, ai+hi] in A . Then, whenever we

can choose a version of the local time, still denoted by L(x,
∏N
i=1[ai, ai + ti]),

such that it is a continuous function of (x, t1, · · · , tN ) ∈ Rd×
∏N
i=1[0 , hi], X is

said to have a jointly continuous local time on T . When a local time is jointly
continuous, L(x , •) can be extended to be a finite Borel measure supported
on the level set

X−1
T (x) = {t ∈ T : X(t) = x}; (198)

see [1] for details. In other words, local times often act as a natural measure
on the level sets of X for applying the capacity argument. As such, they are
useful in studying the various fractal properties of level sets and inverse images
of the vector field X [13; 34; 70; 81; 102].

First we consider the existence of the local times of Gaussian random fields.
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Theorem 8.1. Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian field defined
by (36) and suppose Condition (C1) is satisfied on I. Then X has a local
time L(x , I) ∈ L2(P× λd) if and only if d <

∑N
j=1(1/Hj). In the latter case,

L(x , I) admits the following L2 representation:

L(x , I) = (2π)−d
∫
Rd

e−i〈y, x〉
∫
I

ei〈y,X(s)〉ds dy, ∀x ∈ Rd. (199)

Proof. The Fourier transform of the occupation measure µI is

µ̂I(ξ) =
∫
I

ei〈ξ ,X(t)〉 dt. (200)

By applying Fubini’s theorem twice, we have

E
∫
Rd

∣∣µ̂(ξ)
∣∣2 dξ =

∫
I

ds

∫
I

dt

∫
Rd

E exp
(
i〈ξ ,X(s)−X(t)〉

)
dξ. (201)

We denote the right hand side of (201) by J (I). It follows from the Plancherel
theorem that X has a local time L(·, I) ∈ L2(P×λd) if and only if J (I) <∞;
see [41, Theorem 21.9] or [46]. Hence it is sufficient to prove

J (I) <∞ if and only if d <

N∑
j=1

1
Hj

. (202)

For this purpose, we use the independence of the coordinate processes of
X and Condition (C1) to deduce

J (I) =
∫
I

∫
I

ds dt[
E(X0(s)−X0(t))2

]d/2
�
∫
I

∫
I

ds dt(∑N
j=1 |sj − tj |2Hj

)d/2 . (203)

By using Lemma 8.6 below, it is elementary to verify that the last integral in
(203) is finite if and only if d <

∑N
j=1(1/Hj). This proves (202), and hence

Theorem 8.1. ut

The following result on the joint continuity of the local times is similar to
those proved by Xiao and Zhang [110], Ayache, Wu and Xiao [6] for fractional
Brownian sheets.

Theorem 8.2. Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian field defined
by (36) and we assume Conditions (C1) and (C 3′) are satisfied on I. If d <∑N
j=1(1/Hj), then X has a jointly continuous local time on I.
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Remark 8.3. The conclusion of Theorem 8.2 can also be proved to hold for
all Gaussian random fields satisfying Conditions (C1) and (C3). The proof
follows a similar line, but some modifications are needed in order to prove
analogous estimates in Lemmas 8.4 and 8.8. This is left to the reader as an
exercise.

To prove Theorem 8.2 we will, similar to [6; 34; 102], first use the Fourier
analytic arguments to derive estimates on the moments of the local times
[see Lemmas 8.4 and 8.8 below] and then apply a multiparameter version
of Kolmogorov continuity theorem [49]. It will be clear that Condition (C3′)
plays an essential role in the proofs of Lemmas 8.4 and 8.8.

Our starting points is the following identities about the moments of the
local time and its increments. It follows from [41, (25.5) and (25.7)] or [77]
that for all x, y ∈ Rd, T ∈ A and all integers n ≥ 1,

E [L(x , T )n] = (2π)−nd
∫
Tn

∫
Rnd

e−i
Pn
j=1 〈u

j , x〉

× E
[
ei

Pn
j=1 〈u

j , X(tj)〉
]
du dt

(204)

and for all even integers n ≥ 2,

E [(L(x , T )− L(y , T ))n] (205)

= (2π)−nd
∫
Tn

∫
Rnd

n∏
j=1

[
e−i〈u

j ,x〉 − e−i〈u
j , y〉
]

E
[
ei

Pn
j=1 〈u

j , X(tj)〉
]
du dt,

where u = (u1, . . . , un), t = (t1, . . . , tn), and each uj ∈ Rd, tj ∈ T ⊆ (0 ,∞)N .
In the coordinate notation we then write uj = (uj1, . . . , u

j
d).

Lemma 8.4. Suppose the assumptions of Theorem 8.2 hold. Let τ ∈ {1, . . . , N}
be the integer such that

τ−1∑
`=1

1
H`
≤ d <

τ∑
`=1

1
H`

, (206)

then there exists a positive and finite constant c8,1 , depending on N, d, H
and I only, such that for all hypercubes T = [a , a + 〈r〉] ⊆ I with side-length
r ∈ (0 , 1), all x ∈ Rd and all integers n ≥ 1,

E
[
L(x , T )n

]
≤ cn

8,1
n! rnβτ , (207)

where βτ =
∑τ
`=1(Hτ/H`) +N − τ −Hτd.

Remark 8.5. (i) It is important to note that, when (206) holds, βτ =∑τ
`=1(Hτ/H`) + N − τ − Hτd is the Hausdorff dimension of the level

set Lx; see Theorem 7.1. Combining (207) with the upper density theorem
of [80], one can obtain some information on the exact Hausdorff measure
of Lx [see Corollary 8.11 below].
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(ii) We point out that the upper bound in (207) is not sharp, and one may
be able to prove the following inequality:

E
[
L(x , T )n

]
≤ cn

8,2
(n!)N−βτ rnβτ . (208)

If this is indeed true, then one can conjecture that the function ϕ8(r) =
rβτ
(

log log 1/r
)N−βτ is an exact Hausdorff measure function for Lx.

For proving Lemma 8.4, we will make use of the following elementary
lemma [which is stronger than Lemma 6.3].

Lemma 8.6. Let α, β and A be positive constants. Then

∫ 1

0

1(
A+ tα

)β dt �
A−(β− 1

α ) if αβ > 1,
log
(
1 +A−1/α

)
if αβ = 1,

1 if αβ < 1.
(209)

Proof of Lemma 8.4. Since X1, · · · , Xd are independent copies of X0, it follows
from (204) that for all integers n ≥ 1,

E
[
L(x , T )n

]
≤ (2π)−nd

∫
Tn

d∏
k=1

{∫
Rn

e−
1
2 Var(Pn

j=1 u
k
j X0(tj)) dUk

}
dt, (210)

where Uk = (u1
k, · · · , unk ) ∈ Rn. It is clear that in order to bound the inte-

gral in dt it is sufficient to consider only the integral over Tn6= = {t ∈ Tn :
t1, . . . , tn are distinct} [the set of t ∈ RNn having ti = tj for some i 6= j has
(Nn)-dimensional Lebesgue measure 0]. It follows from Lemma 3.4 that for
every t ∈ Tn6=, the covariance matrix of X0(t1), · · · , X0(tn) is invertible. We
denote the inverse matrix by R(t1, · · · , tn), and let (Z1, · · · , Zn) be the Gaus-
sian vector with mean zero and the covariance matrix R(t1, · · · , tn). Then the
density function of (Z1, · · · , Zn) is given by[

det Cov
(
X0(t1), . . . , X0(tn)

)]1/2
(2π)n/2

e−
1
2UCov(X0(t1),...,X0(tn))U ′ , (211)

where U = (u1, · · · , un) ∈ Rn and U ′ is the transpose of U . Hence for each
1 ≤ k ≤ d,∫

Rn

e−
1
2 Var(Pn

j=1 u
j
kX0(tj)) dUk =

(2π)n/2[
det Cov

(
X0(t1), . . . , X0(tn)

)]1/2 . (212)

Combining (210) and (212), we derive

E
[
L(x , T )n

]
≤ (2π)−nd/2

∫
Tn

1[
det Cov(X0(t1), . . . , X0(tn))

]d/2 dt. (213)
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It follows from Condition (C3′) and (53) that

det Cov
(
X0(t1), . . . , X0(tn)

)
=

n∏
j=1

Var
(
X0(tj)

∣∣X0(ti), j < i ≤ n
)

≥ cn
8,3

n∏
j=1

min
j<i≤n+1

ρ(tj , ti)2,

(214)

where tn+1 = 0. This and (213) together imply that

E
[
L(x , T )n

]
≤ cn

8,4

∫
Tn

n∏
j=1

1[
min

j<i≤n+1
ρ(tj , ti)

]d dt. (215)

We will estimate the integral in (215) by integrating in the order dt1, dt2, . . . ,
dtn. Considering first the integral in dt1, we have∫

T

1[
min

1<i≤n+1
ρ(tj , ti)

]d dt1 ≤ n+1∑
i=2

∫
T

1[
ρ(tj , ti)

]d dt1

≤ c n
∫

[0,r]N

ds1 · · · dsN[∑N
k=1 s

Hk
k

]d ,
(216)

where the last inequality follows from a change of variables. Integrating the
last integral in the order ds1, · · · , dsN and applying (209) in Lemma 6.3,
we can show that, because of (206), the last integrand in (216) only affects
the integral in ds1, . . . , dsτ which contributes [up to a constant] the factor
r

Pτ
`=1(Hτ/H`)−Hτd; and the integral in dsτ+1, . . . , dsN contributes the factor

rN−τ . In other words, we have∫
[0,r]N

ds1 · · · dsN[∑N
k=1 s

Hk
k

]d ≤ c8,5 rPτ
`=1(Hτ/H`)+N−τ−Hτd. (217)

This and (216) imply∫
T

dt1[
min

1<i≤n+1
ρ(tj , ti)

]d ≤ c8,6 n rPτ
`=1(Hτ/H`)+N−τ−Hτd. (218)

Repeating the same procedure for integrating in dt2, . . . , dtn in (215) yields
(207). This proves Lemma 8.4.

Remark 8.7. In the proof of Lemma 8.4, we have assumed T is a hypercube
T = [a , a + 〈r〉]. This is only for convenience and one can consider arbitrary
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closed intervals T =
∏N
`=1[a` , a`+r`] ⊆ I. The argument is the same as above,

but (216) becomes∫
T

dt1[
min

1<i≤n+1
ρ(tj , ti)

]d ≤ cn ∫QN
k=1[0,rk]

ds1 · · · dsN[∑N
k=1 s

Hk
k

]d . (219)

Choose N positive numbers p1, . . . , pN ∈ (0 , 1) defined by

pk =
H−1
k∑N

i=1H
−1
i

(k = 1, . . . , N). (220)

Then
∑N
k=1 pk = 1. By using the following inequality

N∑
k=1

sHkk ≥
N∑
k=1

pk s
Hk
k ≥

N∏
k=1

spkHkk ∀ s ∈ (0 ,∞)N , (221)

one can verify that∫
QN
k=1[0,rk]

ds1 · · · dsN[∑N
k=1 s

Hk
k

]d ≤ c λN (T )1−ν , (222)

where ν = d/(
∑N
i=1H

−1
i ) ∈ (0 , 1). Combining (215), (219) and (222) we

derive that
E
[
L(x , T )n

]
≤ cn

8,7
n!λN (T )n(1−ν) (223)

holds for every interval T ⊆ I. We will apply this inequality in the proof of
Theorem 8.2 below.

Lemma 8.4 implies that for all n ≥ 1, L(x , T ) ∈ Ln(Rd) a.s. [41, p. 42)].
Our next lemma estimates the moments of the increments of L(x , T ) in the
space variable x.

Lemma 8.8. Assume (206) holds for some τ ∈ {1, . . . , N}. Then there exists
a positive and finite constant c8,8 , depending on N, d, H and I only, such
that for all hypercubes T = [a, a + 〈r〉] ⊆ I, x , y ∈ Rd with |x − y| ≤ 1, all
even integers n ≥ 1 and all γ ∈ (0 , 1) small enough,

E
[(
L(x , T )− L(y , T )

)n] ≤ cn
8,8

(n!)(1+γ) |x− y|nγ rn(βτ−2Hτγ). (224)

In order to prove Lemma 8.8, we will make use of the following lemma
essentially due to Cuzick and DuPreez [19]; see also [55].
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Lemma 8.9. Let Z1, . . . , Zn be mean zero Gaussian variables which are lin-
early independent, then for any nonnegative function g : R→ R+,∫

Rn

g(v1)e−
1
2 Var(Pn

j=1 vjZj) dv1 · · · dvn

=
(2π)(n−1)/2[

det Cov
(
Z1, · · · , Zn

)]1/2 ∫ ∞
−∞

g

(
v

σ1

)
e−v

2/2 dv,
(225)

where σ2
1 = Var(Z1 |Z2, . . . , Zn) denotes the conditional variance of Z1 given

Z2, . . . , Zn.

Proof of Lemma 8.8. Let γ ∈ (0 , 1) be a constant whose value will be deter-
mined later. Note that by the elementary inequalities

|eiu − 1| ≤ 21−γ |u|γ for all u ∈ R (226)

and |u+ v|γ ≤ |u|γ + |v|γ , we see that for all u1, . . . , un, x, y ∈ Rd,

n∏
j=1

∣∣∣e−i〈uj , x〉 − e−i〈uj , y〉∣∣∣ ≤ 2(1−γ)n |x− y|nγ
∑′ n∏

j=1

|ujkj |
γ , (227)

where the summation
∑

´ is taken over all the sequences (k1, · · · , kn) ∈
{1, · · · , d}n.

It follows from (205) and (227) that for every even integer n ≥ 2,

E
[(
L(x , T )− L(y , T )

)n] ≤ (2π)−nd2(1−γ)n |x− y|nγ

×
∑′ ∫

Tn

∫
Rnd

n∏
m=1

|umkm |
γ E
[
e−i

Pn
j=1 〈u

j , X(tj)〉
]
du dt

≤ cn
8,9
|x− y|nγ

∑′ ∫
Tn

dt

×
n∏

m=1

{∫
Rnd

|umkm |
nγe−

1
2 Var(Pn

j=1 〈u
j , X(tj)〉) du

}1/n

,

(228)

where the last inequality follows from the generalized Hölder inequality.
Now we fix a vector k = (k1, . . . , kn) ∈ {1, · · · , d}n and n distinct points

t1, . . . , tn ∈ T [the set of such points has full (nN)-dimensional Lebesgue
measure]. Let M = M (k, t, γ) be defined by

M =
n∏

m=1

{∫
Rnd

|umkm |
nγ e−

1
2 Var(Pn

j=1 〈u
j , X(tj)〉) du

}1/n

. (229)

Note that X` (1 ≤ ` ≤ N) are independent copies of X0. By Lemma 3.4, the
random variables X`(tj) (1 ≤ ` ≤ N, 1 ≤ j ≤ n) are linearly independent.
Hence Lemma 8.9 gives
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Rnd

|umkm |
nγ e−

1
2 Var(Pn

j=1 〈u
j ,X(tj)〉) du

=
(2π)(nd−1)/2[

det Cov
(
X0(t1), . . . , X0(tn)

)]d/2 ∫
R

(
v

σm

)nγ
e−v

2/2 dv

≤
cn
8,10

(n!)γ[
det Cov

(
X0(t1), . . . , X0(tn)

)]d/2 1
σnγm

,

(230)

where σ2
m is the conditional variance of Xkm(tm) given Xi(tj) (i 6= km or

i = km but j 6= m), and the last inequality follows from Stirling’s formula.

Combining (229) and (230) we obtain

M ≤
cn
8,11

(n!)γ[
det Cov

(
X0(t1), . . . , X0(tn)

)]d/2 n∏
m=1

1
σγm

. (231)

The second product in (231) will be treated as a “perturbation” factor and
will be shown to be small when integrated. For this purpose, we use again the
independence of the coordinate processes of X and Condition (C3′) to derive

σ2
m = Var

(
Xkm(tm)

∣∣Xkm(tj), j 6= m
)

≥ c2
8,12

min
{
ρ(tm, tj)2 : j = 0 or j 6= m

}
.

(232)

Now we define a permutation π of {1, · · · , n} such that

ρ
(
tπ(1), 0

)
= min

1≤j≤n
ρ(tj , 0). (233)

and once tπ(m−1) has been defined, we choose tπ(m) such that

ρ
(
tπ(m), tπ(m−1)

)
= min

{
ρ
(
tj , tπ(m−1)

)
, j ∈ {1, · · · , n} \ {π(1) , · · · , π(m− 1)}

}
.

(234)

By this definition, we see that for every m = 1, · · · , n,

min
{
ρ
(
tπ(m), tj

)
: j = 0 or j 6= π(m)

}
= min

{
ρ
(
tπ(m), tπ(m−1)

)
, ρ
(
tπ(m+1), tπ(m)

)}
.

(235)

It follows from (232), (235) and (53) that
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n∏
m=1

1
σγm
≤ c−nγ

8,12

n∏
m=1

1
min

{
ρ
(
tπ(m), tj

)γ : j = 0 or j 6= π(m)
}

≤ cn
8,13

n∏
m=1

1
min

{
ρ
(
tπ(m), tπ(m−1)

)γ
, ρ
(
tπ(m+1), tπ(m)

)γ}
≤ cn

8,13

n∏
m=1

1

ρ
(
tπ(m), tπ(m−1)

)2γ
≤ cn

8,14

n∏
m=1

1[
Var(X0(tπ(m))|X0(tπ(i)), i = 1, · · · ,m− 1)

]γ
=

cn
8,15[

det Cov(X0(t1), · · · , X0(tn))
]γ .

(236)

Combining (231) and (236), we obtain

M ≤
cn
8,16

(n!)γ[
detCov(X0(t1), · · · , X0(tn))

] d
2 +γ

≤
cn
8,17

(n!)γ∏n
j=1

[
min

j<i≤n+1
ρ(tj , ti)

]d+2γ
,

(237)

where the last step follows from Condition (C3′) and (53).
It follows from (228), (229), (231) and (237) that

E
[(
L(x+ y, T )− L(x , T )

)n]
≤ cn

8,18
|y|nγ (n!)γ

∫
Tn

n∏
j=1

1[
min

j<i≤n+1
ρ(tj , ti)

]d+2γ
dt. (238)

Note that the last integral in (238) is similar to that in (215) and can be
estimated by integrating in the order dt1, dt2, . . . , dtn. To this end, we take
γ ∈ (0 , 1) small such that

τ−1∑
`=1

1
H`
≤ d+ 2γ <

τ∑
`=1

1
H`

. (239)

Then, similar to (216)–(218), we derive∫
Tn

n∏
j=1

1[
min

j<i≤n+1
ρ(tj , ti)

]d+2γ
dt

≤ cn
8,19

(n!)1+γ rn
(Pτ

`=1(Hτ/H`)+N−τ−Hτ (d+2γ)
)
.

(240)
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It is now clear that (224) follows from (238) and (240). This proves Lemma
8.8.

Now we are ready to prove Theorem 8.2.
Proof of Theorem 8.2. It follows from Lemma 8.8 and the multiparameter
version of Kolmogorov’s continuity theorem [49] that, for every fixed interval
T ∈ A such that T ⊆ I, X has almost surely a local time L(x , T ) that is
continuous for all x ∈ Rd.

To prove the joint continuity, observe that for all x, y ∈ Rd, s, t ∈ I and
all even integers n ≥ 1, we have

E [(L(x , [ε, s])− L(y , [ε, t]))n] (241)

≤ 2n−1 {E [(L(x , [ε, s])− L(x , [ε, t]))n] + E [(L(x , [ε, t])− L(y , [ε, t]))n]} .

Since the difference L(x , [ε, s])− L(x , [ε, t]) can be written as a sum of finite
number (only depends onN) of terms of the form L(x , Tj), where each Tj ∈ A
is a closed subinterval of I with at least one edge length ≤ |s − t|, we can
use Lemma 8.4 and Remark 8.7, to bound the first term in (241). On the
other hand, the second term in (241) can be dealt with using Lemma 8.8 as
above. Consequently, for some γ ∈ (0 , 1) small, the right hand side of (241) is
bounded by cn

8,20
(|x− y|+ |s− t|)nγ , where n ≥ 2 is an arbitrary even integer.

Therefore the joint continuity of the local times L(x , t) follows again from the
multiparameter version of Kolmogorov’s continuity theorem. This finishes the
proof of Theorem 8.2.

The proof of Theorem 8.2 also provides some information about the mod-
ulus of continuity of L(x , t) as a function of x and t. It would be interesting
to establish sharp local and uniform Hölder conditions for the local time, be-
cause such results bear rich information about the irregular properties of the
sample functions of X [1; 13; 41; 102].

By applying Lemma 8.4 and the Borel-Cantelli lemma, one can easily
derive the following law of the iterated logarithm for the local time L(x , ·):
There exists a positive constant c8,21 such that for every x ∈ Rd and t ∈
(0, 1)N ,

lim sup
r→0

L(x ,U(t , r))
ϕ9(r)

≤ c8,21 , (242)

where U(t , r) denotes the open or closed ball [in the Euclidean metric] cen-
tered at t with radius r and ϕ9(r) = rβτ log log(1/r). It follows from Fubini’s
theorem that, with probability one, (242) holds for λN -almost all t ∈ I. Now
we prove a stronger version of this result, which is useful in determining the
exact Hausdorff measure of the level set Lx.

Theorem 8.10. Let X be an (N, d)-Gaussian random field defined by (36).
We assume Conditions (C1) and (C3′) are satisfied on I and d <

∑N
j=1(1/Hj).

Let τ ∈ {1, . . . , N} be the integer so that (206) holds and let L be the jointly
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continuous local time of X. Then, there is a finite constant c8,22 such that with
probability one,

lim sup
r→0

L(x ,U(t , r))
ϕ9(r)

≤ c8,22 (243)

holds for L(x , ·)-almost all t ∈ I.

Proof. The proof is similar to that of Theorem 4.1 in [6]. See also [102].
For every integer k ≥ 1, we consider the random measure µk := µk(x, •)

on the Borel subsets C of I defined by (157) [where the integer n is replaced
by k]. Then, by the occupation density formula (197) and the continuity of
the function y 7→ L(y , C), one can verify that almost surely µk(C)→ L(x ,C)
as k →∞ for every Borel set C ⊆ I.

For every integer m ≥ 1, denote fm(t) = L
(
x ,U(t, 2−m)

)
. From the proof

of Theorem 8.2 we can see that almost surely the functions fm(t) are contin-
uous and bounded. Hence we have almost surely, for all integers m, n ≥ 1,∫

I

[fm(t)]n L(x , dt) = lim
k→∞

∫
I

[fm(t)]n µk(dt). (244)

It follows from (244), (157) and the proof of Proposition 3.1 of [77] that for
every positive integer n ≥ 1,

E
∫
I

[fm(t)]n L(x , dt)

=
(

1
2π

)(n+1)d ∫
I

∫
U(t,2−m)n

∫
R(n+1)d

e−i
Pn+1
j=1 〈x,u

j〉

× E exp

i n+1∑
j=1

〈uj , X(sj)〉

 duds,

(245)

where u = (u1, . . . , un+1) ∈ R(n+1)d and s = (t, s1, . . . , sn). Similar to the
proof of (207) we have that the right hand side of Eq. (245) is at most

cn
8,23

∫
I

∫
U(t,2−m)n

ds

[det Cov(X0(t) , X0(s1) , . . . , X0(sn))]d/2

≤ cn
8,24

n! 2−mnβτ ,
(246)

where c8,24 is a positive and finite constant depending on N, d, H, and I only.
Let γ > 0 be a constant whose value will be determined later. We consider

the random set

Im(ω) =
{
t ∈ I : fm(t) ≥ γϕ9(2−m)

}
.

Denote by νω the restriction of the random measure L(x , ·) on I, that is,
νω(E) = L(x ,E ∩ I) for every Borel set E ⊆ RN

+ . Now we take n = blogmc,
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where byc denotes the integer part of y. Then by applying (246) and Stirling’s
formula, we have

E
[
νω(Im)

]
≤

E
∫
I

[fm(t)]n L(x , dt)
[γϕ9(2−m)]n

≤
cn
8,25

n! 2−mnβτ

γn2−mnβτ (logm)n
≤ m−2,

(247)

provided γ > 0 is chosen large enough, say, γ ≥ c8,25 e
2 := c8,26 . This implies

that

E

( ∞∑
m=1

νω(Im)

)
<∞. (248)

Therefore, with probability 1 for νω almost all t ∈ I, we have

lim sup
m→∞

L(x ,U(t , 2−m))
ϕ9(2−m)

≤ c8,26 . (249)

Finally, for any r > 0 small enough, there exists an integer m such that
2−m ≤ r < 2−m+1 and (249) is applicable. Since the function ϕ9(r) is increas-
ing near r = 0, (243) follows from (249) and a monotonicity argument. ut

Since L(x , ·) is a random Borel measure supported on the level set Lx =
{t ∈ I : X(t) = x}, Theorem 8.10 and the upper density theorem of [80] imply
the following partial result on the exact Hausdorff measure of Lx.

Corollary 8.11. Assume the conditions of Theorem 8.10 are satisfied. Then
there exists a positive constant c8,27 such that for every x ∈ Rd, we have

H ϕ9 (Lx) ≥ c8,27 L(x , I), a.s. (250)

Proof. The proof is left to the reader as an exercise. ut

We should mention that the estimates in Lemmas 8.4 and 8.8 are not sharp
and it would be interesting to improve them. In the rest of this section, we
consider the special case when H = 〈α〉 and α ∈ (0 , 1). Many sample path
properties of such Gaussian random fields have been studied in [1; 49; 83; 102;
108]. By applying Lemma 2.3 in [102] in place of (216), we prove the following
sharp estimates.

Lemma 8.12. Let X be an (N, d)-Gaussian random field satisfying the con-
ditions (C1) and (C3′) with H = 〈α〉. We assume that N > αd. Then there
exists a positive and finite constant c8,28 , depending on N, d, α and I only,
such that for all intervals T = [a , a+ 〈r〉] ⊆ I with edge length r ∈ (0 , 1), all
x ∈ Rd and all integers n ≥ 1,



212 Y. Xiao

E [L(x , T )n] ≤ cn
8,28

(n!)αd/N rn(N−αd) (251)

and for any 0 < γ < min{1 , (N/α − d)/2}, there exists a positive and finite
constant c8,29 such that

E [(L(x , T )− L(y , T ))n]

≤ cn
8,29

(n!)2γ+α(d+γ)/N |x− y|nγ rn(N−α(d+γ)).
(252)

Note that, for a Gaussian random field X satisfying the assumptions of
Lemma 8.12, Eq. (251) allows us to improve the results in Theorem 8.10
and Corollary 8.11 by replacing the Hausdorff measure function ϕ9(r) by
ϕ7(r) = rN−αd(log log 1/r)αd/N . Moreover, by combining Lemma 8.12 and
the argument in [102], one can establish the following sharp local and uniform
Hölder conditions for the maximum local time L∗(•) of X defined by

L∗(T ) = sup
x∈Rd

L(x , T ) ∀ T ⊆ I. (253)

Theorem 8.13. Let X be an (N, d)-Gaussian random field satisfying the con-
ditions (C1) and (C3′) with H = 〈α〉 and N > αd. The following statements
hold:

(i) There exists a positive and finite constant c8,30 such that for every t ∈ I,

lim sup
r→0

L∗(U(t , r))
ϕ7(r)

≤ c8,30 a.s., (254)

where U(t , r) = {s ∈ I : |s− t| ≤ r}.
(ii) There exists a positive and finite constant c8,31 such that

lim sup
r→0

sup
t∈I

L∗(U(t , r))
ϕ10(r)

≤ c8,31 a.s., (255)

where ϕ10(r) = rN−αd(log 1/r)αd/N .

Proof. The proofs of (254) and (255) are based on Lemma 8.12 and a chaining
argument, which is the same as those of Theorems 1.1 and 1.2 in [102]; see
also [34]. We leave the details to the reader. ut

Similar to [102; 108], one can apply Lemma 8.12 and Theorem 8.13 to
derive further results, such as the Chung-type laws of the iterated logarithm,
modulus of nowhere differentiability, tail probability of the local times, for
(N, d)-Gaussian random fields satisfying the conditions (C1) and (C3′) with
H = 〈α〉. These are left to the reader as exercises.

The following is our final remark.
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Remark 8.14. Both Conditions (C3) and (C3′) are useful in studying the ex-
istence and regularity of the self-intersection local times of X which, in turn,
provide information on the fractal dimensions of the sets of multiple points
and multiple times of X. When X is an (N, d)-fractional Brownian sheet,
these problems have been studied in [69]. It is expected that analogous results
also hold for Gaussian random fields satisfying Conditions (C1) and (C3′).
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Comparison theorem, 135
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Fractional Brownian sheet, 155
Fractional integrals and Laplacians, 72
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process, 6
random field, see Gaussian process
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Gronwall’s lemma, 30
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Large deviations, 130
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worthy, 23
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Moving average representation, 156
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Stochastic heat equation, 27, 36, 96, see
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Stochastic wave equation, 46, 63, 162
in dimension 1, 49
in dimension 2, 50, 53, 56
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White noise, 10, 78
as a martingale measure, 19
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