12 1. INTRODUCTION AND FUTURE PLANS

These chapters are designed to present the required tools as clearly as possible.
They are not intended to be rigorously self contained. Whenever a lengthy proof is
available elsewhere in the literature, we will omit it but tell the reader exactly where
she can find it. They are also not intended to be comprehensive introductions to the
topics in question. Our choice of definitions and results stated, which may strike
some readers as idiosyncratic, is dictated by the needs of the latter chapters. We
have chosen to ignore some recent developments in these areas, such as the theory
of co-categories, because we do not need them. On the other hand we have chosen
to embrace enriched category theory, the subject of Chapter 3, since it provides the
cleanest framework for the definition of equivariant spectra in §9.1.

Equivariant homotopy theory, the arena in which our computation is done, first
appears in Chapter 7, and our star player, the spectrum M Ug, is constructed in
Chapter 12. Our main computational tool, the slice spectral sequence, first appears
in Chapter 11.

The inexperienced reader may well wonder why we need to devote over two
hundred pages to category theory before we even step into the pool of homotopy
theory. The answer is that the tools it provides enable us to proceed with far more
elegance and rigor than we could without them. This “categorification of algebraic
topology” is most apparent in the twenty-first century approach to spectra, the
fundamental objects of study in stable homotopy theory.

Spectra were first introduced in print in 1959 by Lima (then a student of
Spanier at the University of Chicago and later a prominent mathematical educa-
tor in Brazil) in [ ]. A spectrum E was defined to be a sequence of spaces E,
for nonnegative integers n, with structure maps

€ Xk, = E, 4.

In the first examples E,, was (n — 1)-connected, but this was not a formal require-
ment. The motivation for this definition was the observation that (n— 1)-connected
spaces behave very nicely in dimensions less than roughly 27. The first theorem
in this direction may have been the Freudenthal Suspension Theorem [ ] of
1938; see [ , Theorem 1.1.4].

Spectra were defined to create a world where n could be arbitrarily large so
we could enjoy this nice behavior in all dimensions. Perhaps the first extensive
account of this new world was a course given by Adams at UC Berkeley in 1961
and published as [ ]. In it (pages 22-23), he said the following.

I want to go ahead and construct a stable category. Now I should
warn you that the proper definitions here are still a matter for much
pleasurable argumentation among the experts. The debate is be-
tween two attitudes, which I’ll personify as the tortoise and the
hare. The hare is an idealist: his preferred position is one of ele-
gant and all embracing generality. He wants to build a new heaven
and a new earth and no half-measures. If he had to construct the
real numbers he’d begin by taking all sequences of rationals, and
only introduce that tiresome condition about convergence when he
was absolutely forced to.
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The tortoise, on the other hand, takes a much more restrictive
view. He says that his modest aim is to make a cleaner statement
of known theorems, and he’d like to put a lot of restrictions on his
stable objects so as to be sure that his category has all the good
properties he may need. Of course, the tortoise tends to put on
more restrictions than are necessary, but the truth is that the re-
strictions give him confidence.

You can decide which side you’re on by contemplating the
Spanier-Whitehead dual of an Eilenberg-Mac Lane object. This
is a “complex” with “cells” in all stable dimensions from —o0 to
—n. According to the hare, Eilenberg-Mac Lane objects are good,
Spanier-Whitehead duality is good, therefore this is a good object:
And if the negative dimensions worry you, he leaves you to decide
whether you are a tortoise or a chicken. According to the tortoise,
on the other hand, the first theorem in stable homotopy theory is
the Hurewicz Isomorphism Theorem, and this object has no di-
mension at all where that theorem is applicable, and he doesn’t
mind the hare introducing this object as long as he is allowed to
exclude it. Take the nasty thing away!

The resulting homotopy theoretical paradise was described very nicely by
Boardman-Vogt in [ ] about a decade later, but there were some serious techni-
cal problems, especially in connection with smash products. For a further account
of the adventures of the hare and the tortoise with an assessment of Boardman’s
work, see [ ].

It is safe to say now, over half a century later, that the hare has prevailed.
The technical problems that vexed stable homotopy theorists for a generation have
been vanquished. The increasingly sophisticated use of category theory has been
instrumental in this triumph. Many of the advances that led to this happy state of
affairs occured in the 1990s, the decade following Adams’ untimely death in a car
crash. The third author has tried to imagine what it would be like to relate these
developments to him.

Dear Frank,

Stable homotopy theory is in much better shape now than
when you left us. The definitions are much cleaner and we have
a smash product with all of the nice features you could ask for.
As you can probably guess, Peter May has been pounding away at
this for decades, but you did not live long enough to see just how
much success he and his coauthors have had.

Along with his former student Tony Elmendorf and Igor Kriz,
a Czech immigrant (you may also be interested to know that the
Berlin Wall came down, the Soviet Union collapsed and the Cold
War ended, all within three years of your death), he found a defini-
tion of the stable homotopy category that featured a smash product
that is strictly associative and commutative in 1993. You heard me
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right, I said strictly, not just up to homotopy (higher or otherwise)
or some other convoluted equivalence relation, but pointwise, on
the nose! In 1997 (with a fourth coauthor, Mike Mandell, another
former student) they published a book about it, [ 1.

The construction is complicated and I do not fully understand
it. Fortunately May and Mandell found a simpler way to do it a few
years later, described in another book, [ ] published in 2002.
This one I do understand. It uses a wonderful construction called
the Day convolution, originally discovered in 1970 [ ] by
the Australian category theorist Brian Day (1945-2012). It is a
purely categorical result that happens to be exactly what is needed
to define the smash product of spectra. This means the proof
that said smash product is strictly commutative and associative is
“purely formal.” Ironically, Day’s first job out of graduate school
was a postdoctoral position at the University of Chicago, presum-
ably at the behest of Saunders Mac Lane. As far as I can tell, Brian
and Peter did not interact mathematically.

So how do Mandell and May do it? As you know, a spectrum
E was originally defined to be a sequence of pointed spaces E,,
one for each integer n > 0, along with pointed structure maps
€ : XE, — E,i,. For them a spectrum is a functor from a
certain small category _¢# (the Mandell-May category of Defini-
tion 7.9.20) to the category 7 of pointed topological spaces. Since
¥ is small, such a functor could be regarded as a diagram of
pointed spaces, although it would not be a diagram you could ac-
tually draw because it would be infinite. This point of view is de-
veloped further in the companion paper to [ 1 [ 1.

The objects of ¢ are finite dimensional real orthogonal vector
spaces. Since such a vector space is determined up to isomorphism
by its dimension, a 7 -valued functor E on _# gives us a sequence
of spaces E,, as in the orginal definition, but with some additional
structure. In order to spell out the additional structure, I need to
tell you about the morphisms in _#. This is where things start
to get tricky.

I said the objects of ¢ are certain vector spaces, but I did not
say that _¢ is the category of such vector spaces and inner prod-
uct preserving maps as usually defined. In order to describe ¢
we need to generalize what we mean by a category because ¢ is
not a category in the usual sense. Instead it is an enriched cate-
gory; see Chapter 3. Such things were first studied by Eilenberg
and Kelly [ ] and were the subject of Kelly’s book [ ].

In an ordinary category C one has a collection (possibly a set)
of objects, and for each pair of objects X and Y a set C(X, Y) (pos-
sibly empty) of morphisms X — Y. Of course every object has an
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identity morphism, and given a third object Z we have a map
C(Y,Z) xC(X,Y) > C(X,Z)

that tells us how to compose morphisms. This map is itself a mor-
phism with suitable properties in Set, the category of sets.

In an enriched category, one has objects as before, but C(X, Y)
is no longer a set or even a class. Instead it is an object in a second
category V, which need not be Set at all. We say then that C
is enriched over V. By this definition, an ordinary category is
enriched over Set.

This auxiliary category V has to have a structure that enables
to make sense of the source of the morphism in (1.1). In other
words it needs a binary operation, analogous to Cartesian product
in Set, that allows us to combine two objects into a third. This
binary operation must have a unit anolgous to the one element set.
A category so endowed is said to be symmetric monoidal; see
§2.6 for more information. The relevant example for us is 7, the
category of pointed topological spaces. Its binary operation is the
smash product, for which the unit object is S°.

Having said what an enriched category is, I can tell you more
about the Mandell-May category ¢, which is enriched over 7 .
This means that for finite dimensional real orthogonal vector spaces
V and W, the morphism object _# (V, W) is a pointed topological
space, which is defined as follows.

Let O(V, W) denote the (possibly empty) space (also known
as a Stiefel manifold) of orthogonal embeddings of V into W. For
each such embedding 7, let W — 7(V) denote the orthogonal com-
pliment of 7(V) in W. We can regard it as the fiber of a vector
bundle over O(V,W), and we define ¢ (V, W) to be its Thom
space.

When the dimension of V exceeds that of W, the embedding
space O(V, W) is empty, which means the Thom space ¢ (V, W)
is a point. When V and W have the same dimension, the vector
bundle has zero dimensional fibers, so _# (V,W) = O(V), the
orthogonal group with a disjoint base point. When the dimension
of W exceeds that of V, we can think of ¢ (V,W) as a wedge
of copies of § W=(V) parametrized by the space of embeddings
o(V,W).

Given a third such vector space U, the analog of (1.1) is a
suitable map

VW) A F(U,V) - Z(UW).

It is induced by composition of orthogonal embeddings, i.e., by a
map
O(V,W) x O(U,V) — O(U,W).

15
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It does not help to think of points in _# (V, W) as maps from V to
W. The space ¢ (V, W) is not a topologized set of ordinary mor-
phisms, but a replacement of the usual morphism set by a mor-
phism object in 7. The map of (1.2) tells us how the replacement
of composition works.

Mandell-May define an orthogonal spectrum E (Definition 9.1.2)
to be a functor from _# to 7, which happens to be enriched over
itself. Since an object of _# is a finite dimensional vector space,
which is determined up to isomorphism by its dimension, we de-
note the image of the functor on R” by E,, as in the orginal defini-
tion. Functoriality implies that we have structure maps

(1.3) €ntk: F(RLRY A E, — Epy

forall n,k > 0.

For k = 0 this amounts to a left action on the space E, of
the orthogonal group O(n). That group also acts on _Z (R", R"*¥)
on the right by precomposition. These two actions lead to one on
the smash product in (1.3) with €, 4 factoring through the orbit
space. For k = 1 that orbit space is £E, so we have the map
€ = €unt1 - 2E, — E,4; as in the orginal definition. The
difference is that now the map does not depend on the choice of
orthogonal embedding of R" into R"*! as it did in the classical
case. This coordinate free definition is technically convenient.

We can define the suspension spectra XX for a pointed space
X by (£%X),, = ¥"X with the evident structure maps. More gen-
erally we can define the smash product of a pointed space K with a
spectrum E by (K A E), = K A E,. We can also define a spectrum
EX (maps from K to E) by

(EX), = T(K,E,).

Since spectra are functors, maps between them are natural
transformations. This means a map f : E — F of spectra is a
collection of continuous pointed maps f, : E, — F, compatible
with the structure maps. This is analogous to what you called a
function in [ , page 140].

As you pointed out on [ , page 141], there is no func-
tion f : 2§ — %S9 for which f; : S* — S§? is the Hopf map
n. Since we all love the Hopf map, we would like to have such a
function. The fix you suggested is to replace the source spectrum
E = X®S! by a spectrum E' defined by

B * forn =0,1
n— 1 §"t1 otherwise

Then there is an obvious function g : E/ — E for which g, is
an isomorphism for n > 2, and a function f’ : E’ — £®S? with
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f, = 1. You defined amap E — F ([ , page 142]) to be
an equivalence class of composites of the form f’ = fg as above.

You also defined a homotopy between two functions
E — F ([ , page 144]) in terms of amap I+ A E — F,
a homotopy between maps, in similar terms. Finally, you defined
a morphism in your category ([ , page 143]) to be a ho-
motopy class of such maps.

Thus you made a distinction between functions, maps and
morphisms. Subsequent experience has led us to approach these
issues a little differently. We have learned that the framework
provided by Quillen’s theory of model categories, the subject of
Chapters 4-6 of this book, is very helpful. Among other things, it
tells us there are two categories one should consider here. The first
is the category of spectra Sp in which the objects are the functors
# — 7 described above, and the morphisms are natural trans-
formations between them, what you called “functions.”

Before describing the second category, we need to define sta-
ble homotopy groups of spectra and weak equivalences between
spectra. This can be done as you did in [ , SIII.3]. Then
one gets a homotopy category Ho Sp (see Definition 4.3.16) hav-
ing the same objects as Sp in which weak equivalences are invert-
ible. Your “morphisms” are morphisms in this category. Your
“maps” are equivalence classes of “functions” precomposed with
weak equivalences.

9/14/18. We may need to update some forward references
here, such as that to Definition 9.2.41.

Now, at last, I can tell you about smash products. You defined
the smash product of two spectra in [ , SIII.4] and spent
30 pages showing that it has the desired properties (commutativity
and associativity with the sphere spectrum as unit) up to homo-
topy, that is up to coherent natural weak equivalence. Another
way of saying this is that we get a symmetric monoidal structure
in the homotopy category Ho Sp. The Mandell-May smash prod-
uct (Definition 9.2.41), which is based on a very insightful obser-
vation by Jeff Smith, leads to such a structure in Sp itself. This
smash product has the desired properties up to coherent natural
weak isomorphism. Not only is this a huge improvement, it has a
much shorter and more elegant proof.

If we have two spectra X and Y, each of which is a functor
# — T, then together they give us a functor from # x # to

17
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7 x 7. Now consider the diagram

(R R ———— (X, Vo) ———— X A Yy

XxY
Ix J— T xT A -7
7
//
s (X A Y)imin
@ Pad 7
// //

X
Rm+n

The smash product we are looking for is a yet to be defined functor
XAY: 7 >T

with suitable properties. We are not hoping for the diagram to
commute. That would mean

X A Yy = (X AY)mtn

in all cases, which is not a reasonable thing to expect. On the other
hand, we do expect to have maps

Nin > X A Yy = (X A Y)gn

They should be induced by a natural transformation n from the
composite functor _# x ¢# — 7 on the top of the triangle in
(1.4) to the one on the bottom.

It turns out that the right way to define X A Y involves a uni-
versal property of this natural transformation. In order to state it,
we will replace (1.4) with the following diagram, which will be
discussed further in §2.5. Suppose we have categories C, D and
&, with functors F and K as in

C &

e
K Un 7L

We wish to extend the functor F along K to a new functor
L:D—-E&E

with a natural transformation 7 : F = LK. The composite functor
LK need not be the same as F. Instead we want L and 7 to have
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the following universal property: given another such extension G
with a natural transformation y : F = GK as in the diagram

C i &
K by G
D,
there is a unique natural transformation « : L = G with
y = (aK)n
as in the following diagram.
c d &
L
h nl I
G
D

If such an L exists, it is unique and is called the left Kan extension
of F along K. It is so named because such functors were first
studied by Dan Kan in [ 1; see §2.5. The bottom line is that
such an L exists when the categories C and 9 are small and the
category & is closed under colimits. These conditions are met by
the categories of (1.4).

There is also an explicit formula for L under these conditions
that is described below in §2.5B. In the case at hand, where
L =X AY,itis as follows. Define pointed spaces

Wo=\/ XiA Yo
0<i<n
and
Wi=\/ XinS' AV,
0<i<n—1
Then the maps 7; ,—; of (1.5) determine a map
Wy —> (X AY)y.

The two maps

X;AnS'AY;

Xi+1 N Yj Xi A Yj+1

lead to two maps @, : W/ — W,. Then (X A Y), is the co-
equalizer of these two maps, meaning the quotient of the space
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W, obtained by identifying the two images of W with each other.
This is similar in spirit but not identical to the double telescope
you described in [ , pages 173-176].

How do we know that this smash product has the proper-
ties advertized? This is the subject of the Day Convolution The-
orem 3.3.5. Suppose that D is a small symmetric monoidal cate-
gory (such as _¢) enriched over a cocomplete (Definition 2.3.24)
closed symmetric monoidal category (Definition 2.6.37) V such
as 7. Then we can define a binary operation on the category
[D, V] (Definition 3.2.15) of functors D — V (the category Sp
of orthogonal spectra in our case) using a left Kan extension as in
(1.4). The theorem says that this binary operation makes the func-
tor category itself a closed symmetric monoidal category. Its unit
is defined in a certain way in terms of the unit objects of D and V.
In the present case this unit is the sphere spectrum as expected.

I hope you agree this is a big improvement over the state of
affairs of forty years ago.
In closing I have two additional comments for you.

(1) It is not difficult to adapt this setup to the equivariant case.
This is the main point of [ ]. For a finite group G, let
7T be the category of pointed G-spaces and continuous (but
not necessarily equivariant) pointed maps. Then the mapping
space 7¢(X,Y) has a pointed G-action of its own, for which
the fixed point set, 75 (X, Y)©, is the space of all equivariant
maps. Hence 7 is enriched over itself. See Chapter 7 for
more discussion.

However, if we want to do homotopy theory, we must limit
ourselves to equivariant maps. The reason is that the fiber
or cofiber of a map between G-spaces has a well defined G-
action only when the map is equivariant. We denote the cor-
responding category, which is enriched over 7-, by 7.

The category _#¢ (Definition 7.9.20) has finite dimensional
orthogonal representations V of G as objects. The morphism
space _Z(V, W) is the same Thom space as in the nonequiv-
ariant case, but now it has a G-action based on the ones on
V and W. Hence _Z; is enriched over 7. We define a G-
spectrum E to be an enriched functor 75 — 7, and we
denote the image of V by Ey and the resulting category by
Spc. The Day Convolution Theorem still applies, so we get
a nice smash product as before.
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As in the case of spaces, in order to do homotopy theory we
must limit ourselves to equivariant maps. We denote the cor-
responding category by Sp®.

(i) You might worry that orthogonal spectra are rarer than spectra
as originally defined since they appear to have more structure.
Fortunately this is not the case. It was shown in [ ]
(see ??) that every ordinary (meaning as defined by Lima)
spectrum can be described as an orthogonal one with the help
of a left Kan extension. Better yet, all of the computations
done with ordinary spectra, in particular everything you did
in [ ], are still valid in the new category of orthogonal
spectra, as well as in various others that have been proposed
and studied in recent years. Remarkably, the shifting theo-
retical foundations of our subject have had no impact on the
calculations we actually want to do. Computation precedes
theory. Our intuition about spectra was right all along.

Thanks for reading, and best of luck in your future travels,

Doug
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Outline:

History of problem: Pontryagin and Kervaire-Milnor, Toda’s work and odd
primary case, Mahowald’s EHP conjecture

Chromatic backgound and Morava stabilizer group.

Equivariant tools: 4 flavors of fixed points, slice filtration, induction and norm,
Mackey functors

Define slice SS.

Construct MUR and describe its homotopy.

Construct ®° and norm.

Determine slices for MU and its norms.

Describe slice SS for MURr and prove periodicity.

Discuss slice SS in Cy4 case



