Recall $\mathbb{A}^{g} = \mathbb{A}^{[\mathbb{A}^{e}, J, G]}$

where \mathbb{A}^{e} is the Mandel-Maya\mathit{al}
and J is pointed G-space.

A map $f: X \to Y$ in \mathbb{A}^{e} is a map
of fiber if $f^{H}: X^{H} \to Y^{H}$ is one for
each $H \in G$. It has left G-cell

\[J_{\mathcal{A}} = \mathcal{E} \times N(S^{-n+1} \to D) \quad n \geq 0, \quad H \in G \]

and

\[J_{\mathcal{E}} = \mathcal{E} \times N(S^{-n+1} \to D) \quad n \geq 0, \quad H \in G \]

The projection model

Def. Let \mathcal{M} be a CWM with
gen. Let I and J and let I be a small cat. Then $[I, \mathcal{M}]$

\[\text{has a model structure where} \]

\[f: X \to Y \quad \text{is a map of fiber if} \]

\[f^{H}: X^{H} \to Y^{H} \quad \text{is one for} \quad A \subseteq H \]
It has been seen

If \(I = \sum_{i \in I} i \), \(V \in \mathcal{Z} \)

If \(J = \sum_{j \in J} j \), \(V \in \mathcal{Z} \)

Reduction: STATE KAN TRANSFER THM.

Suppose \(J \) has a full cube cut \(\lambda \)

with \(\lambda : X \rightarrow J \)

\[\lambda : [L, M] \xrightarrow{\lambda} [J, M]. \]

Using the Kan transfer then we get an induced model structure on \([J, M]\) in which \(f : X \rightarrow Y \) is a weak or fiber if \(f : X \rightarrow Y \) is one

for each \(L \in \mathcal{L} \).

Case of interest: Let \(\mathcal{L}_0 \subset \mathcal{L} \)

be the full subcategory of \(\mathcal{L} \) with \(\mathcal{L}_0 \neq \emptyset \) (positive ideal)
Localization is a form of Brownfield localization. Given a model cat \mathcal{M} and a new model and a set (or class) of morphisms S, we form a new model cat $L_S \mathcal{M}$ where:

1. The underlying category is the same
2. It has the same cofibres
3. Every each map in \mathcal{M} and each map in \mathcal{S} is a map in $L_S \mathcal{M}$

This means $L_S \mathcal{M}$ has more trivial cofibres and hence fewer fibrant and more interesting fibrant replacements.

Example: In the classical case, the simply fibrant objects are the S-spectra.

We have its generalizing set of
Describe S in every case and obtain other case if time permits.

Enlargement

Then set w for $\ker G$ (تقی)

1. $\exists V \ni I_G : V G = 0 \forall S \ni I_G \exists V \ni I_G$

We need a bigger set

2. $\exists H \ni S \ni I_G : H \leq G, V H = 0 \forall S$

In order for the change of G

Adjunction

$G_H(\sim) \
\Lambda H \
\Lambda H$

to be a Quillen adjunction $\vee H$

Reformulation

$\prod_{H \leq G} \Lambda H \
\Lambda H \
\Lambda H \
\Lambda H$

$\Lambda G \
\Lambda G \
\Lambda G \
\Lambda G$
NEW Thm (Enlargement)

Let M and M' be CGMCs with gen sets (I, J) and (I', J')

Assume we have an adjunction (not Quillen)

\[
egin{array}{c}
M' \\
\xleftarrow{F} \\
\xrightarrow{U} \\
M
\end{array}
\]

with U,F where U preserves weg

and UF,F is set of wegs in M'

Then consider the enlargement adj

\[
\begin{array}{c}
M \times M' \\
\xleftarrow{\text{MxM'}} \\
\xrightarrow{\text{MxM}} \\
\xleftarrow{M \times U} \\
M
\end{array}
\]

This has a model structure on M

with same wegs

generating sets $(I_{U,F}, J_{U,F}, F)$

(more cofibs) and fibrations

with suitable left RLP.
Example: \(M = A \otimes C \)
\(M' = A \otimes H \)

with change of \(A \) adjunction