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What is string cobordism?

String cobordism or MString is Haynes Miller’s
name for the spectrum also known as MO⟨8⟩,

the
Thom spectrum associated with the BO⟨8⟩, the 7-
connected cover of the space BO.

Its homotopy type at the prime 2 is quite compli-
cated and still not fully understood. It was first
studied by Vince Giambalvo in 1971. It is known
to admit a map to tmf (the spectrum for topo-
logical modular forms) that is surjective in mod
2 homology.

At each prime larger than 3, it is known to split
as a wedge of suspensions of the Brown-Peterson
spectrum BP. There is some subtlety in its multi-
plicative structure, which is the subject of a 2008
paper by Mark Hovey.
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What is string cobordism? (continued)

Our goal is to study MO⟨8⟩ at the prime 3.

This is the sweet
spot in that its homotopy type is both interesting and
accessible. It is the subject of a 1995 paper by Hovey and the
third author.
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1.5

Some informative history

It is useful to compare this problem with the study
of MSO (oriented cobordism) and MSU (special
unitary cobordism) at the prime 2.

MSO is the sub-
ject of 1960 paper by Terry Wall.

As a comodule over the dual Steenrod algebra A∗, H∗MSO
splits as a direct sum of suspensions of two types:

• A∗ = P(ζ1, ζ2, . . . ) with |ζi | = 2i − 1. This is the homology
of the mod 2 Eilenberg-Mac Lane spectrum HZ/2.

• (A//A(0))∗ = P(ζ2
1 , ζ2, ζ3, . . . ). This is the homology of the

integer Eilenberg-Mac Lane spectrum HZ. There is one
such summand for each monomial in the graded ring
P(x4, x8, x12, . . . ).

There is a corresponding splitting of the spectrum MSO(2) into
a wedge of integer and mod 2 Eilenberg-Mac Lane spectra.
The Adams spectral sequence for MSO collapses from E2.
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Some informative history: MSU at the prime 2

The 2-primary homotopy type of MSU is the sub-
ject of David Pengelley’s thesis, published in 1982.

H∗MSU is the “double” of H∗MSO. This means that as a
comodule over the dual mod 2 Steenrod algebra A∗, H∗MSO
splits as a direct sum of suspensions of two types:

• The double of A∗, P(ζ2
1 , ζ

2
2 , . . . ) with |ζi | = 2i − 1. This is

the homology of the spectrum BP.
• The double of (A//A(0))∗, P(ζ4

1 , ζ
2
2 , ζ

2
3 , . . . ). You might

think this is the homology of a new spectrum X . There is
one such summand for each monomial in the graded ring
P(y8, y16, y24, . . . ).
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splits as a direct sum of suspensions of two types:

• The double of A∗, P(ζ2
1 , ζ

2
2 , . . . ) with |ζi | = 2i − 1. This is

the homology of the spectrum BP.

• The double of (A//A(0))∗, P(ζ4
1 , ζ

2
2 , ζ

2
3 , . . . ). You might

think this is the homology of a new spectrum X . There is
one such summand for each monomial in the graded ring
P(y8, y16, y24, . . . ).
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Some informative history: MSU (continued)

It is easy to work out the Adams spectral sequence for the
hypothetical spectrum X with

H∗X = P(ζ4
1 , ζ

2
2 , ζ

2
3 , . . . ).

We find that
π∗X ∼= π∗bo ⊗ P(v2, v3, . . . ),

where vn ∈ π2(2n−1) (in Adams filtration 1) is related to the
generator of π∗BP of the same name. Recall that π∗bo has
torsion in dimensions congruent to 1 and 2 modulo 8.
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Some informative history: MSU (continued)

Here is the Adams E2 page for the hypothetical summand X of
MSU(2).

0 2 4 6 8 10 12 14 16

0

4

8

η v2 v2
2 v3

In 1966 Pierre Conner and Ed Floyd
proved that the torsion in π∗MSU is
also confined to dimensions congru-
ent to 1 and 2 modulo 8. This means
ηv2 must be killed by an Adams differ-
ential.
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1.9

Some informative history: MSU (continued)

We have seen that H∗MSU has an A∗-comodule summand
isomorphic to

P(ζ4
1 , ζ

2
2 , ζ

2
3 , . . . )⊗ P(y8, y16, y24, . . . ) ⊂ H∗MSU.

The Conner-Floyd theorem leads to Adams differentials

d2(y2n+1) = ηvn for n ≥ 2,

which we call Pengelley differentials.

This means that MSU does not split as expected into a wedge
of suspensions of X and BP. Instead of X , Pengelley gets a
spectrum BoP with an additive A∗-comodule isomorphism

H∗BoP ∼= P(ζ4
1 , ζ

2
2 , ζ

2
3 , . . . )⊗ E(y8, y16, y32, . . . ).
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1.10

Some informative history: MSU (continued)

Instead of X , Pengelley gets a spectrum BoP with an additive
isomorphism

H∗BoP ∼= P(ζ4
1 , ζ

2
2 , ζ

2
3 , . . . )⊗ E(y8, y16, y32, . . . ).

BoP was later shown by Stan Kochman to be
a ring spectrum, and Pengelley shows it sup-
ports a map to bo inducing an isomorphism
of torsion in homotopy groups.

Pengelley also shows that MSU(2) is equiva-
lent to a wedge of suspensions of BoP and
BP.

Spoiler: Our goal is to prove a similar statement about
MO⟨8⟩(3). Our analog of BoP supports a map to tmf (instead
of bo) inducing an isomorphism of torsion in homotopy groups.
Hence we call it BmP.
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1.11

More history: Wilson spaces and Hopf rings

The space BO⟨8⟩(3) is a Wilson space,

mean-
ing that is has both torsion free homology and
torsion free homotopy. Such spaces are classi-
fied by Steve Wilson in a 1973 paper. Their ho-
mology groups are described in the 1977 “Hopf
ring” paper of Wilson and the third author.

Given a spectrum E , let Ek denote the k th space in its
Ω-spectrum. We are interested in the spectra BP and BP⟨n⟩.
Let en = (pn+1 − 1)/(p − 1) = 1 + p + · · ·+ pn.

Then Wilson shows the following:
• BPk is a Wilson space for each k .
• BP⟨n⟩k is one for k ≤ 2en.
• Every Wilson space is equivalent to a product of these

BP⟨n⟩k s.
• In particular, for such k , BP⟨n⟩k is a factor of BPk and of

BP⟨n′⟩k for each n′ > n.
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Ω-spectrum. We are interested in the spectra BP and BP⟨n⟩.
Let en = (pn+1 − 1)/(p − 1) = 1 + p + · · ·+ pn.

Then Wilson shows the following:
• BPk is a Wilson space for each k .
• BP⟨n⟩k is one for k ≤ 2en.
• Every Wilson space is equivalent to a product of these

BP⟨n⟩k s.
• In particular, for such k , BP⟨n⟩k is a factor of BPk and of

BP⟨n′⟩k for each n′ > n.
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More history: Wilson spaces and Hopf rings (continued)

Given a homotopy commutative ring spectrum E (such as BP
or BP⟨n⟩),

let Ek denote the k th space in its Ω-spectrum. Then
• Ek is an infinite loop space, so H∗Ek (with field

coefficients) is a Hopf algebra. Given x , y ∈ H∗Ek , we
denote their product by x ∗ y , the star product.

• The multiplication in E induces maps Ek × Eℓ → Ek+ℓ.
Given x ∈ H∗Ek and y ∈ H∗Eℓ, the image of x ⊗ y in
H∗Ek+ℓ is denoted by x ◦ y , the circle product. It plays
nicely with the Hopf algebra coproduct.

• These two products make the graded space E• into a
graded ring object in the category of coalgebras, a Hopf
ring. The star and circle products are related by the Hopf
ring distributive law, in which they correspond respectively
to addition and multiplication.
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Given a homotopy commutative ring spectrum E (such as BP
or BP⟨n⟩), let Ek denote the k th space in its Ω-spectrum. Then
• Ek is an infinite loop space, so H∗Ek (with field
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denote their product by x ∗ y , the star product.

• The multiplication in E induces maps Ek × Eℓ → Ek+ℓ.
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or BP⟨n⟩), let Ek denote the k th space in its Ω-spectrum. Then
• Ek is an infinite loop space, so H∗Ek (with field

coefficients) is a Hopf algebra. Given x , y ∈ H∗Ek , we
denote their product by x ∗ y , the star product.

• The multiplication in E induces maps Ek × Eℓ → Ek+ℓ.
Given x ∈ H∗Ek and y ∈ H∗Eℓ, the image of x ⊗ y in
H∗Ek+ℓ is denoted by x ◦ y , the circle product. It plays
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• These two products make the graded space E• into a
graded ring object in the category of coalgebras, a Hopf
ring.

The star and circle products are related by the Hopf
ring distributive law, in which they correspond respectively
to addition and multiplication.
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More history: Wilson spaces and Hopf rings (continued)
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More history: Wilson spaces and Hopf rings (continued)

For x ∈ πmE , we get an element

[x ] ∈ H0E−m,

the Hurewicz image of x ∈ π0E−m.

When E is complex oriented, we get a map CP∞ → E2, under
which we have

H2k CP∞ ∋ βk
� // bk ∈ H2k E2.

where βk is the usual generator of H2k CP∞. bk is known to be
decomposable under the star product when k is not a power of
p.
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For x ∈ πmE , we get an element

[x ] ∈ H0E−m,

the Hurewicz image of x ∈ π0E−m.

When E is complex oriented, we get a map CP∞ → E2, under
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More history: Wilson spaces and Hopf rings (continued)

We are interested in elements of the form

[v I ]bJ = [v i1
1 . . . v in

n ]b
j0
1 bj1

p · · · ∈ H2mBP⟨n⟩2k

where the multiplication is the circle product,

m = ||J|| := j0 + j1p + j2p2 + . . .

and

k = |I| − ||I||+ |J|
= i1 + · · ·+ in − (i1p + · · ·+ inpn) + j0 + j1 + j2 + . . .

It is known that H∗BP⟨n⟩2k for k ≤ en is generated by such
elements as a ring under the star product, subject to the Hopf
ring relation, which is related to the formal group law. For
example, it implies that for each t ≥ 0,

[v1]b
p
pt = −b∗p

pt ∈ H2pt+1BP⟨n⟩2.
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1.15

More history: Wilson spaces and Hopf rings (continued)

We will refer to computations with the elements [v I ]bJ , using
the Hopf ring distributive law and the Hopf ring relation, as bee
keeping.
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More history: Wilson spaces and Hopf rings (continued)

We will refer to computations with the elements [v I ]bJ ,

using
the Hopf ring distributive law and the Hopf ring relation, as bee
keeping.
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1.16

H∗BO⟨8⟩ and H∗MO⟨8⟩

It is known that H∗BP⟨n⟩2k is a polynomial algebra under the
star product when k < en,

but not for the borderline case
k = en. Recall that e1 = 1 + p.

At p = 3, BO⟨8⟩ is the borderline Wilson space BP⟨1⟩8. Its
homology has a polynomial factor and a truncated polynomial
factor of height 3. Its first few generators are

y8 = b4
1 with y3

8 = 0

x12 = b3
1b3 x16 = b2

1b2
3

y20 = b1b3
3 with y3

20 = 0

x24 = b3
1b9 y24 = b4

3 − b3
1b9 with y3

24 = 0

x28 = b2
1b3b9 x32 = b1b2

3b9

...

x52 = [v1]b2
1b2

3b2
9, the first appearance of [v1]
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1.17

H∗BO⟨8⟩ and H∗MO⟨8⟩ (continued)

We find that

H∗BO⟨8⟩ ∼= P(x4m : m ≥ 3,2m ̸= 1 + 3n)

⊗ Γ(y2(1+3n) : n ≥ 0),

where Γ(y) denotes the divided power algebra on y , which is
dual to the polynomial algebra on the dual of y . For example,

Γ(y8) ∼= P(y8, y24, y72, . . . )/(y3
8·3i ),

and the Verschiebung map V , the dual of the pth power map,
divides each subscript by 3.

It is not hard to work out the right action of the mod 3 Steenrod
algebra A on H∗BO⟨8⟩, and on the Thom isomorphic ring
H∗MO⟨8⟩.
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1.18

Two change of rings isomorphisms

We want to study the 3-primary Adams spectral sequence for
MO⟨8⟩.

Recall that the dual of the mod 3 Steenrod algebra A is

A∗ ∼= E(τ0, τ1, . . . )⊗ P(ζ1, ζ2, . . . ),

with |τn| = 2 · 3n − 1 and |ζn| = 2 · 3n − 2. The dual of the
subalgebra P ⊆ A generated by the Steenrod reduced power
operations is

P∗ ∼= P(ζ1, ζ2, . . . ).

A has a subalgebra E with

E∗ ∼= E(τ0, τ1, . . . ).

and
ExtE∗

(Z/3,Z/3) ∼= P(a0,a1, . . . ) =: V .

Here an corresponds to vn ∈ π∗BP, where v0 = 3. It has
Adams filtration 1 and topological dimension 2(3n − 1).
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Two change of rings isomorphisms (continued)

There is a Cartan-Eilenberg spectral sequence converging to
our Adams E2-page with

E∗,∗,∗
1

∼= ExtP∗

(
Z/3,ExtE∗

(Z/3,H∗MO⟨8⟩)
)

∼= ExtP∗
(Z/3,H∗MO⟨8⟩ ⊗ V ) .

(1)

The coaction of E∗ on H∗MO⟨8⟩ is trivial since the latter is
concentrated in even dimensions. This leads to the second
isomorphism of (1).
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Two change of rings isomorphisms (continued)

Let
J = (x3

12, x
3
16, x52, x160, . . . ) ⊆ H∗MO⟨8⟩,

the change of rings ideal. One can show that

ExtP∗
(Z/3,H∗MO⟨8⟩) ∼= ExtP(1)∗ (Z/3,H∗MO⟨8⟩/J) ,

the first change of rings isomorphism, where

36 48 52 160

P(1)∗ = P∗/(ζ
9
1 , ζ3

2 , ζ3, ζ4, . . . )

= P(ζ1, ζ2)/(ζ
9
1 , ζ

3
2 )

is dual to the subalgebra P(1) ⊆ P generated by the Steenrod
operations P1 and P3. This is a major simplification.
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Two change of rings isomorphisms (continued)

Recall

ExtP∗
(Z/3,H∗MO⟨8⟩) ∼= ExtP(1)∗ (Z/3,L) ,

where L = H∗MO⟨8⟩/J and P(1)∗ = P(ζ1, ζ2)/(ζ
9
1 , ζ

3
2 ).

The algebra P(1) is noncommutative, has rank 27 (as a vector
space), and has a complicated Ext group. The dual of ζ2 is

Q := [P3,P1] = P3P1 − P4 with Q3 = 0.

The P(1)-module L is free over the subalgebra T generated by
Q. This gives the second change of rings isomorphism

ExtP(1)∗ (Z/3,L) ∼= ExtP(1)ab
∗

(
Z/3,Lab) ,

where P(1)ab = P(1)/T is commutative with dual

P(1)ab
∗ = P(ζ1)/(ζ

9
1 ),

and Lab ⊆ L is the subring on which Q acts trivially.
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The algebra P(1) is noncommutative, has rank 27 (as a vector
space), and has a complicated Ext group. The dual of ζ2 is

Q := [P3,P1] = P3P1 − P4 with Q3 = 0.

The P(1)-module L is free over the subalgebra T generated by
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9
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2 ).

The algebra P(1) is noncommutative, has rank 27 (as a vector
space), and has a complicated Ext group. The dual of ζ2 is

Q := [P3,P1] = P3P1 − P4 with Q3 = 0.

The P(1)-module L is free over the subalgebra T generated by
Q. This gives the second change of rings isomorphism
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where L = H∗MO⟨8⟩/J and P(1)∗ = P(ζ1, ζ2)/(ζ
9
1 , ζ

3
2 ).

The algebra P(1) is noncommutative, has rank 27 (as a vector
space), and has a complicated Ext group. The dual of ζ2 is

Q := [P3,P1] = P3P1 − P4 with Q3 = 0.

The P(1)-module L is free over the subalgebra T generated by
Q. This gives the second change of rings isomorphism

ExtP(1)∗ (Z/3,L) ∼= ExtP(1)ab
∗

(
Z/3,Lab) ,

where P(1)ab = P(1)/T is commutative with dual
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∗ = P(ζ1)/(ζ
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The Adams spectral sequence for MO⟨8⟩

Similarly in the Adams spectral sequence for MO⟨8⟩,

E2 = ExtP∗
(Z/3,H∗MO⟨8⟩ ⊗ V )

∼= ExtP(1)∗ (Z/3,L ⊗ V )

∼= ExtP(1)ab
∗

(
Z/3, (L ⊗ V )ab)

where P(1)ab
∗ = P(ζ1)/ζ

9
1 and

(L ⊗ V )ab := kerQ ⊆ L ⊗ V .
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The Adams spectral sequence for MO⟨8⟩ (continued)

Here is the first P(1)ab-summand of Lab.

0 12 24

1 x12
−1

P3
oo

P1

��

x2
12 + y24

P3
oo

P1
��

y8 y20 − y8x12
P3
oo x12y20 + y8(x2

12 − y24),
−1

P3
oo

8 20 32

where y20 = y20 + y8x12, and y24 = y24 − y8x16. Here is the
next one, which is free.

24 36 48

y24

��

x12y24 + y2
8 y20

��

−1oo x2
12y24

��

oo

y20

��

x12y20 + y8y24

��

−1oo x2
12y20 − y8x12y24

��

oo

y2
8 −y8y20 + y2

8 x12
−1oo y8x12y20 + y2

8 (x
2
12 − y24)

oo

16 28 40
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The Adams spectral sequence for MO⟨8⟩ (continued)

Here is the first P(1)ab-summand of Lab.

0 12 24

1 x12
−1

P3
oo

P1

��

x2
12 + y24

P3
oo

P1
��

y8 y20 − y8x12
P3
oo x12y20 + y8(x2

12 − y24),
−1

P3
oo

8 20 32

where y20 = y20 + y8x12, and y24 = y24 − y8x16.

Here is the
next one, which is free.

24 36 48
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��

x12y24 + y2
8 y20

��

−1oo x2
12y24

��

oo

y20
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��
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12y20 − y8x12y24

��

oo

y2
8 −y8y20 + y2

8 x12
−1oo y8x12y20 + y2

8 (x
2
12 − y24)

oo

16 28 40
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The Adams spectral sequence for MO⟨8⟩ (continued)

Here is the first P(1)ab-summand of Lab.
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12 + y24

P3
oo

P1
��

y8 y20 − y8x12
P3
oo x12y20 + y8(x2

12 − y24),
−1

P3
oo

8 20 32

where y20 = y20 + y8x12, and y24 = y24 − y8x16. Here is the
next one, which is free.

24 36 48

y24

��

x12y24 + y2
8 y20

��

−1oo x2
12y24

��

oo
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−1oo x2
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The Adams spectral sequence for MO⟨8⟩ (continued)

Here is a third one.

32 44 56

y8y24

��

•oo

��

•oo

��
y8y20 •oo

��

•oo

��

64

28 •
��

•oo

��

•
��

oo

• •oo •oo

36 48 60

This one is isomorphic to the first one tensored with a rank 2
module in the first column.

In each case the Ext group is easy to compute. It turns out that
both Lab and (L ⊗ V )ab decompose as a direct sum of
P(1)ab-modules of these three types. Each free summand of
Lab corresponds to summand of the spectrum MO⟨8⟩
equivalent to a suspension of BP.
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The Adams spectral sequence for MO⟨8⟩ (continued)
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32 44 56

y8y24

��

•oo

��

•oo

��
y8y20 •oo

��

•oo

��

64

28 •
��

•oo

��

•
��

oo

• •oo •oo

36 48 60

This one is isomorphic to the first one tensored with a rank 2
module in the first column.

In each case the Ext group is easy to compute. It turns out that
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The Adams spectral sequence for MO⟨8⟩ (continued)

Here is a third one.
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In each case the Ext group is easy to compute. It turns out that
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The Adams spectral sequence for MO⟨8⟩ (continued)

E1 page

0 8 16 24 32 40 48 56

0
2
4
6
8
10
12
14

1 y8
a2

a2
2

This chart shows Adams d1s and d2s in for the subalgebra of
Lab generated by y8, x12, y20 and y24. The 48-dimensional
class a3

2 is excluded to avoid clutter.
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The Adams spectral sequence for MO⟨8⟩ (continued)

E1 page

0 8 16 24 32 40 48 56

0
2
4
6
8
10
12
14

1 y8
a2

a2
2

This chart shows Adams d1s and d2s in for the subalgebra of
Lab generated by y8, x12, y20 and y24.

The 48-dimensional
class a3

2 is excluded to avoid clutter.
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The Adams spectral sequence for MO⟨8⟩ (continued)

E1 page

0 8 16 24 32 40 48 56

0
2
4
6
8
10
12
14

1 y8
a2

a2
2

This chart shows Adams d1s and d2s in for the subalgebra of
Lab generated by y8, x12, y20 and y24. The 48-dimensional
class a3

2 is excluded to avoid clutter.
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The Adams spectral sequence for MO⟨8⟩ (continued)

E3 page

0 8 16 24 32 40 48 56

0
2
4
6
8
10
12
14

1
w8,1 w24,1

w16,3 w32,3
w40,4

This chart shows the resulting E3 page with torsion elements
shown in blue.
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The Adams spectral sequence for MO⟨8⟩ (continued)

E3 page

0 8 16 24 32 40 48 56

0
2
4
6
8
10
12
14

1
w8,1 w24,1

w16,3 w32,3
w40,4

This chart shows the resulting E3 page with torsion elements
shown in blue.
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The Adams spectral sequence for MO⟨8⟩ (continued)

E3 page

0 16 32 48 64 80 96 112 128

0
2
4
6
8
10
12
14
16
18

1
w24,1

a3
2

a6
2

This is the previous chart with a3
2 tensored in. It shows a larger

range of dimensions with higher Toda type differentials, with
more elements removed to avoid clutter.
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The Adams spectral sequence for MO⟨8⟩ (continued)

E3 page

0 16 32 48 64 80 96 112 128
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18
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w24,1
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This is the previous chart with a3
2 tensored in.

It shows a larger
range of dimensions with higher Toda type differentials, with
more elements removed to avoid clutter.
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The Adams spectral sequence for MO⟨8⟩ (continued)

E3 page
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This is the previous chart with a3
2 tensored in. It shows a larger

range of dimensions with higher Toda type differentials, with
more elements removed to avoid clutter.
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The Adams spectral sequence for MO⟨8⟩ (continued)

E7 page

0 16 32 48 64 80 96 112 128

0
2
4
6
8
10
12
14
16
18

1
w24,2

w48,4 w72,4

w96,7
w120,8

Thus shows the resulting E∞ page with torsion ele-
ments in blue. They coincide with Dominic Culver’s
2019 description of the 3-primary torsion in π∗tmf ,
which is 144-dimensional periodic.
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The Adams spectral sequence for MO⟨8⟩ (continued)
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The Adams spectral sequence for MO⟨8⟩ (continued)
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