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Preface to the first edition

My initial inclination was to call this book The Music of the Spheres, but 1 was
dissuaded from doing so by my diligent publisher, who is ever mindful of the sensi-
bilities of librarians. The purpose of this book is threefold: (i) to make BP-theory
and the Adams—Novikov spectral sequence more accessible to nonexperts, (ii) to
provide a convenient reference for workers in the field, and (iii) to demonstrate the
computational potential of the indicated machinery for determining stable homo-
topy groups of spheres. The reader is presumed to have a working knowledge of
algebraic topology and to be familiar with the basic concepts of homotopy theory.
With this assumption the book is almost entirely self-contained, the major excep-
tions (e.g., Sections 5.4, 5.4, Al.4, and Al.5) being cases in which the proofs are
long, technical, and adequately presented elsewhere.

The subject matter is a difficult one and this book will not change that fact.
We hope that it will make it possible to learn the subject other than by the only
practical method heretofore available, i.e., by numerous exhausting conversations
with one of a handful of experts. Much of the material here has been previously
published in journal articles too numerous to keep track of. However, a lot of
the foundations of the subject, e.g., Chapter 2 and Appendix 1, have not been
previously worked out in sufficient generality and the author found it surprisingly
difficult to do so.

The reader (especially if she is a graduate student) should be warned that many
portions of this volume contain more than he is likely to want or need to know. In
view of (ii), results are given (e.g., in Sections 4.3, 6.3, and A1.4) in greater strengh
than needed at present. We hope the newcomer to the field will not be discouraged
by abundance of material.

The homotopy groups of spheres is a highly computational topic. The serious
reader is strongly encouraged to reproduce and extend as many of the computations
presented here as possible. There is no substitute for the insight gained by carrying
out such calculations oneself.

Despite the large amount of information and techniques currently available,
stable homotopy is still very mysterious. Each new computational breakthrough
heightens our appreciation of the difficulty of the problem. The subject has a highly
experimental character. One computes as many homotopy groups as possible with
existing machinery, and the resulting data form the basis for new conjectures and
new theorems, which may lead to better methods of computation. In contrast with
physics, in this case the experimentalists who gather data and the theoreticians
who interpret them are the same individuals.

The core of this volume is Chapters 2-6 while Chapter 1 is a casual nontechnical
introduction to this material. Chapter 7 is a more technical description of actual
computations of the Adams-Novikov spectral sequence for the stable homotopy

XV



xvi PREFACE TO THE FIRST EDITION

groups of spheres through a large range of dimensions. Although it is likely to be
read closely by only a few specialists, it is in some sense the justification for the
rest of the book, the computational payoff. The results obtained there, along with
some similar calculations of Tangora, are tabulated in Appendix 3.

Appendices 1 and 2 are utilitarian in nature and describe technical tools used
throughout the book. Appendix 1 develops the theory of Hopf algebroids (of which
Hopf algebras are a special case) and useful homological tools such as relative
injective resolutions, spectral sequences, Massey products, and algebraic Steenrod
operations. It is not entertaining reading; we urge the reader to refer to it only
when necessary.

Appendix 2 is a more enjoyable self-contained account of all that is needed
from the theory of formal group laws. This material supports a bridge between
stable homotopy theory and algebraic number theory. Certain results (e.g., the
cohomology of some groups arising in number theory) are carried across this bridge
in Chapter 6. The house they inhabit in homotopy theory, the chromatic spectral
sequence, is built in Chapter 5.

The logical interdependence of the seven chapters and three appendixes is dis-
played in the accompanying diagram.

It is a pleasure to acknowledge help received from many sources in preparing
this book. The author received invaluable editorial advice from Frank Adams, Peter
May, David Pengelley, and Haynes Miller. Steven Mitchell, Austin Pearlman, and
Bruce McQuistan made helpful comments on various stages of the manuscript,
which owes its very existence to the patient work of innumerable typists at the
University of Washington.

Finally, we acknowledge financial help from six sources: the National Science
Foundation, the Alfred P. Sloan Foundation, the University of Washington, the
Science Research Council of the United Kingdom, the Sonderforschungsbereich of
Bonn, West Germany, and the Troisieme Cycle of Bern, Switzerland.




Preface to the second edition

The subject of BP-theory has grown dramatically since the appearance of the
first edition 17 years ago. One major development was the proof by Devinatz, Hop-
kins and Smith (see Devinatz, Hopkins and Smith [2] and Hopkins and Smith [3])
of nearly all the conjectures made in Ravenel [8]. An account of this work can be
found in our book Ravenel [13]. The only conjecture of Ravenel [8] that remains
is Telescope Conjecture. An account of our unsuccessful attempt to disprove it is
given in Mahowald, Ravenel, and Shick [1].

Another big development is the emergence of elliptic cohomology and the theory
of topological modular forms. There is still no comprehensive introduction to this
topic. Some good papers to start with are Ando, Hopkins and Strickland [1],
Hopkins and Mahowald [2], Landweber, Ravenel and Stong [8], and Rezk [1], which
is an account of the still unpublished Hopkins-Miller theorem.

The seventh and final chapter of the book has been completely rewritten and is
nearly twice as long as the original. We did this with an eye to carrying out future
research in this area.

I am grateful to the many would be readers who urged me to republish this
book and to the AMS for its assistance in getting the original manuscript retypeset.
Peter Landweber was kind enough to provide me with a copious list of misprints
he found in the first edition. Nori Minami and Igor Kriz helped in correcting some
errors in § 4.3. Mike Hill and his fellow MIT students provided me with a timely
list of typos in the online version of this edition. Hirofumi Nakai was very helpful
in motivating me to make the revisions of Chapter 7.
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Z Integers

Z, p-agic integers

Z ) Integers localized at p

Z/(p) Integers mod p

Q Rationals

Q, p-adic numbers

P(z) Polynomial algebra on generators x
E(x) Exterior algebra on generators z

O Cotensor product (Section Al1.1)

Given suitable objects A, B, and C' and a map f: A — B, the evident map
A®C — B® (C is denoted by f® C.
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CHAPTER 1

An Introduction to the Homotopy Groups
of Spheres

This chapter is intended to be an expository introduction to the rest of the book.
We will informally describe the spectral sequences of Adams and Novikov, which
are the subject of the remaining chapters. Our aim here is to give a conceptual
picture, suppressing as many technical details as possible.

In Section 1 we list some theorems which are classical in the sense that they
do not require any of the machinery described in this book. These include the
Hurewicz theorem 1.1.2, the Freudenthal suspension theorem 1.1.4, the Serre finite-
ness theorem 1.1.8, the Nishida nilpotence theorem 1.1.9, and the Cohen—Moore—
Neisendorfer exponent theorem 1.1.10. They all pertain directly to the homotopy
groups of spheres and are not treated elsewhere here. The homotopy groups of
the stable orthogonal group SO are given by the Bott periodicity theorem 1.1.11.
In 1.1.12 we define the J-homomorphism from 7;(SO(n)) to mp4:(S™). Its image
is given in 1.1.13, and in 1.1.14 we give its cokernel in low dimensions. Most of the
former is proved in Section 5.3.

In Section 2 we describe Serre’s method of computing homotopy groups using
cohomological techniques. In particular, we show how to find the first element of
order p in 7,(S%) 1.2.4. Then we explain how these methods were streamlined by
Adams to give his celebrated spectral sequence 1.2.10. The next four theorems
describe the Hopf invariant one problem. A table showing the Adams spectral
sequence at the prime 2 through dimension 45 is given in 1.2.15. In Chapter 2
we give a more detailed account of how the spectral sequence is set up, including
a convergence theorem. In Chapter 3 we make many calculations with it at the
prime 2.

In 1.2.16 we summarize Adams’ method for purposes of comparing it with
that of Novikov. The basic idea is to use complex cobordism (1.2.17) in place
of ordinary mod (p) cohomology. FI1a. 1.2.19 is a table of the Adams—Novikov
spectral sequence for comparison with FiGg. 1.2.15.

In the next two sections we describe the algebra surrounding the Es-term of
the Adams—Novikov spectral sequence. To this end formal group laws are defined
in 1.3.1 and a complete account of the relevant theory is given in Appendix 2. Their
connection with complex cobordism is the subject of Quillen’s theorem (1.3.4) and
is described more fully in Section 4.1. The Adams—Novikov Fo-term is described in
terms of formal group law theory (1.3.5) and as an Ext group over a certain Hopf
algebra (1.3.6).

The rest of Section 3 is concerned with the Greek letter construction, a method
of producing infinite periodic families of elements in the Es-term and (in favorable
cases) in the stable homotopy groups of spheres. The basic definitions are given in
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1.3.17 and 1.3.19 and the main algebraic fact required is the Morava—Landweber
theorem (1.3.16). Applications to homotopy are given in 1.3.11, 1.3.15, and 1.3.18.
The section ends with a discussion of the proofs and possible extensions of these
results. This material is discussed more fully in Chapter 5.

In Section 4 we describe the deeper algebraic properties of the Es-term. We
start by introducing BP and defining a Hopf algebroid. The former is a minimal
wedge summand of MU localized at a prime. A Hopf algebroid is a generalized
Hopf algebra needed to describe the Adams—Novikov Es-term more conveniently in
terms of BP (1.4.2). The algebraic and homological properties of such objects are
the subject of Appendix 1.

Next we give the Lazard classification theorem for formal group laws (1.4.3)
over an algebraically closed field of characteristic p, which is proved in Section A2.2.
Then we come to Morava’s point of view. Theorem 1.3.5 describes the Adams—
Novikov Fs-term as the cohomology of a certain group G with coefficients in a
certain polynomial ring L. Spec(L) (in the sense of abstract algebraic geometry)
is an infinite dimensional affine space on which G acts. The points in Spec(L)
can be thought of as formal group laws and the G-orbits as isomorphism classes,
as described in 1.4.3. This orbit structure is described in 1.4.4. For each orbit
there is a stabilizer or isotropy subgroup of G called S,,. Its cohomology is related
to that of G (1.4.5), and its structure is known. The theory of Morava stabilizer
algebras is the algebraic machinery needed to exploit this fact and is the subject of
Chapter 6. Our next topic, the chromatic spectral sequence (1.4.8, the subject of
Chapter 5), connects the theory above to the Adams—Novikov Fa-term. The Greek
letter construction fits into this apparatus very neatly.

Section 5 is about unstable homotopy groups of spheres and is not needed for
the rest of the book. Its introduction is self-explanatory.

1. Classical Theorems Old and New

We begin by recalling some definitions. The nth homotopy group of a connected
space X, m,(X), is the set of homotopy classes of maps from the n-sphere S™ to X.
This set has a natural group structure which is abelian for n > 2.

We now state three classical theorems about homotopy groups of spheres.
Proofs can be found, for example, in Spanier [1].

1.1.1. THEOREM. m(S') =Z and 7, (SY) =0 for m > 1. O

1.1.2. HUREWICZ’S THEOREM. 7,(S™) = Z and 7, (S™) = 0 for m < n.
A generator of m,(S™) is the class of the identity map. O

For the next theorem we need to define the suspension homomorphism
0 T (S™) = Tpp1 (S™FY).

1.1.3. DEFINITION. The kth suspension XX of a space X is the quotient of
I¥ x X obtained by collapsing OIF x X onto OI*, OI* being the boundary of I*,
the k-dimensional cube. Note that $'¥IX = XTI X and £F f: X — BFY is the
quotient of 1 x f: I* x X — I* x Y. In particular, given f: S™ — S™ we have
Yf: Smtl 5 St which induces a homomorphism 1, (S™) — T, (S, O

1.1.4. FREUDENTHAL SUSPENSION THEOREM. The suspension homomorphism
0 Tk (S™) = Tpirar1(S™T9) defined above is an isomorphism for k <mn — 1 and
a surjection for k =n — 1. O
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1.1.5. COROLLARY. The group m,+x(S™) depends only on k ifn>k+1. O

1.1.6. DEFINITION. The stable k-stem or kth stable homotopy group of spheres
w08 ik (S™) for n >k + 1. The groups m,41(S™) are called stable if n > k + 1
and unstable if n < k+ 1. When discussing stable groups we will not make any
notational distinction between a map and its suspensions. (I

The subsequent chapters of this book will be concerned with machinery for
computing the stable homotopy groups of spheres. Most of the time we will not
be concerned with unstable groups. The groups ﬂ,f are known at least for k < 45.
See the tables in Appendix 3, along with Theorem 1.1.13. Here is a table of W,f for
k <15:

k0] 1 2 3 [4[5] 6 7 8
m | 212/(2) [2/(2) [ Z/(24) [0]0]Z/(2) [ Z/(240) | (Z/(2))°

k] 9 |10 ] 11 [12] 13 14 15
me | (Z/2)° [ Z/6 [ Z/(504) | 0 [ Z/(3) | (Z/(2))* | Z/(480) © Z/(2)

This should convince the reader that the groups do not fall into any obvious pattern.
Later in the book, however, we will present evidence of some deep patterns not
apparent in such a small amount of data. The nature of these patterns will be
discussed later in this chapter.

When homotopy groups were first defined by Hurewicz in 1935 it was hoped
that m,4+%(S™) = 0 for k > 0, since this was already known to be the case for n =1
(1.1.1). The first counterexample is worth examining in some detail.

1.1.7. EXAMPLE. m3(S5?)=Z generated by the class of the Hopf map n: S% — 52
defined as follows. Regard S? (as Riemann did) as the complex numbers C with a
point at infinity. S3 is by definition the set of unit vectors in R* = C2. Hence a
point in S? is specified by two complex coordinates (21, 22). Define by

n(z1,22) = {21/22 if 2o #0

) if 29 =0.

It is easy to verify that n is continuous. The inverse image under 1 of any point
in 52 is a circle, specifically the set of unit vectors in a complex line through the
origin in C2, the set of all such lines being parameterized by S?. Closer examination
will show that any two of these circles in S® are linked. One can use quaternions
and Cayley numbers in similar ways to obtain maps v: 7 — S% and o: S1° — S8,
respectively. Both of these represent generators of infinite cyclic summands. These
three maps (7, v, and o) were all discovered by Hopf [1] and are therefore known
as the Hopf maps.

We will now state some other general theorems of more recent vintage.
1.1.8. FINITENESS THEOREM (Serre [3]). m,1x(S™) is finite for k > 0 except
when n =2m, k =2m — 1, and 74 _1(S*™) = Z & F,,, where F,, is finite. O

The next theorem concerns the ring structure of 73 = Do ﬂ,f which is in-

duced by composition as follows. Let o € ﬂf and B € ﬂf be represented by

f: 8"t — S" and g: STt Snti respectively, where n is large. Then
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aff € 77, ; is defined to be the class represented by f-g: S*** — S™ Tt can be
shown that fa = (—1)7af, so w2 is an anticommutative graded ring.

1.1.9. NiLpoTENCE THEOREM (Nishida [1]). Each element a € wi for k > 0
is milpotent, i.e., o = 0 for some finite t. ([l

For the next result recall that 1.1.8 says ma;+14, (5% 1) is a finite abelian group
for all j > 0.

1.1.10. ExPONENT THEOREM (Cohen, Moore, and Neisendorfer [1]). Forp > 5
the p-component of 7r2i+1+j(52i+1) has exponent p*, i.e., each element in it has
order < pi, O

This result is also true for p = 3 (Neisendorfer [1]) as well, but is known to be
false for p = 2. For example, the 2-component of 3-stem is cyclic of order 4 (see Fig.
3.3.18) on S? and of order 8 on S® (see Fig. 3.3.10). It is also known (Gray [1]) to
be the best possible, i.e., m2;4+14;(S* 1) is known to contain elements of order p’
for certain j.

We now describe an interesting subgroup of 2, the image of the Hopf-White-
head J-homomorphism, to be defined below. Let SO(n) be the space of nxn special
orthogonal matrices over R with the standard topology. SO(n) is a subspace of
SO(n + 1) and we denote |J,-,SO(n) by SO, known as the stable orthogonal
group. It can be shown that m;(SO) = m;(SO(n)) if n > i+ 1. The following result
of Bott is one of the most remarkable in all of topology.

1.1.11. BoTT PERIODICITY THEOREM (Bott [1]; see also Milnor [1]).

Z ifi=-1 mod4
mi(SO)=<2Z/(2) ifi=00r1 mod8 O
0 otherwise.

We will now define a homomorphism J: m;(SO(n)) — m,+:(S™). Let a €
m;i(SO(n)) be the class of f: S* — SO(n). Let D™ be the n-dimensional disc, i.e.,
the unit ball in R™. A matrix in SO(n) defines a linear homeomorphism of D™ to
itself. We define f: Stx D™ — D" by f(z,y) = f(z)(y), where z € S, y € D™, and
f(x) € SO(n). Next observe that S™ is the quotient of D™ obtained by collapsing
its boundary S™~! to a single point, so there is a map p: D" — S™, which sends
the boundary to the base point. Also observe that S™1?, being homeomorphic to
the boundary of D**! x D™, is the union of S* x D™ and D**! x S"~1 along their
common boundary S* x S"~!. We define f: Snti 5 §7 to be the extension of
pf: S x D" — §™ to S™* which sends the rest of St to the base point in S™.

1.1.12. DEFINITION. The Hopf-Whitehead J-homomorphism J: m;(SO(n)) —
Tnti(S™) sends the class of f: S* — SO(n) to the class of f: S"*" — 8™ as
described above. O

We leave it to the skeptical reader to verify that the above construction actually
gives us a homomorphism.

Note that both 7;(SO(n)) and m,;(S™) are stable, i.e., independent of n, if
n > i+ 1. Hence we have J: m,(SO) — 7. We will now describe its image.

1.1.13. THEOREM (Adams [1] and Quillen [1]). J: 75 (SO) — 75 is a monomor-
phism for k =0 or1 mod 8 and J(mar—1(S0)) is a cyclic group whose 2-component
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is Z(2)/(8k) and whose p-component for p > 3 is Z, /(pk) if (p — 1) | 2k and O if
(p—1) {2k, where Z(y,) denotes the integers localized at p. In dimensions 1, 3, and
7, im J is generated by the Hopf maps (1.1.7) n, v, and o, respectively. If we denote
by x the generator in dimension 4k — 1, then nxgy and n’xgy are the generators
of im J in dimensions 8k and 8k + 1, respectively. O

The image of J is also known to a direct summand; a proof can be found for
example at the end of Chapter 19 of Switzer [1]. The order of J(m4r—1(SO)) was
determined by Adams up to a factor of two, and he showed that the remaining
ambiguity could be resolved by proving the celebrated Adams conjecture, which
Quillen and others did. Denote this number by a. Its first few values are tabulated
here.

k|1 2 3 4 5 6 7 8 9 10
ar | 24 | 240 | 504 | 480 | 264 | 65,520 | 24 | 16,320 | 28,728 | 13,200

The number a; has interesting number theoretic properties. It is the denominator
of By /4k, where By, is the kth Bernoulli number, and it is the greatest common
divisor of numbers n*(™) (n?* —1) for n € Z and t(n) sufficiently large. See Adams [1]
and Milnor and Stasheff [5] for details.

Having determined im J, one would like to know something systematic about
coker J, i.e., something more than its structure through a finite range of dimensions.
For the reader’s amusement we record some of that structure now.

1.1.14. THEOREM. In dimensions < 15, the 2-component of coker J has the
following generators, each with order 2:

77267723, V2€7T6S, DEﬂg, 7717:y3€7795, ,u€7rg,
77,LL€7T130, olernd, wend and 77/1€7r155.

(There are relations n® = 4v and n*p = 4x3). For p > 3 the p-component of coker J
has the following generators in dimensions < 3pq— 6 (where ¢ = 2p —2), each with
order p:

P e ”gq—z’ aifi € ”59+1)q—3

where oy = T(p_1)/2 € ﬂ(}"ll is the first generator of the p-component of im J,

2 S 2 S S
Bl € Thpg—as 1P] € T(2p+1)g—5 P2 € Tapt1)g—2>
S 3 S
a1f2 € Topi0yq—s, and [y € T, . -

The proof and the definitions of new elements listed above will be given later
in the book, e.g., in Section 4.4.

2. Methods of Computing 7. (S™)

In this section we will informally discuss three methods of computing homotopy
groups of spheres, the spectral sequences of Serre, Adams, and Novikov. A fourth
method, the EHP sequence, will be discussed in Section 5. We will not give any
proofs and in some cases we will sacrifice precision for conceptual clarity, e.g., in
our identification of the Es-term of the Adams—Novikov spectral sequence.

The Serre spectral sequence (circa 1951) (Serre [2]) is included here mainly
for historical interest. It was the first systematic method of computing homotopy
groups and was a major computational breakthrough. It has been used as late as
the 1970s by various authors (Toda [1], Oka [1, 2, 3]), but computations made
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with it were greatly clarified by the introduction of the Adams spectral sequence
in 1958 in Adams [3]. In the Adams spectral sequence the basic mechanism of the
Serre spectral sequence information is organized by homological algebra.

For the 2-component of 7, (S™) the Adams spectral sequence is indispensable to
this day, but the odd primary calculations were streamlined by the introduction of
the Adams—Novikov spectral sequence (Adams—Novikov spectral sequence) in 1967
by Novikov [1]. It is the main subject in this book. Its Fs-term contains more
information than that of the Adams spectral sequence; i.e., it is a more accurate
approximation of stable homotopy and there are fewer differentials in the spectral
sequence. Moreover, it has a very rich algebraic structure, as we shall see, largely
due to the theorem of Quillen [2], which establishes a deep (and still not satisfac-
torily explained) connection between complex cobordism (the cohomology theory
used to define the Adams—Novikov spectral sequence; see below) and the theory of
formal group laws. Every major advance in the subject since 1969, especially the
work of Jack Morava, has exploited this connection.

We will now describe these three methods in more detail. The starting point
for Serre’s method is the following classical result.

1.2.1. THEOREM. Let X be a simply connected space with H;(X) =0 fori <n
for some positive integer n > 2. Then
(a) (Hurewicz [1]). m,(X) = H,(X).
(b) (Eilenberg and Mac Lane [2]). There is a space K(mw,n), characterized up
to homotopy equivalence by
m ifi=n

mi(K(m,n)) = {O if i #n.

If X is above and m = m,(X) then there is a map f: X — K(m,n) such that H,(f)
and m,(f) are isomorphisms. O

1.2.2. COROLLARY. Let F be the fiber of the map f above. Then

1(X) fori> 1
() = {TO0 Priza 0
0 for i < n.

In other words, F' has the same homotopy groups as X in dimensions above
n, so computing 7, (F) is as good as computing m,(X). Moreover, H,(K (7, n)) is
known, so H,(F') can be computed with the Serre spectral sequence applied to the
fibration F' — X — K(m,n).

Once this has been done the entire process can be repeated: let n’ > n be the
dimension of the first nontrivial homology group of F' and let H,.(F) = n’. Then
T (F) = mpr(X) = 7’ is the next nontrivial homotopy group of X. Theorem 1.2.1
applied to F' gives a map f': F — K(xn',n') with fiber F', and 1.2.2 says

(X) fori>n
i F/ — 7T'L(
mi(F) {0 fori <n'.

Then one computes H,(F') using the Serre spectral sequence and repeats the pro-
cess.

As long as one can compute the homology of the fiber at each stage, one can
compute the next homotopy group of X. In Serre [3] a theory was developed
which allows one to ignore torsion of order prime to a fixed prime p throughout the
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calculation if one is only interested in the p-component of 7,(X). For example, if
X = 3, one uses 1.2.1 to get a map to K(Z,3). Then H,(F) is described by:

1.2.3. LEMMA. If F is the fibre of the map f: S® — K(Z,3) given by 1.2.1,
then
Z/(m) ifi=2mandm>1
0 otherwise.

mwp{ O

1.2.4. COROLLARY. The first p-torsion in m.(S%) is Z/(p) in 72,(S3) for any
prime p. O

PRrOOF OF 1.2.3. (It is so easy we cannot resist giving it.) We have a fibration
NK(Z,3) = K(Z,2) - F — 83

and H*(K(Z,2)) = H*(CP*) = Z[z], where z € H?*(CP*) and CP™ is an
infinite-dimensional complex projective space. We will look at the Serre spectral
sequence for H*(F) and use the universal coefficient theorem to translate this to
the desired description of H,(F). Let u be the generator of H3(S3). Then in the
Serre spectral sequence we must have ds(z) = dwu; otherwise F' would not be 3-
connected, contradicting 1.1.2. Since dj is a derivation we have d3(z") = +nuz™~!.
It is easily seen that there can be no more differentials and we get

H'(F) = {

which leads to the desired result. O

Z/(m) ifti=2m+1,m>1
0 otherwise

If we start with X = S™ the Serre spectral sequence calculations will be much
easier for w1, (S™) for k < n — 1. Then all of the computations are in the stable
range, i.e., in dimensions less than twice the connectivity of the spaces involved.

This means that for a fibration F - X ENY'S , the Serre spectral sequence gives a
long exact sequence

(1.2.5) co s Hy(F) 2 Hy(X) L Hy(K) S Hy ((F) = -~

where d corresponds to Serre spectral sequence differentials. Even if we know
H.(X), H.(K), and f., we still have to deal with the short exact sequence

(1.2.6) 0 — coker f, — H.(F) — ker f. — 0.

It may lead to some ambiguity in H,(F'), which must be resolved by some other
means. For example, when computing 7, (S™) for large n one encounters this prob-
lem in the 3-component of m,119(S™) and the 2-component of 7, 14(S™). This
difficulty is also present in the Adams spectral sequence, where one has the pos-
sibility of a nontrivial differential in these dimensions. These differentials were
first calculated by Adams [12], Liulevicius [2], and Shimada and Yamanoshita [3]
by methods involving secondary cohomology operations and later by Adams and
Atiyah [13] by methods involving K-theory

The Adams spectral sequence of Adams [3] begins with a variation of Serre’s
method. One works only in the stable range and only on the p-component. Instead
of mapping X to K(m,n) asin 1.2.1, one maps to K =[], K(H/(X;Z/(p)),j) by
a certain map ¢g which induces a surjection in mod (p) cbhomology. Let X, be the
fiber of g. Define spaces X; and K; inductively by K; = ][, K(H¥(Xi;Z/(p)),7)
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and X, is the fiber of g: X; — K, (this map is defined in Section 2.1, where the
Adams spectral sequence is discussed in more detail). Since H*(g;) is onto, the
analog of 1.2.5 is an short exact sequence in the stable range

(1.2.7) 0 H*(X;) ¢ H*(K;) ¢ H*(Xi41) < 0,

where all cohomology groups are understood to have coefficients Z/(p). Moreover,
H*(K;) is a free module over the mod (p) Steenrod algebra A, so if we splice
together the short exact sequences of 1.2.7 we get a free A-resolution of H*(X)

(1.2.8) 0 H*(X) « H*(K) + H*(X'Ky) « H*(32K5) < -+ -

Each of the fibration X;,1 — X; — K; gives a long exact sequence of homotopy
groups. Together these long exact sequences form an exact couple and the asso-
ciated spectral sequence is the Adams spectral sequence for the p-component of
m(X). If X has finite type, the diagram

(1.2.9) K=Y 'K, - X 2Ky — -

(which gives 1.2.8 in cohomology) gives a cochain complex of homotopy groups
whose cohomology is Ext4(H*(X);Z/(p)). Hence one gets

1.2.10. THEOREM (Adams [3]). There is a spectral sequence converging to the
p-component of w1k (S™) for k <n —1 with

Ey' = Ext}"(Z/(p), Z/(p)) =: H>'(A)

and d,.: E$t — ESTTHT=1 0 Here the groups ES)! for t — s = k form the associated
graded group to a filtration of the p-component of m,4r(S™). O

Computing this Es-term is hard work, but it is much easier than making similar
computations with Serre spectral sequence. The most widely used method today is
the spectral sequence of May [1, 2] (see Section 3.2). This is a trigraded spectral
sequence converging to H**(A), whose Es-term is the cohomology of a filtered form
of the Steenrod algebra. This method was used by Tangora [1] to compute E3*
for p =2 and t — s < 70. Most of his table is reproduced here in Fia. A3.1a—c.
Computations for odd primes can be found in Nakamura [2].

As noted above, the Adams Fs-term is the cohomology of the Steenrod algebra.
Hence Ey* = H'(A) is the indecomposables in A. For p = 2 one knows that A
is generated by S¢? for i > 0; the corresponding elements in E21* are denoted by
h; € E;z For p > 2 the generators are the Bockstein 3 and PP’ for i > 0 and the

corresponding elements are ag € Ey'' and h; € Ey % " where ¢ = 2p — 2.
For p = 2 these elements figure in the famous Hopf invariant one problem.

1.2.11. THEOREM (Adams [12]). The following statements are equivalent.

(a) S2' =1 is parallelizable, i.e., it has 2' —1 globally linearly independent tangent
vector fields.

(b) There is a division algebra (not necessarily associative) over R of dimen-
sion 2% ) )

(¢) There is a map S*%'~* — S?" of Hopf invariant one (see 1.5.2).

(d) There is a 2-cell complez X = S Ue2 ™ [the cofiber of the map in (c)] in

i1 i

which the generator of H? (X) is the square of the generator of H? (X).

(e) The element h; € E21’21 is a permanent cycle in the Adams spectral sequence.

O
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Condition (b) is clearly true for ¢ = 0, 1, 2 and 3, the division algebras being
the reals R, the complexes C, the quaternions H and the Cayley numbers, which
are nonassotiative. The problem for ¢ > 4 is solved by

1.2.12. THEOREM (Adams [12]). The conditions of 1.2.11 are false for i > 4
and in the Adams spectral sequence one has da(h;) = hoh?_, # 0 for i > 4. 0

For i = 4 the above gives the first nontrivial differential in the Adams spectral
sequence. Its target has dimension 14 and is related to the difficulty in Serre’s
method referred to above.

The analogous results for p > 2 are

1.2.13. THEOREM (Liulevicius [2] and Shimada and Yamanoshita [3]). The
following are equivalent.

(a) There is a map 2P -1y S i, Hopf invariant one (see 1.5.3 for the
definition of the Hopf invariant and the space §2m),

(b) There is a p-cell complex X = S et Ut U ue [the cofiber
of the map in (a)] whose mod (p) cohomology is a truncated polynomial algebra on
one generator.

(¢) The element h; € E21’qp1 is a permanent cycle in the Adams spectral se-
quence. O

The element hg is the first element in the Adams spectral sequence above
dimension zero so it is a permanent cycle. The corresponding map in (a) suspends
to the element of m,(S?) given by 1.2.4. For i > 1 we have

1.2.14. THEOREM (Liulevicius [2] and Shimada and Yamanoshita [3]). The
conditions of 1.2.13 are false for i > 1 and da(h;) = agb;—1, where b;_1 is a

generator of EX™" (see Section 5.2). O

For i = 1 the above gives the first nontrivial differential in the Adams spectral
sequence for p > 2. For p = 3 its target is in dimension 10 and was referred to
above in our discussion of Serre’s method.

Fia. 1.2.15 shows the Adams spectral sequence for p = 3 through dimension
45. We present it here mainly for comparison with a similar figure (1.2.19) for the
Adams—Novikov spectral sequence. Es TisaZ /(p) vector space in which each basis
element is indicated by a small circle. Fortunately in this range there are just two
bigradings [(5,28) and (8,43)] in which there is more than one basis element. The
vertical coordinate is s, the cohomological degree, and the horizontal coordinate
is t — s, the topological dimension. These extra elements appear in the chart to
the right of where they should be, and the lines meeting them should be vertical.
A d, is indicated by a line which goes up by r and to the left by 1. The vertical
lines represent multiplication by ag € E%’l and the vertical arrow in dimension
zero indicates that all powers of ag are nonzero. This multiplication corresponds to
multiplication by p in the corresponding homotopy group. Thus from the figure one
can read off T = Z, T11 = T45 = Z/(g), o3 = Z/(g) D Z/(3), and T35 = Z/(27)
Lines that go up 1 and to the right by 3 indicate multiplication by hy € E21’4,
while those that go to the right by 7 indicate the Massey product (hg, hg, —) (see
A1.4.1). The elements ag and h; for i = 0, 1, 2 were defined above and the elements
by € Eg’u, ko € E§’28, and b; € E§’36 are up to the sign the Massey products
(ho, ho, ho), (ho, h1,h1), and (h1, h1,h1), respectively. The unlabeled elements in
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EY" ! for i > 2 (and hy € Ey?) are related to each other by the Massey product
(ho, ap, —). This accounts for all of the generators except those in ES’%, E;’45 and
ES ’50, which are too complicated to describe here.

We suggest that the reader take a colored pencil and mark all of the elements
which survive to E,, i.e., those which are not the source or target of a differential.
There are in this range 31 differentials which eliminate about two-thirds of the
elements shown.

Now we consider the spectral sequence of Adams and Novikov, which is the
main object of interest in this book. Before describing its construction we review
the main ideas behind the Adams spectral sequence. They are the following.

1.2.16. PROCEDURE. (i) Use mod (p)-cohomology as a tool to study the p-
component of 7,(X). (ii) Map X to an appropriate Eilenberg—Mac Lane space K,
whose homotopy groups are known. (iii) Use knowledge of H*(K), i.e., of the
Steenrod algebra, to get at the fiber of the map in (ii). (iv) Iterate the above and
codify all information in a spectral sequence as in 1.2.10. O

An analogous set of ideas lies behind the Adams—Novikov spectral sequence,
with mod p cohomology being replaced by complex cobordism theory. To elaborate,
we first remark that “cohomology” in 1.2.16(i) can be replaced by “homology” and
1.2.10 can be reformulated accordingly; the details of this reformulation need not
be discussed here. Recall that singular homology is based on the singular chain
complex, which is generated by maps of simplices into the space X. Cycles in
the chain complex are linear combinations of such maps that fit together in an
appropriate way. Hence H,(X) can be thought of as the group of equivalence
classes of maps of certain kinds of simplicial complexes, sometimes called “geometric
cycles,” into X.

Our point of departure is to replace these geometric cycles by closed complex
manifolds. Here we mean “complex” in a very weak sense; the manifold M must
be smooth and come equipped with a complex linear structure on its stable normal
bundle, i.e., the normal bundle of some embedding of M into a Euclidean space
of even codimension. The manifold M need not be analytic or have a complex
structure on its tangent bundle, and it may be odd-dimensional.

The appropriate equivalence relation among maps of such manifolds into X is
the following.

1.2.17. DEFINITION. Maps f;: M — X (i =1, 2) of n-dimensional complez (in
the above sense) manifolds into X are bordant if there is a map g: W — X where W
is a complex mainfold with boundary OW = My U Ms such that g|M; = f;. (To
be correct we should require the restriction to My to respect the complex structure
on My opposite to the given one, but we can ignore such details here.) O

One can then define a graded group MU, (X), the complex bordism of X, anal-
ogous to H,(X). It satisfies all of the Eilenberg—Steenrod axioms except the dimen-
sion axiom, i.e., MU, (pt), is not concentrated in dimension zero. It is by definition
the set of equivalence classes of closed complex manifolds under the relation of
1.2.17 with X = pt, i.e., without any condition on the maps. This set is a ring
under disjoint union and Cartesian product and is called the complex bordism ring.
as are the analogous rings for several other types of manifolds; see Stong [1].

1.2.18. THEOREM (Thom [1], Milnor [4], Novikov [2]). The complex bordism
ring, MU, (pt), is Z[x1,xa, .. .| where dimx; = 2i. a
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Now recall 1.2.16. We have described an analog of (i), i.e., a functor MU, (—)
replacing H,(—). Now we need to modify (ii) accordingly, e.g., to define analogs
of the Eilenberg—-Mac Lane spaces. These spaces (or rather the corresponding
spectrum MU) are described in Section 4.1. Here we merely remark that Thom’s
contribution to 1.2.18 was to equate MU;(pt) with the homotopy groups of certain
spaces and that these spaces are the ones we need.

To carry out the analog of 1.2.16(iii) we need to know the complex bordism of
these spaces, which is also described (stably) in Section 4.1. The resulting spec-
tral sequence is formally introduced in Section 4.4, using constructions given in
Section 2.2. We will not state the analog of 1.2.10 here as it would be too much
trouble to develop the necessary notation. However we will give a figure analogous
to 1.2.15.

The notation of Fi1G. 1.2.19 is similar to that of F1G. 1.2.15 with some minor
differences. The Es-term here is not a Z/(3)-vector space. Elements of order > 3
occur in Eg’o (an infinite cyclic group indicated by a square), and in E21"12t and
ES’AS, in which a generator of order 3¥*! is indicated by a small circle with k
parentheses to the right. The names ay, 3¢, and ,/, will be explained in the next
section. The names ag; refer to elements of order 3 in, rather than generators of,
Ey™' In E3"® the product ayfs is divisible by 3.

One sees from these two figures that the Adams—Novikov spectral sequence
has far fewer differentials than the Adams spectral sequence. The first nontrivial
Adams—Novikov differential originates in dimension 34 and leads to the relation
a1} in m,(SY). Tt was first established by Toda [2, 3].

3. The Adams—Novikov Es-term, Formal Group Laws,
and the Greek Letter Construction

In this section we will describe the Fs-term of the Adams—Novikov spectral
sequence introduced at the end of the previous section. We begin by defining formal
group laws (1.3.1) and describing their connection with complex cobordism (1.3.4).
Then we characterize the Fo-term in terms of them (1.3.5 and 1.3.6). Next we
describe the Greek letter construction, an algebraic method for producing periodic
families of elements in the Fs-term. We conclude by commenting on the problem
of representing these elements in 2.

Suppose T is a one-dimensional commutative analytic Lie group and we have
a local coordinate system in which the identity element is the origin. Then the
group operation 7" x T' — T can be described locally as a real-valued analytic
function of two variables. Let F(z,y) € RJ[z,y]] be the power series expan-
sion of this function about the origin. Since 0 is the identity element we have
F(z,0) = F(0,2) = x. Commutativity and associativity give F(z,y) = F(y,x)
and F(F(z,y),z) = F(x, F(y, z)), respectively.

1.3.1. DEFINITION. A formal group law over a commutative ring with unit R
is a power series F(z,y) € R[[x,y]] satisfying the three conditions above. O

Several remarks are in order. First, the power series in the Lie group will have
a positive radius of convergence, but there is no convergence condition in the defini-
tion above. Second, there is no need to require the existence of an inverse because
it exists automatically. It is a power series i(z) € R[[z]] satisfying F(z,i(z)) = 0;



13

3. THE ADAMS-NOVIKOV E>-TERM, FORMAL GROUP LAWS

Gy > § — 7 ‘g = d 10] 9ouenbos [RI1100dS AOIAON-SWRPY YT, "61°¢ T TUNDI]

g€ 0€ qc 0¢ qr 0T




14 1. INTRODUCTION TO THE HOMOTOPY GROUPS OF SPHERES

it is an easy exercise to solve this equation for i(x) given F. Third, a rigorous
self-contained treatment of the theory of formal group laws is given in Appendix 2.

Note that F(x,0) = F(0,z) = x implies that F = 2 +y mod (z,y)? and that
x+y is therefore the simplest example of a formal group law; it is called the additive
formal group law and is denoted by F,. Another easy example is the multiplicative
formal group law, F,, = z+y+rzy for r € R. These two are known to be the only
formal group laws which are polynomials. Other examples are given in A2.1.4.

To see what formal group laws have to do with complex cobordism and the
Adams—Novikov spectral sequence, consider MU*(CP>), the complex cobordism
of infinite-dimensional complex projective space. Here MU*(—) is the cohomol-
ogy theory dual to the homology theory MU, (—) (complex bordism) described in
Section 2. Like ordinary cohomology it has a cup product and we have

1.3.2. THEOREM. There is an element x € MU?(CP>) such that
MU*(CP*) = MU"(pt)[[z]]

and
MU*(CP*® x CP*) = MU*(pt)[[z ® 1,1 ® z]].
O

Here MU™*(pt) is the complex cobordism of a point; it differs from MU, (pt) (de-
scribed in 1.2.18) only in that its generators are negatively graded. The generator x
is closely related to the usual generator of H2(CP>), which we also denote by z.
The alert reader may have expected MU*(CP>) to be a polynomial rather than a
power series ring since H*(CP) is traditionally described as Z[z]. However, the
latter is really Z[[z]] since the cohomology of an infinite complex maps onto the in-
verse limit of the cohomologies of its finite skeleta. [MU*(CP™), like H*(CP"), is a
truncated polynomial ring.] Since one usually considers only homogeneous elements
in H*(CP), the distinction between Z[z] and Z[[z]] is meaningless. However, one
can have homogeneous infinite sums in MU*(CP>) since the coefficient ring is
negatively graded.

Now CP is the classifying space for complex line bundles and there is a map
p: CP>® x CP*® — CP* corresponding to the tensor product; in fact, CP* is
known to be a topological abelian group. By 1.3.2 the induced map p* in complex
cobordism is determined by its behavior on the generator x € MU?(CP*) and one
easily proves, using elementary facts about line bundles,

1.3.3. PROPOSITION. For the tensor product map p: CP* x CP>* — CP*,
p(z) = Fy(z® 1,1 ®x) € MU*(pt)[[zr ® 1,1 ® z]] is an formal group law over
MU*(pt). O

A similar statement is true of ordinary cohomology and the formal group law
one gets is the additive one; this is a restatement of the fact that the first Chern
class of a tensor product of complex line bundles is the sum of the first Chern
classes of the factors. One can play the same game with complex K-theory and get
a multiplicative formal group law.

CP> is a good test space for both complex cobordism and K-theory. One
can analyze the algebra of operations in both theories by studying their behavior
in CP* (see Adams [5]) in the same way that Milnor [2] analyzed the mod (2)
Steenrod algebra by studying its action on H*(RP>;Z/(2)). (See also Steenrod
and Epstein [1].)
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The formal group law of 1.3.3 is not as simple as the ones for ordinary cohomol-
ogy or K-theory; it is complicated enough to have the following universal property.

1.3.4. THEOREM (Quillen [2]). For any formal group law F over any commuta-
tive ring with unit R there is a unique ring homomorphism 6: MU*(pt) — R such
that F(z,y) = 0Fy(z,vy). O

We remark that the existence of such a universal formal group law is a triviality.
Simply write F(z,y) = Y a; 2y’ and let L = Z[a;;]/I, where I is the ideal
generated by the relations among the a; ; imposed by the definition 1.3.1 of an
formal group law. Then there is an obvious formal group law over L having the
universal property. Determining the explicit structure of L is much harder and was
first done by Lazard [1]. Quillen’s proof of 1.3.4 consisted of showing that Lazard’s
universal formal group law is isomorphic to the one given by 1.3.3.

Once Quillen’s Theorem 1.3.4 is proved, the manifolds used to define complex
bordism theory become irrelevant, however pleasant they may be. All of the ap-
plications we will consider follow from purely algebraic properties of formal group
laws. This leads one to suspect that the spectrum MU can be constructed some-
how using formal group law theory and without using complex manifolds or vector
bundles. Perhaps the corresponding infinite loop space is the classifying space for
some category defined in terms of formal group laws. Infinite loop space theorists,
where are you?

We are now just one step away from a description of the Adams—Novikov
spectral sequence Es-term. Let G = {f(z) € Z[[z]] | f(z) = = mod (z)?}.
Here G is a group under composition and acts on the Lazard/complex cobordism
ring L = MU,(pt) as follows. For g € G define a formal group law F; over L
by Fy(z,y) = g 'Fy(9(z),9(y)). By 1.3.4 F, is induced by a homomorphism
0y: L — L. Since g is invertible under composition, 6, is an automorphism and we
have a G-action on L.

Note that g(z) defines an isomorphism between F' and Fj. In general, isomor-
phisms between formal group laws are induced by power series g(x) with leading
term a unit multiple (not necessarily one) of x. An isomorphism induced by a ¢ in
G is said to be strict.

1.3.5. THEOREM. The FEs-term of the Adams—Novikov spectral sequence con-
verging to w is isomorphic to H**(G; L). O

There is a difficulty with this statement: since G does not preserve the grading
on L, there is no obvious bigrading on H*(G; L). We need to reformulate in terms
of L as a comodule over a certain Hopf algebra B defined as follows.

Let g € G be written as g(z) = >, bz’ with by = 1. Each b; for i > 0 can
be thought of as a Z-valued function on G and they generate a graded algebra of
such functions
(Do not confuse this ring with L, to which it happens to be isomorphic.) The
group structure on G corresponds to a coproduct A: B — B ® B on B given by
A(b) = so bt @b;, where b= 3", b; and by = 1 as before. To see this suppose

g(z) = gW(g® () with ¢¥) (z) = Zbgk)m“‘l Then we have

S b = 3o (o)
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from which the formula for A follows. This coproduct makes B into a graded
connected Hopf algebra over which L is a graded comodule. We can restate 1.3.5 as

1.3.6. THEOREM. The Es-term of the Adams—Novikov spectral sequence con-
verging to w2 is given by Eg’t = Extgt(Z, L). O

The definition of this Ext is given in A1.2.3; all of the relevant homological
algebra is discussed in Appendix 1.

Do not be alarmed if the explicit action of G (or coaction of B) on L is not
obvious to you. It is hard to get at directly and computing its cohomology is a very
devious business.

Next we will describe the Greek letter construction, which is a method for
producing lots (but by no means all) of elements in the Es-term, including the ay’s
and B;’s seen in 1.2.19. We will use the language suggested by 1.3.5; the interested
reader can translate our statements into that of 1.3.6. Our philosophy here is that
group cohomology in positive degrees is too hard to comprehend, but H°(G; M)
(the G-module M will vary in the discussion), the submodule of M fixed by G, is
relatively straightforward. Hence our starting point is

1.3.7. THEOREM. HY(G;L) = 7Z concentrated in dimension 0. O

This corresponds to the O-stem in stable homotopy. Not a very promising
beginning you say? It does give us a toehold on the problem. It tells us that the
only principal ideals in L which are G-invariant are those generated by integers and
suggests the following. Fix a prime number p and consider the short exact sequence
of G-modules

(1.3.8) 0—L%L—L/p)—0.
We have a connecting homomorphism
o: H'(G; L/(p)) — H(G; L).

1.3.9. THEOREM. H°(G;L/(p)) = Z/(p)[v1], where vy € L has dimension q =
2(p—1). O

1.3.10. DEFINITION. Fort > 0 let oy = do(v}) € Ey?. O

It is clear from the long exact sequence in cohomology associated with 1.3.8
that a; # 0 for all ¢ > 0, so we have a collection of nontrivial elements in the
Adams—Novikov Fs-term. We will comment below on the problems of constructing
corresponding elements in 7%; for now we will simply state the result.

1.3.11. THEOREM. (a) (Toda [4, IV]) For p > 2 each oy is represented by an

element of order p in ﬂ'qSt_l which is in the image of the J-homomophism (1.1.12).

(b) For p =2 «a; is so represented provided t Z 3 mod (4). Ift =2 mod (4)
then the element has order 4; otherwise it has order 2. It is in im J if t is even. 0O

Theorem 1.3.9 tells us that
(1.3.12) 0— X9L/(p) = L/(p) = L/(p,v1) — 0
is an short exact sequence of G-modules and there is a connecting homomorphism
o1: H'(Gy L/ (p,v1)) — H™H(G; L/ (p))-
The analogs of 1.3.9 and 1.3.10 are
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1.3.13. THEOREM. H°(G;L/(p,v1)) = Z/(p)[va] where vo € L has dimension
2(p? —1). O

1.3.14. DEFINITION. Fort > 0 let B; = 8901 (vh) € Eg’t(”ﬂ)q_q. O

More work is required to show that these elements are nontrivial for p > 2, and
B1 = 0 for p = 2. The situation in homotopy is

1.3.15. THEOREM (Smith [1]). For p > 5 B; is represented by a nontrivial
element of order p in (pi1y1q—q—2(50). O

You are probably wondering if we can continue in this way and construct -,
d¢, etc. The following results allow us to do so.

1.3.16. THEOREM (Morava [3], Landweber [4]). (a) There are elements v, € L
of dimension 2(p™ — 1) such that I, = (p,v1,v2,...,0n—1) C L is a G-invariant
prime ideal for all n > 0.

(b) 0 = 22"V /1, 2 L/I, — L/I,+1 — 0 is an short exact sequence of
modules with connecting homorphism

§: H(G; L/1,41) — HY(G; L/ 1,).

(c) HY(G; L/ 1) = Z/(p)[vn]-

(d) The only G-invariant prime ideals in L are the I, for 0 < n < oo for all
primes p. ([

Part (d) above shows how rigid the G-action on L is; there are frightfully many
prime ideals in L, but only the I, for various primes are G-invariant. Using (b)
and (c) we can make

1.3.17. DEFINITION. Fort,n > 0 let oi™ = 6001 ... 6,_1(vt) € ED*. O

Here o™ stands for the nth letter of the Greek alphabet, the length of which
is more than adequate given our current state of knowledge. The only other known
result comparable to 1.3.11 or 1.3.15 is

1.3.18. THEOREM. (a) (Miller, Ravenel, and Wilson [1]) The element
3,tq(p?+p+1)—q(p+2)

v+ € By is nontrivial for allt > 0 and p > 2.
(b) (Toda [1]) For p > 7 each 7y is represented by a nontrivial element of
order p in Tyq(p2 4 p+1)—q(p+2)—3(S°)- O

It is known that not all ; exist in homotopy for p = 5 (see 7.6.1). Part (b)
above was proved several years before part (a). In the intervening time there was a
controversy over the nontriviality of ; which was unresolved for over a year, ending
in 1974 (see Thomas and Zahler [1]). This unusual state of affairs attracted the
attention of the editors of Science [1] and the New York Times [1], who erroneously
cited it as evidence of the decline of mathematics.

We conclude our discussion of the Greek letter construction by commenting
briefly on generalized Greek letter elements. Examples are (33,3 and S5/, (and
the elements in Ey* of order > 3) in 1.2.19. The elements come via connecting
homomorphisms from H°(G; L/J), where J is a G-invariant regular (instead of

prime) ideal. Recall that a regular ideal (2o, z1,...,2,-1) C L is one in which each
x; is not a zero divisor modulo (xg,...,T;—1). _Hence G-invariant prime ideals are
regular as are ideals of the form (p,v}',...,v,"7'). Many but not all G-invariant

regular ideals have this form.
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1.3.19. DEFINITION. B, (for appropriate s and t) is the image of vy €
H(G; L/(p,v})) and oy is the image of vi € H*(G; L/(p")). O

Hence po, /e = a1, as/1 = s, and B,/ = B by definition.

Now we will comment on the problem of representing these elements in the
Fs-term by elements in stable homotopy, e.g., on the proofs of 1.3.11, 1.3.15, and
1.3.18(b). The first thing we must do is show that the elements produced are
actually nontrivial in the FEs-term. This has been done only for o’s, 8’s, and +’s.
For p = 2, 81 and 7, are zero but for ¢ > 1 §; and 7; are nontrivial; these results
are part of the recent computation of Eg* at p = 2 by Shimomura [1], which also
tells us which generalized (’s are defined and are nontrivial. The corresponding
calculation at odd primes was done in Miller, Ravenel, and Wilson [1], as was that
of E21’* for all primes.

The general strategy for representing Greek letter elements geometrically is
to realize the relevant short exact sequences [e.g., 1.3.8, 1.3.12, and 1.3.16(b)] by
cofiber sequences of finite spectra. For any connective spectrum X there is an
Adams—Novikov spectral sequence converging to m.(X). Its FEs-term [denoted by
E5(X)] can be described as in 1.3.5 with L = MU, (S°) replaced by MU, (X), which
is a G-module. For 1.3.8 we have a cofiber sequence

50 2 59 v (0),
where V(0) is the mod (p) Moore spectrum. It is known (2.3.4) that the long exact
sequence of homotopy groups is compatible with the long exact sequence of Fo-
terms. Hence the elements v! of 1.3.9 live in E3?*(V(0)) and for 1.3.11(a) [which
says oy is represented by an element of order p in my—1(S%) for p > 2 and ¢t > 0]
it would suffice to show that these elements are permanent cycles in the Adams—
Novikov spectral sequence for 7,.(V(0)) with p > 0. For t = 1 (even if p = 2) one
can show this by brute force; one computes F2(V (0)) through dimension ¢ and sees
that there is no possible target for a differential coming from v; € Eg’q. Hence vy
is realized by a map
S?— V(0)

If we can extend it to X7V (0), we can iterate and represent all powers of v1. We can
try to do this either directly, using obstruction theory, or by showing that V(0) is a
ring spectrum spectrum. In the latter case our extension a would be the composite

SIAV(0) = V(0) AV(0) = V(0),

where the first map is the original map smashed with the identity on V' (0) and the
second is the multiplication on V(0). The second method is generally (in similar
situation of this sort) easier because it involves obstruction theory in a lower range
of dimensions.

In the problem at hand both methods work for p > 2 but both fail for p = 2. In
that case V'(0) is not a ring spectrum and our element in m5(V'(0)) has order 4, so it
does not extend to 2V (0). Further calculations show that v? and v both support
nontrivial differentials (see 5.3.13) but v} is a permanent cycle represented by map
S8 — V(0), which does extend to X8V (0). Hence iterates of this map produce the
homotopy elements listed in 1.3.11(b) once certain calculation have been made in
dimensions < 8.

For p > 2 the map a: X9V (0) — V(0) gives us a cofibre sequence

¥V (0) 5 V(0) — V(1),
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realizing the short exact sequence 1.3.12. Hence to arrive at 1.3.15 (which describes

the s in homotopy) we need to show that vy € Ev'®T(V(1)) is a permanent

cycle represented by a map which extends to §: STV (1) — V(1). We can do
this for p > 5 but not for p = 3. Some partial results for 5’s at p = 3 and p = 2 are
described in Section 5.5.

The cofiber of the map 8 (corresponding to ve) for p > 5 is called V(2) by
Toda [1]. In order to construct the v’s [1.3.18(b)] one needs a map

v 2207 DY (2) 5 V(2)

corresponding to v3. Toda [1] produces such a map for p > 7 but it is known not
to exist for p =5 (see 7.6.1).

Toda [1] first considered the problem of constructing the spectra V(n) above,
and hence of the representation of Greek letter elements in 7%, although that ter-
minology (and 1.3.16) was not available at the time. While the results obtained
there have not been surprassed, the methods used leave something to be desired.
Each positive result is proved by brute force; the relevant obstruction groups are
shown to be trivial. This approach can be pushed no further; the obstruction to
realizing vy lies in a nontrivial group for all primes (5.6.13). Homotopy theorists
have yet to learn how to compute obstructions in such situations.

The negative results of Toda [1] are proved by ingenious but ad hoc methods.
The nonexistence of V(1) for p = 2 follows easily from the structure of the Steenrod
algebra,; if it existed its cohomology would contradict the Adem relation S¢?Sq? =
Sq'Sq*Sqt. For the nonexistence of V(2) at p = 3 Toda uses a delicate argument
involving the nonassociativity of the mod (3) Moore spectrum, which we will not
reproduce here. We will give another proof (5.5.1) which uses the multiplicative
structure of the Adams—Novikov Fs-term to show that the nonrealizability of 84 €
E§’607 and hence of V/(2), is a formal consequence of that of 33/5 € Eg’%. This was
shown by Toda [2, 3] using an extended power construction, which will also not
be reproduced here. Indeed, all of the differentials in the Adams—Novikov spectral
sequence for p = 3 in the range we consider are formal consequences of that one in
dimension 34. A variant of the second method used for V(2) at p = 3 works for
V(3) (the cofiber of v) at p = 5.

4. More Formal Group Law Theory, Morava’s Point of View, and the
Chromatic Spectral Sequence

We begin this section by introducing BP-theory, which is essentially a p-local
form of MU-theory. With it many of the explicit calculations behind our results
become a lot easier. Most of the current literature on the subject is written in
terms of BP rather than MU. On the other hand, BP is not essential for the
overall picture of the FEs-term we will give later, so it could be regarded as a
technicality to be passed over by the casual reader. Next we will describe the
classification of formal group laws over an algebraically closed field of characteristic
p. This is needed for Morava’s point of view, which is a useful way of understanding
the action of G on L (1.3.5). The insights that come out of this approach are
made computationally precise in the chromatic spectral sequence , which is the
pivotal idea in this book. Technically the chromatic spectral sequence is a trigraded
spectral sequence converging to the Adams—Novikov Fs-term; heuristically it is like
a spectrum in the astronomical sense in that it resolves the FEs-term into various
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components each having a different type of periodicity. In particular, it incorporates
the Greek letter elements of the previous section into a broader scheme which
embraces the entire Fo-term.

BP-theory began with Brown and Peterson [1] (after whom it is named), who
showed that after localization at any prime p, the MU spectrum splits into an
infinite wedge suspension of identical smaller spectra subsequently called BP. One
has

(1.4.1) W*(BP) ZZ(p)[’UhUg,...],

where Z,) denotes the integers localized at p and the v,’s are the same as the
generators appearing in the Morava-Landweber theorem 1.3.16. Since dimwv, =
2(p™ — 1), this coefficient ring, which we will denote by BP,, is much smaller than
L = 7.(MU), which has a polynomial generator in every even dimension.

Next Quillen [2] observed that there is a good formal group law theoretic reason
for this splitting. A theorem of Cartier [1] (A2.1.18) says that every formal group
law over a Z,)-algebra is canonically isomorphic to one in a particularly convenient
form called a p-typical formal group law (see A2.1.17 and A2.1.22 for the definition,
the details of which need not concern us now). This canonical isomorphism is
reflected topologically in the above splitting of the localization of MU. This fact
is more evidence in support of our belief that MU can somehow be constructed in
purely formal group law theoretic terms.

There is a p-typical analog of Quillen’s theorem 1.3.4; i.e., BP*(CP) gives us
a p-typical formal group law with a similar universal property. Also, there is a BP
analog of the Adams—Novikov spectral sequence, which is simply the latter tensored
with Z,y; i.e., its Ep-term is the p-component of H*(G; L) and it converges to the
p-component of 72 However, we encounter problems in trying to write an analog
of our metaphor 1.3.5 because there is no p-typical analog of the group G.

In other words there is no suitable group of power series over Z,) which will
send any p-typical formal group law into another. Given a p-typical formal group
law F over Z, there is a set of power series g € Z,)[[2]] such that g~ F(g(z), g(y))
is also p-typical, but this set depends on F'. Hence Hom(BP,, K) the set of p-typical
formal group laws over a Z,)-algebra K, is acted on not by a group analogous to G,
but by a groupoid.

Recall that a groupoid is a small category in which every morphism is an
equivalence, i.e., it is invertible. A groupoid with a single object is a group. In
our case the objects are p-typical formal group laws over K and the morphisms are
isomorphisms induced by power series g(z) with leading term z.

Now a Hopf algebra, such as B in 1.3.6, is a cogroup object in the category
of commutative rings R, which is to say that Hom(B, R) = Gg is a group-valued
functor. In fact Gg is the group (under composition) of power series f(z) over R
with leading term x. For a p-typical analog of 1.3.6 we need to replace b by co-
groupoid object in the category of commutative Z,)-algebras K. Such an object is
called a Hopf algebroid (A1.1.1) and consists of a pair (A,I") of commutative rings
with appropriate structure maps so that Hom(A, K) and Hom(T', K) are the sets of
objects and morphisms, respectively, of a groupoid. The groupoid we have in mind,
of course, is that of p-typical formal group laws and isomorphisms as above. Hence
BP, is the appropriate choice for A; the choice for I' turns out to be BP,(BP), the
BP-homology of the spectrum BP. Hence the p-typical analog of 1.3.6 is
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1.4.2. THEOREM. The p-component of the Es-term of the Adams—Novikov spec-
tral sequence converging to 7rf 18

Extpp, (Bp)(BPs, BP;). O

Again this Ext is defined in A1.2.3 and the relevant homological algebra is
discussed in Appendix 1.

We will now describe the classification of formal group laws over an algebraically
closed field of characteristic p. First we define power series [m|p(z) associated with
a formal group law F' and natural numbers m. We have [0]p(z) =0, [1]p(z) = z,
and [m|p(z) = F(x,[m—1]r(z)). An easy lemma (A2.1.6) says that if F' is defined
over a field of characteristic p, then [p]r(z) is in fact a power series over 2P" with
leading term az?", a # 0, for some n > 0, provided F is not isomorphic to the
additive formal group law, in which case [p]r(z) = 0. This integer n is called the
height of F', and the height of the additive formal group law is defined to be oco.
Then we have

1.4.3. CLASSIFICATION THEOREM (Lazard [2]).

(a) Two formal group laws defined over the algebraic closure of F,, are isomor-
phic iff they have the same height.

(b) If F is nonadditive, its height is the smallest n such that 6(v,) # 0, where
0: L — K is the homomorphism of 1.3.4 and v, € L is as in 1.3.16, where Kis
finite field. |

Now we come to Morava’s point of view. Let K = F,, the algebraic closure of
the field with p elements, and let Gx C K[[z]] be the group (under composition) of
power series with leading term x. We have seen that G acts on Hom(L, K), the
set formal group laws defined over K. Since L is a polynomial ring, we can think of
Hom(L, K) as an infinite-dimensional vector space V over K; a set of polynomial
generators of L gives a topological basis of V. For a vector v € V, let F, be the
corresponding formal group law.

Two vectors in V are in the same orbit iff the corresponding formal group laws
are strictly isomorphic (strict isomorphism was defined just prior to 1.3.5), and
the stabilizer group of v € V (i.e., the subgroup of Gk leaving V fixed) is the
strict automorphism group of F,. This group S, (where n is the height) can be
described explicitly (A2.2.18); it is a profinite group of units in a certain p-adic
division algebra, but the details need not concern us here. Theorem 1.4.3 enables
us to describe the orbits explicitly.

1.4.4. THEOREM. There is one G -orbit of V' for each height as in 1.4.3. The
height n orbit V,, is the subset defined by v; =0 for i < n and v, # 0. (]

Now observe that V is the set of closed points in Spec(L,, ® K), and V}, is the set
of closed points in Spec(L,, ® K ), where L,, = v, 'L/I,. Here V,, is a homogeneous
G -space and a standard change-of-rings argument gives

1.4.5. CHANGE-OF-RINGS THEOREM. H*(Gg; L, ® K) = H*(S,; K). O

We will see in Chapter 6 that a form of this isomorphism holds over F,, as well as
over K. In it the right-hand term is the cohomology of a certain Hopf algebra [called
the nth Morava stabilizer algebra ¥(n)] defined over F,,, which, when tensored with
F,n, becomes isomorphic to the dual of Fp»[S,], the Fpn-group algebra of S,,.



22 1. INTRODUCTION TO THE HOMOTOPY GROUPS OF SPHERES

Now we are ready to describe the central construction of this book, the chro-
matic spectral sequence, which enables us to use the results above to get more
explicit information about the Adams—Novikov Fs-term. We start with a long
exact sequence of G-modules, called the chromatic resolution

(1.4.6) 0> LRZg — M — M — .-

defined as follows. M° = L® Q, and N' is the cokernel in the short exact sequence
0= L®Zy — M — N'—0.

M™ and N™ are defined inductively for n > 0 by short exact sequences

(1.4.7) 0— N"— M™ — N""t -0,

where M™ = v, ' N". Hence we have
N'= 1.8 Q/Zy) =l L/(p') = L/(p™)
and
Nntl = H_I)nL/(piO,vlil, vty =L/ (p™, 050, ..., ul).

The fact that these are short exact sequences of G-modules is nontrivial. The long
exact sequence 1.4.6 is obtained by splicing together the short exact sequences 1.4.7.
In Chapter 5, where the chromatic spectral sequence is described in detail, M™ and
N™ denote the corresponding objects defined in terms of BP,. In what follows here

Extp(Z, M) will be abbreviated by Ext(M) for a B-module (e.g., G-module) M.
Standard homological algebra (A1.3.2) gives

1.4.8. PROPOSITION. There is a spectral sequence converging to Ext(L @ Z,))
with E7"° = Ext®*(M™), d.: E™ — EnT7s=+ and dy: Ext(M"™) — Ext(M"™1)
being induced by the maps M™ — M"™! in 1.4.6. [E%® is a subquotient of
Ext" (L ® Z)).] O

This is the chromatic spectral sequence. We can use 1.4.5 to get at its £ term
as follows. Define G-modules M for 0 < i < n by M7 = M", and M} is the
kernel in the short exact sequence

(1.4.9) 0— M — M| 2= M | — 0,
where vg = p. This gives M = L,, = v;;'L/I,, so the F,-analog of 1.4.5 describes
Ext(M]?) in terms of the cohomology of the stabilizer group S,,. Equation 1.4.9 gives
a long exact sequence of Ext groups of a Bockstein spectral sequence computing
Ext(M? ;) in terms of Ext(M). Hence in principle we can get from H*(S,)
to Ext(M™), although the Bockstein spectral sequences are difficult to handle in
practice.

Certain general facts about H*(S,,) are worth mentioning here. If (p—1) divides
n then this cohomology is periodic (6.2.10); i.e., there is an element ¢ € H*(S,,; F))
such that H*(S,;F)) is a finitely generated free module over F,[c|. In this case S,
has a cyclic subgroup of order p to whose cohomology c restricts nontrivially. This
cohomology can be used to detect elements in the Adams—Novikov Es-term of high
cohomological degree, e.g., to prove

1.4.10. THEOREM. For p > 2, all monomials in the Bpi i (1.3.19) are nontriv-
ial. (]
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If n is not divisible by p — 1 then S, has cohomological dimension n?; i.e.,
Hi(S,) = 0if i > n?, and H*(S,) has a certain type of Poincaré duality (6.2.10).
It is essentially the cohomology of a certain n-stage nilpotent Lie algebra (6.3.5),
at least for n < p — 1. The cohomological dimension implies

1.4.11. MORAVA VANISHING THEOREM. If (p — 1) 4 n, then in the chromatic
spectral sequence (1.4.8) E{"* =0 for s > n?. O

It is also known (6.3.6) that every sufficiently small open subgroup of S,, has
the same cohomology as a free abelian group of rank n2. This fact can be used to
get information about the Adams-Novikov spectral sequence Es-term for certain
Thom spectra (6.5.6).

Now we will explain how the Greek letter elements of 1.3.17 and 1.3.19 appear in
the chromatic spectral sequence. If J is a G-invariant regular ideal with n generators
[e.g., the invariant prime ideal I,, = (p, v1,...,vn—1)], then L/.J is a submodule of
N™ and M", so Ext®(L/J) c Ext®(N") ¢ Ext’(M™) = E. Recall that the
Greek letter elements are images of elements in ExtO(J ) under the appropriate
composition of connecting homomorphisms. This composition corresponds to the
edge homomorphism EJ 0 E™0 in the chromatic spectral sequence. [Note that
every element in the chromatic Ey %is a permanent cycle; i.e., it supports no
nontrivial differential although it may be the target of one. Elements in EY' 0
coming from Ext(L/J) lift to Ext(N™) are therefore in kerd; and live in E5™° ]
The module N™ is the union of the L/.J over all possible invariant regular ideals J
with n generators, so Ext’(N"™) contains all possible nth Greek letter elements.

To be more specific about the particular elements discussed in Section 3 we must
introduce chromatic notation for elements in N™ and M"™. Such elements will be

written as fractions % with z € L and y = pov® ... v" 7' with all exponent positive,
which stands for the image of y in L/J C N™ where J = (pi,v{',...,v,"7'). Hence

x/y is annihilated by J and depends only on the mod J reduction of z. The usual
rules of addition, subtraction, and cancellation of fractions apply here.

1.4.12. PROPOSITION. Up to sign the elements agn) (1.3.17), asyy and By
(1.3.19) are represented in the chromatic spectral sequence by vl /pvy -+ v,_1 €
EFC ws/pt € By, and v§/pvt € E2°, respectively. O

The signs here are a little tricky and come from the double complex used
to prove 1.4.8 (see 5.1.18). The result suggests elements of a more complicated
nature; e.g., B/, stands for vg/pilv’f, with the convention that if i; = 1 it is
omitted from the notation. The first such element with i; > 1is 8,2/, 2. We also
remark that some of these elements require correcting terms in their numerators;
e.g., (vl + 8vivp)/2* (but not v}/2%) is in Ext’(N') and represents 44, Which
corresponds to the generator o € m,(S°).

We will describe E}"* for n < 1 at p > 2. For all primes E}"° = Q (concentrated
in dimension 0) and E}"* = 0 for s > 0. For p > 2, E;"® = 0 for s > 1 and
B =Qq/ Zp,) concentrated in dimension 0, and E;? is trivial in dimensions not
divisible by ¢ = 2(p—1) = dim vy and is generated by all elements of the form v} /pt
for t € Z. Hence if p is the largest power of p dividing ¢, then E;° ~ Z/(p*!) in
dimension ¢t, and in dimension 0, Ell"O =Q/Z,).
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The differential d; : EY"° — E}"° is the usual map Q — Q/Zy). Its kernel Z,,
is Ext’(L ® Z). On Byt = Q/Z,) the kernel of d; is trivial, so EY'=E* =0

and Ext*(L ® Z(,)) = E>°. On E}'°, the kernel of d; consists of all elements in

nonnegative dimensions. Since the Q/Z,) in dimension 0 is hit by d, E21 0 consists

of the positive dimensional elements in E}"° and this group is Ext!(L ® Z)). In
7.(SY) it is represented by the p-component of im .J.

Now the chromatic E;-term is periodic in the following sense. By defintion,
M™ = li_n;w;lL /J,

where the direct limit is over all invariant regular ideals J with n generators. For
each J, Ext’(v;'L/J) contains some power of vy, say v¥. Then Ext(v,'L/J) is a
module over Z [vF vk ie., multiplication by v¥ is an isomorphism, so we say
that this Ext is v,-periodic. Hence ET"" = Ext(M™) is a direct limit of such groups.
We may say that an element in the Adams—Novikov spectral sequence Es-term is
vp-periodic if it represents an element in E7:* of the chromatic spectral sequence.

Hence the chromatic spectral sequence F-term is the trigraded group as-
sociated with the filtration of Ext(L ® Z,)) by v,-periodicity. This filtration is
decreasing and has an infinite number of stages in each cohomological degree. One
sees this from the diagram

Ext®(N%) < Ext* ' (N!) < ... « Ext’(N®)

where N? = L®Z,); the filtration of Ext(N?) is by images of the groups Ext(N™).
This local finiteness allows us to define an increasing filtration on Ext(N) by
F; Ext*(N%) = imExt’(N*~%) for 0 < i < s, and Fy Ext(N) is the subgroup of
Greek letter elements in the most general possible sense.

5. Unstable Homotopy Groups and the EHP Spectral Sequence

In this section we will describe the EHP sequence, which is an inductive method
for computing 7,1 (S™) beginning with our knowledge of 7.(S1) (1.1.7). We will
explain how the Adams vector field theorem, the Kervaire invariant problem, and
the Segal conjecture are related to the unstable homotopy groups of spheres. We will
not present proofs here or elsewhere in the book, nor will we pursue the topic further
except in Section 3.3. We are including this survey here because no comparable
exposition exists in the literature and we believe these results should be understood
by more than a handful of experts. In particular, this section could serve as an
introduction to Mahowald [4]. For computations at the prime 3, see Toda [8],
which extends the known range for unstable 3-primary homotopy groups from 55
to 80.

The EHP sequences are the long exact sequences of homotopy groups associated
with certain fibration constructed by James [1] and Toda [6]. There is a different
set of fibrations for each prime p. All spaces and groups are assumed localized at
the prime in question. We start with p = 2. There we have a fibration

(1.5.1) Sm— QST 5 QgL

which gives the long exact sequence

(1.5.2)
o Tk (5™) D T 1 (S D T (57N D g a (ST = -
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Here FE stands for Einhédngung (suspension), H for Hopf invariant, and P for White-
head product. If n is odd the fibration is valid for all primes and it splits at odd
primes, so for p > 2 we have

Tom+k (™) = Tomik—1(S*""") @ Toppr (ST 7).
This means that even-dimensional spheres at odd primes are uninteresting. Instead
one considers the fibration
(1.5.3) §2m s Qg2mHl _, G2%ml

where the second map is surjective in H.( ;Z,)), and 52m i the (2mp—1)-skeleton
of Q82+l which is a CW-complex with p — 1 cells of the form S?™ Ue*™ U---U
e2(P=1m The corresponding long exact sequence is

(1.54) - = m(S2) B g (82 (82t By (82 s
There is also a fibration

(1.5.5) §2m=l 052 5%ml

which gives

(15.6) - — m_1(S* ) B my(82m) Ly 7y (820m=1) By o (82t
k5.4 and 1.5.6 are the EHP sequences for odd primes. Note that for p = 2,
S§?m = §2™m and both sequences coincide with (1.5.2).

For each prime these long exact sequences fit together into an exact couple
(2.1.6) and we can study the associated spectral sequence, namely

1.5.7. PROPOSITION.

(a) For p = 2 there is a spectral sequence converging to 72 (stable homotopy)
with

EV" = mn(S2YY and  dp: EF — BRI

E™F s the subquotient im mp, 1 (S™)/im w1 k—1(S™ 1) of 7. There is a similar
spectral sequence converging to . (S7) with Ef" as above for n < j and Ef" =0
forn >j.

(b) For p > 2 there are similar spectral sequences with

Ef,2m+1 _ 7Tk+2m+1(S2pm+1) and Ef,2m = Thtom (SZmel)'

The analogous spectral sequence with Ef” =0 for n > j converges to m.(S7) if j
is odd and to m.(S7) if j is even. O

This is the EHP spectral sequence. We will explain below how it can be used

to compute 7,1 (S™) [or M4k (S™) if n is even and p is odd] by double induction
on n and k. First we make some easy general observations.

1.5.8. PROPOSITION.

(a) For all primes E¥* = 7 (SY), which is Z, for k=0 and 0 for k > 0.

(b) Forp=2, E¥" =0 fork <n—1.

(c) Forp=2, Ef'" = T na1 Jor k< 3n—3.

(d) Forp> 2, EF*™ Y =0 for k < gqm and EF*™ =0 for k < gm — 1, where
q=2(p—1).

(e) For p > 2, Ef’2m+1 = w,f_qm for kB < glpm +m + 1) — 2, and
E{wm = ﬂ-,erkqm for k < q(pm +m) — 3. g
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Part (b) follows from the connectivity of the (2n — 1)-sphere and similarly for
(d); these give us a vanishing line for the spectral sequence. (¢) and (e) follow from
the fact that 7o, _14%(5*™ 1) = 7r;€9 for k < gm — 2, which is in turn a consequence
of 1.5.7. We will refer to the region where n — 1 < k and Ef” is a stable stem as
the stable zone.

Now we will describe the inductive aspect of the EHP spectral sequence. As-
sume for the moment that we know how to compute differentials and solve the group
extension problems. Also assume inductively that we have computed E7’ for all
(i,7) with i < k and all (k,) for j > n. For p = 2 we have EF'"™ = 7, (S?"1).
This group is in the (k —n + 1)-stem. If n = 1, this group is 4 %(S"), which is
known, so assume n > 1. If n = 2 this group is m24(S%), which is 0 for k = 0, Z
for k =1, and for k£ > 1 is the middle term in the short exact sequence

0— E§’1’2 — Try2(S%) = kerd; C E§’1’3 — 0.

Note that E4~"? is the cokernel of the d; coming from E*® and is therefore known
by induction. Finally, if n > 2, EF™ = m,,,(52"1) can be read off from the
already computed portion of the EHP spectral sequence as follows. As in 1.5.7 one
obtains a spectral sequence for 7, (S%" 1) by truncating the EHP spectral sequence,
i.e., by setting all E{m =0 for m > 2n — 1. The group m,4%(S?"1) lies in a stem
which is already known, so we have Ef ', Similar remarks apply to odd primes.

We will illustrate the method in detail for p = 2 by describing what happens for
0 <k <7inFIG. 1.5.9. By 1.5.8(c) we have E}***! = 7§ = Z. Let x;, denote the
standard generator of this group. We will see below (1.5.13) that dy(zg) = 2z,_1
for even positive k and dy () = 0 otherwise. Hence Ey? = EL2 = 75 = Z/(2), so
Ef’k =Z/(2) for all £ > 2. We denote the generator of each of these groups by 1
to indicate that, if the generator is a permanent cycle, it corresponds to an element
whose Hopf invariant suspends to the element corresponding to ;. Now the first
such generator, that of Ef’g, is not hit by a differential, so we have Ef’k_l =
Tok_1(S?73) = Z/(2) for all k > 3. We denote these generators by 11, to indicate
that their Hopf invariants each desuspend to elements with Hopf invariant ;.

In general we can specify an element o € 7,4,(S™) by a sequence of integers
adding up to k as follows. Desuspend « as far as possible, say to S™*+!1. The first
integer is then m (necessarily < k) and the desuspended « has a Hopf invariant
B € Tmi1+k(S?mH). To get the second integer we desuspend 3, and so forth.
After a finite number of steps we get an element with Hopf invariant in the zero
stem and stop the process. Of course there is some indeterminacy in desuspending
but we can ignore it for now. We call this sequence of integers the serial number
of a. In F1G. 1.5.9 we indicate each element of Ef" = Tp4k (8?71 by its serial
number. In almost all cases if pa # 0, its serial number differs from that of « itself.

To get back to Fic. 1.5.9, we now have to determine the groups Ef’kit =
Top_2(S?k75) for k > 4, which means examining the 3-stem in detail. The groups
Ef’Q and Ef 3 are not touched by differentials, so there is an short exact sequence

0— E? = 16(S%) = EP? > 0.

The two end terms are Z/(2) and the group extension can be shown to be nontrivial,
so Ef? = m6(S%) = Z/(4). Using the serial number notation, we denote the
generator by 21 and the element of order 2 by 111. Similarly one sees 75(S?) =
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Z/(2), m7(S*) = Z ® Z/(4) and there is an short exact sequence
0 — m6(S%) = m3(S°) — E3* — 0.

Here the subgroup and cokernel are Z/(4) and Z/(2), respectively, and the group
extension is again nontrivial, so m(S%) = EX*~2 = Z/(8) for k > 5. The generator
of this group is the suspension of the Hopf map v: S7 — S* and is denoted by 3.

To determine E¥* ™3 = 7y _3(S%=7) for k > 5 we need to look at the 4-stem,
i.e., at the column E**. The differentials affecting those groups are indicated on
the chart. Hence we have Ey? = 0 so m7(S%) = E>? = Z/(2); the dy hitting £
means that the corresponding element dies (i.e., becomes null homotopic) when
suspended to m9(S®); since it first appears on S® we say it is born there. Similarly,
the generator of E;LA corresponds to an element that is born on S* and dies on S°
and hence shows up in Ef 3 = 79(5%). We leave it to the reader to determine the
remaining groups shown in the chart, assuming the differentials are as shown.

We now turn to the problem of computing differentials and group extensions
in the EHP spectral sequence. For the moment we will concentrate on the prime 2.
The fibration 1.5.1 can be looped n times to give

QnSn N Qn+lsn+l N Qn+152n+1.

In Snaith [1] a map is constructed from 2"S™ to QRP™ ! which is compatible with
the suspension map Q"S" — Q1S+l (Here QX denotes @QkEkX.) Hence
we get a commutative diagram

(1.5.10) Qrsr . Qrtlgntl o Qnt1g2ntl

L] |

QRP"! — - QRP" — > Q5"

where both rows are fibre sequences and the right-hand vertical map is the standard
inclusion. The long exact sequence in homotopy for the bottom row leads to an
exact couple and a spectral sequence as in 1.5.7. We call it the stable EHP spectral
sequence.

There is an odd primary analog of 1.5.10 in which RP™ is replaced by an
appropriate skeleton of BY,, the classifying space for the symmetric group on p
letters. Recall that its mod (p) homology is given by

Z/(p) ifi=0or —1 mod (q)

(1.5.11) Hi(BY,;Z/(p)) = {0 otherwise.

1.5.12. PROPOSITION. (a) For p = 2 there is a spectral sequence converging
to 75 (RP>) (stable homotopy of RP>®) with EY"™ = T g1 for n > 2 and
dy: EF" — EF=1Ln=r Here EE™ is the subquotient im 73 (RP™™1)/im 7 (RP"~2)
of i (RP*). There is a similar spectral sequence converging to 73 (RPI~1) with
Ef" as above for n < j and Ef" =0 forn>j.

(b) For p > 2 there is a similar spectral sequence converging to ﬂf(BEp) with
Ef’QmH = 7y and Ef’2m = Tk41—mgq- 1here is a similar spectral sequence with
Ef’" =0 for n > j converging to ﬂ'*S(BE,(,Q)j_l) if 7 is even and to W*(BZ](DQ)U_U)
if 7 is odd.
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(¢) There are homomorphisms to these from the corresponding EHP spectral
sequences of 1.5.7 induced by suspension on the Fy level, e.g., at p = 2 by the
suspension map Trin(S*"1) — wf_nﬂ, Hence the Ej-terms are isomorphic in
the stable zone.

We remark that this stable EHP spectral sequence is nothing but a reindexed
form of the Atiyah—Hirzebruch spectral sequence (see Adams [4], Section 7) for
73(BY,). In the latter one has Ey* = H,(BY,;7;) and this group is easily seen
to be E§+t’f(s) in the EHP spectral sequence where

f(s) = s/p—1)+1 ifs=0 mod (2p—2)
(s+1)/(p—1) ifs=-1 mod (2p—2).

Since everything in 1.5.12 is stable one can use stable homotopy theoretic meth-
ods, such as the Adams spectral sequence and K-theory, to compute differentials
and group extensions. This is a major theme in Mahowald [1]. Differentials origi-
nating EF*+1 for p = 2 correspond to attaching maps in the cellular structure of
RP°, and similarly for p > 2. For example, we have

1.5.13. PROPOSITION. In the stable EHP spectral sequence (1.5.12), the differ-
ential dy: EP™ — EF5""Yis multiplication by p if k is even and trivial if k is
odd. [l

Another useful feature of this spectral sequence is James periodicity: for each r
there is a finite i and an isomorphism EF" ~ EF+tar'.n+20" which commutes with
differentials (note that ¢ = 2 when p = 2). This fact is a consequence of the vector
field theorem and will be explained more fully below (1.5.18).

For p = 2, the diagram 1.5.10 can be enlarged as follows. An element in the
orthogonal group O(n) gives a homeomorphism S"~1 — $"~!. Suspension gives
a basepoint-preserving map S™ — S™ and therefore an element in 2™S™. Hence
we have a map J: O(n) — Q"S™ (compare 1.1.12). We also have the reflection
map r: RP"! — O(n) sending a line through the origin in R™ to the orthogonal
matrix corresponding to reflection through the orthogonal hyperplane. Combining
these we get

(1.5.14) RP"! RP" 5m

Oon) —O0n+1) —— S

|

Qnsn Qn+1 Sn+1 5 Qn+1s2n+1

|

QS™.

Here the top row is a cofiber sequence while the others are fiber sequences. The
right-hand vertical maps are all suspensions, as is the composite RP" — QRP™.
The second row leads to a spectral sequence (which we call the orthogonal spectral
sequence) converging to . (O) which maps to the EHP spectral sequence. The map
on

QRP"! — = QRP"
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EP™ = 14 (8™1) is an isomorphism for k < 2n — 3 by the Freudenthal suspension
theorem 1.1.10. The middle right square of this diagram only commmutes after a
single looping. This blemish does not affect calculations of homotopy groups.

Hence we have three spectral sequences corresponding to the three lower rows
of 1.5.14 and converging to m.(O), the 2-component of 72, and 7¥(RP>). In
all three we have generators zj € Ef #*1 = Z and we need to determine the first
nontrivial differential (if any exists) on it for £ odd. We will see that this differential
always lands in the zone where all three spectral sequences are isomorphic. In the
orthogonal spectral sequence xj, survives to E,. iff the projection O(k 4+ 1)/O(k +
1 —7) — S* admits a cross section. It is well known (and easy to prove) that such
a cross section exists iff S¥ admits » — 1 linearly independent tangent vector fields.
The question of how many such vector fields exist is the vector field problem, which
was solved by Adams [16] (see 1.5.16). We can give equivalent formulations of the
problem in terms of the other two spectral sequences.

1.5.15. THEOREM (James [2, 3]). The following three statements are equivalent:

(a) Sk=1 admits r — 1 linearly independent tangent vector fields.

(b) Let ¢ be the generator of mor_1(S**~1) = Z. Then P(1) € mor_3(S*1)
(see 1.5.2) desuspend to map_r—2(SFT).

(c) The stable map RP*~1/RP*=" — Sk=1 admits a cross section. O

The largest possible r above depends on the largest powers of 2 dividing k + 1.
Let k= 27(2s + 1),

27 ifj=1or2 mod (4)
o(J)=42j+1 ifj=0 mod (4)
2j+2 ifj=3 mod (4)

and p(k) = 6(j)-

1.5.16. THEOREM (Adams [16]).

(a) With notation as above, S*~' admits p(k) — 1 linearly independent tangent
vector fields and no more.

(b) Let ag = 2 € w5 and for j > 0 let &; denote the generator of im J in Wf(j)_l
(see 1.5.15 (¢)). Then in the 2-primary EHP spectral sequence (1.5.7) dg(jy(zr—1)
is the (nontrivial) image of &; in Eg(j?ki] O

We remark that the p(k) — 1 vector fields on S* were constructed long ago by
Hurwitz and Radon (see Eckmann [1]). Adams [16] showed that no more exist by
using real K-theory to solve the problem as formulated in 1.5.15(c).

Now we turn to the odd primary analog of this problem, i.e., finding differentials
on the generators x4, of Efk_l’zk = Z. We know of no odd primary analog of
the enlarged diagram 1.5.14, so we have no analogs of 1.5.15(a) or 1.5.16(a), but

we still call this the odd primary vector field problem. The solution is

1.5.17. THEOREM (Kambe, Matsunaga and Toda [1]). Let &; generate im J C

moi1 (1.1.12), let xqp_1 generate EI*L2R n the EHP spectral sequence (1.5.7)

for an odd prime p (here ¢ = 2p — 2), and let k = p’s with s not divisible by p.

Then xqx—1 lives to Egjro and dojyo(zek—1) is the (nontrivial) image of &jy1 in

ak—2,2k—2j -2 O
25 .
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Now we will explain the James periodicity referred to above. For p = 2 let
RP? = RP"/RP™ ! for m < n. There is an i depending only on n —m such that
RP::;QZTI ~ $2'RP" | a fact first proved by James [3]. To prove this, let A be
the canonical real line bundle over RP"~"™. Then RP}, is the Thom space for mA.
The reduced bundle A — 1 is an element of finite order 2i + 1 in KO*(RP™™ ™), so
(2 4+m)\ = mA+27! and the respective Thom spaces RPfflle:i and ¥2'RP"
are equivalent. The relevant computations in KO*(RP"™~™) are also central to the
proof of the vector field theorem 1.5.16. Similar statements can be made about the
odd primary case. Here one replaces A by the CP~! bundle obtained by letting X,
act via permutation matrices on CP and splitting off the diagonal subspace on
which X, acts trivially.

For p = 2 one can modify the stable EHP spectral sequence to get a spectral
sequence converging to m.(RP)) by setting E{m =0forj<m-—1andj>n-—1.
Clearly the d,.: E¥" — E¥=Ln=" in the stable EHP spectral sequence is the same
as that in the spectral sequence for m,(RP"~! ) and similar statements can be
made for p > 2, giving us

1.5.18. JAMES PERIODICITY THEOREM. In the stable EHP spectral sequence

(1.5.12) there is an isomorphism EF™ — Ef"‘qpi’””pi commuting with d,, where
i=[r/2]. O

Note that 1.5.17 is simpler than its 2-primary analog 1.5.16(b). The same is
true of the next question we shall consider, that of the general behavior of elements
in im J in the EHP spectral sequence. It is ironic that most of the published work
in this area, e.g., Mahowald [2, 4], is concerned exclusively with the prime 2, where
the problem appears to be more difficult.

Theorem 1.5.17 describes the behavior of the elements x4;—; in the odd primary
EHP spectral sequence and indicates the need to consider the behavior of im J.
The elements &; and their multiples occur in the stable EHP spectral sequence
in the groups E*~%2™ and E*~ 12"+ for all k > m. To get at this question
we use the spectrum J, which is the fibre of a certain map bu — X2bu, where
bu is the spectrum representing connective complex K-theory, i.e., the spectrum
obtained by delooping the space Z x BU. There is a stable map S° — J which
maps imJ C 77 isomorphically onto m,(J). The stable EHP spectral sequence,
which converges to 72 (BX,), maps to a similar spectral sequence converging to
J«(BX,) = m(J A BX,). This latter spectral sequence is completely understood
and gives information about the former and about the EHP spectral sequence itself.

1.5.19. THEOREM.
(a) For each odd prime p there is a connective spectrum J and a map S° — J
sending the p-component of im J (1.1.12) isomorphically onto w.(J), i.e.,

Zy) iti=0
mi(J)=<CZ/(pPT) ifi=qk—1,k>0,k=sp’ withpfs
0 otherwise.

(b) There is a spectral sequence converging to J.(BX,) with

Ef’2m+1 = Th—mq(J) and Ef’zm = Tt 1-mq(J);
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the map S° — J induces a map to this spectral sequence from the stable EHP
spectral sequence of 1.5.12.

(¢) The dy in this spectral sequence is determined by 1.5.13. The resulting
E5-term has the following nontrivial groups and no other:

B2k — 7/(p)  generated by zg_q for k > 0,
Eg(kﬂ')*mk =7Z/(p) generated by &; for k,j > 0,

and

Eg(kﬂ)_l’%Jrl =7Z/(p) generated by «; for k,j > 0,

where o is an element of order p in wg;_1(J).
(d) The higher differentials are determined by 1.5.17 and the fact that all group
extensions in sight are nontrivial, i.e., with k and j as in 1.5.17,

_ qk—2,2(k—j—1)
daj2(Tgh—1) = Qj11 € By

and dyjys is nontrivial on ng_:?’l’QmH forj+2<m<k.

(e) The resulting Eoo-term has the following nontrivial groups and no others:
Eak=22m for kb > m > k —j and B2+ for 1 < m < j+ 1. The group
extensions are all nontrivial and we have for i > 0

Z/(p’) fori=gqsp’ —2withpts
0 otherwise.

We will sketch the proof of this theorem. We have the fibration J — bu — X2bu
for which the long exact sequence of homotopy groups is known; actually bu (when
localized at the odd prime p) splits into p — 1 summands each equivalent to an even
suspension of BP(1), where m.(BP(1)) = Z,)[v1] with dimv; = ¢. It is convenient
to replace the above fibration by J — BP(1) — X4BP(1). We also have a transfer
map BY, — S?p), which is the map which Kahn and Priddy [2] show induces a
surjection of homotopy groups in positive dimensions (see also Adams [15]); the
same holds for J-homology groups. Let R be the cofiber of this map. One can show
that S?p) — R induces a monomorphism in BP(1)-homology (or equivalently in bu-
homology) and that BP(1) A R ~ \/j>0 quHZ(p), i.e., a wedge of suspensions of
integral Eilenberg—Mac Lane spectra localized at p. Smashing these two fibrations
together gives us a diagram

(1.5.20) JAR——> BP(1) \R——> Y9BP(1) AR

| | |

J— . BP1)— L~ sapp(1)

| | |

J A BS, — BP(1) A BS, — %4BP(1) A B,

in which each row and column is a cofiber sequence. The known behavior of 7. (f)
determines that of 7, (f A R) and enables one to compute 7. (J A BE,) = J.(BX,).
The answer, described in 1.5.19(c), essentially forces the spectral sequence of 1.5.19



5. UNSTABLE HOMOTOPY GROUPS AND THE EHP SPECTRAL SEQUENCE 33

to behave in the way it does. The FEs-term [1.5.19(c)] is a filtered form of 7, (BP(1)A
BY,) @ m. (X971 BP(1) A BY,).

Corresponding statements about the EHP spectral sequence are not yet known
but can most likely be proven by using methods of Mahowald [4]. We surmise they
can be derived from the following.

1.5.21. CONJECTURE.

(a) The composite m),(Q*" 152" 1) — 1 (QBXL") — Jp(BX4") is onto unless
k=qsp’ —2 (with j >0, sp? >pandpts) andn = sp’ —i for1 <i<j.

(b) The groups Edk=12m+1 of 1.5.19(e) pull back to the Ex-term of the EHP
spectral sequence and correspond to the element ay,/p, (1.3.19) of order p™ inim J €
W(}gk_l. Hence oy, is born in S2m+1 and has Hopf invariant ag—_,, except for a1,

which is born on S% with Hopf invariant one. (This was not suspected when the
notation was invented!) O

We will give an example of an exception to 1.5.21(a) for p = 3. One has age
ag € E3”° which should support a ds hitting @y € F3>7, but E®? = 7140(S°)
and ag is only born on S7, so the proposed d3 cannot exist (this problem does not
occur in the stable EHP spectral sequence). In fact, ajag # 0 € m41(S7) = B3
and this element is hit by a ds supported by the ag € E§9’5.

The other groups in 1.5.19(e), Jpgi—2(BX,), are harder to analyze. ELI=24
pulls back to the EHP spectral sequence and corresponds to 5 € 7T5;172 (1.3.14),
the first stable element in coker J (1.1.12), so (1 is born on S4¢ and has Hopf
invariant a;. Presumably the corresponding generators of EP!4~22Pi=2 for § > 1
each supports a nontrivial dq hitting a 8; in the appropriate group. The behavior of
the remaining elements of this sort is probably determined by that of the generators

of Egjq_Q’“’P =27 for j > 2, which we now denote by f;. These appear to be closely

related to the Arf invariant elements 6; = fpi-1/,-1 (1.4.10) in EZP'9 of the
Adams—Novikov spectral sequence. The latter are known not to survive (6.4.1), so
presumably the éj do not survive either. In particular we know d2p2_6(é2) =V in
the appropriate group. There are similar elements at p = 1 as we shall see below.
In that case the 6; are presumed but certainly not known (for j > 5) to exist in
ﬂ§j+1_2. Hence any program to prove their existence at p = 2 is doomed to fail if
it would also lead to a proof for p > 2.

We now consider the 2-primary analog of 1.5.19 and 1.5.21. The situation is
more complicated for four reasons.

(1) im J (1.5.15) is more complicated at p = 2 than at odd primes.

(2) The homotopy of J (which is the fiber of a certain map bo — $4bsp, where
bo and bsp are the spectra representing connective real and symplectic K-theory,
respectively) contains more than just im J.

(3) Certain additional exceptions have to be made in the analog 1.5.21.

(4) The groups corresponding to the Jp;,—2(BX,) are more complicated and
lead us to the elements n; € wfj of Mahowald [6] in addition to the hypothetical
(9]‘ S 7T2’9j+172.

Our first job then is to describe 7, (J) and how it differs from im J as described
in 1.1.12. We have m;(bo) = m;47(0O) and 7;(bsp) = m;+3(0) for i > 0 and 7.(0) is
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described in 1.1.11, i.e.,

Z ifi=3 mod (4)
m(0)=42Z/(2) ifi=0o0r1 mod (8)
0 otherwise.

The map bo — X*bsp used to define J is trivial on the torsion in =, (bo), so these
groups pull back to . (J). Hence mg;+1(J) and 7g;42(J) for ¢ > 1 contain summands
of order 2 not coming from im J.

1.5.22. PROPOSITION. At p =2

Z2) ifi=0
Z/(2) ifi=1or2
() = Z/(8) iti=3 mod (8) andi >0
’ Z/(2) ifi=0or2 mod8andi>8
Z/2)®Z/(2) ifi=1 mod (8) and i >9
Z/(27Fh) ifi=8m—1,m>1and 8m = 27(2s + 1).

Here, im J C 7. (J) consists of cyclic summands in m;(J) fori >0 andi=7,0, 1

or 3 mod (8). O

Now we need to name certain elements in 7, (J). Asin 1.5.16 let &; denote the
generator of im .J in dimension ¢(j) — 1, where

2j—1 ifj=1lor2 mod (4)
o(j)—1=12j if j=0 mod (4)
2j+1 ifj=3 mod (4).

We also define elements «; in 7. (J) of order 2 as follows. a; = n € m(J) and
Qi1 € Tsk+1(J) is a certain element not in imJ for k > 1. qupio = NQakt1,
Qaprs = NP1 = dQygpyo, and ayy, € mgr—1(J) is an element of order 2 in that
cyclic group.

1.5.23. THEOREM (Mahowald [4]). (a) There is a spectral sequence converging
to J,(RP>) with EF™ = 7_n41(J); the map S° — J induces a homomorphism
to this spectral sequence from the stable EHP spectral sequence of 1.5.12. (We will
denote the generator of Ef’kﬂ by x and the generator of Ef’kﬂﬂn form >0 by
the name of the corresponding element in m,,(J).)

(b) The dy in this spectral sequence is determined by 1.5.13. The following is
a complete list of nontrivial ds’s and d3’s.

Fork>1andt >0, dy sends

c E§k+1,4k+2

Tak+1 to g

— 4k+8+14-8t,4k+2 _ .

Q44343 € E2 t+et8E Akt to  OQup4 fori=0,1
4k+2+8t,4k+2

Q41 € E2 to  ouiy2

c E§k+1+8t+7,4k+1

Q4ttq to  Qqirs

and

e E;lk+z+8t,4k+1

(o7 TR to Qg 4441 for i = ]., 2.
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Fork>1andt>1, d3 sends

Ak+148¢,4k
Eik148t4k43

Qut € to et

and

- 4k+8t+1,4k+1 —
Q441 S E2 to Q442

See F1G. 1.5.24.
(¢) The resulting Eq-term is a Z/(2)-vector space on the following generators
fork>1,t>0.

1,2, - 4,2 St+i+1,2 .
€ By ae By a4t+i€E4+l+’ fori=1, 2;

?

_ 8t-+i+5,2 . ) 8t+3,3. 8t+9,3.
Qgtys € E4 for i = 3,4, 5; Q441 € E4 ;o Oi4tqpq € E4 ;
_ 8t+10,3 . dk—1,4k. - 4k+8t+2,4k
Qya € By i Tak—1 € By i Qa2 € By ;

_ 4k+8t+6,4k . Ak+8t+3,4k+1 Ak+8t+7,4k+1
Q4443 € By ;a3 € By i ogqa € By ;

dk+4,4k+2 4k+8t+10,4k+2

Ak+8t+3,4k+2 _ _

Q442 < E4 3 Qg € E4 H Q445 S E4 3
4k+8t+3,4k+3 _ 4k+8t+10,4k+3

Q441 € E4 ; and Q4ty4 € E4 .

(d) The higher differentials are determined by 1.5.15 and the fact that most
group extensions in sight are nontrivial. The resulting Eo,-term has the following
additive generators and no others fort > 0.

Egg*g’g; Qi1 € Effff”rl’2 fori=1, 2;

8t+11,5.
B ;

z1 € B agqa €
Qar € BT w3 € BYY aupga €
Qupyi € BSIFH52 for j =3, 4; a7 € BT,
Qs € ESST0 ayyy, € Efé”’s_i fori=1,2,3;
Qoittoi_j2 € E§g+1(1+t)71,* for j > 3;
Gy € EXHAH2 and q; € BXT D=2 g >0
(e) Fori>0
Z/(2) ifi=0 mod (4)
Ji(RP®) = m;(J) & { Z/(29) if i = 29+25 — 2 for s odd O

0 otherwise.

Note that the portion of the F.-term corresponding to the summand 7, (J) in
1.5.23(e) [i.e., all but the last two families of elements listed in 1.5.23(d)] is near
the line n = 0, while that corresponding to the second summand is near the line
n==k.

The proof of 1.5.23 is similar to that of 1.5.19 although the details are messier.
One has fibrations J — bo — Z%bsp and RP>® — S?Q) — R. We have R A bo ~
\/j>0 E4jHZ(2) and we can get a description of R A bsp from the fibration ¥4bo —
bsp — HZy. The Ej-term in 1.5.22 is a filtered form of m.(X%bsp A RP™) &
4 (boARP*); elements with Hopf invariants of the form &; are in the first summand
while the other generators make up the second summand. By studying the analog
of 1.5.20 we can compute J,(RP>) and again the answer [1.5.23(e)] forces the
spectral sequence to behave the way it does.

Now we come to the analog of 1.5.21.
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1.5.25. THEOREM (Mahowald [4]). (a) The composite
T (RS2 o (QRP?) — J(RP?")

is onto unless k = 0 mod (4) and k < 2n, or k = 6 mod (8). It is also onto if
k=2 forj>3orifk=2 —2 mod (29*!) and k > 2n + 8+ 2j. When k < 2n
is a multiple of 4 and not a power of 2 at least 8, then the cokernel is Z/(2); when
k < 2n is 2 less than a multiple of 8 but not 2 less than a power of 2, then the
cokernel is Ji,(RP?") = Ji,(RP>).

(b) All elements in the Eo-term corresponding to elements in m.(J) pull back
to the EHP spectral sequence except some of the aupy; € ESITH52 for i = 3,4 and
t > 0. Hence H(ay) = H(ag) = H(az) = 1, H(ayy1) = oy, and if 2z = ayqq for
x €imJ then H(z) = ay—;. O

Theorem 1.5.23 leads one to believe that H(dut1;) = Qqgti—1 for i =4, 5 and
t > 0, and that these elements are born on S?, but this cannot be true in all cases.
If &y were born on S2, its Hopf invariant would be in 719(S?), but this group does
not contain as, which is born on §*. In fact we find H(ay) = ag, H(as) = a3, and
H(ag) is an unstable element.

1.5.26. REMARK. Theorem 1.5.25(b) shows that the portion of im.J gener-
ated by ayit4o and ayeqs, ie., the cyclic summands of order > 8 in dimensions
4k — 1, are born on low-dimensional spheres, e.g., dus42 is born on S°. However,
simple calculations with 1.5.14 show that the generator of m4;_1(O) pulls back to
Ta—1(0O(2k + 1)) and no further. Hence @usi2 € my4+5(S°) is not actually in the
image of the unstable .J-homomorphism until it is suspended to S***3.

Now we consider the second summand of J,(RP*) of 1.5.23(e). The elements
Qg € EF4F=2 for k > 1 have no odd primary analog and we treat them first. The
main result of Mahowald [6] says there are elements 7; € m;(SY) for j > 3 with
Hopf invariant v = ao. This takes care of the case k = 2772 above.

1.5.27. THEOREM. In the EHP spectral sequence the element v = g € Ekak_?
for k > 2 behaves as follows (there is no such element for k = 1).

(a) If k = 2772, j > 3 then the element is a permanent cycle corresponding to
n;; this is proved by Mahowald [6].

(b) If k =25+ 1 then dy(v) = V2. O

1.5.28. CONJECTURE. If k= (25 + 1)2972 with s > 0 then do; _o(v) =n;. O

The remaining elements in 1.5.23(e) appear to be related to the famous Kervaire
invariant problem (Mahowald [7], Browder [1]).

1.5.29. CONJECTURE. In the EHP spectral sequence the elements
j+1 —2,% .
oy € E;J (t+1)-2, forj>2,t>0

behave as follows:

(a) If there is a framed (2771 — 2)-manifold with Kervaire invariant one then
_ 2019 % . . .
Qa; € " is a nontrivial permanent cycle corresponding to an element 0; €
Toi+1_5(S?) (These elements are known (Barratt, Jones, and Mahowald [2]) to exist
for 3 >0.)

j+1

(b) If (a) is true then the element &, € E22]+ @sHD)=2% satisfies dr(a;) = b;

where r = 2971 — 1 — dim(a;). O
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The converse of 1.5.29(a) is proved by Mahowald [4] 7.11.

Now we will describe the connection of the EHP spectral sequence with the
Segal conjecture. For simplicity we will limit our remarks to the 2-primary case,
although everything we say has an odd primary analog. As remarked above, the
stable EHP spectral sequence (1.5.12) can be modified so as to converge to the
stable homotopy of a stunted projective space. Let RP; = RP*/RP;_; for j > 0;
i.e., RPJ is the infinite-dimensional stunted projective space whose first cell is in
dimension j. It is easily seen to be the Thom spectrum of the j-fold Whitney sum
of the canonical line bundle over RP>. This bundle can be defined stably for
Jj <0, so we get Thom spectra RP; having one cell in each dimension > j for any
integer j.

1.5.30. PROPOSITION. For each j € Z there is a spectral sequence converging
to m.(RP;) with

g Thnt1(S°) ifn—1>j

! 0 ifn—1<j
and d.: E¥" — EF-Ln=" For j = 1 this is the stable EHP spectral sequence of
1.5.12. If 7 < 1 this spectral sequence maps to the stable EHP spectral sequence,
the map being an isomorphism on Ef" forn > 2. (I

The Segal conjecture for Z/(2), first proved by Lin [1], has the following con-
sequence.

1.5.31. THEOREM. For each j < O there is a map S™' — RP; such that the
map S™! — RP_, = @RPj is a homotopy equivalent after 2-adic completion
of the source (the target is already 2-adically complete since RP; is for j odd).
Consequently the inverse limit over j of the spectral sequences of 1.5.30 converges to
the 2-component of w.(S™1). We will call this limit spectral sequence the superstable
EHP spectral sequence. O

Nothing like this is stated in Lin [1] even though it is an easy consequence of
his results. A proof and some generalizations are given in Ravenel [4]. Notice that
H.(RP_.) # @ H,(RP;); this is a spectacular example of the failure of homology
to commute with inverse limits. Theorem 1.5.31 was first conjectured by Mahowald
and was discussed by Adams [14].

Now consider the spectrum RPy. It is the Thom spectrum of the trivial bundle
and is therefore S°VRP;. Hence for each j < 0 there is a map RP; — S° which is
nontrivial in mod (2) homology. The cofiber of this map for j = —1 can be shown
to be R, the cofiber of the map RP; — SY of Kahn and Priddy [2]. The Kahn—
Priddy theorem says this map is surjective in homotopy in positive dimensions.
Using these facts we get

1.5.32. THEOREM. In the spectral sequence of 1.5.30 for j <0,

(a) no element in E%F supports a nontrivial differential;

(b) no element in EX* is the target of a nontrivial differential;

(¢c) every element of E?’k = m,41(SY) that is divisible by 2 is the target of a
nontriwvial di and every element of Eg’k for k > —1 is the target of some d, for
r>2; and

(d) every element in E}* = m,(S°) not of order 2 supports a nontrivial dy and
every element of E;k supports a nontrivial d, for some r > 2. O
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PrROOF. Parts (a) and (b) follow from the existence of maps S—! — RP; — S°,
(c) follows from the Kahn—Priddy theorem, and (d) follows from the fact that the
map I'&nRPj — SO is trivial. O

Now the spectral sequence converges to 7, (S™1), yet 1.5.32(c) indicates that the
map S~! — RP_,, induces a trivial map of E-terms, except for E_"0, where it
is the projection of Z onto Z/(2). [Here we are using a suitably indexed, collapsing
AHSS for 7, (S~1).] This raises the following question: what element in E%~" (for
some n > 0) corresponds to a given element z € 71, (S~1)? The determination of n is
equivalent to finding the smallest n such that the composite S¥ & S—1 - RP_,,_;
is nontrivial. The Kahn—Priddy theorem tells us this composite is trivial for n = 0
if k> 0or k=—1 and z is divisible by 2; and the Segal conjecture (via 1.5.31)
says the map is nontrivial for some n > 0. Now consider the cofiber sequence
S—"=1 - RP_,_; — RP_,. The map from S* to RP_,, is trivial by assumption
so we get a map from S* to S~!17", defined modulo some indeterminacy. Hence
r € Tp11(SP) gives us a coset M (z) C Ti14+0(SY) which does not contain zero.
We call M(zx) the Mahowald invariant of x, and note that n, as well as the coset,
depends on z. The invariant can be computed in some cases and appears to be
very interesting. For example, we have

1.5.33. THEOREM. Let 1 be a generator of mo(S°). Then for each j > 0, M (271)
contains a;, a preimage in m.(S°) of the aj € m.(J) of 1.5.23. O

A similar result holds for odd primes. In 1.5.31 we replace the RP; by Thom
spectra of certain bundles over BY,, and M (p’1) > o for aj, as in 1.5.19. We also
have

1.5.34. CONJECTURE. M (0;) contains 841 for 6; as in 1.5.29. O

1.5.35. CONJECTURE. Whenever the Greek letter elements (1.3.17) a;n) and
oz;nﬂ) exist in homotopy, oz§.n+1) € M(a§.”)). O

One can mimic the definition of the Mahowald invariant in terms of the Adams
spectral sequence or Adams—Novikov FEs-terms and in the latter case prove an
analog of these conjectures. At p = 2 one can show (in homotopy) that M (a1) 3 ao,
M(az) > as, and M(a3) > a3 = 03. This suggests using the iterated Mahowald
invariant to define (up to indeterminacy) Greek letter elements in homotopy, and

that ; is a special case (namely agjﬂ)) of this definition.






CHAPTER 2

Setting up the Adams Spectral Sequence

In this chapter we introduce the spectral sequence that will be our main object
of study. We do not intend to give a definitive account of the underlying theory, but
merely to make the rest of the book intelligible. Nearly all of this material is due
to Adams. The classical Adams spectral sequence [i.e., the one based on ordinary
mod (p) cohomology] was first introduced in Adams [3] and a most enjoyable expo-
sition of it can be found in Adams [7]. In Section 1 we give a fairly self-contained
account of it, referring to Adams [4] only for standard facts about Moore spectra
and inverse limits. We include a detailed discussion of how one extracts differentials
from an exact couple and a proof of convergence.

In Section 2 we describe the Adams spectral sequence based on a generalized
homology theory E, satisfying certain assumptions (2.2.5). We rely heavily on
Adams [4], referring to it for the more difficult proofs. The E,.-Adams resolutions
(2.2.1) and spectral sequences (2.2.4) are defined, the Fa-term is identified, and the
convergence question is settled (2.2.3). We do not give the spectral sequence in its
full generality; we are only concerned with computing 7, (Y), not [X, Y] for spectra
X and Y. Most of the relevant algebraic theory, i.e., the study of Hopf algebroids,
is developed in Appendix 1.

In Section 3 we study the pairing of Adams spectral sequences induced by a
map a: X' A X" — X and the connecting homomorphism associated with a cofi-
bration realizing a short exact sequence in F-homology. Our smash product result
implies that for a ring spectrum the Adams spectral sequence is one of differential
algebras. To our knowledge these are the first published proofs of these results in
such generality.

Throughout this chapter and the rest of the book we assume a working knowl-
edge of spectra and the stable homotopy category as described, for example, in the
first few sections of Adams [4].

1. The Classical Adams Spectral Sequence

In this section we will set up the Adams spectral sequence based on ordinary
mod (p) cohomology for the homotopy groups of a spectrum X. Unless otherwise
stated all homology and cohomology groups will have coefficients in Z/(p) for a
prime number p, and X will be a connective spectrum such that H*(X) (but not
necessarily X itself) has finite type.

Recall that H*(X) is a module over the mod (p) Steenrod algebra A, to be
described explicitly in the next chapter. Our object is to prove

2.1.1. THEOREM (Adams [3]). Let X be a spectrum as above. There is a spectral
sequence

E:*(X) with d,: E;f’t - Eﬁ+r,t+r71

41
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such that

(a) Es' = Ext}{ (H"(X), Z/(p)).

(b) if X is of finite type, E5¥ is the bigraded group associated with a certain
filtration of 7.(X) ® Zy,, where Z,, denotes the ring of p-adic integers. O

Let E = HZ/(p), the mod (p) Eilenberg-Mac Lane spectrum. We recall some
of its elementary properties.

2.1.2. PROPOSITION.

(a) Ho(X) =m(EAX).

(b) H*(X) = [X, E].

(c) H*(E) = A.

(d) If K is a locally finite wedge of suspensions of E, i.e., a generalized mod (p)
Filenberg-Mac Lane spectrum, then m.(K) is a graded Z/(p)-vector space
with one generator for each wedge summand of K. More precisely, m.(K) =
Hom a(H* (K), Z/(p)).

(e) A map from X to K is equivalent to a locally finite collection of elements
in H*(X) in the appropriate dimensions. Conversely, any locally finite collection
of elements in H*(X) determines a map to such a K.

(f) If a locally finite collection of elements in H*(X) generate it as an A-module,
then the corresponding map f: X — K induces a surjection in cohomology.

(g) ENX is a wedge of suspensions of E with one wedge summand for each
Z/(p) generator of H*(X). H(EANX)=A® H*(X) and the map f: X - EANX
(obtained by smashing X with the map S° — E) induces the A-module structure
map AR H*(X) — H*(X) in cohomology. In particular H*(F) is a surjection. O

The idea behind the Adams spectral sequence is to use maps such as those of
(f) or (g) and our knowledge of 7, (K) or m.(EAX) to get information about 7, (X).
We enlist the aid of homological algebra to make the necessary calculations.

More specifically, we have

2.1.3. DEFINITION. A mod (p) Adams resolution (X, gs) for X is a diagram

9o g1 g2

X = Xo X1 X2
lfo ifl lfz
Ky Ki K>

where each K, is a wedge of suspensions of E, H*(fs) is onto and Xsy1 is the

fiber of fs. O

Proposition 2.1.2(f) and (g) enable us to construct such resolutions for any X,
e.g., by setting Ky = F A X,. Since H*(fs) is onto we have short exact sequences
0« H*(X;) « H"(Ks) « H* (XX11) < 0.

We can splice these together to obtain a long exact sequence
(2.1.4) 0« H*(X) + H*(Ko) « H*(ZK)) « H*(X*K3) « - .

Since the maps are A-module homomorphisms and each H*(Kj) is free over A,
2.1.4 is a free A-resolution of H*(X).

Unfortunately, the relation of . (K,) to 7, (X) is not as simple as that between
the corresponding cohomology groups. Life would be very simple if we knew 7. (fs)
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was onto, but in general it is not. We have instead long exact sequences

(2.1.5) (X)L 1) 2V (k)
A

I

05,

arising from the fibrations

Xo 25 X, 5 K,
If we regard 7.(X;) and 7, (K,) for all s as bigraded abelian groups D; and Ej,
respectively [i.e., DY = m,_ (X,) and EY" = m,_,(K,)] then 2.1.5 becomes

(2.1.6) D,

where
. . s+1,t+1 s,t
i1 =m—s(gs): D} — D7,

J1=me—s(fs): Di,t - Ef’ta
and

. s,t s+1,t
ki = 8s7t_3. El — Dl .

The exactness of 2.1.5 translates to keri; = im kq, ker j; = im i1, and ker k; = im j;.
A diagram such as 2.1.6 is known as an ezact couple. It is standard homological
algebra that an exact couple leads one to a spectral sequence; accounts of this
theory can be found in Cartan and Eilenberg [1, Section XV.7], Mac Lane [1,
Section X1.5], and Hilton and Stammbach [1, Chapter 8] as well as Massey [2].

Briefly, di = jik1: E' — EST has (d1)? = jikijiks = 0 so (By,dy) is a
complex and we define Fy = H(E7,d;). We get another exact couple, called the
derived couple,

(2.1.7) Dy — 2 oD,
Es

where Dg’t = ilDf’t, 19 is induced by i1, j2(i1d) = j1d for d € Dy, and ka(e) = k1 (e)
for e € kerd, C E;. Since 2.1.7 is also an exact couple (this is provable by a diagram
chase), we can take its derived couple, and iterating the procedure gives a sequence

of exact couples
D, — ' D,
N/
E.

where D, 1 = 4D, d,. = j.k, and F,11 = H(F,,d,). The sequences of complexes
{(E,d,)} constitutes a spectral sequence. A close examination of the indices will
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reveal that d,.: B3t — ESTH=1 Tt follows that for s < r, the image of d,. in E2*
is trivial so E,f_fl is a subgroup of E%!, hence we can define

EY = () B

r>Ss

This group will be identified (2.1.12) in certain cases with a subquotient of m;_ 4 (X),
namely, im my_4(X;)/imm_s(Xs41). The subgroups im 7, (X,) = F*m, (X) form a
decreasing filtration of 7,(X) and E+ is the associated bigraded group.

2.1.8. DEFINITION. The mod (p) Adams spectral sequence for X is the spectral
sequence associated to the exact couple 2.1.6. (I

We will verify that d,.: B3t — EsTi7=1 by chasing diagram 2.1.9, where we
write 7. (X,) and 7, (K, ) instead of Dy and Eq, with u =1t — s.
(2.1.9)

T (Js42 s ,u Ty — s4¢
- 7Tu(X8+2) Y +2)> Wu(KerQ) = > 7'['u71(X5+3) iy +;) 71—ufl(—K—erS) -
Tu(gs+1) Tu—1(gs+2)
T (fst1) Os+41,u Tu—1(fst2)
- 7Tu(X5+1) - ﬂ—u(Kerl) I 7rufl()(s+2) - 71—ufl(-Krer2) -
ﬂ'u(gs) 7Tu—1(93+1)
W'u(fs) 8s,u 71'u—l(fs 1)
éﬂ—u(Xs) WU(KS) *>7Tu71(Xs+1) —+>7Tu71(Ks+1) -

The long exact sequences 2.1.5 are embedded in this diagram; each consists of a
vertical step 7. (g.) followed by horizontal steps m.(f«) and 0. and so on. We have
BV = m,(K,) and d¥' = (my_1(fs41))(0s.u). We have ES' = kerd}'/imd; ™",
Suppose an element in ES’t is represented by x € m,(K). We will now explain
how ds[z] (where [z] is the class represented by x) is defined. z is a d; cycle, i.e.,
diz = 0, so exactness in 2.1.4 implies that 95,2 = (Ty+1(gs+1))(y) for some y €
Tu—1(Xsy2). Then (my_1(fss2))(y) is a dy cycle which represents dofz] € B3>
If dyfz] = O then [z] represents an element in E5' which we also denote by [z].
To define ds[z] it can be shown that y can be chosen so that y = (my,—1(gs+2)) ()
for some y' € m,—1(Xs13) and that (mu—1(fs+3))(¥') is a dy cycle representing
a dy cycle which represents an element in E*T3'+2 which we define to be ds[z].
These assertions may be verified by drawing another diagram which is related to
the derived couple 2.1.7 in the same way that 2.1.9 is related to the original exact
couple 2.1.6. The higher differentials are defined in a similar fashion. In practice,
even the calculation of ds is a delicate business.

Before identifying %! we need to define the homotopy inverse limit of spectra.

2.1.10. DEFINITION. Given a sequence of spectra and maps

X0£X1£X2<£X3<‘"°,
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Li_Xi, is the fiber of the map

whose ith component is the difference between the projection p;: [[ X; = X; and
the composite

HXj Pi+1 Xi—l—l fit1 X,. 0

For the existence of products in the stable category see 3.13 of Adams [4].
This lim is not a categorical inverse limit (Mac Lane [1, Section II1.4] because a
compatible collection of maps to the X;, does not give a unique map to @X, For
this reason some authors (e.g., Bousfield and Kan [1]) denote it instead by holim.
The same can be said of the direct limit, which can be defined as the cofiber of the
appropriate self-map of the coproduct of the spectra in question. However this @
has most of the properties one would like, such as the following.

2.1.11. LEMMA. Given spectra X; j fori,j > 0 and maps f: X; ; — X;_1; and
g: X; 5 = X, j—1 such that fg is homotopic to gf,

i g i A
ProOOF. We have for each i a cofibre sequence
lim X j — IR IR
J J J

Next we need to know that products preserve cofiber sequences. For this fact, recall
that the product of spectra []Y;, is defined via Brown’s representability theorem
(Adams [4], Theorem 3.12) as the spectrum representing the functor [[[—,Y;].
Hence the statement follows from the fact that a product (although not the inverse
limit) of exact sequences is again exact.

Hence we get the following homotopy commutative diagram in which both rows
and columns are cofiber sequences.

imlim X, ; —=Um[[X;; —=1lm ][ X, ,
X I, 1,

[[him X j ——= 111 Xiy ——I111 Xi;
iy i g i g

[T X ) —— 1] Xi; —— 111 Xi;
i i g i g

Everything in sight is determined by the two self-maps of [], Hj X;; and the
homotopy that makes them commute. Since the product is categorical we have

[L I Xi; =11, I1; Xi,j- It follows that [, I'&nj X; = @j [L; Xi,; because they
are each the fiber of the same map.

Similarly
[Ttim Xy = 1im [T X0
it g
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so one gets an equivalent diagram with l'glj lim, X; ; in the upper left corner.  [J

Now we will show that for suitable X, E%! is a certain subquotient of m, (X).

2.1.12. LEMMA. Let X be a spectrum with an Adams resolution (Xs,gs) such
that lim X, = pt. Then E%! is the subquotient im 7, (Xs)/immy,(Xs11) of mu(X)
and (imm, (X,) = 0.

ProOF. For the triviality of the intersection we have l'&nw*(Xs) = 0 since
@Xs = pt. Let G5 = m.(Xs) and

G, if s>t
lim Gy < G, ift > s.

We have injections G% — G%{~! and surjections Gt — G%_;, so lim G =, G{ and
lim G§ = G;. We are trying to show lim, G{ = 0. lim, G§ maps onto lim Gf_, so
im lim G{ maps onto lim G§. But lim lim G¢ =lim lim G{ =lim G;=0.

For the identification of ES!, let 0 # [z] € ES!.

First we show 0,,(z) = 0. Since d.[z] = 0, Js,(z) can be lifted to
Tu—1(Xstr41) for each r. It follows that Os.(x) € im@ﬂ'u_l(XsM) = 0, so
Os,u(x) = 0.

Hence we have x = m,(fs)(y) for y € m,(X;). It suffices to show that y has

a nontrivial image in m,(X). If not, let  be the largest integer such that y has
a nontrivial image z € m,(Xs—r41). Then z = 05—y, (w) for w € m,(Ks_,) and
d,[w] = [z], contradicting the nontriviality of [z]. O

Now we prove 2.1.1(a), the identification of the Fa-term.
By 2.1.2(d), E}" = Homu (H'~*(K,),Z/(p)). Hence applying Homa(—, Z/(p))
to 2.1.4 gives a complex

B0t S gt S g2,
The cohomology of this complex is by definition the indicated Ext group. It is

straightforward to identify the coboundary § with the d; in the spectral sequence
and 2.1.1(a) follows.

2.1.13. COROLLARY. If f: X — Y induces an isomorphism in mod (p) ho-
mology then it induces an isomorphism (from Ey onward) in the mod (p) Adams
spectral sequence. (Il

2.1.14. DEFINITION. Let G be an abelian group and X a spectrum. Then XG =
X A SG, where SG is the Moore spectrum associated with G (Adams [4, p.200].
Let X = XZ, (the p-aidc completion of X ), where Z,, is the p-adic integers, and
X™=XZ/({p™). O

2.1.15. LEMMA. (a) The map X — X induces an isomorphism of mod (p)
Adams spectral sequences.

(b) m(X) = 1 (X) @ Zy,.

(c) X = ]'ngm, if © has finite type.

PRrROOF. For (a) it suffices by 2.1.11 to show that the map induces an isomor-

phism in mod (p) homology. For this see Adams [4], proposition 6.7, which also
shows (b).
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Part (c) does not follow immediately from the fact that SZ, = lim SZ /(™)
because inverse limits do not in general commute with smash products. Indeed our
assertion would be false for X = SQ, but we are assuming that X has finite type.

By 2.1.10 there is a cofibration

Sz, — [[5z/w™) =[] 52/(™),
so it suffices to show that

xn[lsz/e™ ~I]xz/™.
This is a special case (with X = F and R = Z) of Theorem 15.2 of Adams [4]. O

2.1.16. LEMMA. If X is a connective spectrum with each m;(X) a finite p-group,
then for any mod (p) Adams resolution (Xs,gs) of X, lim X, = pt.

ProOF. Construct a diagram
X=X+ X« X5+
(not an Adams resolution) by letting X, be the fiber in
X~ X, = K,

where the right-hand map corresponds [2.1.2(e)] to a basis for the bottom cohomol-
ogy group of X;. Then the finiteness of m;(X) implies that for each ¢, m;(X.) =0
for large s. Moreover, m, (X, ;) — m.(X) is monomorphic so lim X = pt.

Now if (X, g,) is an Adams resolution, the triviality of g5 in cohomology enables
us to construct compatible maps Xy — X!. It follows that the map Jm 7, (Xs) —
7 (X) is trivial. Each X also satisfies the hypotheses of the lemma, so we conclude
that h{inm (X;) has trivial image in each m,(X;) and is therefore trivial. Since

7;(Xs) is finite for all ¢ and s, 1'&11 7« (Xs) =0 so im X = pt. O

We are now ready to prove 2.1.1(b), i.e., to identify the E-term. By 2.1.15(a)
it suffices to replace X by X. Note that since SZ,NSZ/(p™) =SZ/(p™), X" =
X™. Tt follows that given a mod (p) Adams resolution (Xs,9s) for X, smashing
with SZ, and SZ/(p™) gives resolutions (X5, §s) and (X™, g™) for X and X™,
respectively. Moreover, X™ satisfies 2.1.16 so 1&18 X7 = pt. Applying 2.1.15(c) to

each X, we get )?s = @m X", so

fim X, = i fm X7
s s m
= @@X;’l by 2.1.11
—pt.
Hence the result follows from 2.1.12. O
2.1.17. REMARK. The E,, term only gives us a series of subquotients of

7+ (X) ® Zy, not the group itself. After computing F., one may have to use other
methods to solve the extension problem and recover the group.

We close this section with some examples.
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2.1.18. EXAMPLE. Let X = HZ, the integral Eilenberg—-Mac Lane spectrum.
The fundamental cohomology class gives a map f: X — E with H*(f) surjective.
The fiber of f is also X, the inclusion map ¢g: X — X having degree p. Hence
we get an Adams resolution (2.1.3) with X; = X and K; = F for all s, the map
X =X, = Xg = X, having degree p®. We have then

st )Z/(p) ift=s
E)" = )
0 ift # s.
There is no room for nontrivial differentials so the spectral sequence collapses,
ie, Ex = Ey. We have E3° = Z/(p) = immo(Xs)/immo(Xs+1). In this case
X = HZ,, the Eilenberg-Mac Lane spectrum for Z,.

2.1.19. EXAMPLE. Let X = HZ/(p') with i > 1. It is known that H*(X) =
H*(Y)®oXH*(Y) as A-modules, where Y = HZ. This splitting arises from the two
right-hand maps in the cofiber sequence

Y —->Y > X =YY,

where the left-hand map has degree p*. Since the Fj-term of the Adams spectral
sequence depends only on H*(X) as an A-module, the former will enjoy a similar
splitting. In the previous example we effectively showed that

Z/(p) ift=s

Ext}i' (H*(Y),Z/(p)) = {0 if t # s.

It follows that in the spectral sequence for X we have

g5t Z/(p) ift—s=0orl
2 0 otherwise

In order to give the correct answer we must have E5' =0ift —s =1 and E$f =0
if t = s for all but ¢ values of s. Multiplicative properties of the spectral sequence
to be discussed in Section 3 imply that the only way we can arrive at a suitable F,
term is to have d;: Eis’S+1 — E’Z»SJ”"SJrz nontrivial for all s > 0. A similar conclusion
can be drawn by chasing the relevant diagrams.

2.1.20. EXAMPLE. Let X be the fiber in X — S0 — HZ, where the right-hand
map is the fundamental integral cohomology class on S°. Smashing the above
fibration with X we get

XAX 2 x % xAHZ

It is known that the integral homology of X has exponent p, so X A HZ is a wedge
of E and H*(fy) is surjective. Similar statements hold after smashing with X any
number of times, so we get an Adams resolution (2.1.3) with Ky = X; A HZ and
X, = XG+ the (s + 1)-fold smash product of X with itself, i.e., one of the form

X<~— XN X=~=—XAXANX=~——— -

l | |

XNHZ XNXANHZ XANXANXNHZ.

Since X is (2p — 4)-connected Xy, is ((s + 1)(2p — 3) — 1)-connected, so Jim X, is
contractible.
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2. The Adams Spectral Sequence Based on a Generalized Homology
Theory

In this section we will define a spectral sequence similar to that of 2.1.1 (the
classical Adams spectral sequence) in which the mod (p) Eilenberg—Mac Lane spec-
trum is replaced by some more general spectrum F. The main example we have in
mind is of course £ = BP, the Brown—Peterson spectrum, to be defined in 4.1.12.
The basic reference for this material is Adams [4] (especially Section 15, which
includes the requisite preliminaries on the stable homotopy category.

Our spectral sequence should have the two essential properties of the classi-
cal one: it converges to m.(X) localized or completed at p and its FEa-term is a
functor of E*(X) (the generalized cohomology of X) as a module over the algebra
of cohomology operations E*(FE); i.e., the Es-term should be computable in some
homological way, as in 2.1.1. Experience has shown that with regard to the second
property we should dualize and consider instead F,(X) (the generalized homology
of X) as a comodule over F,(F) (sometimes referred to as the coalgebra of coop-
erations). In the classical case, i.e., when £ = HZ/(p), E.(E) is the dual Steenrod
algebra A,.

Theorem 2.1.1(a) can be reformulated as Eo = Exta, (Z/(p), H:(X)) using
the definition of Ext in the category of comodules given in A1.2.3. In the case
FE = BP substantial technical problems can be avoided by using homology instead
of cohomology. Further discussion of this point can be found in Adams [6, pp.
51-55].

Let us assume for the moment that we have known enough about E and E,(FE)
to say that E.(X) is a comodule over E,(E) and we have a suitable definition of
Extpg, (5)(E«(SY), E.(X)), which we abbreviate as Ext(E,(X)). Then we might
proceed as follows.

2.2.1. DEFINITION. An E,-Adams resolution for X is a diagram

g0 g1

X:XO X1 X2
foi f1l le
Ko Kl KQ

such that for all s > 0 the following conditions hold.
(a) Xst1 is the fiber of fs.
(b) EAX; is a retract of EAK, i.e., there is a map hs: EAK; — EAX; such
that hs(E N f5) is an identity map of EAXs. particular E.(fs) is a monomorphism.
(¢) K5 is a retract of E N K.
(d)

Ext""(E,(K,)) =

{wuucs) ift=0 -
0 if t > 0.

As we will see below, conditions (b) and (c) are necessary to insure that the
spectral sequence is natural, while (d) is needed to give the desired FEs-term. As
before it is convenient to consider a spectrum with the following properties.

2.2.2. DEFINITION. An E-completion X of X is a spectrum such that
(a) There is a map X — X inducing an isomorphism in E.-homology.
(b) X has an E.-Adams resolution {X,} with im X = pt. O
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This is not necessarily the same as the X of 2.1.14, which will be denoted in
this section by X, (2.2.12). Of course, the existence of such a spectrum (2.2.13) is
not obvious and we will not give a proof here. Assuming it, we can state the main
result of this section.

2.2.3. THEOREM (Adams [4]). An E.-Adams resolution for X (2.2.1) leads to
a natural spectral sequence EX*(X) with d,: E3t — ESTHHT=1 such that

(a) Ey' = Ext(F,(X)).

(b) EX* is the bigraded group associated with a certain filtration of w*()? ), in

other words, the spectral sequence converges to the latter. (This filtration will be
described in 2.2.14.)

2.2.4. DEFINITION. The spectral sequence of 2.2.3 is the Adams spectral se-
quence for X based on E-homology. O

2.2.5. AsSUMPTION. We now list the assumptions on E which will enable us to
define Ext and X.
(a) F is a commutative associative ring spectrum.
(b) E is connective, i.e., m.(FE) =0 for r < 0.

(¢) The map ps: 7o(E) @79 (E) — 7o (E) induced by the multiplication p: E A
FE — FE is an isomorphism.

(d) E is flat, i.e., E,(E) is flat as a left module over m,(E).

(e) Let 8: Z — mo(E) be the unique ring homomorphism, and let R C Q be
the largest subring to which 6 extends. Then H,.(E; R) is finitely generated over R
for all r.

2.2.6. PROPOSITION. HZ/(p) and BP satisfy 2.2.5(a)—(e) O

The flatness condition 2.2.5(d) is only necessary for identifying E3* as an Ext.
Without it one still has a spectral sequence with the specified convergence prop-
erties. Some well-known spectra which satisfy the remaining conditions are HZ,
bo, bu, and MSU. In these cases E A F is not a wedge of suspensions of E as it
is when E = HZ/(p), BP, or MU. HZ N HZ is known to be a certain wedge of
suspensions of HZ/(p) and HZ, bo A bo is described by Milgram [1], bu A bu by
Adams [4], Section 17, and M SU A M SU by Pengelley [1].

We now turn to the definition of Ext. It follows from our assumptions 2.2.5
that E.(E) is a ring which is flat as a left 7. (F) module. Moreover, E,(E) is a
7« (E) bimodule, the right and left module structures being induced by the maps

E=SAE—-EAE and E=EAS°— ENAE,

respectively. In the case E = HZ/(p) these two module structures are identical,
but not when E = BP. Following Adams [4], Section 12, let u: E A E be the
multiplication on E and consider the map

(EANE)A(EAX) LS EAEAKX.

2.2.7. LEMMA. The above map induces an isomorphism
E.(E) @r,(p) E«(X) = m(ENENX).

PROOF. The result is trivial for X = S™. It follows for X finite by induction
on the number of cells using the 5-lemma, and for arbitrary X by passing to direct
limits. (]
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Now the map
EAX=EASAX S EANEANX

induces
V: Bu(X) = m(EANENX) = Eu(E) @r, (p) Eu(X).
In particular, if X = F we get
A: Ei(E) = Ei(E) @) Eu(E).

Thus FE.(F) is a coalgebra over 7, (F) as well as an algebra, and F,(X) is a co-
module over E,(F). One would like to say that E.(F), like the dual Steenrod
algebra, is a commutative Hopf algebra, but that would be incorrect since one
uses the bimodule structure in the tensor product E.(E) ®,, (p) Ex«(E) (ie., the
product is with respect to the right module structure on the first factor and the
left module structure on the second). In addition to the coproduct A and algebra
structure, it has a right and left unit ng,n.: 7.(E) — E.(E) corresponding to the
two module structures, a counit €: E,(E) — m.(F) induced by yu: EAE — E, and
a conjugation ¢: E.(E) — E.(F) induced by interchange the factors in E'A E.

2.2.8. PROPOSITION. With the above structure maps (7«(E), E.(E)) is a Hopf
algebroid (Al.1.1), and E-homology is a functor to the category of left E.(FE)-
comodules (A1.1.2), which is abelian (A1.1.3). O

The problem of computing the relevant Ext groups is discussed in Appendix 1,
where an explicit complex (the cobar complex A1.2.11) for doing so is given. This
complex can be realized geometrically by the canonical F,-Adams resolution defined
below.

2.2.9. LEMMA. Let K, = E N X,, and let Xsy1 be the fiber of fs: Xs — K.
Then the resulting diagram (2.2.1) is an E.-Adams resolution for X.

PROOF. Since F is a ring spectrum it is a retract of EAFE, so EA X, is a retract
of EANKy, = ENEAX, and 2.2.1(b) is satisfied. EA X is an E-module spectrum
so 2.2.1(c) is satisfied. For 2.2.1(d) we have E.(K,) = E.(E) @, (g) F«(Xs) by
2.2.7 and Ext(E.(K;)) has the desired properties by A1.2.1 and Al1.2.4. O

2.2.10. DEFINITION. The canonical F,-Adams resolution for X is the one given
by 2.2.9.

Note that if F is not a ring spectrum then the above f; need not induce a
monomorphism in E-homology, in which case the above would not be an Adams
resolution.

Note also that the canonical resolution for X can be obtained by smashing X
with the canonical resolution for S°.

2.2.11. PROPOSITION. The FE;-term of the Adams spectral sequence associated
with the resolution of 2.2.9 is the cobar complex C*(E.(X)) (Al1.2.11). O

Next we describe an E-completion X (2.2.2). First we need some more termi-
nology.

2.2.12. DEFINITION. X () = XZ(,), where Z,) denotes the integers localized at
p, and X, = XZ, (see 2.1.14).
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2.2.13. THEOREM. If X is connective and E satisfies 2.2.5(a)—(e) then an E-
completion (2.2.2) of X is given by

XQ ifmo(E) =Q
X(p) if?To(E) = Z( )
X if mo(E) = Z O
Xp if mo(E) =Z/(p) and 7, (X)

is finitely generated for all n.

<)
I

These are not the only possible values of 7o (F), but the others will not concern
us. A proof is given by Adams [4], Theorem 14.6 and Section 15. We will sketch
a proof using the additional hypothesis that w1 (F) = 0, which is true in all of the
cases we will consider in this book.

For simplicity assume that mo(X) is the first nonzero homotopy group. Then
in the cases where m(E) is a subring of Q we have m; ()? AE®) =0 fori<s,so
by setting )/(\'S =X AE® we get ILH)?S = pt.

The remaining case, 7o(F) = Z/(p) can be handled by an argument similar to
that of the classical case. We show XZ/(p™) is its own E-completion by modifying
the proof of 2.1.16 appropriately. Then X, can be shown to be E-complete just as
in the proof of 2.1.1(b) (following 2.1.16).

Now we are ready to prove 2.2.3(a). As in Section 1 the diagram 2.2.1 leads to
an exact couple which gives the desired spectral sequence. To identify the Fo-term,
observe that 2.2.1(a) implies that each fibration in the resolution gives a short (as
opposed to long) exact sequence in E-homology. These splice together to give a
long exact sequence replacing 2.1.3,

0— E(X) = E(Ko) > E(ZKy) = -+ .

Condition 2.2.1(c) implies that the Es-term of the spectral sequence is the coho-
mology of the complex

Ext'(E,(Ky)) — Ext®(E, (K1) = - .

By A1.2.4 this is Ext(E,(X)).

For 2.2.3(b) we know that the map X — X induces a spectral sequence isomor-
phism since it induces an E-homology isomorphism. We also know that @1 X s = pt,
so we can identify EZ¥ as in 2.1.12.

We still need to show that the spectral sequence is natural and independent
(from FE5 onward) of the choice of resolution. The former implies the latter as
the identity map on X induces a map between any two resolutions and standard
homological arguments show that such a map induces an isomorphism in FEs and
hence in E, for r > 2. The canonical resolution is clearly natural so it suffices to
show that any other resolution admits maps to and from the canonical one.

We do this in stages as follows. Let {fs: X5 — K} be an arbitrary resolution
and let R? be the canonical one. Let R™ = {f": X — K"} be defined by X? = X,
and K7 = K, for s <n and K7 = EA X?; for s > n. Then R* is the arbitrary
resolution and we construct maps R? «+ R™ by constructing maps R" <> R"t!,
for which it suffices to construct maps between K, and E A X, compatible with the
map from X,. By 2.2.1(b) and (c), Ks and E' A X, are both retracts of EA Kg, so
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we have a commutative diagram

X — K

LI

ENXy,——>FENK, ——=FENX,

)

K

in which the horizontal and vertical composite maps are identities. It follows that
the diagonal maps are the ones we want.

The Adams spectral sequence of 2.2.3 is useful for computing 7.(X), ie.,
[SY, X]. With additional assumptions on E one can generalize to a spectral se-
quence for computing [W, X]. This is done in Adams [4] for the case when E.(W)
is projective over m,(FE). We omit this material as we have no need for it.

Now we describe the filtration of 2.2.3(b), which will be referred to as the

~

E.-Adams filtration on m,(X).

2.2.14. FILTRATION THEOREM. The filtration on m,(X) of 2.2.3(b) is as fol-
lows. A map f: S™ — X has filtration > s if f can be factored into s maps each of
which becomes trivial after smashing the target with E.

~

PrOOF. We have seen above that F*m.(X) = imm,(Xs). We will use the
canonical resolution (2.2.10). Let E be the fiber of the unit map S° — E. Then
X, = EG) A X, where E®) is the s-fold smash product of E. X;.; — X; = X; AF
is a fiber sequence so each such composition is trivial and a map S™ — X which
lifts to X, clearly satisfies the stated condition. It remains to show the converse,
i.e., that if a map f: S™ — X factors as

St Y, Iy, B Y = X,
where each composite YV; L5 Y;_; — Y;_1 A E is trivial, then it lifts to X,. We
argue by induction on i. Suppose Y;_1 — X lifts to X;_1 (a trivial statement for
i = 1). Since Y; maps trivially to Y;_1 A E, it does so to X;_1 A E and therefore
lifts to X;. O

3. The Smash Product Pairing and the Generalized Connecting
Homomorphism

In this section we derive two properties of the Adams spectral sequence which
will prove usefull in the sequel. The first concerns the structure induced by a map
(2.3.1) a: X'nNX" = X,

e.g., the multiplication on a ring spectrum. The second concerns a generalized
connecting homomorphism arising from a cofiber sequence
(2.3.2) whxLyhsw

when E,(h) = 0. Both of these results are folk theorems long known to experts in
the field but to our knowledge never before published in full generality. The first
property in the classical case was proved in Adams [3], while a weaker form of the
second property was proved by Johnson, Miller, Wilson, and Zahler [1].
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Throughout this section the assumptions 2.2.5 on E will apply. However, the
flatness condition [2.2.5(d)] is only necessary for statements explicitly involving Ext,
i.e., 2.3.3(e) and 2.3.4(a). For each spectrum X let Ef*(X) be the Adams spectral
sequence for X based on E-homology (2.2.3). Our first result is

2.3.3. THEOREM. Let 2 < r < oo. Then the map a above induces a natural
pairing
B (X)) @ B (X") = B (X)
such that
(a) for a’ € E5Y(X"), a” € BV (X)),
dy(d,d") = dy(a)a" + (-1)" ~'d'd,(a");

(b) the pairing on E,11, is induced by that on E,;
(c) the pairing on Eo, corresponds to a,: m.(X') @ m. (X)) = m(X);
(d) if X' =X" =X and Ey(a): E.(X) ® E.(X) — E«(X) is commutative or

associative, then so is the pairing [modulo the usual sign conventions, i.e., a'a” =

(71)(t’7s')(t"7s")a//a/];
e) for r = 2 the pairing is the external cup product (A1.2.13
(e) f pairing pp
Ext(E. (X)) @ Ext(E«(X")) — Ext(E.(X") Q. (E) E.(X"))
composed with the map in Ext induced by the composition of canonical maps
E(X") @, () E+(X") = E.(X'ANX") %5 B (X).

In particular, by setting X' = S° and X" = X we find that the spectral sequence
for X is a module (in the appropriate sense) over that for the sphere S°. O

The second result is

2.3.4. THEOREM. Let E.(h) =0 in 2.3.2. Then for 2 <r < oo there are maps
8y E3*(Y) — ESTL5(W) such that
(a) 02 is the connecting homomorphism associated with the short exact sequence
0— E.(W)—= E.(X) = E(Y) =0,

(b) 6,d, = d;-6, and 6,41 induced by I,

(¢) o 18 a filtered form of the map m.(h).

The connecting homomorphism in Ext can be described as the Yoneda product

(Hilton and Stammbach [1, p. 155] with the element ofExt}E*(E)(E* (Y), E.(W))
corresponding to the short exact sequence

0—-E.(W)—=E.(X)— E.(Y)—0.
Similarly, given a sequence of maps
Xo L% vx, I v2x, oo X,
with E.(f;) = 0 one gets maps
6,1 B2 (Xo) —» BV (X,)

commuting with differentials where 0o can be identified as the Yoneda product with
the appropriate element in

Extiy(p.)(Ex«(Xo), Ex(Xn)). 0
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If one generalizes the spectral sequence to source spectra other than the sphere
one is led to a pairing induced by composition of maps. This has been studied
by Moss [1], where it is assumed that one has Adams resolutions satisfying much
stronger conditions than 2.2.1. In the spectral sequence for the sphere it can be
shown that the composition and smash product pairings coincide, but we will not
need this fact.

To prove 2.3.3 we will use the canonical resolutions (2.2.9) for X', X” and
X. Recall that these can be obtained by smashing the respective spectra with the
canonical resolution for S°. Let K s4r be the cofiber in

(235) E(S+T) — E(S) — Ks,s+rv
where F is the fiber of SY — E.

These spectra have the following properties.

2.3.6. LEMMA.
(a) There are canonical fibrations
Kstistiti = Kssriti = Kssti-

(b) By (X) = mu(X A Kg 541)-
Let Z5*(X), B5*(X) C B} (X) be the images of m(X A Ky 1) and m (X A
ST K r11,5), respectively. Then ES*(X) = Z5*(X)/B2*(X) and d, is induced
by the map
X AKyoir = X ASKyiroior.

(¢) a induces map X.NX] — Xsi11 (where these are the spectra in the canonical
resolutions) compatible with the maps g%, gy, and gs4+ of 2.2.1.
(d) The map
Ko si1 NKipr1 — Kogtsyt+1,
given by the equivalence
Kppi1=ENE™
and the multiplication on E, lifts to maps
K sir NKpgrr = Kopt sitir

for r > 1 such that the following diagram commutes
Ko sirii NKprrr1 — Koyt srttrt1
Kosir NKpprr ——— Koyt sri1r

where the vertical maps come from (a).
(e) The following diagram commutes

Ko oir NKpjpr —— (EKoqr 20 A Kppgr) V (K sr A XKyt t40r)
Koptsptrr ——————> XK tqrsittor

where the vertical maps are those of (d) and the horizontal maps come from (a), the
maps to and from the wedge being the sums of the maps to and from the summands.
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PROOF. Part (a) is elementary. For (b) we refer the reader to Cartan and
Eilenberg [1], Section XV.7, where a spectral sequence is derived from a set of
abelian groups H(p, ¢) satisfying certain axioms. Their H(p,q) in this case is our
7+ (Kp,q), and (a) guarantees that these groups have the appropriate properties. For
(c) we use the fact that X’ = X' AE®), X/ = X" NE®W and X, = X A EGH),

For (d) we can assume the maps EG+TD 5 F () are all inclusions with K opr =
E®) /EGTT), Hence we have

Kosir ANKiyyr = EGANEWD J(ECEH AEO UE® AEC)
and this maps naturally to
E(s+t)/E(s+t+r) _ Ks+t,s+t+r~

For (e) if E¢+?1) — EG+1) — FE() are inclusions then so is Kgypsiar —
Ks,s+2r so we have Ks,s+r = Ks,s+2r/Ks+r,s+2r and Kt,tJrr = Kt,t+2r/Kt+r,t+2T~
With this in mind we get a commutative diagram

Ks,s-‘rr A\ Kt+7',t+27' U Ks+7',s+27' A Kt,t-ﬁ-r E—— s+t+r,s+t+2r

K sior N Ky gqor Koyt sqtyor

Ky oir N Ky pgr Kot sttr

ES(Ks sqr N EKigrtqor UKopr sior A Kppgr) — EKshihr stitor

where the horizontal maps come from (d) and the upper vertical maps are inclusions.
The lower left-hand map factors through the wedge giving the desired diagram. [

We are now ready to prove 2.3.3. In light of 2.3.6(b), the pairing is induced by
the maps of 2.3.6(d). Part 2.3.3(a) then follows from 2.3.6(e) as the differential on
E*(X')®E!*(X") is induced by the top map of 2.3.6(e). Part 2.3.3(b) follows from
the commutative diagram in 2.3.6(d). Part 2.3.3(c) follows from the compatibility
of the maps in 2.3.6(c) and (d).

Assuming 2.3.3(e), (d) is proved as follows. The pairing on Ext is functorial, so
if E4(X) has a product which is associative or commutative, so will E5*(X). Now
suppose inductively that the product on EX*(X) has the desired property. Since
the product on E, ;1 is induced by that on E, the inductive step follows.

It remains then to prove 2.3.3(e). We have E. (X' A K ,41) = D*(E.(X"))
(A1.2.11) and similarly for X", so our pairing is induced by a map

E (X'"ANKo41) @n,(5) Bx (X" NKyp41) = Eo(X AN Kot s141),

i.e., by a pairing of resolutions. Hence the pairing on FEs coincides with the specified
algebraic pairing by the uniqueness of the latter (A1.2.14).
We prove 2.3.4 by reducing it to the following special case.
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2.3.7. LEMMA. Theorem 2.3.4 holds when X is such that Ext®(FE.(X)) =0 for
5> 0 and 7.(X) = Ext’(E.(X)). O

PROOF OF 2.3.4. Let W’ be the fiber of the composite

whx s xR

Since X fh is trivial, h lifts to a map h/: Y — XW’. Now consider the cofiber
sequence

W—=XANE—IXW — IW.

Lemma 2.3.7 applies here and gives maps
51 ES* (W) — ESTL(ZW).

Composing this with the maps induced by b’ gives the desired result. O

PROOF OF 2.3.7. Disregarding the notation used in the above proof, let W' =
YY, X' =Y"'YAE,and Y =Y A E. Then we have a commutative diagram
in which both rows and columns are cofiber sequences

X w w’

L

XVYANE)=—X~—X'

L]

YANE Y Y’

Each row is the beginning of an Adams resolution (possibly noncanonical for W and
X) which we continue using the canonical resolutions (2.2.9) for W/, X', and Y.
Thus we get a commutative diagram

(2.3.8) WeW-<—WAE~— W AE® < ...

R

X<~ X'« X'ANE=~—— X'ANE® — ...

o

Y<—Y Y AE Y'ANE® < ...

in which each column is a cofiber sequence. The map ¥ — W' induces maps
8.1 ES*(Y) — ESTL* (W) which clearly satisfy 2.3.4(a) and (b), so we need only to
verify that do is the connecting homomorphism. The resolutions displayed in 2.3.8
make this verification easy because they yield a short exact sequence of F4-terms
which is additively (though not differentially) split. For s = 0 we have

EYY (W) = m(X), E)"(X)=m(X V(Y AE)),
EY*(Y)=m.(Y AE), E™(W)=mr.(YAE),
E(X)=m,YANEAE) and E{*(Y)=m.(SY AEAE),
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so the relevant diagram for the connecting homomorphism is

b
X—>XVYANE)=—=YAE

o |

YAE<—=YANEANE——>YYANEANE

where a and b are splitting maps. The connecting homomorphism is induced by

adb, which is the identity on Y A E, which also induces ds.
For s > 0 we have

ES* (W) = m (2 'Y AEAEGTY),
EPN(X) = 1 (257 A E@ AECTY),
and
EJ*(Y) =1 (Y AEAE®),
so the relevant diagram is

E——FEANE=——"—<FEAFE

i | |

SEANE=—<YXEANEANE —>=3Y2EAE?
and again the connecting homomorphism is induced by
Y NE A E®.

the identity on
O



CHAPTER 3

The Classical Adams Spectral Sequence

In Section 1 we make some simple calculations with the Adams spectral se-
quence which will be useful later. In particular, we use it to compute .(MU)
(3.1.5), which will be needed in the next chapter. The computations are described
in some detail in order to acquaint the reader with the methods involved.

In Sections 2 and 3 we describe the two best methods of computing the Adams
spectral sequence for the sphere, i.e., the May spectral sequence and the lambda
algebra. In both cases a table is given showing the result in low dimensions (3.2.9
and 3.3.10). Far more extensive charts are given in Tangora [1, 4]. The main table
in the former is reproduced in Appendix 3.

In Section 4 we survey some general properties of the Adams spectral sequence.
We give Ey" for s < 3 (3.4.1 and 3.4.2) and then say what is known about dif-
ferentials on these elements (3.4.3 and 3.4.4). Then we outline the proof of the
Adams vanishing and periodicity theorems (3.4.5 and 3.4.6). For p = 2 they say
that E! vanishes roughly for 0 < t — s < 2s and has a very regular structure for
t — s < bs. The F-term in this region is given in 3.4.16. An elementary proof of
the nontriviality of most of these elements is given in 3.4.21.

In Section 5 we survey some other past and current research and suggest further
reading.

1. The Steenrod Algebra and Some Easy Calculations

In this section we begin calculating with the classical mod (p) Adams spectral
sequence of 2.1.1. We start by describing the dual Steenrod algebra A,, referring
the reader to Milnor [2] or Steenrod and Epstein [1] for the proof. Throughout
this book, P(z) will denote a polynomial algebra (over a field which will be clear
from the context) on one or more generators x, and E(x) will denote the exterior
algebra on same.

3.1.1. THEOREM (Milnor [2]). A. is a graded commutative, noncocommutative
Hopf algebra.

(a) For p =2, A, = P(&,&,...) as an algebra where |§,| = 2" — 1. The
coproduct A: A, — A, @ A, is given by A&y, = gcicn 2" @&, where & = 1.

(b) Forp > 2, A, = P(&1,&,...) ® E(10,71,...) as an algebra, where |&,| =
2(p™ — 1), and |1,| = 2p™ — 1. The coproduct A: A, — A, ® A, is given by
AL, = Zogign fﬁl_l ® &i, where §o =1 and A1, =7, ® 1 + Zogign 55; & ;.

(¢) For each prime p, there is a unit n: Z/(p) = A, a counit e: Ay, — Z/(p)
(both of which are isomorphisms in dimension 0), and a conjugation (canonical anti-
automorphism) c¢: Ay — A, which is an algebra map given recursively by c¢(&) = 1,
Y o<i<n zl_ic(&) =0 forn >0 and 7, + > gcicp Zl_ic(n) =0 forn>0. A, will

59
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denote kere; i.e., Ay is isomorphic to A, in positive dimensions, and is trivial in
dimension 0. ([

A, is a commutative Hopf algebra and hence a Hopf algebroid. The homological
properties of such objects are discussed in Appendix 1.

We will consider the classical Adams spectral sequence formulated in terms
of homology (2.2.3) rather than cohomology (2.1.1). The most obvious way of
computing the Fs-term is to use the cobar complex. The following description of
it is a special case of 2.2.10 and A1.2.11.

3.1.2. PROPOSITION. The Es-term for the classical Adams spectral sequence for
7.(X) is the cohomology of the cobar complex C) (H.(X)) defined by

Ch. (Ho(X)) =A@+~ ® Ay ® Ho(X)

(with s tensor factors of A,). Fora; € A, andz € H.(X), the element a;®- - - a,Qx
will be denoted by [ai]az]|---|as]z. The coboundary operator ds: C3% (H.«(X)) —
ij:l(H* (X)) is given by

dsar| -+ Jas)z = [ar| -+ Jas)z + ) (=1)[a] - |ai-1|a}laf |aisa] - - as]e
i=1
+ (=) an] - Jagla’]a”,

where Aa; = aj®a; and (r) = v’ @z" € A.@H.(X). [A priori this expression lies
in AT @ H,(X). The diligent reader can verify that it actually lies in A2+ @
H.(X)] O

This Es-term will be abbreviated by Ext(H.(X)).

Whenever possible we will omit the subscript A,.

The following result will be helpful in solving group extension problems in the
Adams spectral sequence. For p > 2 let ag € Ext}é{i(Z/(p),Z/(p)) be the class
represented by [79] € C(Z/(p)). The analogous element for p = 2 is represented by
[¢1] and is denoted by ag, k1,0, or ho.

3.1.3. LEMMA.

(a) For s >0, Ext®*(H.(S°)) is generated by aj.

(b) If x € Ext(H.(X)) is a permanent cycle in the Adams spectral sequence
represented by o € m(X), then apx is a permanent cycle represented by pa. [The
pairing Ext(H,(S°)) ® Ext(H. (X)) — Ext(H.(X)) is given by 2.3.3] O

ProOF. Part (a) follows from inspection of C*(Z/(p)); there are no other el-
ements in the indicated bidegrees. For (b) the naturality of the smash product
pairing (2.3.3) reduces the problem to the case z = 1 € Ext(H.(SY)), where it
follows from the fact that mo(S°) = Z. O

The cobar complex is so large that one wants to avoid using it directly at all
costs. In this section we will consider four spectra (MO, MU, bo, and bu) in which
the change-of-rings isomorphism of A1.1.18 can be used to great advantage. The
most important of these for our purposes is MU, so we treat it first. The others are
not used in the sequel. Much of this material is covered in chapter 20 of Switzer [1].

The computation of 7.(MU) is due independently to Milnor [4] and Novikov
[2, 3]. For the definition and basic properties of MU, including the following
lemma, we refer the reader to Milnor [4] or Stong [1] or to Section 4.1.
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3.1.4. LEMMA.

(a) H.(MU;Z) = Z[by,ba,...], where b; € Hy;.

(b) Let H/(p) denote the mod (p) Filenberg—Mac Lane spectrum for a prime p
and let u: MU — H/(p) be the Thom class, i.e., the generator of H*(MU;Z/(p)).
Then H,(u) is an algebra map and its image in H,(H/(p)) = A, is P(£2,€3,...)
forp=2 and P(&,&s,...) for p> 2. O

The main result concerning MU is the following.

3.1.5. THEOREM (Milnor [4], Novikov [2, 3]).

(a) T (MU) = Z]x1, 29, ...] with x; € we;(MU).

(b) Let h: m(MU) — H,.(MU;Z) be the Hurewicz map. Then modulo decom-
posables in H.(MU;Z),

h(z:) —pb; if i = p* — 1 for some prime p 0
x;) =
‘ —b;  otherwise.

We will prove this in essentially the same way that Milnor and Novikov did.
After some preliminaries on the Steenrod algebra we will use the change-of-rings
isomorphisms A1.1.18 and A1.3.13 to compute the Es-term (3.1.10). It will follow
easily that the spectral sequence collapses; i.e., it has no nontrivial differentials.

To compute the Ea-term we need to know H,(MU;Z/(p)) as an A.-comodule
algebra. Since it is concentrated in even dimensions, the following result is useful.

3.1.6. LEMMA. Let M be a left Ai-comodule which is concentrated in even
dimensions. Then M is a comodule over P, C A, defined as follows. For p > 2,

P.=P(&1,6,...) and forp=2, P. = P(&},8,...).

ProoF. For m € M, let ¢¥(m) = ¥m'@m”. Then each m’ € A, must be even-
dimensional and by coassociativity its coproduct expansion must consist entirely of
even-dimensional factors, which means it must lie in P,. O

3.1.7. LEMMA. As a left Ai-comodule, H,(MU) = P, ® C, where
C = P(uy,us,...) with dimu;, = 2i and i is any positive integer not of the form
k
p® —1.

ProOOF. H,(MU;Z/(P)) is a P,-comodule algebra by 3.1.4 and 3.1.6. It maps
onto P, by 3.1.4(b), so by A1.1.18 it is P, ® C, where C = Z/(p) Op, H,.(MU). An
easy counting argument shows that C' must have the indicated form. O

3.1.8. LEMMA. Let M be a comodule algebra over A, having the form P, @ N
for some A, -comodule algebra N. Then

Exta. (Z/(p), M) = Ext(Z/(p), N)

where

E(&1,&,...) forp=2

E:A* ®P* Z/(p):{E(TO7T17"‘) fO’f‘p>2'

In particular,

Exta, (Z/(p), H.(MU)) = Extr(Z/(p), Z/(p)) © C.
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PROOF. The statement about H,(MU) follows from the general one by 3.1.7.
For the latter we claim that M = A, Og N. We have A, = P, ® E as vector spaces
and hence as E-comodules by A1.1.20, so

A, Og N=P,Q FOg N=P, N =M,
and the result follows from A1.3.13. O

Hence we have reduced the problem of computing the Adams FEs-term for MU
to that of computing Extg(Z/(p),Z/(p)). This is quite easy since E is dual to an
exterior algebra of finite type.

3.1.9. LEMMA. Let T be a commutative, graded connected Hopf algebra of finite
type over a field K which is an exterior algebra on primitive generators x1,xs,. ..,
each having odd degree if K has characteristic other than 2 (e.g., let T' = E). Then

Extr(K,K) = P(y1,92,---),
where y; € Extb1®! is represented by [x;] in Cp(K) (the cobar complex of A1.2.11).

Proor. Let T'; € T' be the exterior algebra on x;. Then an injective I';-
resolution of K is given by

05K o1 ST, 5T — -

where d(z;) = 1 and d(1) = 0 applying Homr, (K, ) gives a complex with trivial
boundary operator and shows Extr, (K, K) = P(Y;). Tensoring all the R; together
gives an injective I'-resolution of K and the result follows from the Kunneth theo-
rem. (]

Combining the last three lemmas gives
3.1.10. COROLLARY.
Exta, (Z/(p), H.(MU)) = C ® P(ao, ay,.- ),

where C is as in 3.1.7 and a; € Ext!2' 1 s represented by [;] for p > 2 and [&]
forp=21in Cy, (H.(MU)). O

Thus we have computed the Es-term of the classical Adams spectral sequence
for m.(MU). Since it is generated by even-dimensional classes, i.e., elements in F; ot
with ¢ — s even, there can be no nontrivial differentials, i.e., Fy = F.

The group extension problems are solved by 3.1.3; i.e., all multiples of af are
represented in 7,(MU) by multiples of p*. It follows that m.(MU) ® Z, is as
claimed for each p; i.e., 3.1.5(a) is true locally. Since 7;(MU) is finitely generated
for each ¢, we can conclude that it is a free abelian group of the appropriate rank.

To get at the global ring structure note that the mod (p) indecomposable quo-
tient in dimension 2i, Qo7 (MU) ® Z/(p) is Z/(p) for each i > 0, so
Q27 (MU) = Z. Pick a generator x; in each even dimension and let R =
Z[r1,x9,...]. The map R — m,(MU) gives an isomorphism after tensoring with
Zp) for each prime p, so it is isomorphism globally.

To study the Hurewicz map

h: 7. (MU) - H.(MU;Z),

recall H,(X;Z) = n.(X A H), where H is the integral Eilenberg-Mac Lane spec-
trum. We will prove 3.1.5(b) by determining the map of Adams spectral sequences
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induced by i: MU — MU A H. We will assume p > 2, leaving the obvious changes
for p = 2 to the reader. The following result on H,(H) is standard.

3.1.11. LEMMA. Themod (p) homology of the integer Eilenberg—-Mac Lane spec-
trum

H.(H)=P.® E(T1,72,...)

as an A, comodule, where 7; denotes the conjugate 7;, i.e., its image under the
conjugation c. O

Hence we have
H.(H) = A Op(r,) Z/(p)

and an argument similar to that of 3.1.8 shows

(3.1.12) Exta, (Z/(p), H«(X N H)) = Extg(r)(Z/(p), Hi(X)).

In the case X = MU the comodule structure is trivial, so by 3.1.11,
Exta,(Z/(p), H.{(MU AH)) = H,(MU) ® P(ayp).

To determine the map of Ext groups induced by i, we consider three cobar com-
plexes, Cy, (H.(MU)), Cp(C), and Cg(r,)(H.(MU)). The cohomologies of the
first two are both Exta, (Z/(p), H.(MU)), by 3.1.2 and 3.1.8, respectively, while
that of the third is Exta, (Z/(p), H.(MU A H)) by 3.1.12. There are maps from
Ca,(H.(MU)) to each of the other two.

The class A, € Exti{fpnfl(Z/(p),H*(MU)) is represented by [1,] € Cg(C).
The element — )" [7;] _n_z € Ca,(H.(MU)) [using the decomposition of H,(MU)
given by 3.1.7] is a cycle which maps to [r,] and therefore it also represents a,,. Its
image in Cp () (H.(MU)) is [10)¢n, so we have i,(an) = ao,. Since &, € H,(MU)
is a generator it is congruent modulo decomposables to a nonzero scalar multiple
of byn_1, while u; (3.1.9) can be chosen to be congruent to b;. It follows that the
x; € mo;(MU) can be chosen to satisfy 3.1.5(b).

We now turn to the other spectra in our list, MO, bu, and bo. The Adams
spectral sequence was not used originally to compute the homotopy of these spectra,
but we feel these calculations are instructive examples. In each case we will quote
without proof a standard theorem on the spectrum’s homology as an A,-comodule
and proceed from there.

For similar treatments of M SO, MSU, and MSp see, respectively, Pengel-
ley [2], Pengelley [1], and Kochman [1].

To following result on MO was first proved by Thom [1]. Proofs can also be
found in Liulevicius [1] and Stong [1, p. 95].

3.1.13. THEOREM. Forp =2, H,(MO) = A, ® N, where N is a polynomial
algebra with one generator in each degree not of the form 28 — 1. For p > 2,

H.(MO)=0. |
It follows immediately that
N ifs=0
3.1.14 Ext% (Z/(2),H.(MO)) =
(3.1.14) Xty (2/(2), H.(MO)) {O N

the spectral sequence collapses and 7.(MO) = N.
For bu we have
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3.1.15. THEOREM (Adams [8]).
H.(w)= P 2*M

0<i<p—1
where
M =P, ® E(72,73,...) forp>2
M =P, ® E(&,&4,...) forp=2
where & for a € A, is the conjugate (). O

Using 3.1.8 we get
Exta. (Z/(p), M) = Extp(Z/(p), E(72,73,...))

(again we assume for convenience that p > 2) and by an easy calculation A1.3.13
gives

Extp(Z/(p), E(72,7s,...)) = Extp(r,7)(Z/(p), Z/(p)) = Plao, a1)
by 3.1.11, so we have

3.1.16. THEOREM.
p—2
Exta, (Z/(p), Ho(bu)) = @ T* P(ag, a1)
i=0

where ay € Ext! and ay € ExtH?~ L, O

As in the MU case the spectral sequence collapses because the Fs-term is
concentrated in even dimensions. The extensions can be handled in the same way,
so we recover the fact that

Z if i >0 and i is even
m(bu) = .
0 otherwise.

The bo spectrum is of interest only at the prime 2 because at odd primes it is
a summand of bu (see Adams [8]). For p = 2 we have

~ 3.1.17. THEOREM (Stong [2]). For p =2, H.(bo) = P(£},€2,63,€4,...) where
& = (&) 0

Let A(1). = A./(&1,63,&5,84,...). We leave it as an exercise for the reader to
show that A(1), is dual to the subalgebra A(1) of A generated by Sq! and Sq¢?,
and that

H.(bo) = A Baqy. Z/(2),

so by A1.3.13,
(3.1.18) Exta. (Z/(2), H.(b0)) = Extaq. (Z/(2), 2/(2)).

A(1) is not an exterior algebra, so 3.1.9 does not apply. We have to use the
Cartan—FEilenberg spectral sequence A1.3.15. The reader can verify that the follow-
ing is an extension (A1.1.15)

(3.1.19) = A1), = E(&),

where ® = P(&1)/(€1). @ is isomorphic as a coalgebra to an exterior algebra on
elements corresponding to & and %, so by 3.1.9

Exte(Z2/(2),2/(2)) = P(h1o, h11)



1. THE STEENROD ALGEBRA AND SOME EASY CALCULATIONS 65

and

Ext ) (Z/(2),Z/(2)) = P(ha),

where h; ; is represented by [€#'] in the appropriate cobar complex. Since P(hgg) has
only one basis element in each degree, the coaction of ® on it is trivial, so by A1.3.15
we have a Cartan-Eilenberg spectral sequence converging to Ext 4(1), (Z/(2),Z/(2))
with

(3.1.20) E3 = P(h1o, h11, hao)
where hy; € E21’0 and hyg € Eg’l. We claim
(3.1.21) da(h2o) = hioh11.

This follows from the fact that
(&) =& @&
in Caq1y,(Z/(2)). Tt follows that
(3.1.22) E3 = P(u, hig, h11)/(hiohi1)
where u € Eg,z corresponds to h3,. Next we claim
(3.1.23) ds(u) = h3,.
We have in Cx(1),(Z/(2)),
A& ®&E)=H0G0G+H R ®E.
In this E5 this gives
d2h3y = hiohi1hao + haohiohi =0

since E is commutative. However, the cobar complex is not commutative and when
we add correcting terms to & ® & in the hope of getting a cycle, we get instead

d&e&E+6RGHL+ELERE) =R,
which implies 3.1.23. It follows that
(3.1.24) Ey = P(h1o, ha1,v,w)/(hiohi1, h31, v* + higw, vhit),

where v € Ey? and w € E2’4 correspond to hioh3, and hj, respectively.

Finally, we claim that FE,; = E..; inspection of F, shows that there cannot be
any higher differentials because there is no E2! for r > 4 which is nontrivial and
for which E3+mt="*+1 is also nontrivial. There is also no room for any nontrivial
extensions in the multiplicative structure. Thus we have proved

3.1.25. THEOREM. The Es-term for the mod (2) Adams spectral sequence for
7. (bo),
Exta, (Z/(2), He(bo)) = Extan).(Z/(2),Z/(2))
18
P(h1o, ha1,v,w)/(h1oha1, b3y, v + higw, vhiy),
where

hio € Ext", hy € Ext"?, veExt®, and we Ext'?. O
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8
7
6
T 5
4
s w
3
v
2
1 hi,9
hi
0 1
0 1 2 3 4 5 6 7 8 9 10
t—s ——

This Es-term is displayed in the accompanying figure. A vertical arrow over
an element indicates that hf,z is also present and nontrivial for all s > 0.

Now we claim that this Adams spectral sequence also collapses, i.e., Fy =
E. Inspection shows that the only possible nontrivial differential is d,.(w™h;1) =
w”h?g' ". However, bo is a ring spectrum so by 2.3.3 the differentials are derivations
and we cannot have d,.(hy1) = h'{arl because it contradicts the relation highi; = 0.
The extension problem is solved by 3.1.3, giving

3.1.26. THEOREM (Bott [1]).
m.(bo) = Z[n, v, B/ (20, 1%, nev, o — 4P)
withn € my, a € wy, P € mg, d.e., fori >0
Z ifi=0 mod4
mi(bo) =< Z/2 ifi=1or2 mod8 O
0 otherwise.

For future reference we will compute Ext 4(1)(Z/(2), M) for M = A(0). = E(&1)
and M =Y = P(&)/(€1). Topologically these are the Adams Es-terms for the
mod (2)-Moore spectrum smashed with bo and bu, respectively. We use the Cartan—
Eilenberg spectral sequence as above and our Fo-term is

Exte(Z/(2), Extpg,) (Z/(2), M)).
An easy calculation shows that

Ey = P(hy1,ha) for M = A(0).
and

Ey = P(hoy) for M =Y.

In the latter case the Cartan—Eilenberg spectral sequence collapses. In the former
case the differentials are not derivations since A(0), is not a comodule algebra.
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From 3.1.23 we get d3(h3,) = h3;, so
Eo = By = P(w) ® {1, h11, hiy, hao, haohi1, haohiy }.

This Ext is not an algebra but it is a module over Ext 41, (Z/(2),Z/(2)). We will

show that there is a nontrivial extension in this structure, namely highog = h%l.

We do this by computing in the cobar complex C4(1), (A(0).). There the class hog

is represented by [€2] 4 [€2]€1, s0 hiohag is represented by [€1|E2]+[€1|€2]€1. The sum

of this and [£7|¢7] (which represents h3 ;) is the coboundary of [£1&2] 4 [€F + &2)¢1.
From these considerations we get

3.1.27. THEOREM. As a module over Ext 41).(Z/(2),Z/(2)) (3.1.25) we have

(a) Extac),,(Z/(2), A(0).) is generated by 1 € Ext®’ and hoo € Ext'?® with
th 1= 0, h10h20 = h%l . 1, v-1l= 0, and ’Uhgo =0.

(b) Exta(y, (Z(2),Y) is generated by {hby: 0 < i < 3} with hyohby = hi1hby =
vhby = 0. O

We will also need an odd primary analog of 3.1.27(a). A(1) = E(m,71) ®
P(&)/(&)) is the dual to the subalgebra of A generated by the Bockstein 3 and the
Steenrod reduced power P!. Instead of generalizing the extension 3.1.19 we use

P(0), — A(0)x — E(1).,

where P(0). = P(&)/(¢}) and E(1). = E(79,71). The Cartan—Eilenberg spectral
sequence Fs-term is therefore

Exty0). (Z/(p), Extp). (Z/(p), A(0).)),
where A(0). = E(7p). An easy calculation gives

3.1.28. THEOREM. For p > 2
Extan).(Z/(p), A(0)+) = E(ho) ® P(a1,bo),

where hy € Ext?, a1 € Extl"H_'l, and by € Ext®P? are represented by [&1], [&1]m0 +
(1], and 35g_; -, ™ ()& €7, respectively. O

2. The May Spectral Sequence

In this section we discuss a method for computing the classical Adams Es-term,
Exta,(Z/(p),Z/(p)), which we will refer to simply as Ext. For the reader hoping
to understand the classical Adams spectral sequence we offer two pieces of advice.
First, do as many explicit calculations as possible yourself. Seeing someone else do
it is no substitute for the insight gained by firsthand experience. The computations
sketched below should be reproduced in detail and, if possible, extended by the
reader. Second, the Es-term and the various patterns within it should be examined
and analyzed from as many viewpoints as possible. For this reason we will describe
several methods for computing Ext. For reasons to be given in Section 4.4, we will
limit our attention here to the prime 2.

The most successful method for computing Ext through a range of dimensions
is the spectral sequence of May [1]. Unfortunately, crucial parts of this material
have never been published. The general method for computing Ext over a Hopf
algebra is described in May [2], and the computation of the differentials in the May
spectral sequence for the Steenrod algebra through dimension 70 is described by
Tangora [1]. A revised account of the May Fs-term is given in May [4].
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In our language May’s approach is to filter A, by copowers of the unit coideal
(A1.3.10) and to study the resulting spectral sequence. Its Ea-term is the Ext over
the associated graded Hopf algebra E°A.. The structure of this Hopf algebra is as
follows.

3.2.1. THEOREM (May [1]). (a) For p =2,
E°A, =FE(&;:i>0,j>0)
with coproduct
Al&ij) = Y &Ghjrk @&,
0<k<i

where &5 = 1 and &._; € EVA, is the projection of 2.

(b) Forp> 2,

E°A, =E(r;:i>0)@T(&,:1> 0,5 >0)
with coproduct given by
A&i)= D &ihjrk® &k,
0<k<i
and
Alr) =101+ Z ikl @ Ti,
0<k<i

where T'( ) denotes the truncated polynomial algebra of height p on the indicated
generators, 7, € EY A, is the projection of 7, € As, and & ; € E?AI*) is the
projection of fip] ) O

May actually filters the Steenrod algebra A rather than its dual, and proves
that the associated bigraded Hopf algebra FyA is primitively generated, which is
dual to the statement that each primitive in EOA; is a generator. A theorem of
Milnor and Moore [3] says that every graded primitively generated Hopf algebra
is isomorphic to the universal enveloping algebra of a restricted Lie algebra. For

p = 2let x;; € EyA be the primitive dual to & ;. These form the basis of a Lie
algebra under commutation, i.e.,
[Tijs Thom] = Ti jThm — ThomTij = OpTim — 0] Tk j

where 5} is the Kronecker §. A restriction in a graded Lie algebra L is an en-
domorphism ¢ which increases the grading by a factor of p. In the case at hand
this restriction is trivial. The universal enveloping algebra V(L) of a restricted Lie
algebra L (often referred to as the restricted enveloping algebra) is the associative
algebra generated by the elements of L subject to the relations zy — yz = [z, y] and
aP =¢(x) for x,y € L.

May [1] constructs an efficient complex (i.e., one which is much smaller than
the cobar complex) for computing Ext over such Hopf algebras. In particular, he
proves

3.2.2. THEOREM (May [1]). For p =2, Extpoy (Z/(2),2/(2)) (the third grad-
ing being the May filtration) is the cohomology of the complex
Ve ZP(hiJ'I 1>0, 72> 0)
with d(hi ;) = > 0 cpes Prjhi—kktj, where hy; € YL (2 -1 corresponds to & ; €
Al O
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Our h; j is written R} by May [1] and Rj; by Tangora [1], but as h;; (in a
slightly different context) by Adams [3]. Notice that in C*(Z/(2)) one has d[é?j] =
> 0<k<il ,%:] |§,§j], which corresponds to the formula for d(h; ;) above. The theorem
asserts that E°C*(Z/(2)) is chain homotopy equivalent to the polynomial algebra
on the [&; ;]. We will see below (3.2.7) that C*(Z/(2)) itself does not enjoy the
analogous property and that the May differentials are a measure of its failure to do
SO.

From 3.2.2 May derives a spectral sequence of the following form.

3.2.3. THEOREM (May [1]). There is a spectral sequence converging to

Exty’ (Z/(2),2/(2))
with B = V*** and d,.: B3t — Esthtutl-r,

PROOF OF 3.2.2 AND 3.2.3. The spectral sequence is a reindexed form of that
of A1.3.9, so 3.2.3 follows from 3.2.2. We will show that the same spectral, sequence
can be obtained more easily by using a different increasing filtration of A,. An in-
creasing filtration is defined by setting |¢2'| = 2i — 1. Then it follows easily that
this E°A, has the same algebra structure as in 3.2.1 but with each &; ; primitive.
Hence E°A, is dual to an exterior algebra and its Ext is V*** (suitably reindexed)
by 3.1.9. A1.3.9 gives us a spectral sequence associated to this filtration. In partic-
ular, it will have dy(h; ;) = >~ hi jhi—k, j+r as in 3.2.2. Since all of the h; ; have odd
filtration degree, all of the nontrivial differentials must have odd index. It follows
that this spectral sequence can be reindexed in such a way that each do,._; gets
converted to a d, and the resulting spectral sequence is that of 3.2.3. g

For p > 2 the spectral sequence obtained by this method is not equivalent
to May’s but is perhaps more convenient as the latter has an FEj-term which is
nonassociative. In the May filtration one has |7;_1| = |§fj| = i. If we instead set

|Tic1| = |§f]| = 2i — 1, then the resulting EYA, has the same algebra structure
(up to indexing) as that of 3.2.1(b), but all of the generators are primitive. Hence
it is dual to a product of exterior algebras and truncated polynomial algebras of
height p. To compute its Ext we need, in addition to 3.1.11, the following result.

3.2.4. LEMMA. Let T’ = T(z) with dimx = 2n and x primitive. Then
Extr(Z/(p), Z/(p)) = E(h) @ P(b),

where
h € Ext’ s represented in Cr(Z/(p)) by [z]
and
2 L(P\ i p—i
b e Ext® by Z =5 =" =P 7). O
—~ p\1
0<i<p

The proof is a routine calculation and is left to the reader.

To describe the resulting spectral sequence we have

3.2.5. THEOREM. For p > 2 the dual Steenrod algebra (3.1.1) A, can be given
an increasing filtration with |7;,_1| = |§f]| =2i—1 fori—1, 5 > 0. The associated
bigraded Hopf algebra ECA, is primitively generated with the algebra structure of
3.2.1(b). In the associated spectral sequence (A1.3.9)

E* =E(hij:i>0, j>0)@P(b;:i>0, j>0)® Pla;: i >0),
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where
1,2(p*—1)p?,2i—1
hij S El s
b E2,2(pi—1)p1”»p(2i—1)
i € £ )
and
1,2p*—1,2i+1
a; € El P *

(hi,; and a; correspond respectively to £fj and 7;). One hasd,: ESb% — Es—htu=r
and if x € B then d,(zy) = d,(x)y + (—1)""*zd,(y). di is given by

dy(hij) == Y hjhi-kkss,

0<k<i
dl(ai) = — Z akhikaw
0<k<i
di(b; ;) = 0. [l

In May’s spectral sequence for p > 2, indexed as in 3.2.3, the Fj-term has
the same additive structure (up to indexing) as 3.2.5 and di is the same on the
generators, but it is a derivation with respect to a different multiplication, which
is unfortunately nonassociative.

We will illustrate this nonassociativity with a simple example for p = 3.

3.2.6. EXxXAMPLE. In the spectral sequence of 3.2.5 the class highog corresponds
to a nontrivial permanent cycle which we call gg. Clearly hi9gg=0 in FE.,, but
for p = 3 it could be a nonzero multiple of h11b1g in Ext. The filtration of higgo
and hi11b1p are 5 and 4, respectively. Using Massey products (A1.4), one can show
that this extension in the multiplicative structure actually occurs in the following
way. Up to nonzero scalar multiplication we have byg = (h19, h10, h10) and go =
(h10, h10, R11) (there is no indeterminacy), so

hiogo = hio(hi0, hio, hi11)
= (h10, h10, R1o)h11
= bighi1.

Now in the May filtration, both h19gg and b1gh1; have weight 4, so this relation
must occur in F1q, i.e., we must have

0 # hiogo = h10(h1090) # (hmhlo)go =0,

so the multiplication is nonassociative.

To see a case where this nonassociativity affects the behavior of May’s d;,
consider the element highoghsg. It is a di cycle in 3.2.5. In Fy the Massey product
(h10, h11, h12) is defined and represented by +(hiphe1 + hoohi2) = +d1(hso). Hence

in Ext we have
0 = go(h10, ha1, h12)
= (goh1o, P11, h12)
= +(h11b10, h11, h12)
= £bio(ha1, ha1, hio).

The last bracket is represented by +hi1ho1, which is a permanent cycle g;. This
implies (A1.4.12) da(hiohaohso) = £b1191. In May’s grading this differential is a dj .
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Now we return to the prime 2.

3.2.7. EXAMPLE. The computation leading to 3.1.25, the Adams Es-term for
bo, can be done with the May spectral sequence. One filters A(1), (see 3.1.18) and
gets the sub-Hopf algebra of E°A, generated by &1, &11, and &g. The complex
analogous to 3.2.2 is P(hig, h11, hoo) with d(hag) = hioh11. Hence the May Es-term
is the Cartan—Eilenberg F3-term (3.1.22) suitably reindexed, and the ds of 3.1.23
corresponds to a May ds.

We will illustrate the May spectral sequence for the mod (2) Steenrod algebra
through the range t — s < 13. This range is small enough to be manageable, large
enough to display some nontrivial phenomena, and is convenient because no May
differentials originate at t — s = 14. May [1, 4] was able to describe his Ea-term
(including ds) through a very large range, t —s < 164 (for ¢t —s < 80 this description
can be found in Tangora [1]). In our small range the Es-term is as follows.

3.2.8. LEMMA. In the range t—s < 13 the Ey-term for the May spectral sequence
(3.2.3) has generators

1,271
hj = hl,j S E2 s
b — b2 E2,2j+1(2i—1)72i
2 5

)

and

27 = haoho1 + hi1hso € E22’974

with relations

hjthrl = 0,
habao = howz,
and
hg.’L‘7 = hobgl. O

This list of generators is complete through dimension 37 if one adds z1¢ and
T34, obtained from z7 by adding 1 and 2 to the second component of each index.
However, there are many more relations in this larger range.

The Es-term in this range is illustrated in FiG. 3.2.9. Each dot represents an
additive generator. If two dots are joined by a vertical line then the top element is
ho times the lower element; if they are joined by a line of slope = then the right-
hand element is hy times the left-hand element. Vertical and diagonal arrows mean
that the element has linearly independent products with all powers of hg and hq,
respectively.

3.2.10. LEMMA. The differentials in 3.2.3 in this range are given by
(a) dy(hj) =0 for all r,

(b) d (bQ ]) =h3 h]+2 + hg+17
(c) da(x7) = hohz,

(d) (bgo = h1ba1 + hgbog, and
(e) da(b3y) = hohs.

PRrROOF. In each case we make the relevant calculation in the cobar complex
Ca.(Z/(2)) of 3.1.2. For (a), [¢#'] is a cycle. For (b) we have

d([e2]€2] + [E716162] + [E267161]) = [€TIERIER] + [EL1€al€a]-
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FIGURE 3.2.9. The May FEs-term for p=2 and t — s < 13

For (c) we have

d([(€ + &) + [(& + &1 + &85 + EDIEN + (616 83) = [&lEtIEr.

For (d) we use the relation z2 = h2bzp + bagba; (Which follows from the definition
of the elements in question); the right-hand term must be a cycle in Fy and we can
use this fact along with (b) to calculate da(bsg).

Part (e) follows from the fact that hihsz = 0 in Ext, for which three different
proofs will be given below. These are by direct calculation in the A-algebra (Sec-
tion 3.3), by application of a Steenrod squaring operation to the relation hohy = 0,
and by the Adams vanishing theorem (3.4.5). O

It follows by inspection that no other differentials can occur in this range. Since
no May differentials originate in dimension 14 we get

3.2.11. THEOREM. Exti"i(Z/(Q),Z(Q)) fort—s <13 and s < 7 is generated
as a vector space by the elements listed in the accompanying table. (There are no
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generators for t —s = 12 and 13, and the only generators in this range with s > 7
are powers of hg.)

In the table cqo corresponds to hixy, while Px corresponds to b%yox. There are
relations h3 = h3ha, h3 = hhs, and Ph3 = Ph3h? = h3Phs. (]

Phy




74 3. THE CLASSICAL ADAMS SPECTRAL SEQUENCE

Inspecting this table one sees that there are no differentials in the Adams
spectral sequence in this range, and all of the group extensions are solved by 3.1.3
and we get

3.2.12. COROLLARY. For n < 13 the 2-component of ,(S°) are given by the
following table.

n 0 1 2 3 |4|5| 6 7 8 9 10 11 |12]13

™ (S°)|Z2)|2/(2)[2/(2)|Z/(8) Z/(2)|2/(16)[(2/(2))*|(Z/(2))*|2/(2)[Z/(8)] 0 | O

In general the computation of higher May differentials is greatly simplified
by the use of algebraic Steenrod operations (see Section A1.5). For details see
Nakamura [1].

Now we will use the May spectral sequence to compute Ext 42, (Z/(2), A(0).),

2n+2*1

where A(n), = P(&1,&2,...,&n41)/(& ) is dual to the subalgebra A(n) C A
generated by Sq', S¢?,...,S¢*" . We filter A(2), just as we filter A,. The resulting
May El—term is P(hll,hlg,hzo,hgl,hgo) with dl(hl,i) =0= dl(hgo), dl(hgl) =
hllhlg, and dl(hgo) = hgohlz. This giVGS

(3213) EQ = P(bgl, bgo) ® ((P(hll, hgo) ® E(x7)) &b {hlm 1> 0}),

where by; = h3;, bzo = h3,, and z7 = hi1hao + haoho1. The dy’s are trivial except
for

(3.2.14) dg(h%o) - h?p d2(b21) = hil’>2’ and dg(bgo) = hllbgl.

Since A(0). is not a comodule algebra, this is not a spectral sequence of algebras,
but there is a suitable pairing with the May spectral sequence of 3.2.3.

Finding the resulting Fs-term requires a little more ingenuity. In the first
place we can factor out P(b3,), i.e., B2 = FE2/(b3,) @ P(b3,) as complexes. We
denote Eo/(b3,) by E2 and give it an increasing filtration as a differential algebra
by letting Fy = P(hll,hgo) ® E(l‘7) S5 {h112 7> O} and letting bo1, b39 € Fy. The
cohomology of the subcomplex Fj is essentially determined by 3.1.27(a), which
gives Ext 41, (Z/(2), A(0)+). Let B denote this object suitably regraded for the
present purpose. Then we have

(3.2.15) H*(Fy) = B® E(z7) ® {hty: i > 0}.

For k > 0 we have Fy,/Fj,_y = {bk;, b5 b30} @ Fp with da (b5 "bsg) = b5 hay. Tts
cohomology is essentially determined by 3.1.27(b), which describes
Exta(1).(Z/(2),Y). Let C denote this object suitably regraded, i.e., C' = P(hap).
Then we have for k > 0

(3.2.16) H*(F/Fp_1) = C{b5,} @ E(X7) @ {b§, hty, baobli thiy: i > 0}.

This filtration leads to a spectral sequence converging to F5 in which the only

nontrivial differential sends
b12€1b§0h§2 to kbgflbgohgg

fore = 0,1, k > 0 and ¢ > 1. This is illustrated in F1G. 3.2.17(a), where a square
indicates a copy of B and a large circle indicates a copy of C'. Arrows pointing to the
left indicate further multiplication by hi2, and diagonal lines indicate differentials.
Now bg; supports a copy of C' and a differential. This leads to a copy of C' in
E3 supported by hagbe; shown in 3.2.17(b). There is a nontrivial multiplicative

extension hogh)i2b30 = @7bo; which we indicate by a copy of C in place of hi2bsg
in (b). Fig. 3.2.17(b) also shows the relation hq1b3; = h3,bs0.

o
o
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The differentials in E3 are generated by dz(b3,) = hi2b3; and are shown in
3.2.17(c). The resulting Fy = F is shown in 3.2.17(d), where the symbol in place
of b3, indicates a copy of B with the first element missing.

3. The Lambda Algebra

In this section we describe the lambda algebra of Bousfield et al. [2] at the
prime 2 and the algorithm suggested by it for computing Ext. For more details,
including references, see Tangora [2, 3] and Richter [1] . For most of this material
we are indebted to private conversations with E.B. Curtis. It is closely related to
that of Section 1.5.

The lambda algebra A is an associative differential bigraded algebra whose co-
homology, like that of the cobar complex, is Ext. It is much smaller than the cobar
complex; it is probably the smallest such algebra generated by elements of coho-
mological degree one with cohomology isomorphic to Ext. Its greatest attraction,
which will not be exploited here, is that it contains for each n > 0 a subcomplex
A(n) whose cohomology is the Es-term of a spectral sequence converging to the
2-component of the unstable homotopy groups of S™. In other words A(n) is the
FEi-term of an unstable Adams spectral sequence.

More precisely, A is a bigraded Z/(2)-algebra with generators )\, € Abm+!
(n > 0) and relations

— i1
(331) )\i>\2i+1+n = E (n J ))\i+nj)\2i+1+j for i,n Z 0
, J
J=0

with differential
n—j
(3.3.2) dA) =Y T ) Aidir
=N
Note that d behaves formally like left multiplication by A_;.
3.3.3. DEFINITION. A monomial A, \i, -+ Ni, € A is admissible if 2i, > i,41

for 1 <r < s. A(n) C A is the subcomplex spanned by the admissible monomials
with i1 < n.

The following is an easy consequence of 3.3.1 and 3.3.2.

3.3.4. PROPOSITION.
(a) The admissible monomials constitute an additive basis for A.
(b) There are short exact sequences of complexes

0—=A(n) = An+1) - X"A(2n+1) — 0. O
The significant property of A is the following.

3.3.5. THEOREM (Bousfield et al. [2]). (a) H(A) = Exta,(Z/(2),Z/(2)), the
classical Adams Fo-term for the sphere.

(b) H(A(n)) is the Ea-term of a spectral sequence converging to m.(S™).

(¢) The long exact sequence in cohomology (3.3.6) given by 3.3.4(b) corresponds
to the EHP sequence, i.e., to the long exact sequence of homotopy groups of the fiber
sequence (at the prime 2)

S = Q8™ 5 Q82 (see 1.5.1). O
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The spectral sequence of (b) is the unstable Adams spectral sequence. The long
exact sequence in (c) above is

(3.3.6) — H'(A(n)) & HY' (A(n + 1)) 5 H= L1 (A(2n + 1))
Ly B (A(n)) —

The letters E, H, and P stand respectively for suspension ( Einhdngung in German),
Hopf invariant, and Whitehead product. The map H is obtained by dropping the
first factor of each monomial. This sequence leads to an inductive method for
calculating H**(A(n)) which we will refer to as the Curtis algorithm.

Calculations with this algorithm up to ¢ = 51 (which means up to t — s =
33) are recorded in an unpublished table prepared by G. W.Whitehead. Recently,
Tangora [4] has programmed a computer to find H**(A) at p = 2 for ¢ < 48 and
p = 3fort < 99. Some related machine calculations are described by Wellington [1].

For the Curtis algorithm, note that the long exact sequences of 3.3.6 for all n
constitute an exact couple (see Section 2.1) which leads to the following spectral
sequence, similar to that of 1.5.7.

3.3.7. PROPOSITION (Algebraic EHP spectral sequence).
(a) There is a trigraded spectral sequence converging to H*(A) with

E.ls,t,n = g (A(2n — 1)) for s >0

and

ot _ Z/(2) fort=n=0
! 0 otherwise,

and d,: B3t — Esthtn-r,
(b) For each m > 0 there is a similar spectral sequence converging to H&t(A(m))
with
gt _ {as above forn <m -
oo =

0 for n > m.

The EHP sequence in homotopy leads to a similar spectral sequence converging
to stable homotopy filtered by sphere of origin which is described in Section 1.5.

At first glance the spectral sequence of 3.3.7 appears to be circular in that the
E;-term consists of the same groups one is trying to compute. However, for n > 1
the groups in Ef’t’" are from the (t — s — n+ 1)-stem, which is known by induction
on t —s. Hence 3.3.7(b) for odd values of m can be used to compute the E;-terms.
For n = 1, we need to know H*(A(1)) at the outset, but it is easy to compute.
A(1) is generated simply by the powers of Ay and it has trivial differential. This
corresponds to the homotopy of S*.

Hence the EHP spectral sequence has the following properties,

3.3.8. LEMMA. In the spectral sequence of 3.3.7(a),

(a) E"™ =0 fort —s <n — 1 (vanishing line);

(b) ESY™ = Z/(2) fort —s =n—1 and all s > 0 and if in addition n — 1
is even and positive, dy: ES"™ — ESTHI L Gs nontrivial for all s > 0 (diagonal
groups);

(c) Byt = H*=Lt="(A) fort — s < 3n (stable zone); and

(d) ESYY =0 fort > s.
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PROOF. The groups in (a) vanish because they come from negative stems in
A(2n —1). The groups in (b) are in the 0-stem of A(2n — 1) and correspond to
)\n_l)\g_l € A. If n — 1 is even and positive, 3.3.2 gives

A1 Ny™Y) = An_2)y mod A(n — 2),

which means d; behaves as claimed. The groups in (c) are independent of n by
3.3.6. The groups in (d) are in A(1) in positive stems. d

The above result leaves undecided the fate of the generators of EY™ ™1™ for
n — 1 odd, which correspond to the A,,_1. We use 3.3.2 to compute the differentials
on these elements. (See Tangora [2] for some helpful advice on dealing with these
binomial coefficients.) We find that if n is a power of 2, A\,_1 is a cycle, and if
n=k-2 for odd k > 1 then

d(An—1) = Ap—1-2iA9i—1 mod A(n —1— 2j)-

This equation remains valid after multiplying on the right by any cycle in A,
so we get

3.3.9. PROPOSITION. In the spectral sequence of 3.3.7(a) every element in
Ef’m] is a permanent cycle. For n = k27 for k > 1 odd, then every element
n Eﬁ’t’kw is a d.-cycle for r < 29 and

k29 —1,k27 1,k-29 —1,(k—1)27
dys : ESFH VR By (=0

is montrivial, the target corresponding to A2j,1 under the isomorphism of 3.3.7.

The cycle Agj_1 corresponds to h; € Ext"? . O

Before proceeding any further it is convenient to streamline the notation. In-
stead of A\, As, - - - A;, we simply write 145 .. . 15, €.g., we write 411 instead of AgA;A1.
If an integer > 10 occurs we underline all of it but the first digit, thereby removing
the ambiguity; e.g., A15A3\15 is written as 15315. Sums of monomials are written
as sums of integers, e.g., d(9) = 71 + 53 means d(Ag) = A7A1 + AsA3; and we write
¢ for zero, e.g., d(15) = ¢ means d(\5) = 0.

We now study the EHP spectral sequence [3.3.7(a)] for ¢t — s < 14. It is
known that no differentials or unexpected extensions occur in this range in any
of the unstable Adams spectral sequences, so we are effectively computing the 2-
component of 7,4 (S™) for k < 13 and all n.

For t —s = 0 we have E"*' = Z/(2) for all s > 0 and E{"*" = 0 for n > 1. For
t —s =1 we have Ey*? = Z/(2), corresponding to A, or hy, while ES'T" =0
for all other s and n. From this and 3.3.8(c) we get E" ™" = Z/(2) generated by
An—1A1 for all n > 2, while Ef’t’tfs = 0 for all other s, . The element 11 cannot
be hit by a differential because 3 is a cycle, so it survives to a generator of the
2-stem, and it gives generators of Ef mtdn (corresponding to elements with Hopf
invariant 11) for n > 2, while Ef’“tis*l = 0 for all other s and ¢.

This brings us to t — s = 3. In addition to the diagonal groups given
by 3.3.8(b) we have E®® generated by 21 and E;"®? generated by 111, with no
other generators in this stem. These two elements are easily seen to be nontrivial
permanent cycles, so H5*T3(A) has three generators; 3, 21, and 111. Using 3.3.1
one sees that they are connected by left multiplication by 0 (i.e., by Ao).

s,5+3,4
El
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Thus for t — s < 3 we have produced the same value of Ext as given by the
May spectral sequence in 3.2.11. The relation hZhy = h$ corresponds to the rela-
tion 003 = 111 in A, the latter being easier to derive. It is also true that 300 is
cohomologous in A to 111, the difference being the coboundary of 40 + 22. So far
no differentials have occurred other than those of 3.3.8(b).

These and subsequent calculations are indicated in Fic. 3.3.10, which we now
describe. The gradings ¢t — s and n are displayed; we find this more illuminating
than the usual practice of displaying t — s and s. All elements in the spectral
sequence in the indicated range are displayed except the infinite towers along the
diagonal described in 3.3.8(b). Each element (except the diagonal generators) is
referred to by listing the leading term of its Hopf invariant with respect to the left
lexicographic ordering; e.g., the cycle 4111 4 221 4+ 1123 is listed in the fifth row as
111. An important feature of the Curtis algorithm is that it suffices to record the
leading term of each element. We will illustrate this principle with some examples.
For more discussion see Tangora [3]. The arrows in the figure indicate differentials
in the spectral sequence. Nontrivial cycles in A for 0 < t — s < 14 are listed at the
bottom. We do not list them for t—s = 14 because the table does not indicate which
cycles in the 14th column are hit by differentials coming from the 15th column.

3.3.11. EXAMPLE. Suppose we are given the leading term 4111 of the cycle
above. We can find the other terms as follows. Using 3.3.1 and 3.3.2 we find
d(4111) = 21111. Refering to Fig. 3.3.10 we find 1111 is hit by the differential from
221, so we add 2221 to 4111 and find that d(4111 4+ 2221) = 11121. The figure
shows that 121 is killed by 23, so we add 1123 to our expression and find that
d(4111 4 2221 4 1123) = ¢ i.e., we have found all of the terms in the cycle.

Now suppose the figure has been completed for ¢t —s < k. We wish to fill in the
column ¢ — s = k. The box for n =1 is trivial by 3.3.8(d) and the boxes for n > 3
can be filled in on the basis of previous calculations. (See 3.3.12.) The elements in
the box for n = 2 will come from the cycles in the box forn =3,t—s=k—1, and
the elements in the box for n = 2, t — s = k — 1 which are not hit by di’s. Hence
before we can fill in the box for b = 2, t — s = k, we must find the d;’s originating
in the box for n = 3. The procedure for computing differentials will be described
below. Once the column ¢t — s = k has been filled in, one computes the differentials
for successively larger values of n.

The above method is adequate for the limited range we will consider, but for
more extensive calculations it has a drawback. One could work very hard to show
that some element is a cycle only to find at the next stage that it is hit by an easily
computed differential. In order to avoid such redundant work one should work by
induction on ¢, then on s and then on n; i.e., one should compute differentials
originating in E$%" only after one has done so for all Eﬁ/’t/’”/ with ¢/ < ¢, with
t =tand s < s, and with s’ = s, ¢ = t, and n’ < n. This triple induction is
awkward to display on a sheet of paper but easy to write into a computer program.
On the other hand Tangora [4, last paragraph starting on page 48] used downward
rather than upward induction on s because given knowledge of what happens at
all lower values of ¢, the last group needed for the (¢ — s)-stem is the one with the
largest value of s possible under the vanishing line, the unstable analog of 3.4.5.
There are advantages to both approaches.

The procedure for finding differentials in the EHP spectral sequence (3.3.7)
is the following. We start with some sequence « in the (n + 1)th row. Suppose
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2n—1[nfo[1]2]3 4[5 [ 6 [ 7 [8] 9 10 11 12 13 14
1 1]
124111 [1124111
3 |9 111 24111 |11233, 224111 2124111 (21124111
0 21\211 2111 1233 (2233 \21233 211233\
M1 11 (AU R TN 233 i N \[2333 N \
2233 1124111
24111 224111
5 |3 111 1233 433 44111 324111
11 21’X 233 333\ 124111 3233 31233
* 11 (A [3 131 (311 |33 [4111 A N\ [11233,8 | 353 3333
4111 24111 124111 1124111
7 |4 111 511 \\233 1233 ‘\ 11233& 224111
0 |1 21 61 611 6111& 2233 44111
* A A1l |3 33 N 53\ &33 433 N\ 533
111 411 \ 241 1124111
9 |5 21 511 2%3 1233 2233
3 33 \61 53 711 433
* |1 11 ol rd 71 333 73
4111 24111
1 |6 111 511 \ 233 1233
0 21 33 61 53 333
*N 1 11 3N A 7N
\111 \ 4111
21 511 233
1347 11 3\ 33 61 53
* |1 A 7
111 4111
0 21 511
1518 \ 1 \|11 3 \ 33 61
* A\ NN A 7
JANARIE \
17 9 21
* \|1 11 3 33
\ \ \111
19 |10 0 21
*\ 1 11 3N
\ 111 \
21 |11 21 \
* 1 11y 3
0 111
23 |12 \ 21
* I 11y 3
25 |13 * 1 11
0
27 |14 *\ )
29 [15 "
Nontrivial [1 [11|111 33 |4111]233[1233 (1241111124111
permanent 21 511 |53 (24111 224111
cycles 3 61 333 44111
7

FIGURE 3.3.10. The EHP spectral sequence (3.3.7) for t — s < 14




82 3. THE CLASSICAL ADAMS SPECTRAL SEQUENCE

inductively that some correcting terms have already been added to A,c, in the
manner about to be described, to give an expression . We use 3.3.1 and 3.3.2 to
find the leading term 414y ...454;1 of d(z). If d(z) = 0, then our « is a permanent
cycle in the spectral sequence. If not, then beginning with © = 0 we look in the
table for the sequence is_y419s—ut2---is41 in the (is—, + 1)th row until we find
one that is hit by a differential from some sequence f§ in the (m + 1)th row or
until v = s — 1. In the former event we add A;, ... A\;,_, , AmfB to 2 and repeat the
process. The coboundary of the new expression will have a smaller leading term
since we have added a correcting term to cancel out the original leading coboundary
term.

If we get up to u = s — 1 without finding a target of a differential, then it
follows that our original o supports a d,,—;, whose target is g - %541.

It is not necessary to add all of the correcting terms to x to show that our a
is a permanent cycle. The figure will provide a finite list of possible targets for the
differential in question. As soon as the leading term of d(z) is smaller (in the left
lexicographic ordeninng) than any of these candidates then we are done.

In practice it may happen that one of the sequences ¢s_y+1 - %541 in the
(is—y + 1)th row supports a nontrivial differential. This would be a contradiction
indicating the presence of an error, which should be found and corrected before
proceeding further. Inductive calculations of this sort have the advantage that
mistakes usually reveal themselves by producing contradictions a few stems later.
Thus one can be fairly certain that a calculation through some range that is free
of contradictions is also correct through most of that range. In publishing such
computations it is prudent to compute a little beyond the stated range to ensure
the accuracy of one’s results.

We now describe some sample calculations in 3.2.11.

3.3.12. EXAMPLE. FILLING IN THE TABLE. Consider the boxes with
t—s—(n—1)=28.

To fill them in we need to know the 8-stem of H(A(2n — 1)). For convenience the
values of 2n — 1 are listed at the extreme left. The first element in the 8-stem is
233, which originates on S® and hence appears in all boxes for n > 2. Next we have
the elements 53, 521, and 5111 originating on S%. The latter two are trivial on S7
and so do not appear in any of our boxes, while 53 appears in all boxes with n > 4.
The element 611 is born on S7 and dies on S° and hence appears only in the box
for n = 4. Similarly, 71 appears only in the box for n = 5.

3.3.13. EXAMPLE. COMPUTING DIFFERENTIALS We will compute the differen-
tials originating in the box for ¢ — s = 11, n = 11. To begin we have d(101) =
(90 + 72 + 63 + 54)1 = 721 4 631 + 541. The table shows that 721 is hit by 83 and
we find

d(83) = (70 + 61 + 43)3 = 721 4 433.
Hence
d(101 + 83) = 631 + 541 + 433.

The figure shows that 31 is hit by 5 so we compute
d(65) = 631 + (50 4 32)5 = 631 + 541,

S0
d(101 + 83 4 65) = 433,
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which is the desired result.
Even in this limited range one can see the beginnings of several systematic
phenomena worth commenting on.

3.3.14. REMARK. JAMES PERIODICITY. (Compare 1.5.18.) In a neighborhood
of the diagonal one sees a certain in the differentials in addition to that of 3.3.9. For
example, the leading term of d(A\, A1) is Ap—2 M A1 if n=0o0r 1 mod (4) and n > 4,
giving a periodic family of do’s in the spectral sequence. The differential computed
in 3.3.13 can be shown to recur every 8 stems; add any positive multiple of 8 to the
first integer in each sequence appearing in the calculation and the equation remains
valid modulo terms which will not affect the outcome.

More generally, one can show that A(n) is isomorphic to

272" A(n +2™) /A (2™)

through some range depending on n and m, and a general result on the periodicity
of differentials follows. It can be shown that H*(A(n + k)/A(n)) is isomorphic
in the stable zone [3.3.8(c)] to the Ext for H*(RP"*k=1/RP"~1) and that this
periodicity of differentials corresponds to James periodicity. The latter is the fact
that the stable homotopy type of RP"**¥/RP™ depends (up to suspension) only on
the congruence class of n modulo a suitable power of 2. For more on this subject
see Mahowald [1, 2, 3, 4].

3.3.15. REMARK. THE ADAMS VANISHING LINE. Define a collection of admis-
sible sequences (3.3.3) a; for ¢ > 0 as follows.

ar =1, ag =11, az=111, a4 =4111,
as = 24111, ag = 124111, a7 = 1124111, ag = 41124111, etc.

That is, for ¢ > 1

(1,a;,—1) fori=2,3 mod (4)
a; =< (2,a;—1) fori=1 mod (4)
(4,a;—1) fori=0 mod (4)

It can be shown that all of these are nontrivial permanent cycles in the EHP spectral
sequence and that they correspond to the elements on the Adams vanishing line
(3.4.5). Note that H(a;+1) = a;. All of these elements have order 2 (i.e., are
killed by Ag multiplication) and half of them, the a; for i = 3 and 0 mod (4), are
divisible by 2. The a4,43 are divisible by 4 but not by 8; the sequences obtained are
(2,a4i42) and (4, ag;41) except for ¢ = 1, when the latter sequence is 3. These little
towers correspond to cyclic summands of order 8 in 75, 5 (see 5.3.7). The a4; are
the tops of longer towers whose length depends on i. The sequences in the tower
are obtained in a similar manner; i.e., sequences are contracted by adding the first
two integers; e.g., in the 7-stem we have 4111, 511, 61, and 7. Whenever i is a
power of 2 the tower goes all the way down to filtration 1; i.e., it has 44 elements, of
which the bottom one is 8 — 1. The table of Tangora [1] shows that the towers in
the 23-, 29-, and 55-stems have length 6, while that in the 47-stem has length 12.
Presumably this result generalizes in a straightforward manner. These towers are
also discussed in 3.4.21 and following 4.4.47.



84 3. THE CLASSICAL ADAMS SPECTRAL SEQUENCE

3.3.16. REMARK. d;’s. It follows from 3.3.9 that all d;’s originate in rows with
n odd and that they can be computed by left multiplication by Ag. In particular,
the towers discussed in the above remark will appear repeatedly in the E;-term and
be almost completely cancelled by d;’s, as one can see in Fig. 3.3.10. The elements
cancelled by d;’s do not appear in any H*(A(2n — 1)), so if one is not interested
in H*(A(2n)) they can be ignored. This indicates that a lot of repetition could
be avoided if one had an algorithm for computing the spectral sequence starting
from FE, instead of Ej.

3.3.17. REMARK. S3. As indicated in 3.3.5, A gives unstable as well as stable
Ext groups. From a figure such as 3.3.11 one can extract unstable Adams F-terms
for each sphere. For the reader’s amusement we do this for S° for t — s < 28 in
Fic. 3.3.18. One can show that if we remove the infinite tower in the O-stem,
what remains is isomorphic above a certain line of slope % to the stable Ext for the

mod (2) Moore spectrum. This is no accident but part of a general phenomenon
described by Mahowald [3].

It is only necessary to label a few of the elements in F1G. 3.3.18 because most
of them are part of certain patterns which we now describe. There are clusters of six
elements known as lightning flashes, the first of which consists of 1, 11, 111, 21, 211,
2111. Vertical and diagonal lines as usual represent right multiplication by Ag and
A1, i.e., by hg and hg respectively. This point is somewhat delicate. For example
the element with in the 9-stem with filtration 4 has leading term (according to
3.3.10) 1233, not 2331. However these elements are cohomologous, their difference
being the coboundary of 235.

If the first element of a lightning flash is x, the others are 1z, 11z, 2z, 21z, and
211z. In the clusters containing 23577 and 233577, the first elements are missing,
but the others behave as if the first ones were 4577 and 43577, respectively. For
example, the generator of ES’?’O is 24577. In these two cases the sequences 1 and
11z are not admissible, but since 14 = 23 by 3.3.1, we get the indicated values
for 1x.

Ifz € E; " is the first element of a lightning flash, there is another one beginning
with Px € E§+4’t+12. The sequence for Pz is obtained from that for x by adding 1
to the last integer and then adjoining 4111 on the right, e.g., P(233) = 2344111.
This operator P can be iterated any number of times, is related to Bott periodicity,
and will be discussed more in the next section.

There are other configurations which we will call rays begining with 245333
and 235733. Successive elements in a ray are obtained by left multiplication by As.
This operation is related to complex Bott periodicity.

In the range of this figure the only elements in positive stems not part of
a ray or lightning flash are 23333 and 2335733. This indicates that the Curtis
algorithm would be much faster if it could be modified in some way to incorporate
this structure.

Finally, the figure includes Tangora’s labels for the stable images of certain
elements. This unstable Adams spectral sequence for 7,(S3) is known to have
nontrivial dy’s originating on 245333, 222245333, and 2222245333, and d3’s on
2235733 and 22235733. Related to these are some exotic additive and multiplicative
extensions: the homotopy element corresponding to Phidy = 243344111 is twice
any representative of hohog = 235733 and 7 (the generator of the 1-stem) times a
representative of 2245333. Hence the permanent cycles 2245333, 24334111, 235733,
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22245333, 224334111, and the missing element 35733 in some sense constitute an
exotic lightning flash.

4. Some General Properties of Ext

In this section we abbreviate Exta, (Z/(p),Z/(p)) by Ext. First we describe
Ext® for small values of s. Then we comment on the status of its generators in
homotopy. Next we give a vanishing line, i.e., a function f(s) such that Ext®* =0
for 0 <t —s < f(s). Then we give some results describing Ext® for ¢ near f(s).

3.4.1. THEOREM. Forp=2

(a) Ext’ = Z/(2) generated by 1 € Ext™°.

(b) Ext! is spanned by {h;: i > 0} with h; € Ext"2" represented by [¢2'].
(c) (Adams [12]) Ext? is spanned by {h;h;: 0 <i < j, j#i+1}.

(d) (Wang [1]) Ext® is spanned by hihjhy, subject to the relations

hih; = hjhi, hiny, =0 hih? o =0 hihio =hi,,
along with the elements

c = <hi+1, hi,h?+2> € Ext>11? . U

3.4.2. THEOREM. Forp > 2

(a) Ext’ = Z/(p) generated by 1 € Ext™°.

(b) Ext' is spanned by ag and {h;: i > 0} where ag € Ext™! is represented by
[70] and h; € Ext" is represented by [gfl}.

(c) (Liulevicius [2]) Ext? is spanned by {h;h;: 0 <i < j—1}, a3, {agh;: i > 0},
{gi:i >0}, {ki:i >0}, {b;: i >0}, and Iohg, where

gi = (hiyhiyhit1) € ]'__‘)Xt2’(2+p)piq7 ki = (hi, hiy1, hiz1) € EXt2a(2P+1)Piq7
bi = (hi, hiy ..., hy) € Ext2e" (with p factors h;),

and
IIghy = <h0, ho, CLO> S EXt2’1+2q . [l

Ext® for p > 2 has recently been computed by Aikawa [1].

The behavior of the elements in Ext! in the Adams spectral sequence is de-
scribed in Theorems 1.2.11-1.2.14.

We know that most of the elements in Ext? cannot be permanent cycles, i.e.,

3.4.3. THEOREM. (a) (Mahowald and Tangora [8]). With the exceptions hoha,
hohs, and hohy the only elements in Ext? for p = 2 which can possibly be permanent
cycles are h? and hih;.

(b) (Miller, Ravenel, and Wilson [1]). For p > 2 the only elements in Ext?
which can be permanent cycles are a%, Ilgho, ko, hoh;, and b;. O

Part (b) was proved by showing that the elements in question are the only ones
with preimages in the Adams—Novikov Es-term. A similar proof for p = 2 is possible
using the computation of Shimomura [1]. The list in Mahowald and Tangora [8]
includes hohs and hghg; the latter is known not to come from the Adams—Novikov
spectral sequence and the former is known to support a differential.

The cases hoh; and b;, for p > 3 and h1h; for p = 2 are now settled.
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3.4.4. THEOREM. (a) (Browder [1]). Forp = 2 h3 is a permanent cycle iff there
is a framed manifold of dimension 29T — 2 with Kervaire invariant one. Such are
known to exist for j < 5. For more discussion see 1.5.29 and 1.5.35.

(b) (Mahowald [6]). For p =2 hih; is a permanent cycle for all j > 3.

(c) (Ravenel [7]). Forp >3 and i > 1, b; is not a permanent cycle. (Atp =3
by is not permanent but by is; by is permanent for all odd primes.)

(d) (R.L. Cohen [3]). Forp > 2 hob; is a permanent cycle corresponding to an
element of order p for all i > 0. (]

The proof of (c¢) will be given in Section 6.4.
Now we describe a vanishing line. The main result is

3.4.5. VANISHING THEOREM (Adams [17]). (a) For p = 2 Ext®' =0 for 0 <
t—s < f(s), where f(s)=2s—c ande =1 for s=0,1 mod (4), e =2 for s =2
and e = 3 for s = 3.

(b) (May [6]). Forp>2Ext® =0 for0<t—s<sq—e, wheres=1ifs#0
mod (p) ande =2 if s =0. O

Hence in the usual picture of the Adams spectral sequence, where the x and y
coordinates are t — s and s, the Fs-term vanishes above a certain line of slope 1/¢
(e.g., % for p = 2). Below this line there are certain periodicity operators II,, which
raise the bigrading so as to move elements in a direction parallel to the vanishing
line. In a certain region these operators induce isomorphisms.

3.4.6. PERIODICITY THEOREM (Adams [17], May [6]).

(a) Forp=2 and n > 1 Ext®' ~ Ext*t2" 432" g5,

0 <t—s<min(g(s) +2"2 h(s)),
where g(s) =2s —4—7 witht=2 ifs=0,1 mod (4), 7=14fs=3, and 7=0
if s =2, and h(s) is defined by the following table:

s 1128 4|66\ 7|8 >9
his) | 1|1 |7|10|17]22|25|32|5s—7
(b) Forp>2 andn > 0 Ext® ~ Ext*+tP" s t@tD/p" g5

0<t—s< mln(g(s) +an7 h(S)),

where g(s) = qs —2p —1 and h(s) =0 for s =1 and h(s) = (p> —p — 1)s — 7 with
T=2p>—2p+1 for even s > 1 and 7 = p*> +p — 2 for odd s > 1. (]

These two theorems are also discussed in Adams [7].

For p = 2 these isomorphisms are induced by Massey products (A1.4) sending x
to (2, h2""", hpyo). For n = 1 this operator is denoted in Tangora [1] and elsewhere
in this book by P. The elements z are such that h%nﬂx is above the vanishing line
of 3.4.5, so the Massey product is always defined. The indeterminacy of the product
has the form zy + h,i02 with y € Ext® 32" and 2 € Ext®~ 127427 e

n+2
group containing y is just below the vanishing line and we will see below that
it is always trivial. The group containing z is above the vanishing line so the
indeterminacy is zero.

Hence the theorem says that any group close enough to the vanishing line [i.e.,
satisfying ¢t — s < 2”72 + g(s)] and above a certain line with slope L[t — s < h(s)]
is acted on isomorphically by the periodicity operator. In Adams [17] this line
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had slope % It is known that % is the best possible slope, but the intercept could
probably be improved by pushing the same methods further. The odd primary case
is due entirely to May [6]. We are grateful to him for permission to include this
unpublished material here.

Hence for p = 2 Ext®" has a fairly regular structure in the wedge-shaped region
described roughly by 2s < t — s < 5s. Some of this (partially below the line of
slope 1 given above) is described by Mahowald and Tangora [14] and an attempt
to describe the entire structure for p = 2 is made by Mahowald [13].

However, this structure is of limited interest because we know that almost all
of it is wiped out by differentials. All that is left in the E,,-term are certain few
elements near the vanishing line related to the .J-homomorphism (1.1.12). We will
not formulate a precise statement or proof of this fact, but offer the following expla-
nation. In the language of Section 1.4, the periodicity operators II,, in the Adams
spectral sequence correspond to vi-periodicity in the Adams—Novikov spectral se-
quence. More precisely, II,, corresponds to multiplication by vf". The behavior
of the vi-periodic part of the Adams—Novikov spectral sequence is analyzed com-
pletely in Section 5.3. The vi-periodic part of the Adams—Novikov F,-term must
correspond to the portion of the Adams spectral sequence F..-term lying above
(for p = 2) a suitable line of slope % Once the Adams—Novikov spectral sequence
calculation has been made it is not difficult to identify the corresponding elements
in the Adams spectral sequence. The elements in the Adams—Novikov spectral se-
quence all have low filtrations, so it is easy to establish that they cannot be hit by
differentials. The elements in the Adams spectral sequence are up near the vanish-
ing line so it is easy to show that they cannot support a nontrivial differential. We
list these elements in 3.4.16 and in 3.4.21 give an easy direct proof (i.e., one that
does not use BP-theory or K-theory) that most (all for p > 2) of them cannot be
hit by differentials.

The proof of 3.4.5 involves the comodule M given by the short exact sequence

(3.4.7) 0—Z/(p) = Ax Oa0). Z/(p) = M — 0,

where A(0). = E(r) for p > 2 and E(&) for p = 2. M is the homology of the
cofiber of the map from S° to H, the integral Eilenberg-Mac Lane spectrum. The
FEs-term for H was computed in 2.1.18 and it gives us the tower in the O-stem.
Hence the connecting homomorphism of 3.4.7 gives an isomorphism

(3.4.8) Ext "(Z/(p), M) ~ Ext™'
fort—s>0.

We will consider the subalgebras A(n) C A generated by {Sq', Sq¢?,...,S¢*"}
for p = 2 and {B,P',PP,..., PP"'} for p > 2. Their duals A(n), are
P16, nn)/(€7) for p = 2 and

n+1l—1

E(TOa-~-7Tn)®P(fla~--a€n>/(§f )

for p > 2.

We will be considering A,-comodules N which are free over A(0), and (—1)-
connexted. Y ~'M is an example. Unless stated otherwise N will be assumed to
have these properties for the rest of the section.

Closely related to the questions of vanishing and periodicity is that of approxi-
mation. For what (s,t) does Extii(Z/(p), N)= Exti{'én)*(Z/(p),N)? This relation
is illustrated by
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3.4.9. APPROXIMATION LEMMA. Suppose that there is a nondecreasing function
fn(s) defined such that for any N as above, EXti{En)* (Z/(p),N) =0 fort—s <
s

fn(s). Then for r > n this group is isomorphic to EthET)*(Z/(p),N) fort—s<

(
p"q + fn(s — 1), and the map from the former to the latter is onto for t — s =
g+ fn(s). |

Hence if f,(s) describes a vanishing line for A(n)-cohomology then there is a
parallel line below it, above which it is isomorphic to A-cohomology. For n = 1
such a vanishing line follows easily from 3.1.27(a) and 3.1.28, and it has the same
slope as that of 3.4.5.

PROOF OF 3.4.9. The comodule structure map N — A(r), ® N gives a mo-
nomorphism N — A(r). Oy, N with cokernel C. Then C is A(0).-free and
(p"q — 1)-connected. Then we have

Eth[(Tl)* (C) = Ext}y(y, (N) = Ext} ) (A1)« Oamy, N) = Ext ) (o)

\lN

where Ext 4(,), (=) is an abbreviation for Ext (), (Z/(p), —). The isomorphism is
given by A1.1.18 and the diagonal map is the one we are considering. The high
connectivity of C' and the exactness of the top row give the desired result. O

ProOF OF 3.4.5. We use 3.4.9 with N = M as in 3.4.7. An appropriate
vanishing line for M will give 3.4.5 by 3.4.8. By 3.4.9 it suffices to get a vanishing
line for Ext 41y, (Z/(p), M). We calculate this by filtering M skeletally as an A(0).-
comodule. Then E°M is an extended A(0).-determined by 3.1.27(a) or 3.1.28 and
the additive structure of M. Considering the first two (three for p = 2) subquotients
is enough to get the vanishing line. We leave the details to the reader. O

The periodicity operators in 3.4.6 which raise s by p™ correspond in A(n)-
cohomology to multiplication by an element w, € Ext? (4*VP" In view of 3.4.9,
3.4.6 can be proved by showing that this multiplication induces an isomorphism in
the appropriate range. For p = 2 our calculation of Ext 4(9), (Z/(2), A(0).) (3.2.17)
is nessesary to establish periodicity above a line of slope % To get these w, we
need

3.4.10. LEMMA. There exist cochains ¢, € Ca, satisfying the following.

(a) For p =2 ¢, = [&|---|&] with 2™ factors modulo terms involving &1, and
forp>2c, =[m|---|m1] with p™ factors.

1

(b) For p=2 d(cx) = [¢1[61 4]+ [IE31€3] and forn>1 d(e,) = ] - a2
fuctors €1; and for p > 2 d(en) = —[ro| - I7ol€l" .

(¢) ¢, is uniquely determined up to a coboundary by (a) and (b).

(d) Forn >1 (p > 2) orn > 2 (p = 2) ¢, projects to a cocycle in Ca,,

representing a nontrivial element w,, € Exti;;;ffjl)pn (Z/(p),Z/(p)).

(e) For p =2, wy maps to w as in 3.1.27, and in general w,11 maps to k.

PrOOF. We will rely on the algebraic Steenrod operations in Ext described
in Section A1.5. We treat only the case p = 2. By A1.5.2 there are operations
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Sq': Ext®™ — Ext®t“? satisfying a Cartan formula with Sq°(h;) = hiy1 (A1.5.3)
and Sq*(h;) = h?. Applying Sq' to the relation hoh; = 0 we have

0 = Sq¢' (hoh1) = S¢°(ho)Sq"' (h1) + Sq* (ho)Sq° (h1)
— 13 + h2he.

Applying Sq? to this gives h{ha + hghs = 0. Since hihy = 0 this implies hghg = 0.
Applying Sq* to this gives hShy = 0. Similarly, we get hZ h; 1 = 0 for all i > 2.
Hence there must be cochains ¢, satisfying (b) above.

To show that these cochains can be chosen to satisfy (a) we will use the Kudo

transgression theorem A1.5.7. Consider the cocentral extension of Hopf algebras
(A1.1.15)

P(&) = P61, &) — P(&).
In the Cartan—Eilenberg spectral sequence (A1.3.14 and A1.3.17) for

EXtP(£1,52)(Z/(2)’ Z/(2>)

one has By = P(hyj,hgj: y > 0) with hy; € Ey® and hy; € Ey'. By direct
calculation one has da(hao) = hiph11. Applying Sq?Sq! one gets ds(h3y) = highis+
ht1h1a. The second term was killed by da(h3;ha1) so we have ds(hiy) = hiohis.
Applying appropriate Steenrod operations gives d2n+1(h§8) = h?ghln_H. Hence
our cochain ¢, can be chosen in Cp(g, ¢,y so that its image in Cpe,) is [§2] - - - [£2]
representing h3,, so (a) is verified.

For (c), note that (b) determines ¢, up to a cocycle, so it suffices to show that
each cocycle in that bidegree is a coboundary, i.e., that Ext?"%2" = 0. This group
is very close to the vanishing line and can be computed directly by what we already
know.

For (d), (a) implies that ¢, projects to a cocycle in C4(,,), which is nontrivial
by (b); (e) follows easily from the above considerations. O

For p = 2 suppose = € Ext satisfies hgnx = 0. Let £ € Cy, be a cocycle
representing = and let y be a cochain with d(y) = Z[&1] -+ |&1] with 2™ factors.
Then Zc, + y[€2"" '] is a cocycle representing the Massey product (z, h2", hpi1),
which we define to be the nth periodicity operator II,,. This cocycle maps to Zc,
in ca(n),, so I, corresponds to multiplication by w,, as claimed. The argument for
p > 2 is similar.

Now we need to examine w; multiplication in Ext(A(1).)(Z/(p), A(0).) for
p > 2 using 3.1.28 and wo multiplication in Ext 42, (Z/(2), A(0).) using 3.2.17.
The result is

3.4.11. LEMMA.

(a) Forp = 2, multiplication by wy in EthEQ)* (Z/(2), A(0).) is an isomorphism
fort —s < v(s) and an epimorphism for t —s < w(s), where v(s) and w(s) are
given in the following table.

s [0]1]2[3[4][5] =6
v(s) |1]8| 6 |18]18 |21 |5s+3
w(s) | 1]8|10(18|23|25|5s+3
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(b) For p > 2 multiplication by wy in EX‘GZ’ED*(Z/(p),A(O)*) is a monomorphism
for all s > 0 and an epimorphism for t — s < w(s) where

O

(p*—p—1)s—1 for s even
w(s) = ) )
(p> —p—1)s+p*—3p for s odd

Next we need an analogous result where A(0). is replaced by a (—1)-connected
comodule N free over A(0).. Let N° C N be the smallest free A(0).-subcomodule
such that N/N? is 1-connected. Then

0—N°— N N/N°—=0

is an short exact sequence of A(0),-free comodules inducing an long exact sequence
of A(n)-Ext groups on which w,, acts. Hence one can use induction and the 5-lemma
to get

3.4.12. LEMMA. Let N be a connective A(n).-comodule free over A(0),.

(a) For p = 2 multiplication by ws in EXt:EQ)*(Z/(Q),M) is an isomorphism
fort —s < 0(s) and an epimorphism for t — s < w(s), where these functions are
given by the following table

s [0 [1]2[3[4[5]6] =7
o(z) | —4 |16 [10[18|21|25|5s—2
@(s)| 1 |7]10|18]22]25|33|5s+3

(b) Forp > 2 a similar result holds for wi-multiplication where
3(s) = (P> —p—1)s—2p+1 fors even
(p>—p—1)s—p*+p fors odd

and

~ P*—p—1)s—1 for s even
w(s) = ) ) O
(p*—p—1)s—p*+2p—1 fors odd.

3.4.13. REMARK. If N/NY is (¢—1)-connected, as it is when N = £79M (3.4.7),
then the function o(s) can be improved slightly. This is reflected in 3.4.6 and we
leave the details to the reader.

The next step is to prove an analogous result for w,-multiplication. We sketch
the proof for p = 2. Let N be as above and define N = A(n). O4c2), IV, and let C' =
N/N. Then C is 7-connected if N is (—1)-connected, and ExtA(n)*(Z/(Q),N) =
Ext (g, (Z/(2), N). Hence in this group w, = w%nfz and we know its behavior by
3.4.12. We know the behavior of w,, on C by induction, since C' is highly connected,
so we can argue in the usual way by the 5-lemma on the long exact sequence of Ext
groups. If N satisfies the condition of 3.4.13, so will N and C, so we can use the
improved form of 3.4.12 to start the induction. The result is

3.4.14. LEMMA. Let N be as above and satisfy the condition of 3.4.13. Then
multiplication by wy, (3.4.10) in Eth€7L)*(Z/(p), N) is an isomorphism for t — s <
h(s+1)—1 and an epimorphism fort—s < h(s) —1, where h(s) is as in 3.4.6. O
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Now the periodicity operators I1,,, defined above as Massey products, can be
described in terms of the cochains ¢,, of 3.4.10 as follows. Let = represent a class in
Ext (also denoted by x) which is annihilated by h%n and let y be a cochain whose
coboundary is z[€;|&1] - - [€1] with 27 factors & . Then y[¢2""'] + zc, is a cochain
representing IT,, (z).

Hence it is evident that the action of IT,, in Ext corresponds to multiplication
by w, in A(n).-cohomology. Hence 3.4.14 gives a result about the behavior of IT,,
in Exta, (Z/(p), M) with M as in 3.4.7, so 3.4.6 follows from the isomorphism 3.4.8.

Having proved 3.4.6 we will list the periodic elements in Ext which survive to
F and correspond to nontrivial homotopy elements. First we have

3.4.15. LEMMA. Forp =2 and n > 2, T, (2" 'hyyq) = b2 Vhyis. For
n n+1
p>2andn > 1, II,(d 71hn) = af " 71hn+1 up to a nonzero scalar. [It is not

true that Ty (ho) = ab~ " hy ]

PrOOF. We do not know how to make this computation directly. However,
3.4.6 says the indicated operators act isomorphically on the indicated elements,
and 3.4.21 below shows that the indicated image elements are nontrivial. Since the
groups in question all have rank one the result follows. (3.4.6 does not apply to Il
acting on hg for p > 2.) O

3.4.16. THEOREM.

(a) Forp > 2 the set of elements in the Adams Eo,-term on which all iterates of
some pertodicity operator 11,, are nontrivial s spanned by Hfl(agnfjhn) withn > 0,
0<j<n+1andi#£—1 mod (p). (Fori= —1 these elements vanish for n =0
and are determined by 3.4.15 for n > 0.) The corresponding subgroup of m.(S°) is
the image of the J-homomorphism (1.1.12). (Compare 1.5.19.)

(b) For p = 2 the set is generated by all iterates of Iy on hy, h3, hi = h2ha,
hohs, ha, co, and hyco (where co = {hy, ho,h3) € Ext®'Y) and by IT hyh2"
withn > 3, 1 odd, and 0 < j < n+ 1. (For even i these elements are determined
by 3.4.15.) The corresponding subgroup of m.(S°) is m.(J) (1.5.22). In particular,
im J corresponds to the subgroup of Eo, spanned by all of the above except IIshy for
i >0 and 153 fori > 0. ]

This can be proved in several ways. The cited results in Section 1.5 are very
similar and their proofs are sketched there; use is made of K-theory. The first
proof of an essentially equivalent theorem is the one of Adams [1], which also uses
K-theory. For p = 2 see also Mahowald [15] and Davis and Mahowald [1]. The
computations of Section 5.3 can be adapted to give a BP-theoretic proof.

The following result is included because it shows that most (all if p > 2)
of the elements listed above are not hit by differentials, and the proof makes no
use of any extraordinary homology theory. We will sketch the construction for
p = 2. It is a strengthened version of a result of Maunder [1]. Recall (3.1.9)
the spectrum bo (representing real connective K-theory) with H.(bo) = A, Oy,
Z/(2) = P(&),€2,&5,...). For each i > 0 there is a map to ¥4 H (where H is the
integral Eilenberg-Mac Lane spectrum) under which ¢ has a nontrivial image.
Together these define a map f from bo to W =/, Y4 H. We denote its cofiber
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by W. There is a map of cofiber sequences

(3.4.17) SJ HIEHT
bo ——=W ——=W

in which each row induces an short exact sequence in homology and therefore an
long exact sequence of Ext groups. Recall (3.1.26) that the Ext group for bo has a
tower in every fourth dimension, as does the Ext group for W. One can show that
the former map injectively to the latter. Then it is easy to work out the Adams
Es-term for W, namely
(3.4.18)

Ext*t(H,(bo)) ift—s#0 mod (4)

Ext® (H.(W)) = Z/(2) if t — s =0 and Ext®*(H,(bo)) = 0
0 otherwise,

where Ext(M) is an abbreviation for Exta, (Z/(2), M). See F1a. 3.4.20. Combin-
ing 3.4.17 and 3.4.8 gives us a map

(3.4.19) Ext*(Z/(2)) — Ext* " V{(H,(W)) fort—=s>0

Since this map is topologically induced it commutes with Adams differentials.
Hence any element in Ext with a nontrivial image in 3.4.19 cannot be the target of
a differential.

One can show that each h,, for n > 0 is mapped monomorphically in 3.4.19, so
each h, supports a tower going all the way up to the vanishing line as is required in
the proof of 3.4.15. Note that the vanishing here coincides with that for Ext given
in 3.4.5.

A similar construction at odd primes detects a tower going up to the vanishing
line in every dimension = —1 mod (2p — 2).

To summarize

3.4.21. THEOREM.

(a) For p = 2 there is a spectrum W with Adams Ea-term described in 3.4.18
and 3.4.20. The resulting map 3.4.19 commutes with Adams differentials and is
nontrivial on hy, for all n > 0 and all Ty iterates of hy, h3, h$ = hZha, ha, and
h3hs. Hence none of these elements is hit by Adams differentials.

(b) A similar construction for p > 2 gives a map as above which is nontrivial
on hy, for all n >0 and on all the elements listed in 3.4.16(a). (]

The argument above does not show that the elements in question are permanent
cycles. For example, all but a few elements at the top of the towers built on h,, for
large n support nontrivial differentials, but map to permanent cycles in the Adams
spectral sequence for W.

We do not know the image of the map in 3.4.19. For p = 2 it is clearly onto for
t—s=2"—1. Fort—s+1=(2k+1)2" with k£ > 0 the image is at least as big as
it is for k = 0, because the appropriate periodicity operator acts on h,,. However,
the actual image appears to be about % as large. For example, the towers in Ext
in dimensions 23 and 39 have 6 elements instead of the 4 in dimension 7, while the
one in dimension 47 has 12. We leave this as a research question for the interested

reader.
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FIGURE 3.4.20. Ext® " H,(W).

5. Survey and Further Reading

In this section we survey some other research having to do with the classical
Adams spectral sequence, published and unpublished. We will describe in sequence
results related to the previous four sections and then indicate some theorems not
readily classified by this scheme.

In Section 1 we made some easy Ext calculations and thereby computed the
homotopy groups of such spectra as MU and bo. The latter involved the cohomology
of A(1), the subalgebra of the mod (2) Steenrod algebra generated by Sq' and Sq¢?.
A pleasant partial classification of A(1)-modules is given in section 3 of Adams and
Priddy [10]. They compute the Ext groups of all of these modules and show that
many of them can be realized as bo-module spectra. For example, they use this
result to analyze the homotopy type of bo A bo.

The cohomology of the subalgebra A(2) was computed by Shimada and Iwai [2].
Recently, Davis and Mahowald [4] have shown that A//A(2) is not the cohomology
of any connective spectrum. In Davis and Mahowald [5] they compute A(2)-Ext
groups for the cohomology of stunted real projective spaces.

More general results on subalgebras of A can be found in Adams and Margo-
lis [11] and Moore and Peterson [1].

The use of the Adams spectral sequence in computing cobordism rings is be-
coming more popular. The spectra MO, M SO, MSU, and M Spin were originally
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analyzed by other methods (see Stong [1] for references) but in theory could be
analyzed with the Adams spectral sequence; see Pengelley [1, 2] and Giambalvo
and Pengelley [1].

The spectrum MO(8) (the Thom spectrum associated with the 7-connected
cover of BO) has been investigated by Adams spectral sequence methods in Gi-
ambalvo [2], Bahri [1], Davis [3, 6], and Bahri and Mahowald [1].

In Johnson and Wilson [5] the Adams spectral sequence is used to compute the
bordism ring of manifolds with free G-action for an elementary abelian p-group G.

The most prodigious Adams spectral sequence calculation to date is that for
the symplectic cobordism ring by Kochman [1, 2, 3]. He uses a change-of-rings
isomorphism to reduce the computation of the Es-term to finding Ext over the
coalgebra

(3.5.1) B = P(&,&,...)/ (&)

for which he uses the May spectral sequence. The Fs-term for M.Sp is a direct
sum of many copies of this Ext and these summands are connected to each other
by higher Adams differentials. He shows that M Sp is indecomposable as a ring
spectrum and that the Adams spectral sequence has nontrivial d,.’s for arbitrarily
large 7.

In Section 2 we described the May spectral sequence. The work of Nakamura [1]
enables one to use algebraic Steenrod operations (Al.5) to compute May differen-
tials.

The May spectral sequence is obtained from an increasing filtration of the dual
Steenrod algebra A,. We will describe some decreasing filtrations of A, for p = 2
and the spectral sequences they lead to. The method of calculation these results
suggest is conceptually more complicated than May’s but it may have some practical
advantages. The Es-term (3.5.2) can be computed by another spectral sequence
(3.5.4) whose Fs-term is the A(n) cohomology (for some fixed n) of a certain
trigraded comodule T'. The structure of T is given by a third spectral sequence
(3.5.10) whose input is essentially the cohomology of the Steenrod algebra through
a range of dimensions equal to 27" ! times the range one wishes to compute.

This method is in practice very similar to Mahowald’s unpublished work on
“Koszul resolutions”.

3.5.2. PROPOSITION. For each n > 0, A. has a decreasing filtration (A1.3.5)
{F*A.} where F*® is the smallest possible subgroup satisfying {?7 e 2T for
i <n+1.

(]
In particular, FO/F' = A(n)., so A(n). C EgA. where

Aln). = A (& €2, Eninsa, ).

We also have 5_127 € P71 for 7 > n+ 1. Hence there is a spectral sequence
(A1.3.9) converging to Exta, (Z/c(2), M) with E;"" = Ext%’ﬁA* (Z/(2), EgM) and
d,: E3H% — EstLbutr wwhere the third grading is that given by the filtration, M
is any A,-comodule, and EgM is the associated EyA.-comodule (A1.3.7).

Now let G(n). = EoAs Oa(ny, Z/(2). It inherits a Hopf algebra structure from
EpA, and

(3.5.3) A(n)x = EgAy — G(n).
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is an extension of Hopf algebras (A1.1.15). Hence we have a Cartan—Eilenberg
spectral sequence (A1.3.14), i.e.,

3.5.4. LEMMA. Associated with the extension 3.5.3 there is a spectral sequence
with
Byt Bxe, (2/(2),Ext (2/(2), M)

with d,: E$vs2bv — psitrs:=rtLbu conperging to Extgo'zsf’t’u for any EgA, co-
module M. [Extgn, (Z/(2), M) is the T referred to above.] O

3.5.5. REMARK. According to A1.3.11(a) the cochain complex W used to com-
pute Ext over G(n). can be taken to be one of A(n).-comodules. The Es-term of
the spectral sequence is the A(n), Ext of the cohomology of W, and the F.-term
is the cohomology of the double complex obtained by applying C’Z( n)*( ) (A1.2.11)
to W. This W is the direct sum [as a complex of A(n).-comodules] of its com-
ponents for various u (the filtration grading). The differentials are computed by
analyzing this W.

Next observe that EgA, and G(n), contain a sub-Hopf algebra A£n+1) isomor-
phic up to regrading to A,; ie., A" c EyA, is the image of P& c A,.
The isomorphism follows from the fact that the filtration degree 2° — 1 of EEHH

coincides with the topological degree of &;. Hence we have
s, s, n+1 ,
(3.5.6) Bxty (Z/(2),2/(2)) = Bt 200 (2/(2), 2/(2))

and we can take these groups as known inductively.
Let L(n)« = G(n)s ® ;1) Z/(2) and get an extension

(3.5.7) AMY 5 G(n), — Ln),.
L(n). is easily seen to be cocommutative with
(3.5.8) Exty ) (Z/(2),2/(2)) = P(hi;: 0 < j <n, i>n+2-j),

J(ot_ itj—n—1_ =9J . .
L2(2-1).2 ! corresponds as usual to £2’. This Ext is a

where hz’J' € Ext

comodule algebra over A,(an) (A1.3.14) with coaction given by
itj—k

(3.5.9) Glhig) =D & @hig,

k>0

Hence by A1.3.14 we have

3.5.10. LEMMA. The extension 3.5.7 leads to a spectral sequence as in 3.5.4
with

Byt = Bl (2/(2), Bxtyyly (2/(2), M)

converging to ExtsGl(xf’t’u(Z/(Q),M) for any G(n).-comodule M. For M =7Z/(2),
the Ext over L(n). and its comodule algebra structure are given by 3.5.8 and 3.5.9.
Moreover, this spectral sequence collapses from FEs.

Proor. All is clear but the last statement, which we prove by showing that
G(n). possesses an extra grading which corresponds to s, in the spectral sequence.
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It will follow that differentials must respect this grading so d, = 0 for r > 2. Let
f_w- € G(n). be the element corresponding to {?7 The extra grading is defined by

_ 1 ifj<n
1€i.51 = e
0 ifj>n.

Since the 5” for 7 < n are all exterior generators, the multiplication in G(n).
respects this grading. The coproduct is given by

Aig) = &j @ Gimhnss-
k

If j > n+ 1 then all terms have degree 0, and if j < n, we have k +j > n+ 2 so
all terms have degree 1, so A also respects the extra grading. O

We now describe how to use these results to compute Ext. If one wants to com-
pute through a fixed range of dimensions, the isomorphism 3.5.6 reduces the calcula-
tion of the spectral sequence of 3.5.10 to a much smaller range, so we assume induc-
tively that this has been done. The next step is to compute in the spectral sequence
of 3.5.4. The input here is the trigraded A(n).-comodule Extg'é’;)*(Z/(Q), Z/(2)).
We began this discussion by assuming we could compute Ext over A(n),, but in
practice we cannot do this directly if n > 1. However, for 0 < m < n we can reduce
an A(n), calculation to an A(m), calculation by proceeding as above, starting with
the mth filtration of A(n), instead of A.. We leave the precise formulation to the
reader. Thus we can compute the A(n), Ext of Extgi;f)*(Z/(Q), Z/(2)) separately
for each wu; the slogan here is divide and conquer.

This method can be used to compute the cohomology of the Hopf algebra B
(3.5.1) relevant to M Sp. Filtering with n = 1, the SS analogous to 3.5.4 has

Ey = Ext 1), (Z/(2), P(h21, hao, h31, hao, - - - )

with l/}(hi+170) = 51 X h7;71 +1® hi+1,0 and QZJ(hZ,l) =1® hi71 for ¢ Z 2. This Ext
is easy to compute. Both this spectral sequence and the analog of the one in 3.5.2
collapse from F5. Hence we get a description of the cohomology of B which is more
concise though less explicit than that of Kochman [1].

In Section 3 we described A and hinted at an unstable Adams spectral sequence.
For more on this theory see Bousfield and Kan [3], Bousfield and Curtis [4], Ben-
dersky, Curtis, and Miller [1], Curtis [1], and Singer [3, 4, 5]. A particularly
interesting point of view is developed by Singer [2].

In Mahowald [3] the double suspension homomorphism

A@2n—1) = A2n +1)

is studied. He shows that the cohomology of its cokernel W(n) is isomorphic to
Ext%'(Z/(2), 22" "1 A(0),) for t — s < 5s+ k for some constant k, i.e., above a line
with slope 1. This leads to a similar isomorphism between H*(A(2n+1)/A(1)) and
Exta_(Z/(2), H,(RP?")). In Mahowald [4] he proves a geometric analog, showing
that a certain subquotient of ,(S?"*1) is isomorphic to that of 7% (RP?"). The
odd primary analog of the algebraic result has been demonstrated by Harper and
Miller [1]. The geometric result is very likely to be true but is still an open question.
This point was also discussed in Section 1.5.
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Now we will describe some unpublished work of Mahowald concerning gener-
alizations of A. In 3.3.3 we defined subcomplexes A(n) C A by saying that an
admissible monomial A;, -+ A;, is in A(n) if 43 < n. The short exact sequence

A(n —1) = A(n) — S"A(2n — 1)

led to the algebraic EHP spectral sequence of 3.3.7. Now we define quotient com-
plexes A(n) by A(n) = A/A(Xo, ..., A1), so A(0) = A and lim MA(n) = Z/(2).
Then there are short exact sequences

(3.5.11) 0 — S"A{(n+1)/2) = A(n) » Aln+1) =0

where the fraction (n+1)/2 is taken to be the integer part thereof. This leads to a
spectral sequence similar to that of 3.3.7 and an inductive procedure for computing
H.(A).

Next we define A,-comodules B,, as follows. Define an increasing filtration
on A, (different from those of 3.5.2) by &; € Fyi and let B,, = F),. The B, is realized
by the spectra of Brown and Gitler [3]. They figure critically in the construction
of the n;’s in Mahowald [6] and in the Brown—Peterson—Cohen program to prove
that every closed smooth n-manifold immerses in R**~*(") where a(n) is the
number of ones in the dyadic expansion of n. Brown and Gitler [3] show that
Exta,(Z/(2), B,) = H*(A(n)) and that the short exact sequence 3.5.11 is realized
by a cofibration. It is remarkable that the Brown—Gitler spectra and the unstable
spheres both lead in this way to A.

Now let N = (nq,ns,...) be a nonincreasing sequence of nonnegative integers.
Let A(N) = A./(&}"",¢3™,...). This is a Hopf algebra. Let M(N) = A, Oy
Z/(2), so M(N) = P(&",£2",...). The filtration of A, defined above induces

one on M(N) and we have
SiF g M(NY) if 271 | g
(3.5.12) F;M(N)/F,_y M(N) = /2 M(NT) i \.z
0 otherwise

where N* is the sequence (nji1,n%12,...). For N = (0,0,...) A(N) = A, and
this is equivalent to 3.5.11.

3.5.13. PROPOSITION. The short exact sequence
0— F,_1M(N)— F,M(N)— F;,/F;_1 =0
is split over A(N). O
This result can be used to construct an long exact sequence of A,-comodules
(3.5.14) 0—>2Z/(2) =C¥% = Cy —Cx — -

such that C’Zlf, is a direct sum of suspensions of M (N k) indexed by sequences
(i1,12,...,1%) satisfying 1 +4; = 0 mod 2™+~ and i; < 2¢,_;. Equation 3.5.14
leads to a spectral sequence (A1.3.2) converging to Ext with

(3.5.15) EY® = Exty (Z/(2),C%).

The splitting of C% and the change-of-rings isomorphism A1.3.13 show that Ef o
is a direct sum of suspensions Ext 4y (Z/(2),Z/(2))-

The E;-term of this spectral sequence is a “generalized A” in that it consists of
copies of A(N*) Ext groups indexed by certain monomials in A. The d; is closely
related to the differential in A.
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We will desgibe the construction of 3.5.14 in more detail and then discuss some
examples. Let M(N) be the quotient in

0—Z/(2) - M(N) — M(N) — 0.

In 3.5.14 we want C%, = M(N) and Cy = @, 2" M(N'), so we need to embed
M (N) in this putative C%.. The filtration on M (N) induces ones on M(N) and
C%:; in the latter F; should be a direct sum of suspensions of M(N?'). Consider the
commutative diagram

|

| |

F,Ci, SIN(NY) ——=0

0—— Fi,lC}V

with exact rows. The upper short exact sequence splits over A(N) (3.5.13) and
hence over A(N1). Since F;_;C}; splits as above, the change-of-rings isomorphism
A1.3.13 implies that the map

Hom, (F;M(N), F;_1C%) — Homu, (F;_1M(N), F;_1C%)

is onto, so the diagonal map exists. It can be used to split the middle short exact
sequence, so the lower short exact sequence can be taken to be split and C is as
claimed.

The rest of 3.5.14 can be similarly constructed.

Now we consider some examples. If N = (0,0,---) the spectral sequence
collapses and we have the A-algebra. If N = (1,1,...) we have Extyy) =
P(ag,a1,...) as computed in 3.1.9, and the Ej-term is this ring tensored with
the subalgebra of A generated by A; with ¢ odd, which is isomorphic up to regrad-
ing with A itself. This is also the E1-term of a spectral sequence converging to the
Adams—Novikov Es-term to be discussed in Section 4.4. The SS of 3.5.15 in this
case can be identified with the one obtained by filtering A by the number of );,
with ¢ odd occurring in each monomial.

For N = (2,2,---) we have A(N) = B as in 3.5.1, so the Ej-term is Extp
tensored with a regraded A.

Finally, consider the case N = (2,1,0,0,...). We have E?’S = Ext}(). and

Ei’s =®D.-0 r4 EXt;(O)*' One can study the quotient spectral sequence obtained

by setting Ef’s =0 for k > 1. The resulting Fy = FE, is the target of a map from
Ext, and this map is essentially the one given in 3.4.19. More generally, the first
few columns of the spectral sequence of 3.5.15 can be used to detect elements in
Ext.

In Section 4 we gave some results concerning vanishing and periodicity. In
particular we got a vanishing line of slope % (for p = 2) for any connective comodule
free over A(0),. This result can be improved if the comodule is free over A(n),
for some n > 0; e.g., one gets a vanishing line of slope % forn =1, p = 2. See
Anderson and Davis [1] and Miller and Wilkerson [8].
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The periodicity in Section 4 is based on multiplication by powers of hog (p = 2)
or a; (p > 2) and these operators act on classes annihilated by some power of
hio or ag. As remarked above, this corresponds to vi-periodicity in the Adams—
Novikov spectral sequence (see Section 1.4). Therefore one would expect to find
other operators based on multiplication by powers of h, 11,0 or a, corresponding
to vy,-periodicity for n > 1. A wv,-periodicity operator should be a Massey product
defined on elements annihilated by some v,,_1-periodicity operator. Forn =2, p =
2 this phenomenon is investigated by Davis and Mahowald [1] and Mahowald [10,
11, 12].

More generally one can ask if there is an Adams spectral sequence version of the
chromatic SS (1.4.8). For this one would need an analog of the chromatic resolution
(1.4.6), which means inverting periodicity operators. This problem is addressed by
Miller [4, 7].

A wv,-periodicity operator in the Adams spectral sequence for p = 2 moves
an element along a line of slope 1/(2"*! — 2). Thus v,-periodic families of stable
homotopy elements would correspond to families of elements in the Adams spectral
sequence lying near the line through the origin with this slope. We expect that
elements in the Fo.-term cluster around such lines.

Now we will survey some other research with the Adams spectral sequence not
directly related to the previous four sections. For p = 2 and t — s < 45, differentials
and extensions are analyzed by Mahowald and Tangora [9], Barratt, Mahowald,
and Tangora [1], Tangora [5], and Bruner [2]. Some systematic phenomena in the
Es-term are described in Davis [2], Mahowald and Tangora [14], and Margolis,
Priddy, and Tangora [1]. Some machinery useful for computing Adams spectral
sequence differentials involving Massey products is developed by Kochman [4] and
Section 12 of Kochman [2]. See also Milgram [2] and Kahn [2] and Bruner et ol [1],
and Makinen [1].

The Adams spectral sequence was used in the proof of the Segal conjecture for
Z/(2) by Lin [1] and Lin et al. [2]. Computationally, the heart of the proof is the
startling isomorphism

Ext}{! (Z/(2), M) = Ext}{""'(2/(2),2/(2)),

where M is dual to the A-module Z/(2)[z,2~!] with dimz = 1 and S¢*z’ = (})2i**
(this binomial coefficient makes sense for any integer ¢). This isomorphism was
originally conjectured by Mahowald (see Adams [14]). The analogous odd primary
result was proved by Gunawardena [1]. The calculation is streamlined and gener-
alized to elementary abelian p-groups by Adams, Gunawardena, and Miller [18].
This work makes essential use of ideas due to Singer [1] and Li and Singer [1].

In Ravenel [4] we proved the Segal conjecture for cyclic groups by means of
a modified form of the Adams spectral sequence in which the filtration is altered.
This method was used by Miller and Wilkerson [9] to prove the Segal conjecture
for periodic groups.

The general Segal conjecture, which is a statement about the stable homotopy
type of the classifying space of a finite group, has been proved by Gunnar Carls-
son [1]. A related result is the Sullivan conjecture, which concerns says among other
things that there are no nontrivial maps to a finite complex from such a classifying
space. It was proved by Haynes Miller in [10] . New insight into both proofs was
provided by work of Jean Lannes on unstable modules over the Steenrod algebra,
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in particular his T-functor, which is an adjoint to a certain tensor product. See
Lannes [1], Lannes [2] and Lannes and Schwartz [3]. An account of this theory is
given in the book by Lionel Schwartz [1].

Recent work of Palmieir (Palmieri [1] and Palmieri [2]) gives a global descrip-
tion of Ext over the Steenrod algebra modulo nilpotent elements.

Finally, we must mention the Whitehead conjecture. The n-fold symmet-
ric product Sp™(X) of a space X is the quotient of the n-fold Cartesian prod-
uct by the action of the symmetric group ¥,. Dold and Thom [1] showed that
Sp>(X) = I'LnSp"(X ) is a product of Eilenberg—Mac Lane spaces whosw homo-
topy is the homotopy of X. Symmetric products can be defined on spectra and we
have Sp>(S°) = HJ, the integer Eilenbergh-Mac Lane spectrum. After localizing
at the prime p one considers

SO — SpP(S°) — SpP*(S°) — -+
and
(3.5.16) H S° « 5715pP(50) /80  £25p" (5°)/SpP(S°) = --- .

Whitehead conjectured that this diagram induces an long exact sequence of ho-
motopy groups. In particular, the map L ~1Sp?(S%)/S% — SO shouls induce a
surjection in homotopy in positive dimensions; this is the famous theorem of Kahn
and Priddy [2]. The analogous statement about Ext groups was proved by Lin [3].
Miller [6] generalized this to show that 3.5.16 induces an long exact sequence of
Ext groups. The long exact sequence of homotopy groups was established by
Kuhn [1]. The spectra in 3.5.16 were studied by Welcher [1, 2]. He showed that
H*(Spanrl (8%)/SpP" (SY)) is free over A(n)., so its Ext groups has a vanishing line
given by Anderson and Davis [1] and Miller and Wilkerson [8] and the long exact
sequence of 3.5.16 is finite in each bigrading.






CHAPTER 4

BP-Theory and the Adams—Novikov Spectral
Sequence

In this chapter we turn to the main topic of this book, the Adams-Novikov
spectral sequence. In Section 1 we develop the basic properties of MU and the
Brown-Peterson spectrum BP, using the calculation of 7, (MU) (3.1.5) and the
algebraic theory of formal group laws as given in Appendix 2. The main result is
4.1.19, which describes BP,(BP), the BP-theoretic analog of the dual Steenrod
algebra.

Section 2 is a survey of other aspects of BP-theory not directly related to this
book.

In Section 3 we study BP,(BP) more closely and obtain some formulas, notably
4.3.13, 4.3.18, 4.3.22, and 4.3.33, which will be useful in subsequent calculations.

In Section 4 we set up the Adams—Novikov spectral sequence and use it to com-
pute the stable homotopy groups of spheres through a middling range of dimensions,
namely < 24 for p = 2 and < 2p® — 2p — 1 for p > 2.

1. Quillen’s Theorem and the Structure of BP,(BP)

In this section we will construct the Brown—Peterson spectrum BP and de-
termine the structure of its Hopf algebroid of cooperations, BP,(BP), i.e., the
analog of the dual Steenrod algebra. This will enable us to begin computing with
the Adams-Novikov spectral sequence (ANSS) in Section 4. The main results are
Quillen’s theorem 4.1.6, which identifies 7, (MU) with the Lazard ring L (A2.1.8);
the Landweber—Novikov theorem 4.1.11, which describes MU, (MU); the Brown—
Peterson theorem 4.1.12, which gives the spectrum BP; and the Quillen—Adams
theorem 4.1.19, which describes BP,(BP).

We begin by informally defining the spectrum MU. For more details see Milnor
and Stasheff [5]. Recall that for each n > 0 the group of complex unitary n x n
matrices U(n) has a classifying space BU(n). It has a complex n-plane bundle ~,
over it which is universal in the sense that any such bundle £ over a paracompact
space X is the pullback of ,, induced by a map f: X — BU(n). Isomorphism
classes of such bundles £ are in one-to-one correspondence with homotopy classes of
maps from X to BU(n). Any C™-bundle £ has an associated disc bundle D(§) and
sphere bundle S(§). The Thom space T'(§) is the quotient D(£)/S(€). Alternatively,
for compact X, T'(£) is the one-point compactification of the total space of &.

MU (n) is T(yn), the Thom space of the universal n-plane bundle ~, over
BU(n). The inclusion U(n) — U(n + 1) induces a map BU(n) — BU(n + 1).
The pullback of 7,41 under this map has Thom space X2MU (n). Thom spaces are
functorial so we have a map Y?MU(n) — MU (n + 1). Together these maps give
the spectrum MU.

103
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It follows from the celebrated theorem of Thom [1] that 7, (MU) is isomorphic
to the complex cobordisrn ring (see Milnor [4]) which is defined as follows. A stably
complex manifold is one with a complex structure on its stable normal bundle.
(This notion of a complex manifold is weaker than others, e.g., algebraic, analytic,
and almost complex.) All such manifolds are oriented. Two closed stably complex
manifolds M; and Ms are cobordant if there is a stably complex manifold W whose
boundary is the disjoint union of M; (with the opposite of the given orientation)
and Ms. Cobordism, i.e., being cobordant, is an equivalence relation and the set of
equivalence classes forms a ring (the complex cobordism ring) under disjoint union
and Cartesian product. Milnor and Novikov’s calculation of 7, (MU) (3.1.5) implies
that two such manifolds are cobordant if they have the same Chern numbers. For
the definition of these and other details of the above we refer the reader to Milnor
and Stasheff [5] or Stong [1].

This connection between MU and complex manifolds is, however, not relevant
to most of the applications we will discuss, nor is the connection between MU and
complex vector bundles. On the other hand, the connection with formal group laws
(A2.1.1) discovered by Quillen [2] (see 4.1.6) is essential to all that follows. This
leads one to suspect that there is some unknown formal group theoretic construction
of MU or its associated infinite loop space. For example, many well-known infinite
loop spaces have been constructed as classifying spaces of certain types of categories
(see Adams [9], section 2.6), but to our knowledge no such description exists for
MU. This infinite loop space has been studied in Ravenel and Wilson [2].

In order to construct BP and compute BP,(BP) we need first to analyze MU.
Our starting points are 3.1.4, which describes its homology, and the Milnor-Novikov
theorem 3.1.5, which describes its homotopy and the behavior of the Hurewicz map.
The relevant algebraic information is provided by A2.1, which describes universal
formal group laws and related concepts and which should be read before this section.
The results of this section are also derived in Adams [5].

Before we can state Quillen’s theorem (4.1.6), which establishes the connection
between formal group laws and complex cobordism, we need some preliminary
discussion.

4.1.1. DEFINITION. Let E be an assoctative commutative ring spectrum. A
complex orientation for E is a class g € E*(CP>) whose restriction to
E(CPY) ~ E?(5?) = 1o(E)
is 1, where CP™ denotes n-dimensional complex projective space. (I
This definition is more restrictive than that given in Adams [5] (2.1), but it is
adequate for our purposes.

Of course, not all ring spectra (e.g., bo) are orientable in this sense. Two
relevant examples of oriented spectra are the following.

4.1.2. EXaMPLE. Let E = H, the integral Eilenberg-Mac Lane spectrum. Then
the usual generator of H2(CP™>) is a complex orientation z .

4.1.3. EXAMPLE. Let E = MU. Recall that MU is built up out of Thom spaces
MU (n) of complex vector bundles over BU(n) and that the map BU(n) — MU (n)
is an equivalence when n = 1. The composition

CP> = BU(1) = MU(1) - MU
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gives a complex orientation zypy € MU?(CP>). Alternatively, zyp could be
defined to be the first Conner-Floyd Chern class of the canonical complex line
bundle over CP> (see Conner and Floyd [1]).

4.1.4. LEMMA. Let E be a complex oriented ring spectrum.

(a) E*(CP®) = E*(pt)[[u]].

(b) E*(CP>* x CP*>®) = E*(pt)[[zpg ® 1,1 ® xg]].

(c) Let t: CP>® x CP>® — CP be the H-space structure map, i.e., the map
corresponding to the tensor product of complex line bundles, and let Fg(x,y) €
E*(pt)[[z, y]] be defined by t*(zg) = Fp(rr®1,1Q,,). Then Fg is a formal group
law (A2.1.1) over E*(pt).

PROOF. For (c), the relevant properties of F follow from the fact that CP>
is an associative, commutative H-space with unit.

For (a) and (b) one has the Atiyah-Hirzebruch spectral sequence (AHSS)
H*(X; E*(pt)) = E*(X) (see section 7 of Adams [4]). For X = CP the class zg
represents a unit multiple of 2y € H?(CP>). Hence zg and all of its powers are
permanent cycles so the spectral sequence collapses and (a) follows. The argument
for (b) is similar. O

Hence a complex orientation zg leads to a formal group law Fg over E*(pt.).
Lazard’s theorem A2.1.8 asserts that Fg is induced by a homomorphism 0g: L —
E*(pt.), where L is a certain ring over which a universal formal group law is defined.
Recall that L = Z[z1,x2,...], where z; has degree 2i. There is a power series over
L®Q

log(x) = Zmiaﬁ”l

i>0
where mg = 1 such that
L®Q=Q[my,msy...]
and
log(F(x,y)) = log(z) + log(y)

This formula determines the formal group law F(x,y).
The following geometric description of 6,sr, while interesting, is not relevant
to our purposes, so we refer the reader to Adams [5, Theorem 9.2] for a proof.

4.1.5. THEOREM (Mischenko [1]). The element (n + 1)y (my,) € m (MU) s
represented by the complex manifold CP™. O

4.1.6. THEOREM (Quillen [2]). Oyp is an isomorphism. O
We will prove this with the help of the diagram

L J M

o (MU) —~ H, (MU)

where M = Z[my,my...] is defined in A2.1.9(b) and contains L. The map ¢ will
be constructed below. Recall [A2.1.10(b)] that modulo decomposables in M, the
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image of j is generated by

pm; if i = p¥ — 1 for some prime p,
m; otherwise.
Recall also that H.(MU) = Z[by, b, . ..] [3.1.4(a)] and that modulo decomposables
in H,(MU), the image of h is generated by
{ —pb; if i = p¥ — 1 for some prime p,

—b; otherwise

Hence it suffices to construct ¢ and show that it is an isomorphism.

Before doing this we need two lemmas.

First we must compute E,(MU). It follows easily from 4.1.4(a) that E,(CP>)
is a free 7, (F) module on elements F dual to 2. We have a stable map CP> —
Y2MU and we denote by bF the image of ﬂiEH.

4.1.7. LEMMA. If E is a complex oriented ring spectrum then
E.(MU) = 7. (E)bE, b5 .. .].

PROOF. We use the Atiyah-Hirzebruch spectral sequence H.(MU, 7. (E)) —
E.(MU). The bF represent unit multiples of b; € Ha;(MU) [3.1.4(a)], so the b; are
permanent cycles and the Atiyah—Hirzebruch spectral sequence collapses. O

If E is complex oriented so is E A MU. The orientations xg and z;y both
map to orientations for E A MU which we denote by &g and Z,;y, respectively.
We also know by 4.1.7 that

m.(EANMU) = E.(MU) = 7, (E)[bF]

4.1.8. LEMMA. Let E be a complex oriented ring spectrum. Then in (E A
MU)?(CP>).

- _2 : Eit+1
MU = bi Tp
i>0

where by = 1. This power series will be denoted by gr(Zg).
Proor. We will show by induction on n that after restricting to CP™ we get
iy =Y bPEGT
0<i<n

For n = 1 this is clear since zp and xp;y restrict to the canonical generators of
E*(CP') and MU*(CP'). Now notice that x% is the composite

CcP" — 8% 5 22" R

where the first map is collapsing to the top cell and the second map is the unit.
Also bZ_, is by definition the composite

on B n zMUNE 2
St = CP"NE —"=Y¥*MUAE.
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Hence we have a diagram

cprl CP" 1 AE
zymuNE
g
CP"— > CP"ANE M ey A E
CP"Am S2MUAM
N. CP"AEANE™MNENE oy AEAE
Tp
ENE

Pn /M;

S2n —>-S2n/\E

where m: E AN E — FE is the multiplication and ¢ is the cofiber projection of
(CP"Am) (BEAE). is now split as (CP" *AE)V(S*"AE) and xyyy AE: CPAE —
Y2MU A E is the sum of (27 A E)g and the map from S?" A E. Since x s is the
composition
CP" — CP" AN E XMUNE s2 U A E
and the lower composite map from CP" to X2MU A E is bZ_, 2%, the inductive
step and the result follow. O
4.1.9. COROLLARY. In m.(E A MU)[[z,y]],

Fuu(z,y) = 9o(Fe(gs' (), 95" (1)))-
PROOF. In (EAMU)*(CP>® x CP>),
Fyu(@Epo 1,190 200) =t (zam0)
=ge(t"(Zr))
=g9e(Fe(tr®1,1®2g))
= 98(Fe(gg (emv) © 1,1@ g5 (2m0)))-
O

Now we are ready to prove 4.1.6. The map ¢ in 4.1.6 exists if the logarithm of
the formal group law defined over H,(MU) by hfyy is integral, i.e., if the formal
group law is isomorphic to the additive one. For £ = H, Fg(z,y) =  + y, so the
formal group law over H,(MU) = m.(HAMU) is indeed isomorphic to the additive
one, so ¢ exists. Moreover, log g(Zg) = &g, so

bp =Y ¢(mi)iyl =gy (Emv)

by 4.1.9. Tt follows that Y ¢(m;)z**! is the functional inverse of > b;z't1, i.e.,

(4.1.10) hOnr exp(x) = Z biz'
i>0
where exp is the functional inverse of the logarithm (A2.1.5), so ¢(m;) = —b,,

modulo decomposables in H*(MU) and 4.1.6 follows.

Now we will determine the structure of MU,(MU). We know it as an algebra
by 4.1.7. In particular, it is a free m,(MU) module, so MU is a flat ring spectrum.
Hence by 2.2.8 (7.(MU), MU,(MU)) is a Hopf algebroid (A1.1.1). We will show
that it is isomorphic to (L, LB) of A2.1.16. We now recall its structure. As an
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algebra, LB = L[by,bs ...] with deg b; = 2i. There are structure maps ¢: LB — L
(augmentation), nr,nr: L — LB (left and right units), A: LB — LB ® LB
(coproduct), and ¢: LB — LB (conjugation) satisfying certain identities listed in
Al.1.1.

e: LB — L is defined by (b;) = 0; n: L — LB is the standard inclusion,
while np: L® Q — LB ® Q is given by

i+1
> nr(mi) =Y m; (Z C(bj)> ;

i>0 i>0 §>0

where mg = by = 1;

STAD) =) (Z bi>j+l ® by;

i>0 720 \i>0
and ¢: LB — LB is determined by ¢(m;) = nr(m;) and

1+1
i>0 §>0
Note that the maps 7y and ng, along with the identities of A1.1.1, determine the
remaining structure maps €, A, and c.

The map 6y of 4.1.6 is an isomorphism which can be extended to LB by
defining 05,17 (b;) to be bMU € MUy (MU) (4.1.8).

4.1.11. TueEOREM  (Novikov  [1], Landweber  [2]). The map
Opmuv: LB — MU.(MU) defined above gives a Hopf algebroid isomorphism
(L,LB) = (m(MU), MU, (MU)).

PRrOOF. Recall that the Hopf algebroid structure of (L, LB) is determined by
the right unit ng: L — LB. Hence it suffices to show that 0,y respects ng. Now
the left and right units in MU,(MU) are induced by MU A S® — MU A MU and
SO A MU — MU A MU, respectively. These give complex orientations x; and zg
for MU A MU and hence formal group laws (4.1.4) Fr and Fy, over MU,(MU).
The b; in LB are the coefficients of the power series of the universal isomorphism
between two universal formal group laws. Hence it suffices to show that xg =
Yo bMUzt but this is the special case of 4.1.9 where E = MU. O

Our next objective is

4.1.12. THEOREM. [Brown and Peterson [1], Quillen [1]] For each prime p there
is a unique associative commutative ring spectrum BP which is a retract of MU,
(2.1.12) such that the map g: MU,y — BP is multiplicative,

(a) m.(BP) ® Q = Q[gs(myr_1): k > 0] with g.(m,) =0 for n # p* —1;

(b) H.(BP: Z/(p)) = P, (3.1.6) as comodule algebras over the dual Steenrod
algebra A, (3.1.1); and

(¢) m(BP)=Z[v1,vs . ..] with v, €man 1) and the composition . (9)0ru,,,
factors through the map L x Z,y — V' of A2.1.25, giving an isomorphism from V
to m.(BP). O

The spectrum BP is named after Brown and Peterson, who first constructed
it via its Postnikov tower. Recall (3.1.9) that H.(MU;Z/(p)) splits as an A,-
comodule into many copies of P,. Theorem 4.1.12 implies that there is a corre-
sponding splitting of MU(,). Since P, is dual to a cyclic A-module, it is clear that
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BP cannot be split any further. Brown and Peterson [1] also showed that BP can
be constructed from H (the integral Eilenberg-Mac Lane spectrum) by killing all
of the torsion in its integral homology with Postnikov fibrations. More recently,
Priddy [1] has shown that BP can be constructed from S?p) by adding local cells
to kill off all of the torsion in its homotopy.

The generators v, of 7.(BP) will be defined explicitly below.

Quillen [2] constructed BP in a more canonical way which enabled him to
determine the structure of BP,(BP). BP bears the same relation to p-typical
formal group laws (A2.1.17) that MU bears to formal group laws as seen in 4.1.6.
The algebraic basis of Quillen’s proof of 4.1.12 is Cartier’s theorem A2.1.18, which
states that any formal group law over a Z,-algebra is canonically isomorphic to
p-typical one. Accounts of Quillen’s work are given in Adams [5] and Araki [1].

Following Quillen [2], we will construct a multiplicative map g: MUy, —
MU,y which is idempotent, i.e., ¢> = g. This map will induce an idempotent
natural transformation or cohomology operation on MU, (*p)(—). The image of this
map will be a functor satisfying the conditions of Brown’s representability theorem
(see Brown [2] or, in terms of spectra, 3.12 of Adams [4]) and will therefore be rep-
resented by a spectrum BP. The multiplicativity of BP and its other properties
will follow from the corresponding properties of g.

To construct g we need two lemmas.

4.1.13. LEMMA. Let E be an oriented ring spectrum. Then orientations of E are
in one-to-one correspondence with multiplicative maps from MU to E; i.e., given
an orientation yr € E*(CP>), there is a unique multiplicative map g: MU — E
such that g*(xpu) = yr and vice versa.

PrROOF. By 4.1.4, E*(CP*>) = 7. (E)[[zg]] so we have
ye = flep) =Y fi't!
i>0
with fo = 1 and f; € m;(E). Using arguments similar to that of 4.1.8 and 4.1.6
one shows
(4.1.14) E*(MU) = Homy, ,, (E«(MU), 7. (E))
and
E*(CP*) = Homy, ,, (E.(CP%),m.(E)).
A diagram chase shows that a map MU — F is multiplicative if the corresponding
map E.(MU) — m.(E) is a 7. (E)-algebra map. The map yg corresponds to the
map which sends ﬁg_l to f; and ﬁﬁ_l by definition maps to b¥ € Fq;(MU), so we
let g be the map which sends bF to f;. O

4.1.15. LEMMA. A map g: MU,y — MU,y (or MU — MU) is determined up
to homotopy by its behavior on m,.

PrOOF. We do the MU case first. By 4.1.14,
MU*(MU) = Hom, MU, (MU),7.(MU)).

This object is torsion-free so we lose no information by tensoring with Q. It follows
from 4.1.11 that MU,(MU) ® Q is generated over m,(MU) ® Q by the image of
1R, which is the Hurewicz map. Therefore the map

MU*(MU) @ Q = Homq(m.(MU) @ Q, 7. (MU) ® Q)

*(AlU)(
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is an isomorphism, so the result follows for MU.
For the MU, case we need to show

(4.1.16) MU, (MUy)) = MU (MU) ® Z,).
This will follow from 4.1.13 if we can show that the map
(4.1.17) MU(*p)(MU> — MU(*p)(MU(P))

is an isomorphism, i.e., that MU(*p)(C) = 0, where C' is the cofiber of MU — MUj,).
Now C' is trivial when localized at p, so any p-local cohomology theory vanishes on
it. Thus 4.1.15 and the MU, case follow. O

We are now ready to prove 4.1.12. By 4.1.13 and 4.1.15 a multiplicative map
g: MUy — MU, is determined by a power series f(x) over m,(MU(,)). We, take
f(z) to be as defined by A2.1.23. By 4.1.15 the corresponding map g is idempotent
if m.(9) ® Q is. To compute the latter we need to see the effect of g* on

log(zpu) = Zmzm’]\}b € MU?*(CP>™) ® Q.

Let FZ’V[U(m be the formal group law associated with the orientation f(z ), and
let mog(x) be its logarithm (A2.1.6). The map g¢g* preserves formal group laws
and hence their logarithms, so we have ¢g*(log(zyv)) = mog(f(xpu)). By A2.1.24
mog(x) = Y ;o mpk,lmpk and it follows that m.(g) has the indicated behavior;
i.e., we have proved 4.1.12(a).

For (b), we have H,(BP;Q) = 7.(BP) ® Q, and H.(BP;Z,)) is torsionfree,
so H.(BP;Z/(p)) = P. as algebras. Since BP is a retract of MU, its homology
is a direct summand over A, and (b) follows.

For (c) the structure of m.(BP) follows from (a) and the fact that BP is a
retract of MU(,. For the isomorphism from V' we need to complete the diagram

LoZp) ——V
I

GI\/IU(p)\L |
\

W*(MU(p)) L> Tr*(BP)

The horizontal maps are both onto and the left-hand vertical map is an isomorphism
so it suffices to complete the diagram tensored with Q. In this case the result follows
from (a) and A2.1.25. This completes the proof of 4.1.12.

Our last objective in this section is the determination of the Hopf algebroid
(A1.1.1) (m«(BP),BP.(BP)). (Proposition 2.2.8 says that this object is a Hopf
algebroid if BP is flat. It is since MU, is flat.) We will show that it is isomorphic
to (V,VT) of A2.1.27, which bears the same relation to p-typical formal group
laws that (L, LB) (A2.1.16 and 4.1.11) bears to ordinary formal group laws. The
ring V' (A2.1.25), over which the universal p-typical formal group law is defined, is
isomorphic to . (BP) by 4.1.12(c). V ® Q is generated by m,:._; for ¢ > 0, and we
denote this element by A;. Then from A2.1.27 we have

4.1.18. THEOREM. In the Hopf algebroid (V,VT) (see Al.1.1)

(a) V = Zpy[vr,v2, ... ] with |v,| = 2(p" — 1),

(b) VT = Vty,ta,...] with |t,] = 2(p™ — 1), and

(¢) np: V. — VT is the standard inclusion and ¢: VT — V is defined by
= 0: 6(1}i) = V5.

pi7

e(t:)
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(d) nr: V. — VT is determined by nr(An) = D g<i<n )\itfj_i, where Ao =
to=1, T
(e) A is determined by

i @ it+j
Z /\iA(t]’)p = Z /\ztg ®t£ s
4,520 i,5,k>0
and
(f) ¢ is determined by

i iti
St et =D N
4,4,k>0 i>0
(g) The forgetful functor from p-typical formal group laws to formal group laws
induces a surjection of Hopf algebroids (A1.1.19)

(L®Z(p),LB®Z(p)) — (V,VT). (]

4.1.19. THEOREM (Quillen [2], Adams [5]). The Hopf algebroid
(m«(BP), BP.(BP)) is isomorphic to (V,VT) described above.

ProoOF. Counsider the diagram
(L,LB) ® Zy ——— (V,VT)

|
g \i
MU,(MU) ® Z,) —~~ (n.(BP), BP,(BP)).

The left-hand map is an isomorphism by 4.1.11 and the horizontal maps are both
onto by (g) above and by 4.1.12. Therefore it suffices to complete the diagram with
an isomorphism over Q. One sees easily that VT ® Q and BP,(BP)® Q are both
isomorphic to V@V ® Q. O

2. A Survey of BP-Theory

In this section we will give an informal survey of some aspects of complex
cobordism theory not directly related to the Adams—Novikov spectral sequence.
(We use the terms complex cobordism and BP interchangeably in light of 4.1.12.)
Little or no use of this material will be made in the rest of the book. This survey
is by no means exhaustive.

The history of the subject shows a movement from geometry to algebra. The
early work was concerned mainly with applications to manifold theory, while more
recent work has dealt with the internal algebraic structure of various cohomol-
ogy theories and their applictions to homotopy theory. The present volume is, of
course, an example of the latter. The turning point in this trend was Quillen’s
theorem 4.1.6, which established a link with the theory of formal groups treated in
Appendix 2. The influential but mostly unpublished work of Jack Morava in the
early 1970s was concerned with the implications of this link.

Most geometric results in the theory, besides the classification of closed mani-
folds up to cobordism, rest on the notion of the bordism groups £, (X) of a space X,
first defined by Conner and Floyd [2]. §2,(X) is the group (under disjoint union)
of equivalence classes of maps from closed n-dimensional manifolds (possibly with
some additional structure such as an orientation or a stable complex structure)
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to X. Two such maps f;: M; — X (i = 1,2) are equivalent if there is a map
f: W — X from a manifold whose boundary is M; U Ms with f extending f; and
fo. It can be shown (Conner and Floyd [2]) that the functor Q. (—) is a generalized
homology theory and that the spectrum representing it is the appropriate Thom
spectrum for the manifolds in question. For example, if the manifolds are stably
complex (see the beginning of Section 1) the bordism theory, denoted by QY (—),
coincides with MU, (—), the generalized homology theory represented by the spec-
trum MU, i.e., QY(X) = m, (MU A X). The notation Q.(—) with no superscript
usually denotes the oriented bordism group, while the unoriented bordism group is
usually denoted by N, (—).

These bordism groups are usually computed by algebraic methods that use
properties of the Thom spectra. Thom [1] showed that MO, the spectrum rep-
resenting unoriented bordism, is a wedge of mod (2) Eilenberg-Mac Lane spectra,
so N.(X) is determined by H.(X;Z/(2)). MSO (which represents oriented bor-
dism) when localized at the prime 2 is known (Stong [1, p.209]) to be a wedge of
integral and mod (2) Eilenberg-Mac Lane spectra, so Q.(X) ) is also determined
by ordinary homology. Brown and Peterson [1] showed that when localized at any
odd prime the spectra M SO, MSU, and M Sp as well as MU are wedges of vari-
ous suspensions of BP, so the corresponding bordism groups are all determined by
BP,.(X). Conner and Floyd [2] showed effectively that BP,(X) is determined by
H.(X;Z,)) when the latter is torsion-free.

For certain spaces the bordism groups have interesting geometric interpreta-
tions. For example, 2, (BO) is the cobordism group of vector bundles over oriented
manifolds. Since H,(BSO) has no odd torsion, it determines this group. If X, is
the nth space in the Q-spectrum for MSO, then Q.(X,,) is the cobordism group
of maps of codimension n between oriented manifolds. The unoriented analog was
treated by Stong [3] and the complex analog by Ravenel and Wilson [2].

For a finite group G, Q.(BG) is the cobordism group of oriented manifolds
with free G-actions, the manifolds mapped to BG being the orbit spaces. These
groups were studied by Conner and Floyd [2] and Conner [4]. Among other things
they computed Q. (BG) for cyclic G. In Landweber [6] it was shown that the map
MU,(BG) — H,(BG) is onto iff G has periodic cohomology. In Floyd [1] and tom
Dieck [1] it is shown that the ideal of 7, (MU) represented by manifolds on which
an abelian p-group with n cyclic summands can act without stationary points is
the prime ideal I,, defined below. The groups BP.(BG) for G = (Z/(p))™ have
been computed by Johnson and Wilson [5].

We now turn to certain other spectra related to MU and BP. These are con-
structed by means of either the Landweber exact functor theorem (Landweber [3])
or the Sullivan—Baas construction (Baas [1]), which we now describe. Dennis Sul-
livan (unpublished, circa 1969) wanted to construct “manifolds with singularities”
(admittedly a contradiction in terms) with which any ordinary homology class could
be represented; i.e., any element in H,(X;Z) could be realized as the image of the
fundamental homology class of such a “manifold” M under some map M — X.
It was long known that not all homology classes were representable in this sense
by ordinary manifolds, the question having been originally posed by Steenrod. (I
heard Sullivan begin a lecture on the subject by saying that homology was like the
weather; everybody talks about it but nobody does anything about it.)
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In terms of spectra this nonrepresentability is due to the fact that MU (if we
want our manifolds to be stably complex) is not a wedge of Eilenberg-Mac Lane
spectra. The Sullivan—Baas construction can be regarded as a way to get from MU
to H.

Let y € m(MU) be represented by a manifold X. A closed n-dimensional
manifold with singularity of type (y) (n > k) is a space W of the form AU(BxCM),
where C'M denotes the cone on a manifold M representing y, B is a closed (n—k—1)-
dimensional manifold, A is an n-dimensional manifold with boundary B x M, and
A and B x CM are glued together along B x M. It can be shown that the bordism
group defined using such objects is a homology theory represented by a spectrum
C(y) which is the cofiber of

SEMU Y MU, so m.C(Y) =m.(MU)/y.

This construction can be iterated any number of times. Given a sequence y1, Y2, - - -
of elements in 7, (MU) we get spectra C(y1,¥2,.-.Yn) and cofibrations

S lCy, Y1) = Cy, - Y1) = CY, -3 Yn)-

If the sequence is regular, i.e., if y,, is not a zero divisor in m,(MU)/(y1, .-+, Yn—1),
then each of the cofibrations will give a short exact sequence in homotopy, so we
get

Te(CW1s -5 yn)) = T(MU)/ (Y1, -+, yn)-

In this way one can kill off any regular ideal in 7, (MU). In particular, one
can get H by killing (x1,z2,...). Sullivan’s idea was to use this to show that any
homology class could be represented by the corresponding type of manifold with
singularity. One could also get BP by killing the kernel of the map . (MU) —
7« (BP) and then localizing at p. This approach to BP does not reflect the splitting
of MU(p)

Much more delicate arguments are needed to show that the resulting spectra
are multiplicative (Shimada and Yagita [1], Morava [1], Mironov [1]), and the proof
only works at odd primes. Once they are multiplicative, it is immediate that they
are orientable in the sense of 4.1.1.

The two most important cases of this construction are the Johnson—Wilson
spectra BP(n) (Johnson and Wilson [2]) and the Morava K-theories K (n) (Morava’s
account remains unpublished; see Johnson and Wilson [3]).

BP(n) is the spectrum obtained from BP (one can start there instead of
MU since BP itself is a product of the Sullivan-Baas construction) by killing
(Vn+1,Un42, ... ) C m(BP). One gets

T (BP(n)) = Zy[v1, ..., v4)
and
H.(BP(n),Z/(p)) = P« ® E(Tnt1,Tnt2,---)-
(It is an easy exercise using the methods of Section 3.1 to show that a connec-
tive spectrum with that homology must have the indicated homotopy.) One has
fibrations
»2e" =V BP(n) 22 BP(n) — BP(n —1).
BP(0) is H,y and BP(1) is a summand of bu,, the localization at p of the
spectrum representing connective complex K-theory. One can iterate the map

vy : B2P" "V BP(n) — BP(n)
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and form the direct limit
E(n) =lig 2"~V BP(n).

E(1) is a summand of periodic complex K-theory localized at p. Johnson and
Wilson [2] showed that

E(n).(X) = BP.(X) ®5p, E(n)..

E(n) can also be obtained by using the Landweber exact functor theorem below.

The BP(n) are interesting for two reasons. First, the fibrations mentioned
above split unstably; i.e., if BP(n)y is the kth space in the @-spectrum for BP(n)
(i.e., the space whose homotopy starts in dimension k) then

BP<n>k; ~ BP(?’L - 1>k X BP<n>k+2(pn71)

for k < 2(p™ —1)/(p — 1) (Wilson [2]). This means that if X is a finite complex
then BP,(X) is determined by BP(n).(X) for an appropriate n depending on the
dimension of X.

The second application of BP(n) concerns Hom dim BP,(X), the projective
dimension of BP,(X) as a module over 7,(BP), known in some circles as the ugli-
ness number. Johnson and Wilson [2] show that the map BP,(X) — BP(n).(X)
is onto iff Homdim BP,(X) < n 4+ 1. The cases n = 0 and n = 1 of this were
obtained earlier by Conner and Smith [3].

We now turn to the Morava K -theories K(n). These spectra are periodic, i.e.,
»2@" -V K (n) = K(n). Their connective analogs k(n) are obtained from BP by
killing (p,v1,...,Un—1,Un+1,Vnt2,...). Thus one has m.(k(n)) = Z/(p)[v,] and
H.(k(n),Z/(p)) = A/(Qn)«. One has fibrations

220" V() 2 k(n) — HZ/(p),

and one defines '
K(n) = lim 5720 Dg(n).

K(1) is a summand of mod p complex K-theory and it is consistent to define K (0)
to be H(Q), rational homology.

The coefficient ring . (K (n)) = Fp[v,, v, '] is a graded field in the sense that
every graded module over it is free. One has a Kiinneth isomorphism

K(0).(X x V) = K(0).(X) @ sc(ny) K(n)-(Y).

This makes K (n).(—) much easier to compute with than any of the other theories
mentioned here. In Ravenel and Wilson [3] we compute the Morava K-theories of
all the Eilenberg—Mac Lane spaces, the case n = 1 having been done by Anderson
and Hodgkin [2]. We show that for a finite abelian group G, K(n).(K(G,m)) is
finite-dimensional over 7, (K (n)) for all m and n, and is isomorphic to K (n).(pt)
it m >n. K(n+ 1)*K(Z,m + 2) for m,n > 0 is a power series ring on (7))
variables. In all cases the K (n)-theory is concentrated in even dimensions. These
calculations enabled us to prove the conjecture of Conner and Floyd [2] which
concerns BP,(B(Z/p)™).

To illustrate the relation between the K (n)’s and BP we must introduce some
more theories. Let I,, = (p,v1,...,0n—1) C m«(BP) (see 4.3.2) and let P(n) be the
spectrum obtained from BP by killing I,,. Then one has fibrations

22" =D p(n) 2 P(n) — P(n +1)
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and we define

B(n) = lip 2"~V P(n).

Un

P(n).(X) is a module over F,[v,] and its torsion-free quotient maps monomor-
phically to B(n).(X). In Johnson and Wilson [3] it is shown that B(n).(X) is
determined by K(n).(X). In Wiirgler [2] it is shown that a certain completion of
B(n) splits into a wedge of suspensions of K(n).

This splitting has the following algebraic antecedent. The formal group law
associated with K (n) (4.1.4) is essentially the standard height n formal group law
F,, of A2.2.11, while m.(B(n)) = Fplvn, v, !, vpt1,...] is the universal ring for all
p-typical formal group laws of height n (A2.2.8). In A2.2.12 it is shown that over
the algebraic closure of F), any height n formal group law is isomorphic to the
standard one. Heuristically this is why B(n).(X) is determined by K (n).(X).

This connection between K (n) and height n formal group laws also leads to a
close relation between K(n).(K(n)) and the endomorphism ring of F,, (A2.2.18).
An account of K(n).(K(n)) is given in Yagita [1]. The reader should be warned
that K(n).(K(n)) is not the Hopf algebroid K (n).K(n) of Ravenel [5, 6], which is
denoted herein by X (n); in fact, K(n).(K(n)) = 3(n) ® E(19,71,...,Tn—1), Where
the 7; are analogous to the 7; in A,.

Most of the above results on K(n) (excluding the results about Eilenberg—
Mac Lane spaces) were known to Morava and communicated by him to the author
in 1973.

The invariance of the I, (4.3.2) under the BP-operations makes it possible
to construct the spectra P(n), B(n), and K(n) and to show that they are ring
spectra for p > 2 by more algebraic means, i.e., without using the Sullivan-Baas
construction. This is done in Wiirgler [1], where the structure of P(n).(P(n)) is
also obtained. k(n).(k(n)) is described in Yagita [2].

We now turn to the important work of Peter Landweber on the internal alge-
braic structure of MU- and BP-theories. The starting point is the invariant prime
ideal theorem 4.3.2, which first appeared in Landweber [4], although it was proba-
bly first proved by Morava. It states that the only prime ideals in 7, (BP) which
are invariant (A1.1.21), or, equivalently, which are subcomodules over BP,(BP),
are the I, = (p,v1,v2,...,vp—1) for 0 < n < co. In Conner and Smith [3] it is
shown that for a finite complex X, BP,(X) is finitely presented as a module over
7m«(BP). [The result there is stated in terms of MU,(X), but the two statements
are equivalent.] From commutative algebra one knows that such a module over
such a ring has a finite filtration in which each of the successive subquotients is iso-
morphic to the quotient of the ring by some prime ideal. Of course, as anyone who
has contemplated the prospect of algebraic geometry knows, a ring such as 7, (BP)
has a very large number of prime ideals. However, Landweber [3] shows that the
coaction of BP,(BP) implies that the filtration of BP,(X) [or of any BP.(BP)-
comodule which is finitely presented as a module over 7.(BP)| can be chosen so
that each successive subquotient has the form 7, (BP)/I, for some finite n. {The
corresponding statement about MU, (X) appeared earlier in Landweber [5].} The
submodules in the filtration can be taken to be subcomodules and n (the number of
generators of the prime ideal) never exceeds the projective dimension of the module.
This useful result is known as the Landweber filtration theorem.
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It leads to the Landweber exact functor theorem, which addresses the following
question. For which 7,(BP)-modules M is the functor BP,(—)®x, gp) M a gener-
alized homology theory? Such a functor must be exact in the sense that it converts
cofiber sequences into long exact sequences of modules. This will be the case if M
is flat, i.e., if Torf*(BP)(M, N) = 0 for all modules N. However, in view of the
filtration theorem it suffices for this Tor group to vanish only for N = 7,.(BP)/I,
for all n. This weaker (than flatness) condition on M can be made more explicit as
follows. For each n, multiplication by v, in M ®,_(gp) 7«(BP)/I, is monic. Thus
Landweber [3] shows that any M satisfying this condition gives a homology theory.

For example, the spectrum F(n) mentioned above (in connection with Johnson—
Wilson spectra) can be so obtained since

T (E(n)) = Zipy[vr,v2, ..., vn, 0, ]

n

satisfies Landweber’s condition. [Multiplication by v; is monic in m,(E(n)) itself
for i < n, while for i > n, m.(E(n)) @, (gp) ™«(BP)/I; = 0 so the condition is
vacuous.]

As remarked earlier, F(1) is a summand of complex K-theory localized at p.
The exact functor theorem can be formulated globally in terms of MU-theory and
7 (K) [viewed as a 7. (MU )-module via the Todd genus td: m,(MU) — Z] satisfies
the hypotheses. Thereby one recovers the Conner—Floyd isomorphism

K.(X) = MUL(X) @, (a0 7 (K)

and similarly for cohomology. In other words, complex K-theory is determined by
complex cobordism. This result was first obtained by Conner and Floyd [1], whose
proof relied on an explicit K-theoretic orientation of a complex vector bundle.
Using similar methods they were able to show that real K-theory is determined by
symplectic cobordism.

Landweber’s results have been generalized as follows. Let J C 7,.(BP) be an
invariant regular ideal (see Landweber [7]), and let BP.J be the spectrum obtained
by killing J; e.g., P(n) above is BPI,,. Most of the algebra of B P-theory carries over
to these spectra, which are studied systematically in a nice paper by Johnson and
Yosimura [4]. The case J = I,, was treated earlier by Yagita [3] and Yosimura [1].
The mod I,, version of the exact functor enables one to get K(n) from P(n).

Johnson and Yosimura [4] also prove some important facts about 7. (BP) mod-
ules M which are comodules over BP,(BP). They show that if an element m € M
is v,-torsion (i.e., it is annihilated by some power of v,) then it is v, _1-torsion. If
all of the primitive elements in M [i.e., those with ¢¥(m) = 1 ® m] are v,-torsion,
then so is every element, and, if none is, then M is wv,-torsion free. If M is a
v,,_1-torsion module, then v, 1M is still a comodule over BP,(BP). Finally, they
show that v, ! BP,(X) = 0 if E(n).(X) = 0.

This last result may have been prompted by an erroneous claim by the author
that the spectrum v, ! BP splits as a wedge of suspensions of E(n). It is clear from
the methods of Wiirgler [2] that one must complete the spectra in some way before
such a splitting can occur. Certain completions of MU are studied in Morava [2].

We now turn to the last topic of this section, the applications of BP-theory
to unstable homotopy theory. This subject began with Steve Wilson’s thesis (Wil-
son [1, 2]) in which he studied the spaces in the Q-spectra for MU and BP. He
obtained the splitting mentioned above (in connection with the Johnson-Wilson
spectra) and showed that all of the spaces in question have torsion-free homology.
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Both the homology and cohomology of each space are either an exterior algebra on
odd-dimensional generators or a polynomial algebra on even-dimensional genera-
tors.

These spaces were studied more systematically in Ravenel and Wilson [2].
There we found it convenient to consider all of them simultaneously as a graded
space. The mod (p) homology of such an object is a bigraded coalgebra. The fact
that this graded space represents a multiplicative homology theory implies that its
homology is a ring object in the category of bigraded coalgebras; we call such an
object a Hopf ring. We show that the one in question has a simple set of genera-
tors and relations which are determined by the structure of MU*(CP), i.e., by
m(MU) and the associated formal group law. We obtain similar results for the
value on this graded space of any complex oriented (4.1.1) generalized homology
theory.

As mentioned earlier, the complex bordism of the graded space associated with
MU is the cobordism group of maps between stably complex manifolds. We show
that it is a Hopf ring generated by maps from a manifold to a point and the linear
embeddings of CP™ in CP"*!.

The Hopf ring point of view is also essential in Ravenel and Wilson [3], where
we calculate K (n).(K(G,m)). We show that the Hopf ring K (n).(K(Z/(p’),*))
is a certain type of free object on K (n).(K(Z/(p’),1)). The ordinary homology of
K(Z/(p?),*) can be described in similar terms and the methods of our paper may
lead to simpler proofs of the classical theorems about it (see Wilson [3], section
I1.8).

Knowing the BP homology of the spaces in the BP spectrum is analogous to
knowing the mod (p) homology of the mod (p) Eilenberg-Mac Lane spaces. This
information, along with some ingenious formal machinery, is needed to construct
the unstable Adams spectral sequence, i.e., a spectral sequence for computing the
homotopy groups of a space X rather than a spectrum. This was done in the BP
case by Bendersky, Curtis, and Miller [1]. Their spectral sequence is especially
convenient for X = §?"+1, In that case they get an E;-term which is a subcomplex
of the usual F;-term for the sphere spectrum, i.e., of the cobar complex of A1.2.11.
Their Eo-term is Ext in an appropriate category. For $2"*! they compute Ext!,
which is a subgroup of the stable Ext!, and get some corresponding information
about m, (52" +1).

In Bendersky [2] the spectral sequence is applied to the special unitary groups
SU(n). In Bendersky, Curtis, and Ravenel [3] the Fs-terms for various spheres are
related by an analog of the EHP sequence.

3. Some Calculations in BP,(BP)

In this section we will prove the Morava-Landweber theorem (4.3.2), which
classifies invariant prime ideals in 7, (BP). Then we will derive several formulas
in BP,(BP) (4.1.18 and 4.1.19). These results are rather technical. Some of them
are more detailed than any of the applications in this book require and they are
included here only for possible future reference. The reader is advised to refer to
this material only when necessary.

Theorem 4.3.3 is a list of invariant regular ideals that will be needed in Chap-
ter 5. Lemma 4.3.8 gives some generalizations of the Witt polynomials. They are
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used to give more explicit formulas for the formal group law (4.3.9), the coprod-
uct (4.3.13), and the right unit (4.3.18). We define certain elements, b; ; (4.3.14)
and ¢; y (4.3.19), which are used to give approximations (modulo certain prime
ideals) of the coproduct (4.3.15) and right unit (4.3.20). Explicit examples of the
right unit are given in 4.3.21. The coboundaries of b; ; and ¢; s in the cobar complex
are given in 4.3.22.

In 4.3.23 we define a filtration of BP,(BP)/I, which leads to a May spectral
sequence which will be used in Section 6.3. The structure of the resulting bigraded
Hopf algebroid is given in 4.3.32-34.

From now on 7.(BP) will be abbreviated by BP,. Recall (A2.2.3) that we
have two sets of generators for the ring BP, given by Hazewinkel [2] (A2.2.1) and
Araki [1] (A2.2.2). The behavior of the right unit ng: BP. — BP.(BP) on the
Araki generators is given by A2.2.6, i.e.,

F i F i
(4.3.1) > tir()? = vit?
i,§>0 1,j>0
For the Hazewinkel generators this formula is true only mod (p).
This formula will enable us to define some invariant ideals in BP,. In each case
it will be easy to show that the ideal in question is independent of the choice of
generators used. The most important result of this sort is the following.

4.3.2. THEOREM (Morava [3], Landweber [4]). Let I, = (p,v1,...vp—1) C BPi.
(a) I, is invariant.
(b) Forn >0,

Extp, (pp)(BPe, BP./1,) = Z/(p)[vn]

and
Extyp (ppy(BPs, BP.) = Zy).

(¢c) 0 — X*?"-YBP, /I, ™ BP,/I, — BP,/I,;1 — 0 is a short exact
sequence of comodules.
(d) The only invariant prime ideals in BP, are the I, for 0 <n < co.

Proor. Part (a) follows by induction on n, using (c) for the inductive step.
Part (c) is equivalent to the statement that

vn € Extyp (pp)(BPy, BP./1,)

and is therefore a consequence of (b). For (d) suppose J is an invariant prime ideal
which properly contains some I,,. Then the smallest dimensional element of J not
in I,, must be invariant modulo I, i.e., it must be in Ext%P*(BP) (BP.(BP/I,)),
so by (b) it must be a power of v, (where vy = p). Since J is prime this element
must be v, itself, so J D I,41. If this containment is proper the argument can be
repeated. Hence, if J is finitely generated, it is I,, for some n < oco. If J is infinitely
generated we have J D I, which is maximal, so (d) follows.

Hence it remains only to prove (b). It is clear from 4.3.1 that ngr(v,) = v,
mod I, so it suffices to show that Ext%P*(BP)(BP*,BP*/In) is no bigger than
indicated. From 4.3.1 we see that in BP.(BP)/I,,

NR(Vntj) = Unj + ont] — oP't; mod (ty,ta,. .. tj 1),

so the set {vn4j,Nr(Vnyj) | 7 > 0} U {v,} is algebraically independent. It follows
that if ng(v) = v then v must be a polynomial in v,. O
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Now we will construct some invariant regular ideals in BP,. Recall that an
ideal (zg,1,...,2,—1) is regular if x; is not a zero divisor in BP,/(zg,...,Ti—1)
for 0 < i < n. This means that the sequence

0— BP*/(1'07...,$2‘,1> i) BP*/(CE(),...,CL'Z',l) — BP*/(1'07,{,C2) —0

is exact. The regular sequence (zg, 1, ...) is invariant if the above is a short exact
sequence of comodules. Invariant regular ideals have been studied systematically
by Landweber [7]. He shows that an invariant regular ideal with n generators is
primary with radical I,,, and that any invariant ideal with n generators and radical
I, is regular. Invariant ideals in general need not be regular, e.g., I* for k > 1.

4.3.3. THEOREM. Let iq,1i2,... be a sequence of positive integers such that for

each n > 0, iy, is divisible by the smallest power of p not less than i,, and let
ik iom2 : n

k > 0. Then for each n > 0, the regular ideal (p*** v]'P  v5?? ,...,vﬁl"pk ) is

invariant. O

In order to prove this we will need the following.

4.3.4. LEMMA. Let B, A1, Aa, ... be ideals in a commutative ring. Then if

=y mode+ZAi,

then

n

n
n n—k
2P =y mod p"t'B + E Pk g AP
k=0 i

PROOF. The case n > 1 follows easily by induction on n from the case n = 1.
For the latter suppose = y + pb+ > a;, with b € B and a; € A;. Then

=yt Y (?)ypj (pb+ Zaiy + (pb+ Zai)p

0<j<p

and we have

(?)yp—j (pb+ Zai)j S pr —l—pz Ai
(pb+2ai>p€p2B+pZAi+ZAf. O

PROOF OF 4.3.3. We have v,, = ngr(v,) mod I, so we apply 4.3.4 to the ring
BP,(BP) by setting B = (1), A; = (v;). Then we get

and

m n—1
m

o = np(e)?" mod () + 303 (e ).

§j=0 i=1

To prove the theorem we must show that the indicated power of v, is invariant
modulo the ideal generated by the first n elements. It suffices to replace this ideal
by the smaller one obtained by replacing each of i1,...,4,_1 by the smallest power
of p not less than it, i.e., by an ideal of the form

1+k , 01 ,J2 Jn—1Y\ _
(P ,1)1,1)2,...,'11”,1)*[
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with j; = p"***¢ where 0 < k; < kg --- < k,_1. Then the hypothesis on 4, is that
it is divisible by pF»-1, so it suffices to assume that i, = p*»—'. Hence we must
show
vf{"*lpk = nR(vn)j”*mk mod I.
We have v,, = ng(vy,) mod I, so we apply 4.3.4 to the ring BP,(BP) by setting
B = (1), A; = (v;). Then we get

n—
m

m 1
. om—j
vl = na(on)P mod (p )+ 3 S ().
§=0 i=0
We are interested in the case m = kn + k,_;. Careful inspection shows that the
indicated ideal in this case is contained in I. O

Theorem 4.3.3 leads to a list of invariant regular ideals which one might hope is
complete. Unfortunately, it is not. For example, it gives {(p**1, VP | k> 0,i > 0}
as a list of Is-primary regular ideals, and this list can be shown to be a complete
for p > 2, but at p = 2 the ideal (16, v{ + 8v1v2) is regular and invariant but not in
the list. Similarly, for p > 2 the ideal

2 2 2 2 2 2
p°+p—1  2p p° P —p,.P p°—1_2p°—p+1
(p, vy 050 — 207 vy TPuf — 207 T )

is invariant, regular, and not predicted by 4.3.3. This example and others like it
were used by Miller and Wilson [3] to produce unexpected elements in
Extpp ppy(BP:, BP./I,) (see Section 5.2).

Now we will make the structure of BP,(BP) (4.1.19) more explicit. We start
with the formal group law.

Recall the lemma of Witt (see, e.g., Lang [1, pp. 234-235]) which states that
there are symmetric integral polynomials w,, = wy,(x1,x2,...) of degree p™ in any
number of variables such that

(4.3.5) wp = th and fon = ijwfnij.
t J
For example,

P
(4.3.6) wy = (Z(mf)—(ZxO )/p
and for p = 2 with two variables,

wy = —aiwy — 203x2 — 225,

Witt’s lemma can be restated as follows. Let G be the formal group law with
logarithm ;- xP" /p*. Then

(4.3.7) ZG T = ZG Wh.

This formula is in some sense more explicit than the usual

1og< ZG xt) = Z log .

We will derive a similar formula for the universal formal group law.

First we need some notation. Let I = (iy,i2,...,%,) be a finite (possibly
empty) sequence of positive integers. Let |I| = m and ||I]| = > i;. For positive
integers n let TI(n) = p — p®") and define integers II(I) recursively by II(¢) = 1
and TI(I) = TI(||I|)TI(41,...,im_1). Note that II(I) = p/! mod p!I**. Given



3. SOME CALCULATIONS IN BP,.(BP) 121

sequences I and J let IJ denote the sequence (i1, ..., %m,J1,---,Jn). Then we have
|[IJ| = |I|+|J| and || IJ]| = |||+ ||.J||. We will need the following analog of Witt’s
lemma (4.3.5), which we will prove at the end of this section.

4.3.8. LEMMA.

(a) For each sequence I as above there is a symmetric polynomial of degree
pin any number of variables with coefficients in Z ), wr = wr(z1, T2, ...) with
Wy =y, &y and

L H(K)wpnru
2

(b) Let w; be the polynomial defined by 4.3.5. Then

=
wy = wiy, mod (p). O

Now let v; be Araki’s generator and define vy by vy =1 and v = v, (Up)(”il)
where I’ = (iy,i3...). Hence dim v; = 2(p!"l — 1). Then our analog of 4.3.7 is

4.3.9. THEOREM. With notation as above,

F F
E T = g vrwr (T, T2, .. .).
¢ T

(An analogous formula and proof in terms of Hazewinkel’s generators can be ob-

tained, by replacing TI(I) by p!!| throughout. This requires a different definition of
711 =17]
wy, which is still congruent to w|pJ|J ! modulo p.)

PROOF. Araki’s formula (A2.2.2) is
0<i<n

which can be written as

M(n)\, = Z )\ivgii.

0<i<n

By a simple exercise this gives

An = |1|Z (1)

ie.,

(R4l
D
T

(4.3.10) log(z) = Z UH(I) .




122 4. BP-THEORY AND THE ADAMS-NOVIKOV SPECTRAL SEQUENCE

Therefore we have

F
10g<2 UJ’LUJ) = ZIOgUJwJ
J J
_ vrj pHIH
2

=S Hléf;( ) H(([I())wg”” (where K = L.J)

VK mpuxu
I(K)™*

by 4.3.8
tK

= logz; by4.3.10
t

= log ZF Ty ]
t

In the structure formulas for BP,(BP) we encounter expressions of the form
ijl n,i, where a,, ; is in BP,.(BP) or BP,.(BP)®pgp, BP.(BP) (or more generally
in some commutative graded BP, algebra D) and has dimension 2(p™ —1). We can
use 4.3.9 to simplify such expressions in the following way.

Define subsets A,, and B,, of D as follows. A, = B, = ¢ for n < 0 and for
n >0, A, = {ay,;} while B, is defined recursively by

Bn=A4,U | J {vsws(Ba_ys)}-
|J]>0

4.3.11. LEMMA. With notation as above, 251 Op; = 27};0 we(By).

PrOOF. We will show by induction on m that the statement is true in dimen-
sions < 2(p™ — 1). Our inductive hypothesis is

ZF Qn; = ZF we(By) +F ZF vywy(By) +F ZF Qi

0<n<m n<m n>m
17l 4+n=m

which is trivial for m = 1. The set of formal summands of dimension 2(p™ — 1) on
the right is B,,. By 4.3.9 the formal sum of these terms is ZF vyjwy(Bm), so we
get

ZF Qn,q = ZF w¢(Bn) +r ZF UJwJ(Bm) +r ZF UJwJ(Bn) +r ZF Qn,g
J

o<n<m n<m n>m
I 7]l+n>m

=B e Y vwsB) e Y an

0<n<m n<m n>m
7l +n>m

which completes the inductive step and the proof. ([

Recall now the coproduct in BP,(BP) given by 4.1.18(e), i.e.,
D log(A(r) = 3 log(ti @ 17),

i>0 i,7>0
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which can be rewritten as

(4.3.12) ZF A(t;) = ZF t® tfi

i>0 1,§>0

To apply 4.3.11, let M,, = {t; ® ti:i | 0 <i<n} (M here stands for Milnor since
these terms are essentially Milnor’s coproduct 3.1.1) and let

Ap =M, U | {vsws(An_y}-
|J|>0
Then we get from 4.3.11 and 4.3.12
4.3.13. THEOREM. With notation as abowve,
A(t,) = wg(Ay) € BP.(BP)®pp, BP.(BP). O
For future reference we make

4.3.14. DEFINITION. In BP,(BP) ®pp, BP.(BP) let b; j = w(;+1)(A). O

For example,

1 P i1,
bl’j:_m > (2 thoth

0<i<pitt

This b; ; can be regarded as an element of degree 2 in the cobar complex
(Al1.2.11) C(BP.). It will figure in subsequent calculations and we will give a
formula for its coboundary (4.3.22) below.

If we reduce modulo I,,, 4.3.13 simplifies as follows.

4.3.15. COROLLARY. In BP,(BP)®gp, BP.(BP)/I, fork < 2n

A(tk) = Z t; ® tzfi + Z Un+jb/€,n,j)n+j,1. O
0<i<k 0<j<k—n-—1

Now we will simplify the right unit formula 4.3.1. First we need a lemma.
Define t; as wedefines vy, replacing v; by ¢;.

4.3.16. LEMMA. In BP,(BP), for each k >0

S (™) = Y e =1

i,[11>0 i,|1>0

It is shown in A2.2.5 that for p > 2, [-1](x) = —x for any p-typical formal
group law, and a formulas for it are given for p = 2 in terms of both the Hazewinkel
generators of (A2.2.1) and the Araki generators of (A2.2.2). [n](z) is defined in
A2.1.19.

PROOF. In the first expression, for each I = (i1,42,...,4,) with n > 0, the
expression (tI)”k appears twice: once as (t[to)pk and once as (tp(t,»")pnl ' )pk where
I' = (i1,...,in—1). These two terms have opposite formal sign and hence cancel,
leaving 1 as the value of the first expression. The argument for the second expression
is similar. (]
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Now we need to use the conjugate formal group law ¢(F') over BP,(BP), defined
by the homomorphism ng: BP, — BP,(BP). Its logarithm is

i it
log,()(x) = Y nr(M)a? = 3 At} a?
i>0 i,7>0

An analog of 4.3.9 holds for ¢(F') with vy replaced by ngr(vr).
The last equation in the proof of A2.2.6 reads

Z)\ivfitii => at? (o) = nr(i)nr(v;)? 4

while 4.3.16 gives
S = Yy

Combining these and reindexing gives

Pl i
> (=) Ipgr(x; )(tJ(Uktp P = => nr(\i)nr(v;)?,
which is equivalent to
o(F)

(4.3.17) > i) = 3D e et ),

120 |1],5,k>0
In A2.2.5 we show that for p > 2, [~1](p)(z) = —2, and for p = 2,
[ ]C(F) =T —¢(F) Z
i>0

For p > 2 we define finite subsets of BP,(BP) for n > 0

No= U {enmeeny™

c(F)

I Zl|+its=n
R, =N,U | {nr())ws(Ra-i)}.
7=
0<i<n
Then we get
4.3.18. THEOREM. In BP,(BP) for p > 2, we have ng(v,) = we(Ry). O

For p = 2 we have to rewrite (4.3.17) as

c(F) c(F) ] c(F) HIH
>R tery D, bt P =Y (v )"

>0 |1],5,k>0 [1],5,k>0
|I] odd |1] even

4.3.19. DEFINITION. In BP.(BP), ¢;.j = wy(R;). For J = (j) this will be
written as ¢; ;.
Again we can simplify further by reducing modulo I,,.

4.3.20. COROLLARY. In BP,(BP)/I, for 0 <k < 2n,
n+i i
Z Untith i — NR(Untr—i)? t; = Z Untj Chi—jntj -

0<i<k 0<j<k—n—1

(Note that the right-hand side vanishes if k < n.) O
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4.3.21. COROLLARY. In BP.(BP)/I,,

NR(Vnt1) = VUng1tupt] —obt

forn >1;

prtl P » 2
NR(Unt2) = Ung2 +Unp1l]  Fouty —wp 1t — 08 by
2, 14p Lypntt
+vb ¢ — bt
forn >2;
n+2 n+1 pn P

773(®n+3) = Un43 + Un+2t1 + Un+1t2 + Unt3 - Un+2t1

1+p™t p" !
*’Un+1t2 — v t3 -t vptlt

—oP + PP o 1t 4 op

2
+v£’; ti+p+p _ ;Z t%+p+p
forn > 3;
_ P’ P p1+p®
nr(vs) = w3 +vgt1 +vith —obty —of tg vty
-|—’01 t1+p —+ V1w (’UQ, Ulth tl)

forn—l p>2 (addvi’thorp—2)

and nr(vs) = ws +v4tp +v3tp +v2tp —v4t1 —v3 tg — v t3
—obh Pt ptltp — v} i ta+vf t1+p+v2 tyth
3 2
o ]ty ) 1y P g T

2
+o%wi (v3, vat] , —vBt])P
forn=2,p>2 (add v3t} forp=2). O

Now we will calculate the coboundaries of b; ; (4.3.14) and ¢; ; (4.3.19) in the cobar
complex C(BP,/I,) (A1.2.11).

4.3.22. THEOREM. In C(BP; /I ) forO0<i<mnand0<j

k41 14j

(a) d(bij) = > be; @t — 1t ®bi—kkt; and (b) d(cayijr1) =
0<k
plti <kt it 1j—k
0§<,”n+k bioknthts =~ Vpik ik
<k<i

PRrOOF. (a) It suffices to assume ¢ = n. Recall that in C(BP,/I,), d(t;) =
ti ®R1+1® ti — A(t,) and d(vn-l—i) = nR(U7L+i) — Un+i- A(tgn) —-1® tgn — tgn X 1,
given by 4.3.13, is a coboundary and hence a cocycle. Calculating its coboundary
term by term using 4.3.13 and 4.3.17 will give the desired formula for d(b,, ,_1) and
the result will follow. The details are straightforward and left to the reader.

For (b) we assume ¢ =n if i +n is even and ¢ = n — 1 if i + n is odd. Then we
use the fact that d(ve,y;) is a cocycle to get the desired formula, as in the proof
of (a). O

Now we will construct an increasing filtration on the Hopf algebroid
BP,.(BP)/I,. We will use it in Section 6.3.
To do this we first define integers d,, ; by

P 0 for7:<0
e max(i, pdp i—n) fori>0.

We then set deg tp =deg Un.H—dn,i for i, j>0. The subgroups F,.C BP.(BP)/I,
are defined to be the smallest possible subgroups satisfying the above conditions.
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The associated graded algebra EoBP,(BP)/I, is defined by E;BP.(BP)/I, =
F;/F;_;. Its structure is given by

4.3.23. PROPOSITION.
EoBP*(BP)/In = T(ti,j,vn+i7j: 7> 0, ] > 0),

where t; ; and v,41,; are elements corresponding to tfj and vﬁil, respectively,
T(x) = R[z]/(zP) and R = Z(p)[vy]. O

4.3.24. THEOREM. With the above filtration, BP.(BP)/I, is a filtered Hopf
algebroid, and EoBP,(BP)/I, is a Hopf algebroid.

PROOF. For a set of elements X in B,(BP)/I,, or BP.(BP)®pp, BP.(BP)/I,,
let deg X be the smallest integer ¢ such that X C F;. It suffices to show then that
deg A; = deg R4+ = dy, ;. We do this by induction on ¢, the assertion being obvious
for i = 1.

First note that

(4325) dn,a-{-b Z dn,a + d’n,b
and
(4326) dn,aern 2 pbdn,a~

It follows from 4.3.25 that deg M; = degNy,+; = dy, ;. It remains then to show that
for ||J|| <

(4.3.27) deg(vyws (A7) < dni
and

(4.3.28) deg(vyws(Rptiz)g))) < dni-
Since

(4.3.29) degwy(X) < pl’ldeg X,
both 4.3.27 and 4.3.28 reduce to showing

(4.3.30) dp,; > degvy +P|J|dn,z‘_|u|\-

Now if vy #Z 0 mod I,, we can write
J=m+j,m+gh...,n+7j])
with j; > 0, so

l l
l=t |l =tn+3 ", and deguy =3 dn;

t=1 t=1
If we set k = ||.J|| — n|J|, then 4.3.25 implies
(4.3.31) dp.i; > degvy.
However, by 4.3.25 and 4.3.26
dn,i 2 dn ke 4 i) 7)) 4n] |
> dp g + 0y iy
so 4.3.20 follows from 4.3.31. (]
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We now turn to the Hopf algebroid structure of EgBP,(BP)/I,. Let M;, A;,
N,.i, and R, ; denote the associated graded analogs of M;, A;, Ny14, and R, 4,
respectively, with trivial elements deleted. (An element in one of the latter sets
will correspond to a trivial element if its degree is less than d,, ;.) All we have to
do is describe these subsets. Let ¢;, ¥7, and w;(z) denote the associated graded
elements corresponding to tr, vy, and wr(x), respectively.

4.3.32. LEMMA.
— U {tjo®ti—;;} fori<m
;= { 0<j<i
{tip®1,1®t0} fori>m
- U DGt} fori<m
Nopii = { Mllj+k=i

{Vn+4,0, Untin, _Uziti,o} fori>m
where m = pn/(p — 1).
PRrROOF. This follows from the fact that equality holds in 4.3.25if a+b < m. 0O

4.3.33. LEMMA.
M; fori<m
| MUt (M)} fori=m
AENMLU U {ows B} fori>m
b
i—[|T|>m—n
Ny fori<m
_ Nn+i U {Unwf"il (Ri—n)} fori=m
Rnti = Nyti U U {vjws(Ri—ng)}  fori>m
i
i |l T >m—n

[Note that the case i = m occurs only if (p — 1)|n, and that the only J’s we need to
consider for i > m are those of the form (n,n,...,n).]

PrOOF. We use the observation made in the proof of 4.3.32 along with the fact
that equality holds in 4.3.26 if a > m = n.

Now both R, ;, and A, will consist only of the terms associated with those .J
for which equality holds in 4.3.30. For ¢ > m this can occur only if degv; = 0,

ie., if J = (n,n,...,n); the condition ¢ — ||J|| > m — n is necessary to ensure that
dp,i = pVd,, ;5. For i < m we still need i — ||.J|| > m —n. Since ||J|| > n in all
nontrivial terms, the only possibility is J = (n) when ¢ = m. O

Now let A; ; and R,,1; ; be the subsets obtained from A; and R,,4;, respectively,
by raising each element to the p’th power. The corresponding subsets Ai’j and
EHHJ of the appropriate associated graded objects are related to A; and R,,4; in
an obvious way. Note that

wr(As) = wy (A y-101)
= wig | (A jr)-10))-
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4.3.34. THEOREM. With Ai,j and RnHJ as above, the Hopf algebroid structure
of EgBP.(BP)/I,, is given by

Alti;) = wo(Ai)
MR (Vntij) = wo(Rnij)- O

None of the t; ; for ¢ > 1 are primitive, so we could not get a Hopf algebroid
with deg ¢; ; < d,,; once we have set deg t; ; = 1.

Note finally that the structure of EqBP,(BP)/I, depends in a very essential
way on the prime p.

Theorem 4.3.34 implies that EqBP.(BP)/I, is cocommutative for n = 1 and
p > 2. For any n and p we can use this filtration to construct a spectral sequence
as in A1.3.9. The cocommutativity in the case above permits a complete, explicit
determination of the Fs-term, and hence a very promising beginning for a com-
putation of Extgp, gp)(BP:, BP/I1). However, after investigating this method
thoroughly we found the Fs-term to be inconveniently large and devised more
efficient strategies for computing Ext, which will be described in Chapter 7. Con-
ceivably the approach at hand could be more useful if one used a machine to do
the bookkeeping. We leave the details to the interested reader.

PROOF OF 4.3.8. We will prove (a) and (b) simultaneously by induction on
m=|K|. If K" = (14 ki,ka,...,kn) then it follows from (b) that

wgr = wh, mod (p).

Let K" = (k1 + k2, ks, ..., k) and K" = (ka, ks, ..., k). Then by the induc-
tive hypothesis wg» and wg exist with

WK = Wi mod (p),
where a; = p*1. Since ||K|| = ||K”| we have
(K)ol _ (K™) i
Z II1(1) Wy = Z II1(1) wy -
1I=K I1J=K"

Expanding both sides partly we get

1I II(K I
H(K)wK_F]:[((k;’LU?(I/// Z ((I)) 3
|1]>2
IJ=K
(K" Iy
= e+ 3 el
[1]>1
I1J=K"

I
Note that the same w’; ~ occur on both sides, and one can use the definition of II(k)

to show that they have the same coeflicients so the sums cancel. The remaining
terms give
wit,
II(K TUK+K> :HK// WK .
(0 (e + i) ="
Since II(k1) = p mod (p?) and wr» = wih, mod (p), we get an integral expression
when we solve for wg.
This completes the proof of (a).
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For (b) we have

p I(K) pl7
thl\KH — (K )wi + Z 1_[((I))MJ 3

I1J=K
|I]>0
Since T(K) = p/l mod (p't¥l) and (1) = p!! mod (p'*t1), we get
I(K)/II(I) = p!’| mod (p'*!/]). By definition
I(K) . )
D I K IDILCAEN = Gygy) - - () + 1)

I 1K1l —3 T+
=p-p" - -
=pl/l mod (lel_Hp”I”Hl)
= pl’l mod (p/E*1)  since

= 1V 1] 1 1) 2

> |K|+1.

By the inductive hypothesis

pllTI=171

wy = wiy, mod (p)
I plIEI=171 LT . .
sowy = w mod (p'*I71l). Combining these two statements gives
I(K) o1 _ K1) 14K
o wy = wpy mod (p!TIED).

Hence the defining equation for wgx becomes

15| Il =171
me = plElwg + Z p"]lw‘pﬂ mod (p'+XT).

I1J=K
[I]>0

Let n = |K|| — |K|. Substituting 2?" for z; in 4.3.5 gives

K1 n . |K|—j n
Yoal =p Ml @)+ Y pel @),
0<j<|K|

Since wj(xfn) =w} mod (p),

pIK\*j m n+|K|—j

wy (a ) =wf mod (p'*1¥177),

so we get
K| n N B
doap = pMlug @)+ Y pud mod (p'*1%1).
0<j<|K]|

Comparing this with the defining equation above gives

n Il =K |
wg = wg|(z] ) = wlpKI mod (p)

as claimed. 0
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4. Beginning Calculations with the Adams—Novikov Spectral Sequence

In this section we introduce the main object of interest in this book, the Adams—
Novikov spectral sequence, i.e., the BP,-Adams spectral sequence (2.2.4). There is
a different BP,-theory and hence a different Adams—Novikov spectral sequence for
each prime p. One could consider the MU,-Adams spectral sequence (as Novikov [1]
did originally) and capture all primes at once, but there is no apparent advantage in
doing so. Stable homotopy theory is a very local (in the arithmetic sense) subject.
Even though the structure formulas for BP,(BP) are more complicated than those
of MU,(MU) (both are given in Section 1) the former are easier to work with once
one gets used to them. (Admittedly this adjustment has been difficult. We hope
this book, in particular the results of Section 3, will make it easier.)

The Adams-Novikov spectral sequence was first constructed by Novikov [1]
and the first systematic calculations at the primes 2 and 3 were done by Zahler [1].
In this section we will calculate the Fs-term for ¢t — s < 25 at p = 2 and for
t —s < (p?+p)q for p > 2, where ¢ = 2p — 2. In each case we will compute all the
differentials and extensions and thereby find (S°) through the indicated range.
At p = 2 this will be done by purely algebraic methods based on a comparison of
the Adams—Novikov spectral sequence and Adams spectral sequence Fo-terms. At
odd primes we will see that the Adams spectral sequence Es-term sheds no light on
the Adams—Novikov spectral sequence and one must compute differentials by other
means. Fortunately, there is only one differential in this range and it is given by
Toda [2, 3]. The more extensive calculations of later chapters will show that in a
much larger range all nontrivial differentials follow formally from the first one.

In Section 2.2 we developed the machinery necessary to set up the Adams—
Novikov spectral sequence and we have

4.4.1. ADAMS—-NOVIKOV SPECTRAL SEQUENCE THEOREM (Novikov [1]). For
any spectrum X there is a natural spectral sequence E*(X) with d,: ES' —
Estrttr=1 gych that

(a) E2 = EXth*(Bp)(BP*,BP*(X)) and

(b) if X is connective and p-local then EX* is the bigraded group associated
with the following filtration of m.(X): a map f: S™ — X has filtration > s if it
can be factored with s maps each of which becomes trivial after smashing the target
with BP. O

The fact that BP,(BP), unlike the Steenrod algebra, is concentrated in dimen-
sions divisible by ¢ = 2p — 2 has the following consequence.

4.4.2. PROPOSITION: SPARSENESS. Suppose BP,(X) is concentrated in dimen-
sions divisible by ¢ = 2p — 2 (e.g., X = S°). Then in the Adams—Novikov spectral
sequence for X, E5* = 0 for all r and s except when ¢ is divisible by ¢q. Con-
sequently d,. is nontrivial only if r = 1 mod (¢) and E; o, = E}r 1 for all
m > 0. [l

For p = 2 this leads to the “checkerboard phenomenon”: E5*' = 0if t — s and s
do not have the same parity.

To compare the Adams spectral sequence and Adams-Novikov spectral se-
quence we will construct two trigraded spectral sequences converging to the Adams
spectral sequence and Adams—Novikov spectral sequence Es-terms. The former is a
Cartan—Eilenberg spectral sequence (A1.3.15) for a certain Hopf algebra extension
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involving the Steenrod algebra, while the latter arises from a filtration of BP,(BP)
(A1.3.9). The point is that up to reindexing these two spectral sequences have the
same Fo-term. Moreover, at odd primes (but not at p = 2) the former spectral
sequence collapses, which means that the Adams spectral sequence Es-term when
suitably reindexed is a trigraded Fs-term of a spectral sequence converging to the
Adams—Novikov spectral sequence Es-term. It is reasonable to expect there to be
a close relation between differentials in the trigraded filtration spectral sequence,
which Miller [2] calls the “algebraic Novikov spectral sequence,” and the differen-
tials in the Adams spectral sequence. Miller [4] has shown that many Adams da’s
can be accounted for in this way. At any rate this indicates that at odd primes the
Adams spectral sequence Es-term has less information than the Adams—Novikov
spectral sequence Es-term.

To be more specific, recall (3.1.1) that the dual Steenrod algebra A, as an
algebra is

P(&,&,...) with dim¢; =2' — 1 for p =2
A, ={ E(r9,71,...)® P(£,&,...) with dim7; =2p’ —1 and
dim¢& = 2p' — 2 for p > 2.

Let P, C A, be P(¢2,¢2,...) for p = 2 and P(&,&,...) for p > 2, and let
E, = A, ®p,  Z/(p), ie. E. = E(&,&,...) for p=2and E, = E(79,71,...) for
p > 2. Then we have

4.4.3. THEOREM. With notation as above (a)

Extg, (Z/(p),Z/(p)) = P(ag,as,...)

with a; € Ext"2P 1 represented in the cobar complex (A1.2.11) by [&;] for p = 2
and [1;] for p > 2,

(b) P, - A, — E, is an extension of Hopf algebras (A1.1.15) and there is
a Cartan—FEilenberg spectral sequence (A1.3.15) converging to Exta, (Z/(p),Z/(p))
with

Ey*" = Ext (Z/(p), Ext " (Z/(p). Z(p)))
and
d’!‘: Esl,SQ,t N Esl—i-r,sz—r—i-l,t’
(c) the Py-coaction on Extg, (Z/(p),Z/(p)) is given by
9it1

Y& wa forp=2

¢ a. = ¢ i
(an) &b ®a;  forp>2, and
i
orp > e Cartan—FEilenberg spectral sequence collapses from Es with no
d 2 the Cartan—Filenb tral ll FEo with
nontrivial extensions.

PRrROOF. Everything is straightforward but (d). We can give A, a second grad-
ing based on the number of 7;’s which are preserved by both the product and the
coproduct (they do not preserve it at p = 2). This translates to a grading of Ext
by the number of a;’s which must be respected by the differentials, so the spectral
sequence collapses. (I

For the algebraic Novikov spectral sequence, let I = (p,v1,vs,...) C BP,. We
filter BP,(BP) by powers of I and study the resulting spectral sequence (A1.3.9).
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4.4.4. ALGEBRAIC NovikOov SS THEOREM (Novikov [1], Miller [2]). There is
a spectral sequence converging to Extgp (gp)(BPs, BP.) with

B = Ext (2 (p), I /1)
and d,: E3™t — Esthrimt  The Ef** of this spectral sequence coincides with
the E3** of 4.4.3.
Proor. A1.3.9 gives a spectral sequence with
Ey = Extg,pp, (p)(EoBPx, EgBP;).
Now we have BP,(BP)/I = EgBP,.(BP)®g,spr,Z/(p) = P.. We apply the change-
of-rings isomorphism A1.3.12 to the Hopf algebroid map (EyBPy, EgBP.(BP)) —
(Z/(p), P.) and get
Extp, (Z/(p), EoBP)
= Extg,p, (Bp)(EoBPx, (Eo BP.(BP) ®g,pp, Z/(p)) Op, EoBP;)
= Extg,gp,(Bp)(EoBP:, P, Op, EyBP;)
= Extg,pp.(Bp)(EoBP:, Eg BP,).
The second statement follows from the fact that EgBP, = Extg, (Z/(p),Z/(p)). O

In order to use this spectral sequence we need to know its Fi-term. For p > 2,
4.4.3(d) implies that it is the cohomology of the Steenrod algebra, i.e., the classical
Adams Es-term suitably reindexed. This has been calculated in various ranges by
May [1], and Liulevicius [2], but we will compute it here from scratch. Theorem
4.4.3(d) fails for p = 2 so we need another method, outlined in Miller [2] and used
extensively by Aubry [1].

We start with Extp, (Z/(p),Z/(p)). For p = 2 we have Exti{i (Z2/(2),Z/(2)) =

Ext;’ft(Z/Q), Z(2)), so the latter is known if we know the former through half
the range of dimensions being considered. For p > 2 we will make the necessary
calculation below.

Then we compute Extp, (Z/(p), EoBP./I,), by downward induction on n. To
start the induction, observe that through any given finite range of dimensions
BP./I, ~ Z/(p) for large enough n. For the inductive step we use the short
exact sequence

0 — xdmvn B BP, /I, — EgBP, /I, — E¢BP, /I, 1 — 0,
which leads to a Bockstein spectral sequence of the form
(4.4.5) P(a,) @ Extp,(Z/(p), EoBP./In+1) = Extp,(Z/(p), EoBP./I,).

The method we will use in this section differs only slightly from the above. We
will compute the groups Extgp, gp)(BPs, BP./I,) by downward induction on n;
these will be abbreviated by Ext(BP./I,). To start the induction we note that
Ext®>'(BP,/I,) = Ext;’f(Z/(p), Z/(p)) for t < 2(p™ —1). For the inductive step we
analyze the long exact sequence of Ext groups induced by the short exact sequence

(4.4.6) 0 — xdimvwpBp, /I, — BP,/I, — BP./I,41 — 0,

either directly or via a Bockstein spectral sequence similar to 4.4.5. The long exact
sequence and Bockstein spectral sequence are related as follows. The connecting
homomorphism in the former has the form

On: BExt®(BP,/I41) — Ext*TH (2" ~2BP, /1,,).
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The target is a module over Ext®(BP,/I,,) which is Z/(p)[v,] for n > 0 and Z )
for n = 0 by 4.3.2. Assume for simplicity that n > 0. For each « € Ext(BP,/I,+1)
there is a maximal k such that §,(z) = v¥y, i.e., such that y € Ext(BP./I,) is
not divisible by v,,. (This y is not unique but is only determined modulo elements
annihilated by vE.) Let § € Ext(BP./I,+1) denote the image of y under the
reduction map BP, /I, — BP./I,11 Then in the Bockstein spectral sequence there
is a differential dy 1 (z) = al™*7.

Now we will start the process by computing Extf,’f(Z/(p), Z/(p)) for p > 2
and t < (p?> + p+ 1)g. In this range we have P, = P(&;,&2). We will apply the
Cartan—Eilenberg spectral sequence (A1.3.15) to the Hopf algebra extension

(4.4.7) P(&) = P61, &) — P(&2).

The Ey-term is Extpe,)(Z/(p), Extpe,)(Z/(p),Z/(p))). The extension is cocentral
(A1.1.15) so we have

By = Extpe,)(Z/(p), Z/(p)) ® Extp(e,)(Z/(p), Z(p)).

By a routine calculation this is in our range of dimensions
E(hi0, h11, hi2, hao, h21) ® P(bio, b11, b2o)
with

hig € Extp)® ™0 and by € Extr) Y.

The differentials are (up to Sigl’l) dQ(hQ,j) = hl,jhl,j+1 and d3(b20) = h12b10—h11b11
[compare 4.3.22(a)]. The result is

4.4.8. THEOREM. Forp > 2 andt < (p*+p+1)q, Ex‘c;’f(Z/(p)7 Z/(p)) is a free
module over P(byg) on the following 10 generators: 1, hio, h11, go = (h11, h10, h10),
ko = (hi1,h11,h10), hioko = Fhi1go, hi2, hiohi2, bi1, and higbii. There is a
multiplicative relation h11b11 = hi2bio and (for p =3) hi1ko = thiob11. O

The extra relation for p = 3 follows easily from A1.4.6. For p > 3 there is a
corresponding Massey product relation (kg, h11,...,h11) = h1gb11 up to a nonzero
scalar, where there are p — 2 factors hq.

The alert reader may observe that the restriction ¢ < (p? + p + 1)q is too
severe to give us Ext® for ¢t — s < (p? + p)q because there are elements in this
range with s > ¢, e.g., bf,. However, one sees easily that in a larger range all
elements with s > ¢ are divisible by b1y and this division gets us back into the
range t < (p? +p + 1)g. One could make this more precise, derive some vanishing
lines, and prove the following result.

4.4.9. THEOREM. Let p > 2.
(a) Exty (Z/(p),Z/(p)) = 0 for t —s < f(s) where

J@w*-p-1Ds for s even
e = {210— 3+ (P —p—1)(s—1) fors odd.

(b) Let Ry, = Py/(&1,&2). Then Ext‘};i (Z/(p),Z(p)) =0 fort —s < g(s) where

(s) = (p*—p—1)s for s even
9= 2p° =3+ (p*—p—1)(s—1) fors odd.
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(¢) The map P(&1,€2) — P, induces an epimorphism in Ext®" for (t—s) < h(s)
and an isomorphism for (t —s) < h(s — 1) — 1, where
h(s) =2p> =3+ f(s—1)

:{2p3—3+(p2—p—1)(s—1) for s odd

) O
2p° +2p— 6+ (p> —p—1)(s —2) for s even.

This result is far more than we need, and we leave the details to the interested
reader.

Now we start feeding in the generators v,, inductively. In our range 4.4.8 gives
us Ext(BP,/I3). Each of the specified generators is easily seen to come from a
cocycle in the cobar complex C(BP,/I2) so we have

Ext(BP,/I,) = Ext(BP./I3) ® P(vs),

i.e., the Bockstein spectral sequence collapses in our range.
The passage to Ext(BP,/I1) is far more complicated. The following formulas
in C(BP,/I) are relevant.

(4.4.10) (a) d(ve) = vit] —olty
and
(b) d(t2) = —t1[t] — vibio.
These follow immediately from 4.3.20 and 4.3.15. From 4.4.10(a) we get
(4.4.11) (a) 1(vy) = ivs *hyy mod (vp)
and
(b) 61(v8) =P hyy  mod (vP).

Next we look at elements in Extl(BP*/Ig). Clearly, hig, h11, and hio are in
ker §; as are vihyy for i < p — 1 by the above calculation. This leaves vihig for
1<i<p-—1and vg_lhu. For the former 4.4.10 gives

d(vity + iv1vi L (TP — 1)) = vl by

2

The expression in the second term is a multiple of kg, so we have

+ <Z>va§_1(t?p|t1 — 2P|ty 4 2t21177P)  mod (v}).

(4.4.12) 5(v§h10) = ivlvéflblo + (;) vlv§72k0 mod (vf)

To deal with v5 'hy; we use 4.4.10(a) to show

LD\ p—i ic1,pi)| _ LD\ p—1,pi|p*—pi
d( > (M) 1#{) = 3 (M) mod o)
0<i<p 0<i<p

SO
(4413) 51 (Ugilhll) = iU{inll.
This is a special case of 4.3.22(b).

Now we move on to the elements in Ext? (BP./I5). They are highiz, bi1, vibio,
vhgo, and viko for suitable 4. The first two are clearly in ker §;. Equation 4.4.12
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eliminates the need to consider vibio for i < p—1, so that leaves v5 'b1o, vigo, and
v5ko. Routine calculation with 4.4.10 gives

(a) (51 (’Uégo) = :t(’l};hloblo + i’ljéilhlok‘o) mod ('U%)
and
(b) 51(1]3]@’0) = i’(}éhllblo mod (’U%)
We have to handle v§71b10 more indirectly.

4.4.14. LEMMA. 51(1)12’711710 + %vgfgko) = cvf73h10b11 for some nonzero ¢ €

Z/(p).

PROOF. By 4.4.13, v""'by; = 0 in Ext(BP,/I}), so v 'highby; = 0 and
vihiobyy = 61(z) for some i < p — 1 and some z € Ext?(BP./Iy). The only
remaining «x is the indicated one. [

From 4.4.14 we get 01 (v5 'hyobio + %v2_2h10k‘0) =0 mod (v¥?). All other
elements in Ext®(BP,/I5) for s > 3 are divisible by hig or b9 and they can all be
accounted for in such a way that the above element, which we denote by ¢, must
be in ker ;. Hence §; is completely determined in our range.

Equivalently, we have computed all of the differentials in the Bockstein spectral
sequence. However, there are some multiplicative extensions which still need to be
worked out.

4.4.15. THEOREM. For p > 2, Ext(BP,/I,) = P(v1) ® E(h1o) & M, where M
is a free module over P(big) on the following generators:
Bi =61(v3),  hioBi, Bi=wvy'01(vshio) (e.g., B = Ebio),
and hyoB;  for1<i<p-—1;
Bpi = 0176 (v8)  and hioBpi  for 1 <i < p;
Bpji = vi 101 (5 hiy)  for 2 < i < p;
hioBpsi  for3<i<p; ¢ and BBy
Here 07 is the connecting homomorphism for the short exact sequence
0 — XYBP,/I, > BP,/I, — BP,/I, — 0.
Moreover, ~
hioBi = v1Bi, vi1Bi =0, v{B, =0,
u{"pr/p =0, and vf_thBp/p =0.
(This description of the multiplicative structure is not complete.)

PrROOF. The additive structure of this Ext follows from the above calculations.
The relations follow from the way the elements are defined. O

FIGURE 4.4.16 illustrates this result for p = 5. Horizontal lines indicate mul-
tiplication by w1, and an arrow pointing to the right indicates that the element is
free over P(v1). A diagonal line which increases s and t/q by one indicates mul-
tiplication by h1g and one which increases t/q by 4 indicates the Massey product
operation (—, hig, h10, P10, h10). Thus two successive diagonal lines indicate multi-
plication by big = £(hiq, h10, h10, h10, h10). The broken line on the right indicates
the limit of our calculation.
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Now we have to consider the long exact sequence or Bockstein spectral sequence

associated with
0 — BP, % BP, — BP,/I, — 0.

First we compute dg(vi). Since d(vy) = pt; in C(BP,) we have d(vi) = ipvi 't
mod (ip?), so
(4.4.17) So(vh) = vl thyg mod (ip?).

Moving on to Ext*(BP,/I;) we need to compute dy on 3; and Bpsi- The former
can be handled most easily as follows. d¢(8;) = 0 because there is no element in

the appropriate grading in Ext:i. 8o is a derivation mod (p) so 8o(v15;) = hiofB;.
Since v13; = h1oB; we have hiof; = do(h108i) = h1060(Bi) so

(4.4.18) do(Bi) = Bi-

Now B,/ = h12 — vfk”hll and vftphll is cohomologous to vftlhlo, which
by 4.4.16 is in ker §g. Hence

(4.4.19) 80(Bp/p) = 0(h12) = bur = £5, .
It follows that
S0(Bp/p—i) = 50(”%&/17) = wiilhloﬁp/p + Uin/p'
This accounts for all elements in sight but do(h10s,,,) which vanishes mod (p). We

will show that it is a unit multiple of p® below in 5.1.24.
Putting all this together gives

4.4.20. THEOREM. For p > 2 and t — s < (p* + p)q, Ext(BP,) is as follows.
Ext’ = Z, concentrated in dimension zero. Exth? = Z,/(pi) generated by
@; =i 10o(vl), where ay = hyg. For s > 2 Ext® generated by all b}z, where x is
one of the following: B; = 00(B;) (where 1 = xbo) and anf; for 1 <i <p—1;
5p/p7i = 60(517/;071') Jor 0 < i <p-—1; O‘lﬂp/pfi Jor 0 < i < p-—3; and ¢ =
p_léo(hloﬁp/l) which has order p?. ¢ is a unit multiple of (Bpj2, a1, a1) and po is
a unit multiple a1 3,/,. Here B;/; denotes the image under oo of the corresponding
element in Ext(BP,/1I;). O

For p = 5 this is illustrated in Fic. 4.4.21, with notation similar to that of
Fig. 4.4.16. It also shows differentials (long arrows originating at 35,5 and $105/5),
which we discuss now. By sparseness (4.4.2) Ey = Esp_1 and dop_1: E;};tq —
E;;‘_Qf_l’t_%”. It is clear that in our range of dimensions Es, = Eo, because
any higher (than do,_1) differential would have a target whose filtration (the s-
coordinate) would be too high. Naively, the first possible differential is
dop—1(ap2_1) = 7. However, dp_1 respects multiplication by a; and aqoy2_q so
cap Y =0 and ¢ = 0. Alternatively one can show (see 5.3.7) that each element in

Ext! is a permanent cycle.

4.4.22. THEOREM (Toda [2, 3]). dap—1(Bp/p) = aa1 87 for some nonzero a €
Z/(p). 0

Toda shows that any = € m,(S) of order p must satisfy aya? = 0. For z =
this shows o187 = 0 in homotopy. Since it is nonzero in Ey it must be killed by
a differential and our calculation shows that 3/, is the only possible source for it.
We do not know how to compute the coefficient a, but its value seems to be of little
consequence.
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Theorem 4.4.22 implies that dap—1(818p/,) = alﬂfﬂ. Inspection of 4.4.20 or
4.4.21 shows that there are no other nontrivial differentials.

Notice that the element ay/3,,, survives to Eo even though f3,/, does not.
Hence the corresponding homotopy element, usually denoted by ¢, is indecom-
posable. It follows easily from the definition of Massey products (A1.4.1) that
(aq, a1, BY) is defined in Es),, has trivial indeterminacy, and contains a unit mul-
tiple of a1f,/,. It follows from 7.5.4 that &’ is the corresponding Toda bracket.
Using A1.4.6 we have

<O‘17---7O‘1’5/> = <O‘17~--ao‘1>ﬂf = B{H—l

with p — 2 «a4’s on the left and p ay’s on the right.
Looking ahead we can see this phenomenon generalize as follows. For 1 < 1 <
p — 1 we have dgp_l(ﬂ;/p) = iaalﬁgﬁl. For i < p — 2 this leads to (a1, ...,a16{")

with (2 + «aq’s| being a unit multiple o gl = ‘ , an a1,a1,...7a15‘
ith (i + 1) a1’s] bei i ltiple of ¢(® B, and (@)
[with (p—i—1) ay’s] is a unit multiple of 3} 7. In particular, a;e®~2) is a unit mul-

tiple of B%Hpﬂ)p. Since a1 87 =0 (4.4.22), BprH = 0 since it is a unit multiple
of alﬂfs(p_z). However, in the FEs-term all powers of 31 are nonzero (Section 6.4),
SO ﬁf%pﬂ must be killed by a differential, more precisely by d(p_l)q_H(alﬁ;’/;l).

Now we will make an analogous calculation for p = 2. The first three steps
are shown F1aG. 4.4.23. In (a) we have Extp, (Z/(2),Z(2)), which is Ext(BP./I4)
for t — s < 29. Since differentials in the Bockstein spectral sequences and the
Adams—Novikov spectral sequence all lower ¢t — s by 1, we lose a dimension with
each spectral sequence. In (a) we give elements the same names they have in
EX'CA* (Z/(Q), Z/(Q)) Hence we have ¢y = <h11, h%g, h11> and Px = <.§U, h%o, hia.
Diagonal lines indicate multiplication by hig, h11, and hyis. The arrow pointing up
and to the right indicates that all powers of hyo are nontrivial.

The Bockstein spectral sequence for Ext(BP,/I3) collapses and the result is
shown in Fig. 4.4.23(b). The next Bockstein spectral sequence has some differen-
tials. Recall that ds is the connecting homomorphism for the short exact sequence

0 — X°BP,/I, 2 BP,/I, — BP,/I3 — 0.

Since ngr(vs3) = v3 + vat§ + v3t; mod I by 4.3.1 we have

(4.4.24) (a) da(vshiy) = (hia + vahig)hly,  fori <2,
(b)  Sa(vshiy) = vohif! for i > 3,
(c) ba(vshiy) = hi}' for i =1,2,
(d) 59(v3) = vohys + v3hyy.

This accounts for all the nontrivial values of 2. In Ext(BP./I2) we denote
62(v3) by v; and v5 '62(v3) by v2/2. The elements vshy 1, v3hy,0h1 2 € Ext(BP,/I5)
are in ker do and hence lift back to Ext(BP,/I3), where we denote them by (o and
T2 .2, respectively. They are represented in C'(BP,/I3) by

(4.4.25) (a) (o =wst? 4+ vp(t2 +18) +v3ty and
(b) @y = vty |t] +valta|ts + 11|35 + to|tT + t3]t3 + £3[t)
+ 3 (ta|ty + t1[t3ts + tita|t?).
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FIGURE 4.4.23. (a) Ext(BP,/I;) for p = 2 and ¢t — s < 29.
(b) Ext(BP,/I5) for t — s < 28. (c) Ext(BP,/I2) for t — s < 27.
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Now we pass to Ext(BP,/I;). To compute §; on Ext’(BP,/I;) we have
nr(v2) = vy +v1t? +v?t; mod Iy, so

(4.4.26) 01(v2) = h1y mod (v1),
61(v3) = v1h1a = v1 (11 + vahig) mod (v}),
61(v3) = v3hi mod (v1),
81 (vy) = vihis = v} (/2 + v3ha1) mod (v}),
61(v3) = vyhi mod (v1),

This means that in Extl(BP*/Ig) it suffices to compute d; on vahig, (2, v3hio0,
v2, and va(s. We find d1 (vah1p) and the element pulls back to

(4427) T7 = vty + V1 (tz + t?)
For ¢, we compute in C(BP,/I;) and get

d(G2 + v1tit3) = vi (1]t + v3ta]t1) mod (v7)

SO
(4.4.28) 61(¢) =~ mod (vy)
For Ug’hw we compute
d(v3ty +v1v3(ty + £3) + vivsty) = vivity |ty mod (v3)
SO
(4.4.29) 81(vihio) = viv3hi, mod (v?).
Similar calculations give
(4.4.30) 81(72) = hi1yaj2 mod (v7)
and

01 (v2(2) = hi1Ge + Ug’hlo mod (U%)
In Ext? BP,/I,) it suffices to compute d; on 3. We will show

(4.4.31) 61(z22) = co

using Massey products. Since 95 projects to vshighio we have xoo € <v2,'y%, hio),
80 01(wa2) € {81(v2),7%, h1o) by A1.4.11. This is (hy1,72, h1o), which is easily seen
to be cgp.

This completes our calculation of §;. The resulting value of Ext(BP,/I;) is
shown in F1G. 4.4.32. The elements 1 and z7 are free over P(vy, hig). As usual we
denote v; 78, (v) by Bij- a7 is defined by 4.4.27. 7y and 72 (not to be confused
with the n; of Mahowald [6]) denote d1(¢2) and 61 (va(a).

We must comment on some of the relations indicated in 4.4.32.

4.4.33. LEMMA. In Ext(BP,/Iy) for p =2 the following relations hold.
(a) h1053 = 0155/2

(b) 53/2 = B1Baya + hioBuy2

(c) hi’o$7ﬂ4/4 = v PP
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FIGURE 4.4.32. Ext(BP,/I;) forp=2and t — s < 26

Proor.
(a) B2 = h12 mod (v1) so v16§/2 = 61(v3h12) while h1pB3 = 61 (v3hio). Since
r(Vav3) = vovs + v3tF + v3t; mod I, we have v3hio = v3hyg in Ext(BP,/I5).
n 2l1 2 : 2 2

(b) Baj2 = h12 + v?h11 = hig + vihio so

63/2 = h?z = h%1h13 = 54/4h%1

= Ba/a(B7 + vihiy) = BajaBi + Baj2hiy mod (v}).
(c) viPB1 = v1(B1, kg, Baya)
= (v1,B1,h1o)Baja by ALA4.6

= (v1, B1, hio)hipBasa by AL1.4.6.
The last Massey product is easily seen to contain 7. O

Now we pass to Ext(BP,) by computing &y, beginning with Ext’(BP,/I,) =
P(v1). By direct calculation we have

(4.4.34) So(v3) = v¥hyp  mod (2)
So(v) = 26

To handle larger even powers of vy, consider the formal expression u = v3 —4v; 'v,.
Using the formula (in terms of Hazewinkel’s generators A2.2.1)

773(’(}2) = Uy — 5U1t% — 31)%1‘4 + 2ty — 4t:13,
we find that d(u) = 8vy 2x7 in C(vy ' BP,/(2%)). It follows that
d(u® — 2%v;%03) = 2*(z7 + Baye) mod (2°)
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and for ¢ > 2 _

d(u') = 8iv? " *z; mod (161)
SO
(4.4.35) So(v}) = 2°(z7 + Bay2) mod (2%)
and

So(v?) = 4iv?**2; mod (8i) fori>3.
Combining this with
(4.4.36) So (v hh) = v¥ng
and
So(v¥H Bl o7) = v¥hi g
accounts for all elements of the form v}héx% for ¢, > 0 and € = 0,1 we have
4.4.37. THEOREM. For p = 2 Ext'(BP,) is generated by &; for i > 1 where
So(v}) for i odd
& = 4 260(v}) fori=2
(1/2i)39(vy)  for even i > 4.
In particular &q = hyg. Moreover &{di #0 forall j >0 and i # 2. O

~ Moving on to Ext'(BP,/I;) we still need to compute dy on hia, v1hi2, B3, and
v]hyg for 0 < j < 3. An easy calculation gives

(4.4.38) So(h12) = B3, mod (2),
do(v1hi2) = h10h12 mod (2),
do(h1z) = h mod (2),
do(v1ihiz) = v h12 + highis mod (2),
So(v2h13) = 2(h1y +v1h1o)his mod (4),

and
So(v3h13) = v?highis mod (2).

For 3 we have
(4.4.39) 80(B3) = B35 +m.

The proof is deferred until the next chapter (5.1.25).
In Ext?(BP,/I,) all the calculations are straightforward except 1y and 743, /5
The former gives

(4440) 50(7]2) = Cp,
which we defer to 5.1.25. For the latter we have
So(x7B4a) = x7h3, mod (2).
Computing in C(BP,/I3) we get
d(t2|ts + to|ts 4+ t3]t2 + t2ta|th) = t1|t]|t] + votd|t3|t2
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FIGURE 4.4.45. Ext(BP,) for p=2,t — s < 25.

so z7h?y = 342 mod (v?) and
(4.4.41) do(w7B4/4) = % B3 + Ch%oﬁ;i/g mod (2)
for ¢ =0 or 1. Note that
S0 (h10B1) = hipBayo-
We also get from 4.4.37

(4.4.42) do (1‘754/3) = Ch%0ﬂ4 + h10$7ﬁ4/4 mod (2).
do(w74/2) must be a multiple of higx784/3 but the latter is not in ker dg so

Of the remaining calculations of dg all are easy but 5%64/4 and h3y By = ﬁf’ﬁ4/4.
It is clear that 50(5%,84/4) and 60(6§ﬁ4/4) are multiples of elements which reduce
to h3, and Ppi, respectively. Since ﬂfﬁgm = 0 and $18h3(Bs/5 = 0 we have
60(B%B1/4) =0 mod (2) and 8o(8784/4) =0 mod (4). Thus the simplest possible
result is

(4.4.44) %50@1254/4) = h}yBs3 mod (2),

100(6%6172) = PB mod (2)

We will see below that larger values of the corresponding Ext groups would
lead to a contradiction.

The resulting value of Ext(BP,) is shown in F1G. 4.4.45. Here squares denote
elements of order greater than 2. The order of the elements in Ext' is given in
4.4.37. The generators of Ext??® and Ext*?* have order 4 while that of Ext>?® has
order 8.
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We compute differentials and group extensions in the Adams—Novikov spectral
sequence for p = 2 by comparing it with the Adams spectral sequence. The Es-term
of the latter as computed by Tangora [1] is shown in F1G. 4.4.46. This procedure
will determine all differentials and extensions in the Adams spectral sequence in
this range as well.

0 5 10 15 20 25
+15
+ 10
s
T5
T0
FIGURE 4.4.46. Exta,(Z/2,Z/2) for t — s < 25.
The Adams element h; corresponds to the Novikov &;. Since hi = 0, of

must be killed by a differential, and it must be ds(as). It can be shown that
the periodicity operator P in the Adams spectral sequence (see 3.4.6) corresponds
to multiplication by v{, so Ph; corresponds to au;y1, S0 d3(G4iss) = a3011-
The relation h2hy = h} gives a group extension in the Adams-Novikov spectral
sequence, 2012 = @301 in homotopy. The element Phy for i > 0 corresponds
t0 2a4;+1. This element is not divisible by 2 in the Adams spectral sequence so we
deduce d3(a4iy2) = aay; for i > 0. Summing up we have

4.4.47. THEOREM. The elements in Ext(BP,) for p = 2 listed in 4.4.37 behave
in the Adams—Novikov spectral sequence as follows. ds(aiy3) = a3duivs fori >0
and d3(@uiv2) = a3ay; for i > 1. Moreover the homotopy element corresponding
to augi4o = rd4i+o does not have order 2; twice it is 64%64@ fori>1 and 64? for
1=0. O

As it happens, there are no other Adams—Novikov spectral sequence differentials
in this range, although there are some nontrivial extensions.

These elements in the Adams—Novikov spectral sequence E..-term correspond
to Adams elements near the vanishing line. The towers in dimensions congruent
to 7 mod (8) correspond to the groups generated by &g4;. Thus the order of ay;
determines how many elements in the tower survive to the Adams F.,-term. For
example, the tower in dimension 15 generated by h4 has 8 elements. ag has order 2°
so only the top elements can survive. From this we deduce d3(hihs) = hidy for
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i = 1,2 and either d3(hy) = do or da(hg) = hoh3. To determine which of these two
occurs we consult the Adams-Novikov spectral sequence and see that 3 and 34,4
must be permanent so 75, = Z/(2) ® Z/(2). If d3(hs) = do the Adams spectral
sequence would give 75, = Z/(4), so we must have da(hy) = hoh3.

One can also show that P’cy corresponds to o @4i+4 for ¢ > 1 and this leads to
a nontrivial multiplicative extension in the Adams spectral sequence. For example,
the homotopy element corresponding to Pcg is a; times the one corresponding to
h3hy.

The correspondence between Adams—Novikov spectral sequence and Adams
spectral sequence permanent cycles is shown in the following table.

TABLE 4.4.48. Correspondence between Adams—Novikov spectral
sequence and Adams spectral sequence permanent cycles for p = 2,

14<t—s<24
Adams—Novikov | Adams || Adams—Novikov | Adams
element element element element
Baya h% B4 g
B3 do %513@/4 hog
Bays hihy F03 84 hag
%54/2 hohy Ba/a0is hyco
T2 (&1

4.4.49. COROLLARY. The Adams—Novikov spectral sequence has nontrivial
group extensions in dimensions 18 and 20 and the homotopy product By is de-
tected in filtration 4. O

4.4.50. COROLLARY. For 14 <t — s < 24 the following differentials occur in
the Adams spectral sequence for p = 2.

da(hs) = hoh3, ds(hohs) = hodo, da(eo) = hidy,
do(fo) = hgeo, dao(i) = hoPdy, and do(Pey) = h3Pd.
There are nontrivial multiplicative extensions as follows:
hy-h3hy = Pco, hy-hig= Pdy, and hg-hieq = hiPdy = hy-hidy. O



CHAPTER 5

The Chromatic Spectral Sequence

The spectral sequence of the title is a mechanism for organizing the Adams—
Novikov Ea-term and ultimately 7, (S?) itself. The basic idea is this. If an element
x in the Ea-term, which we abbreviate by Ext(BP,) (see 5.1.1), is annihilated by a
power of p, say p’, then it is the image of some 2’ € Ext(BP,/p’) under a suitable
connecting homomorphism. In this latter group one has multiplication by a suitable
power of v; (depending on %), say v}*. 2’ may or may not be annihilated by some
power of v{*, say v{nj. If not, we say x is vi-periodic; otherwise z’ is the image of
some z” € Ext(BP,/(p*,v]")) and we say it is vi-torsion. In this new Ext group
one has multiplication by v5 for some n. If x is vi-torsion, it is either wy-periodic
or ve-torsion depending on whether 2" is killed by some power of v}. Iterating
this procedure one obtains a complete filtration of the original Ext group in which
the nth subgroup in the v,-torsion and the nth subquotient is v, -periodic. This is
the chromatic filtration and it is associated with the chromatic spectral sequence of
5.1.8. The chromatic spectral sequence is like a spectrum in the astronomical sense
in that it resolves stable homotopy into periodic components of various types.

Recently we have shown that this algebraic construction has a geometric origin,
i.e., that there is a corresponding filtration of 7,(S°). The chromatic spectral
sequence is based on certain inductively defined short exact sequences of comodules
5.1.5. In Ravenel [9] we show that each of these can be realized by a cofibration

N, = M,, = Nu41
with Ny = S° so we get an inverse system
SO — 271N1 — 272N2 e

The filtration of 7, (S°) by the images of 7, (X" N™) is the one we want. Applying
the Novikov Ext functor to this diagram yields the chromatic spectral sequence,
and applying homotopy yields a geometric form of it. For more discussion of this
and related problems see Ravenel [8].

The chromatic spectral sequence is useful computationally as well as conceptu-
ally. In 5.1.10 we introduce the chromatic cobar complex CC(BP,). Even though
it is larger than the already ponderous cobar complex C(BP,), it is easier to work
with because many cohomology classes (e.g., the Greek letter elements) have far
simpler cocycle representatives in CC than in C.

In Section 1 the basic properties of the chromatic spectral sequence are given,
most notably the change-of-rings theorem 5.1.14, which equates certain Ext groups
with the cohomology of certain Hopf algebras 3(n), the nth Morava stabilizer alge-
bra. This isomorphism enables one to compute these groups and was the original
motivation for the chromatic spectral sequence. These computations will be the

147
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subject of the next chapter. Section 1 also contains various computations (5.1.20—
5.1.22 and 5.1.24) which illustrate the use of the chromatic cobar complex.

In Section 2 we compute various Ext! groups (5.2.6, 5.2.11, 5.2.14, and 5.2.17)
and recover as a corollary the Hopf invariant one theorem (5.2.8), which says almost
all elements in the Adams spectral sequence Egl* are not permanent cycles. Our
method of proof is to show they are not in the image of the Adams Novikov Ej*
after computing the latter.

In Section 3 we compute the vi-periodic part of the Adams—Novikov spectral
sequence and its relation to the J-homomorphism and the p-family of Adams [1].
The main result is 5.3.7, and the resulting pattern in the Adams—Novikov spectral
sequence for p = 2 is illustrated in 5.3.8.

In Section 4 we describe Ext? for all primes (5.4.5), referring to the original
papers for the proofs, which we cannot improve upon. Corollaries are the nontrivi-
ality of 74, (5.4.4) and a list of elements in the Adams spectral sequence E; " which
cannot be permanent cycles (5.4.7). This latter result is an analog of the Hopf
invariant one theorem. The Adams spectral sequence elements not so excluded
include the Arf invariant and n; families. These are discussed in 5.4.8-5.4.10.

In Section 5 we compile all known results about which elements in Ext? are
permanent cycles, i.e., about the pg-family and its generalizations. We survey the
relevant work of Smith and Oka for p > 5, Oka and Toda for p = 3, and Davis and
Mahowald for p = 2.

In Section 6 we give some fragmentary results on Ext® for s > 3. We describe
some products of a’s and (’s and their divisibility properties. We close the chapter
by describing a possible obstruction to the existence of the J-family.

Since the appearance of the first edition, many computations related to the
chromatic spectral sequence have been made by Shimomura. A list of some of
them can be found in Shimomura [2]. A description of the first three columns of
the chromatic spectral sequence (meaning the rational, v1- and vy-periodic parts)
for the sphere can be found in Shimomura and Wang [3] for p = 2, in Shimomura
and Wang [4] for p = 3, and in Shimomura and Yabe [5] for p > 5. Analogous
computations for the mod p Moore spectrum can be found in Shimomura [6] for
p = 2, in Shimomura [7] for p = 3 and in Shimomura [8] for p > 5.

1. The Algebraic Construction

In this section we set up the chromatic spectral sequence converging to the
Adams—Novikov Fs-term, and use it to make some simple calculations involving
Greek letter elements (1.3.17 and 1.3.19). The chromatic spectral sequence was
originally formulated by Miller, Ravenel, and Wilson [1]. First we make the follow-
ing abbreviation in notation, which will be in force throughout this chapter: given
a BP,(BP) comodule M (A1.1.2), we define

(511) EXt(M) :EXth*(Bp)(BP*,M)

To motivate our construction recall the short exact sequence of comodules given
by 4.3.2(c)

(5.1.2) 0— x2¢"-YBp, /I, * BP,/I,, = BP,/I, 1 — 0

and let
0n: Ext®(BP,/I,4+1) — Ext*™(BP,/I,)
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denote the corresponding connecting homomorphism.
5.1.3. DEFINITION. Fort,n > 0 let
al™ = 606, - 6u_1(v]) € Ext™(BP,). 0

Here o™ stands for the nth letter of the Greek alphabet. The status of these
elements in 77 is described in 1.3.11, 1.3.15, and 1.3.18. The invariant prime ideals
in I, in 5.1.2 can be replaced by invariant regular ideals, e.g., those provided by
4.3.3. In particular we have

5.1.4. DEFINITION. (/141 € ExtY P (BP,) (where q = 2p — 2) is the image

of vfpl under the connecting homomorphism for the short exact sequence

pi+1 .
0 — BP, *— BP, — BP,/(p'") — 0. O

We will see below that for p > 2 these elements generate Ext'(BP,) (5.2.6)
and that they are nontrivial permanent cycles in im J. We want to capture all of
these elements from a single short exact sequence; those of 5.1.4 are related by the
commutative diagram

0 BP, -~ BP BP,/(p') — 0
P
i1 )
0 BP, *— BP, BP,/(pit!) —=0

Taking the direct limit we get
0— BP, - Q® BP, = Q/Z) ® BP, — 0;

we denote these three modules by N°, M, and N!, respectively. Similarly, the
direct limit of the sequences
i+i

0— BP,/(p'T) 2 £ BP, /(pit!) - 1P

i+j

BP./(p"™0f ) =0

i+i

gives us
0— BP,/(p™) = vy ' BP./(p™) = BP./(p>,15°) = 0

and we denote these three modules by N', M, and N2, respectively. More gener-
ally we construct short exact sequences

(5.1.5) 0— N"— M"™— N"t' -0
inductively by M™ = v-!BP, ®p. N". Hence N" and M™ are generated as Z -

modules by fractions % where x € BP, for N" and v;lBP* for M™ and y is a
monomial in the ideal (pvy ---v,_1) of the subring Z,[v1,...,v,—1] of BP,. The
BP,-module structure is such that va/y = 0 for v € BP, if this fraction when
reduced to lowest terms does not have its denominator in the above ideal. For

example, the element —— € N? is annihilated by the ideal (p‘,v7).

iqd
plvuy

5.1.6. LEMMA. 5.1.5 is a short exact sequence of BP,(BP)-comodules.

PRrROOF. Assume inductively that N™ is a comodule and let N’ C N™ be a
finitely generated subcomodule. Then N’ is annihilated by some invariant regular
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ideal with n generators given by 4.3.3. It follows from 4.3.3 that multiplication by

some power of v,,, say v¥, is a comodule map, so

_1 . — dim ol
Un N/ — h_l’}nz muv,, NI
vl
is a comodule. Alternatively, N’ is annihilated by some power of I,,, so multiplica-
tion by a suitable power of v, is a comodule map by Proposition 3.6 of Landweber [7]

and v; !N’ is again a comodule. Taking the direct limit over all such N’ gives us a
unique comodule structure on M™ and hence on the quotient N™*1. O

5.1.7. DEFINITION. The chromatic resolution is the long exact sequence of co-
modules
0 de 1 de
0—-BP.-M —M —--.

obtained by splicing the short exact sequences of 5.1.5. ]
The associated resolution spectral sequence (A1.3.2) gives us

5.1.8. PROPOSITION. There is a chromatic spectral sequence converging to
Ext(BP.) with E{"® = Ext*(M™) and d,: E™* — E"T"STIT where dy is the
map induced by de in 5.1.7. (]

5.1.9. REMARK. There is a chromatic spectral sequence converging to Ext(F')
where F' is any comodule which is flat as a BP,-module, obtained by tensoring the
resolution of 5.1.7 with F.

5.1.10. DEFINITION. The chromatic cobar complex CC(BP,) is given by
ccU(BP,) = € cr(mm),
s+n=u
where C( ) is the cobar complex of A1.2.11, with d(x) = d(z) + (=1)"d;(x) for
x € C*(M™) where d* is the map induced by d. in 5.1.7 (the external component of

d) and d; (the internal component) is the differential in the cobar complex C'(M,,).
O

It follows from 5.1.8 and A1.3.4 that H(CC(BP,)) = H(C(BP,)) = Ext(BP,).
The embedding BP, — M° induces an embedding of the cobar complex C(BP,)
into the chromatic cobar complex CC(BP,). Although CC(BP,) is larger than
C(BP,), we will see below that it is more convenient for certain calculations such
as identifying the Greek letter elements of 5.1.3.

This entire construction can be generalized to BP, /I, as follows.

5.1.11. DEFINITION. Let N0 = BP,/I,, and define BP,-modules N and M
inductively by short exact sequences
0— NI — M — NI — 0

where M?, = v, % BP, @pp, NI. O

m—+n

Lemma 5.1.6 can be generalized to show that these are comodules. Splicing
them gives a long exact sequence

0— BP, /I, — M2 25 pt ey o

and a chromatic spectral sequence as in 5.1.8. Moreover BP, /I, can be replaced by
any comodule L having an increasing filtration {F;L} such that each subquotient
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F;/F;_; is a suspension of BP,/I,,, e.g., L = BP,/I* . We leave the details to the
interested reader.

Our main motivation here, besides the Greek letter construction, is the com-
putability of Ext(M?); it is essentially the cohomology of the automorphism group
of a formal group law of height n (1.4.3 and A2.2.18). This theory will be the subject
of Chapter 6. We will state the first major result now. We have M2 = v, 'BP,/I,,
which is a comodule algebra (A1.1.2), so Ext(M?) is a ring (A1.2.14). In partic-
ular it is a module over Ext’(M2). The following is an easy consequence of the
Morava—Landweber theorem, 4.3.2.

5.1.12. PROPOSITION. For n > 0, Ext®(M?) = Z/(p)[vn,v;,]. We denote this
ring by K(n).. [The case n =0 is covered by 5.2.1, so it is consistent to denote Q
by K(0)..] O

5.1.13. DEFINITION. Make K (n). a BP.-module by defining multiplication by v;
to be trivial for i #n. Then let ¥(n) = K(n)« @pp, BP.(BP) @pp, K(n)«. O

Y¥(n), the nth Morava stabilizer algebra, is a Hopf algebroid which will be
closely examined in the next chapter. It has previously been called K (n).K(n),
e.g., in Miller, Ravenel, and Wilson [1], Miller and Ravenel [5], and Ravenel [5, 6].
K(n), is also the coefficient ring of the nth Morava K-theory; see Section 4.2 for
references. We have changed our notation to avoid confusion with K (n).(K(n)),
which is ¥(n) tensored with a certain exterior algebra.

The starting point of Chapter 6 is

5.1.14. CHANGE-OF-RINGS THEOREM (Miller and Ravenel [5]).
Ext(M)) = Exts ) (K(n)., K(n).). O
We will also show (6.2.10)

5.1.15. MORAVA VANISHING THEOREM. If (p — 1) {n then Ext*(MC) = 0 for
s >mn?. (]

Moreover this Ext satisfies a kind of Poincaré duality, e.g.,
Ext®(M°) = Ext™ ~*(M?),

and it is essentially the cohomology of a certain n stage nilpotent Lie algebra of

rank n?. If we replace ¥(n) with a quotient by a sufficiently large finitely generated

subalgebra, then this Lie algebra becomes abelian and the Ext [even if (p — 1)

divides n] becomes an exterior algebra over K (n), on n? generators of degree one.
To connect these groups with the chromatic spectral sequence we have

5.1.16. LEMMA. There are short exact sequences of comodules
0 — M4 L mdimen e 2y ppn g
) with

and Bockstein spectral sequences converging to Ext(M

E}* = Ext®(M2)) @ P(an)

where multiplication by a., in the Bockstein spectral sequence corresponds to division
by v, in Ext(MD). d, is not a derivation but if d,(al,x) =y # 0 then d, (a5 z) =
vy,

PRrROOF. The spectral sequence is that associated with the increasing filtration
of M defined by F; M = ker v}, (see A1.3.9). Then E°M = M} ®@P(ay,). O
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Using 5.1.16 n times we can in principle get from Ext(M?) to Ext(M) =
Ext(M™) and hence compute the chromatic Ej-term (5.1.8). In practice these
computations can be difficult.

5.1.17. REMARK. We will not actually use the Bockstein spectral sequence of
5.1.16 but will work directly with the long exact sequence

— Ext®(M271) L Ext®(M2) 22 Ext® (272" H207) & Bxtst (M2 — -

by induction on s. Given an element z € Ext(M,"}}) which we know not to be
in im 4§, we try to divide j(z) by v, as many times as possible. When we find an
' € Ext(M]}) with vl 2’ = j(x) and §(z') = y # 0 then we will know that j(x)
cannot be divided any further by v,,. Hence § serves as reduction mod I,;,4+1. This
state of affairs corresponds to d,.(al,z) = y in the Bockstein spectral sequence of
5.1.16. We will give a sample calculation with § below (5.1.20).

We will now make some simple calculations with the chromatic spectral se-
quence starting with the Greek letter elements of 5.1.3. The short exact sequence
of 5.1.2 maps to that of 5.1.5, i.e., we have a commutative diagram

0 —— BP./I, L y-dimuwpp /[, ——sy-dmenpp /0
0 N™ M™ Nntl 0
with

t
vn+1

pvl ... /ljn :
Hence a§"> can be defined as the image of i(vf,) under the composite of the connect-
ing homomorphisms of 5.1.5, which we denote by a: Ext’(N™) — Ext"(BP,). On
the other hand, the chromatic spectral sequence has a bottom edge homomorphism

i(”fzﬂ) =

Ext’(M") —— E"°
Ext’(N™) — kerd, Em0 Ext"(BP,)

which we denote by
r: Ext®(N™) — Ext™(BP,).
k and « differ by sign, i.e.,

5.1.18. PROPOSITION. x = (—1)[("D/ 2o where [x] is the largest integer not
exceeding x.

PROOF. The image yo of i(v}) in M" is an element in the chromatic complex
(5.1.10) cohomologous to some class in the cobar complex C(BPy). Inductively
we can find z5 € C5(M"571), and ys, € C*(M"™*) such that dc(zs) = ys and
di(zs) = yst1. Moreover y, € C"(MP) is the image of some z,, € C"(BP,).
It follows from the definition of the connecting homomorphism that x, is a co-
cycle representing «(i(vh)) = a§">. On the other hand, y, is cohomologous to
(—1)" *yes1 in CC(BP,) by 5.1.10 and [["Z0(-1)"~* = (=1)"+1/2 50 x,, repre-
sents (—1)" 172k (i(v?)). O
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5.1.19. DEFINITION. If z € Ext’(M™) is in the image of Ext°(N™) (and hence
gives a permanent cycle in the chromatic spectral sequence) and has the form

t

Unp,

— mod I,

piovil “e ’U:’Ln:l

(i.e., x is the indicated fraction plus terms with larger annihilator ideals) then we
(n)
t/in_1,..

a(z) by o™ O

U/t —1yeensimp1

denote a(z) by a io? if for somem < n, i, =1 for k < m then we abbreviate

5.1.20. EXAMPLES AND REMARKS. We will compute the image of §; in
Ext?(BP,/I) for p > 2 in two ways.

(a) We regard $3; as an element in Ext®(M?) and compute its image under
connecting homomorphisms &y to Ext!(M]}) and then &, to Ext?(MY), which is
E?’Q in the chromatic spectral sequence for Ext(BP,/I5). To compute dg, we pick
an element in z € M? such that pz = 3;, and compute its coboundary in the cobar
complex C(M?). The result is necessarily a cocycle of order p, so it can be pulled
back to Ext'(M}). To compute §; on this element we take a representative in
CY(M}), divide it by vy, and compute its coboundary.

t t

Specifically B; is ;721 € M?, so we need to compute the coboundary of 2 = p’;; .
p—1,_t

It is convenient to write x as U;ZU;) 2 then the denominator is the product of elements

1
generating an invariant regular ideal, which means that we need to compute ng on
the numerator only. We have

nr(?™ ") =P —poP 7t mod (p?)
and
nr(vy) = vh + ol (1t + pty)  mod (p?, puy, v?).
These give

p—1, ¢ t t—1
vy U —vU5t tv
d 552 ) = =+ —2—(ts — ;7).
p2’U1 pvy pu1
This is an element of order p in C*(M?), so it is in the image of C*(M{). In this
group the p in the denominator is superfluous, since everything has order p, so we
omit it. To compute §; we divide by v; and compute the coboundary; i.e., we need
to find

3 2
U1 U1

d(‘”étl Lt (e — tﬁ’))).
Recall (4.3.15)
A(tg) :tz ®1+t1 ®t?+1®t2+’01b10
where

P\ i oy
bo=— p(f)i@t’f

0<i<p
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as in 4.3.14. From this we get

—vit;  tobt —tot P | t\ vt 2
d( 21 W (t2_t}+p)> :221|_(> j}l e

vy vy vy 2
t—2
v
(= 1) 2t - 177
1
v?l
+1 2 (—U1b10+t11)|t1)
1
£\ vi—2
:< ) (2t |ty — 2|1 HP — 137 |1)
2 V1
t—1
12 g
vy

We will see below that Ext?(MJ) has generators ko represented by 22|ty — 267 |¢1 7 —
t§p|t1 and b19. Hence the mod I5 reduction of —f; is

t
<2> Ué_2]€0 + tvé_lbLo.

(b) In the chromatic complex CC(BP;) (5.1.10), 8; € M? is cohomologous to
elements in C'(M?') and C?(MY). These three elements pull back to N2, C*(N1),
and C?(N?), respectively. In theory we could compute the element in C?(N?) =
C?(BP,) and reduce mod I, but this would be very laborious. Most of the terms
of the element in C°(BP,) are trivial mod I, so we want to avoid computing them
in the first place. The passage from C°(N?) to C?(BP,) is based on the four-term
exact sequence

0 — BP, - M° - M' - N? = 0.

t
Since ;)721 € N? is in the image of X"9BP,/I,, we can replace this sequence with

0— BP, & BP, s ¥ 9BP, /I, — S 9BP, /I, — 0.

We are going to map the first BP, to BP,/I5; we can extend this to a map of
sequences to

0 — BP,/I, & BP,/(p?, pv1,v?) 2 ©79BP,/(p,v}) — L IBP, /I, — 0,
which is the identity on the last comodule. [The reader may be tempted to replace
the middle map by

BP*/(pza Ul) v—l) E*QBP*/(p, U%)

but BP,/(p? v1) is not a comodule.] This sequence tells us which terms we can
ignore when computing in the chromatic complex, as we will see below.

Specifically we find (ignoring signs) that :T% € M? is cohomologous to

tol 1P t\ vivi 2
214 (=) 2 =2—¢?" 4 higher terms.
p 2 p

Note that the first two terms are divisible by v; and v? respectively in the image
of CY(X79BP,/(p)) in C*(M?"). The higher terms are divisible by v$ and can
therefore be ignored.



1. THE ALGEBRAIC CONSTRUCTION 155

In the next step we will need to work mod I3 in the image of C?(BP,) in
C?(M?) via multiplication by p. From the first term above we get

t(t — 1)vb 2t |t} + tvh by,

t
()

and their sum represents the same element obtained in (a).

while the second term gives

Our next result is

5.1.21. PROPOSITION. For n > 3,

ag") = (—1)"a1a1(7n:11). ([l
For n = 3 this gives 71 = —a18,—1. In the controversy over the nontriviality

of 71 (cf. the paragraph following 1.3.18) the relevant stem was known to be
generated by a18,-1, so what follows is an easy way (given all of our machinery)
to show 1 # 0.

PROOF OF 5.1.2. ay is easily seen to be represented by ¢; in C(BP,), while

agn) and az(f:l) are represented by
v Pt
(-2 e pmoand (-1 —2=L e
Py Un—1 puy - Un—2
respectively. Hence (—1 ”ala(ﬁ_l) = fa(":l)al is represented by
p—1 p—1
Dpiltl
(-n)/A =1 ¢ cY(M™Y) ¢ CC™(BP,)
pvy - Un—2

(,1)[714—1/2]1,” .

and it suffices to show that this element is cohomologous to Goro ). 0

CC(BP,).
Now consider

Up_1Un Uy

1
pui--Un—2  puy---Up_3V, 9
Clearly
Un
pv1- - Un—1

To compute d;(z) we need to know nR(v;ilvn) mod I,,—; and 7ng(vf_;)

de(z) =

mod (p,v1,...,vn_3,v515) since di(z) = nr(z) — z. We know
n—1
Nr(vn) = vy +vpat]  —oP 61 mod I,y
by 4.3.21, so
n—1 2

NR(Vp_1) = vp_q + oty — vy _ot] mod [ _s.
Hence o

nr(vton) —v o, =2 — 0P mod I,
and

—1
P p —,p 4p" 1+p
nr(vh_1) —vh_; =vh _ot) mod (p,v1,...,Un_3,0, 5).
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It follows that

p—1
—v,, _1t
di(z) = —=12
pvy - Un—2
SO )
e
v v, 1t
dz) = —"— + (-1)"—=n=L
pvL - Un—1 pvL - Un—2
and a simple sign calculation gives the result. O

For p = 2 5.1.21 says agn) = a?*Qa?) for n > 2. We will show that each of

these elements vanishes and that they are killed by higher differentials (d,,—1) in
the chromatic spectral sequence. We do not know if there are nontrivial d,.’s for all
r > 2 for odd primes.
5.1.22. THEOREM. In the chromatic spectral sequence for p = 2 there are ele-
ments x, € EN"1° for n > 2 such that
Un

dn—l(xn) = m € E:fl
n—

PRrROOF. Fortunately we need not worry about signs this time. Equation 4.3.1
gives np(v1) = v1 — 2t; and nr(ve) = vo +v1t? +vft; mod (2). We find then that
v? + dvy g

8
has the desired property. For n > 2 we represented x,, by
[(t2 — 13 + v Mvaty)[ta] -~ [t ]
2
with n — 3 t1’s. To compute d,,_1(z,) let

n—=2 /9 2, —1
Vi — ViU, qVig2)t1| - [T
Bp = p+ ) Wi = vivve)bl i CC(BP,),
i=1

T2

e C" (M)

2'[)1 cee 'Uifl’l)?
where the ith term has (n — 2 — i) ¢1’s. Then one computes
. Un
d(Tp) = ———,
( n) Q1+ Uy

S0 v

dnfl(xn) = =
unless this element is killed by an earlier differential, in which case x,, would
represent a nontrivial element in Ext™~*"(BP,), which is trivial by 5.1.23 below.

O

21}1 ce e Up—1

5.1.23. EDGE THEOREM.

(a) For all primes p Ext®'(BP,) = 0 for t < 2s,
(b) for p = 2 Ext**(BP,) = Z/(2) for s > 1, and
(c) for p = 2 Ext***3(BP,) = 0 for s > 2.

ProOF. We use the cobar complex C(BP,) of A1.2.11. Part (a) follows from
the fact that C*! for t < 2s. C*2% is spanned by t1] - - - [t; while C*25%2 is spanned
by vity|---|t1 and e; = t1]-- - t1[t3|t1 - - - t1 with ¢} in the jth position, 1 < j < s.
Since d(t3) = —3t1[t — 3t}|t1, the e;’s differ by a coboundary up to sign. Part (b)
follows from

d(el) = 2t1| s ‘tl = 7d(’l)1t1| cee |t1)
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and (c) follows from
d(tz|ta]---t1) = —vita]| -+ [t1 — e1.
O

We conclude this section by tying up some loose ends in Section 4.4. For p > 2 we
need

5.1.24. LEMMA. For odd primes, a1f, is divisible by p but not by p*>. (This
gives the first element of order p? in Ext®(BP;) for 5> 2.)

Proor. Up to sign a1, is represented by
if we can get a cocycle by adding a term of order P then we W111 have the de51red

; then the factors

divisibility. It is more convenient to write this element as _ v"’tl

of the denominator form an invariant sequence [i.e. nR(vl) = Uf mod (p?)], so to
compute the coboundary it suffices to compute ng (v v2) mod (p?,v}). We find

(v}
d vl_lvgt _ —ubtfty ld vht?
2,0 1) T 2 9
b7y pvy pU1

so the desired cocycle is

vf71v§t1 1 vht?
p2ol 2 pvi’
This divisibility will be generalized in (5.6.2).
To show that a1 [, is not divisible by p? we compute the mod (p) reduction of
our cocycle. More precisely we compute its image under the connecting homomor-
phism associated with

0— M — M2E M2 -0
(see 5.1.16). To do this we divide by p and compute the coboundary. Our divided
(by p) cocycle is

and its coboundary is
oB (82t +t1|t2) N oty 10b TR BT
pvi pU1 2 pn pv1

3
We can eliminate the first term by adding %ﬁt; (even if p = 3). For p > 3 the
resulting element in CZ(Mll) is
“Htalty — 1Pty — t]t2)
U1

Reducing this mod I, in a similar fashion gives a unit multiple of ¢ in 4.1.14. For
= 3 we add Uztl to the divided cocycle and get

p—1
v tolty —--- v
2 (=) L g 4,
U1 U1
which still gives a nonzero element in Ext?(M]). O

For p = 2 we need to prove 4.4.38 and 4.4.40, i.e.,
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5.1.25. LEMMA. In the notation of 4.4.32 for p = 2 (a) do(B3) = B3, +m
mod (2),

(b) do(n2) = co mod (2).

ProOF. For (a) we have

d VIvS  vav3 _ Vit " v3t? + vot3 + v3ty + Vot
2 203 202 201 ’
which gives the result.

For (b) we use Massey products. We have 1(n;,v1, 81) so by Al1.4.11 we have
do(n2) = (n1, h1o, S1) mod (2). Hence we have to equate this product with cg,
which by 4.4.31 is represented by %, where x99 is defined by 4.4.25. To expedite
this calculation we will use a generalization of Massey products not given in Al.4
but fully described by May [3]. We regard 7, as an element in Ext (M), and hig,
and f3; as elements in Ext'(BP,/I;) and use the pairing M{ @ BP,/I; — M} to
define the product. Hence the cocycles representing 7y, hig and 31 are

v3t? 4+ v (t3 + 19) + vity
(% ’

t1, and t% + vity,

respectively. The cochains whose coboundaries are the two successive products are

v3(ta +t7) + va(ts 4 1115 + tita + t]) + 03 (t] + t1t2)
U1

and to.

If we alter the resulting cochain representative of the Massey product by the
coboundary of

1m%+m@+mﬁ+@+@@+ghy%ywﬁ+@u

v v} v

we get the desired result. O

2. Ext'(BP,/I,) and Hopf Invariant One

In this section we compute Ext'(BP,/I,,) for all n. For n > 0 our main results
are 5.2.14 and 5.2.17. For n = 0 this group is E21* in the Adams—Novikov spectral
sequence and is given in 5.2.6. In 5.2.8 we will compute its image in the classical
Adams spectral sequence, thereby obtaining proofs of the essential content of the
Hopf invariant one theorems 1.2.12 and 1.2.14. More precisely, we will prove that
the specified h;’s are not permanent cycles, but we will not compute do(h;). The
computation of Ext'(BP,/I,,) is originally due to Novikov [1] for n = 0 and to
Miller and Wilson [3] for n > 0 (except for n =1 and p > 2).

To compute Extl(BP*) with the chromatic spectral sequence we need to know
Ext!(M°) and Ext®(M*'). For the former we have

Q ifs=t=0

5.2.1. THEOREM. (a) Ext®*(M°) = ,
0 otherwise

Zy ift=0

b) Ext>!(BP,) = .
(b) Ext™( ) {0 otherwise

PROOF. (a) Since MY = Q ® BP,, we have Ext(M°) = Extr(4, A) where
A= M%and T = Q® BP.(BP). Since t, is a rational multiple of ng(v,) — v,
modulo decomposables, I' is generated by the image of ng and np and is therefore
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a unicursal Hopf algebroid (A1.1.11). Let @, = ng(vy,), so I' = Aoy, Ua,...]. The
coproduct in T is given by A(v,) = v, ® 1 and A(9,) = 1®v,,. The map nr: A —
I' = A®4 I makes A a right I'~comodule. Let R be the complex I' ® E(y1,ya, .. .)
where F(y1, Yo, .. . ) is an exterior algebra on generators y; of degree 1 and dimension
2(p* — 1). Let the coboundary d be a derivation with d(y,) = d(9,) = 0 and
d(vn,) = yn. Then R is easily seen to be acyclic with H°(R) = A. Hence R is
a suitable resolution for computing Extr(A4, A) (A1.2.4). We have Homr (A, R) =
A® E(y1,...) and this complex is easily seen to be acyclic and gives the indicated
Ext groups for MP.

For (b) Ext® BP, = kerd, C Ext’(MY) and d.(x) # 0 if 2 is a unit multiple of
a negative power of p. O

To get at Ext(M?!) we start with

5.2.2. THEOREM.

(a) Forp > 2, Ext(M?) = K(1). @ E(ho) where hg € Ext™? is represented by
t1 in CH(MY) (see 5.1.12) and g = 2p — 2 as usual.

(b) For p =2, Ext(M?) = K(1). ® P(ho) ® E(p1), where hg is as above and
p1 € Ext? is represented by 01_3(t2 —t3) + ’U1_41}2t1. O

This will be proved below as 6.3.21.

Now we use the method of 5.1.17 to find Ext®(M'); in the next section we will
compute all of Ext(M™) in this way. From 4.3.3 we have nr(?) = mod (pith),

K3
;P

S0 kT € Ext’(M"). For p odd we have

(5.2.3) nr(v”) = o +spof M mod (pt?)

so in 5.1.17 we have

sp’ :
5(;1“) = s0? "'ho € Bxt'(MY)

for p1 s, and we can read off the structure of Ext(M?) below.
For p = 2, 5.2.3 fails for i > 0, e.g.,
nr(v) = v} + vty + 412 mod (8).
The element ¢ + v1t; € C'(M?) is the coboundary of v *va, so

2 4 —1
062/3 = 7(1]1 + 8U1 02) S EXtO(Ml),
i.e., we can divide by at least one more power of p than in the odd primary case. In
order to show that further division by 2 is not possible we need to show that oy /3
has a nontrivial image under § (5.1.17). This in turn requires a formula for ng(ve)
mod (4). From 4.3.1 we get

(5.2.4) Nr(v2) = vo + 13v1tT — 3vit; — 14ty — 413,
[This formula, as well as ng(v1) = v; — 2t;, are in terms of the v; defined by
Araki’s formula A2.2.2. Using Hazewinkel’s generators defined by A2.2.1 gives
nr(v1) = v + 2t; and nr(ve) = vo — Sv1t? — vty + 2ty — 413

Let 11 = U% + 4vf102. Then 5.2.4 gives
(5.2.5) nr(r11) = x11 + 8(v Mo + v 3 + vy 2vat;)  mod (16)

$0 6(agy3) = vip1 #0 € Ext!(MY?).
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5.2.6. THEOREM.
(a) Forp odd

0 if gft where g =2p—2
Ext®"(M") = Q/Z¢) ift=0
Z/(p"t") ift=sp'q andpts

These groups are generated by
o3

pi-i-l

e M.
(b) For p odd

Ext®{(MY) ift>0

prer) = {o Ft=0
1 =

(c) Forp=2

0 if t is odd

Q/Zp ift=0

Z/(2) ift=2 mod4
Z/(21T3) ift = 2025 for odd s

Ext® (M) =

s 2is
These groups are generated by ”71 and ;1;13 e M where Z1,1 15 as in 5.2.5.

(d) Forp=2

0 ift<0
Ext"(BP,) = { Ext®*(MY) ift>0 andt+#4
Z/(4) ift=4

2
and Ext1’4(BP*) is generated by a9 = :I:%l.

We will see in the next section (5.3.7) that in the Adams—Novikov spectral
sequence for p > 2, each element of Extl(BP*) is a permanent cycle detecting an
element in the image of the J-homomorphism (1.1.13). For p = 2 the generators
of Ext"?! are permanent cycles for t = 0 and 1 mod (4) while for ¢t = 2 and 3 the
generators support nontrivial ds’s (except when ¢ = 2) and the elements of order 4
in Ext>®** are permanent cycles. The generators of E;*" = EL* detect elements
in im J for all ¢ > 0.

PROOF OF 5.2.6. Part (a) was sketched above. We get Q/Z,) in dimension
zero because 1/p’ is a cocycle for all i > 0. For (b) the chromatic spectral sequence
gives a short exact sequence

0— ELY - Ext’(BP,) — E%' -0

and E%! by 5.2.1. EL0 = E}° = kerd,/imd,. An element in E;° = Ext®(M?)
has a nontrivial image under d. iff it has terms involving negative powers of vy,
so kerd, C E11 0 is the subgroup of elements in nonnegative dimensions. The zero-
dimensional summand Q/Z,) is the image of d., so EyY = Ext!(BP,) is as stated.
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For (c) the computation of Ext"(MY) is more complicated for p = 2 since 5.2.3
no longer holds. From 5.2.5 we get

(5.2.7) nR(:c?f) = x?f + 2i+3xfff_1(v1_1t2 + o7 M3 v 20aty) mod (27)

2t

for odd s, from which we deduce that ;1—+13 is a cocycle whose image under ¢ (see
5.1.17) is v} *p1. Equation 5.2.3 does hold for p = 2 when i = 0, so Ext®*(MY)

is generated by %1 for odd s. This completes the proof of (c).
For (d) we proceed as in (b) and the situation in nonpositive dimensions is the

2t
x . —
same. We need to compute d. (2}713) Since z1,; = vl + 4v; Loy, we have

2%s gi+1 i+2 2's—3
a1f o § 420 2y] Uy
9i+3 9i+3

For 2's = 1 (but for no 2's > 1) this expression has a negative power of v; and we

get
de(a:l’l) = 2 S M2.

8 - 2’[]1
This gives a chromatic d; (compare 5.1.21) and accounts for the discrepancy be-
tween Ext®*(M?') and Ext"*(BP,). O

Now we turn to the Hopf invariant one problem. Theorems 1.2.12 and 1.2.14
say which elements of filtration 1 in the classical Adams spectral sequence are per-
manent cycles. We can derive these results from our computation of Ext'(BP,) as
follows. The map BP — H/(p) induces a map ® from the Adams—Novikov spectral
sequence to the Adams spectral sequence. Since both spectral sequences converge to
the same thing there is essentially a one-to-one correspondence between their F.-
terms. A nontrivial permanent cycle in the Adams spectral sequence of filtration s
corresponds to one in the Adams—Novikov spectral sequence of filtration < s.

To see this consider BP, and mod (p) Adams resolutions (2.2.1 and 2.1.3)

507X0<;X1%"'
SO —Vyj~—— Vi ~— -

where the vertical maps are the ones inducing ®. An element x € m,(S°) has
Adams filtration s if it is in im 7, (Ys) but not in im7,(Ys41). Hence it is not in
im 7, (Xs41) and its Novikov filtration is at most s.

We are concerned with permanent cycles with Adams filtration 1 and hence of
Novikov filtration 0 or 1. Since Ext’(BP,) is trivial in positive dimensions [5.2.1(b)]
it suffices to prove

5.2.8. THEOREM. The image of
©: Ext'(BP.) — Exty (Z/(p), Z/(p))

is generated by hi, hy, and hs, for p = 2 and by hy € Ext"? for p > 2. (These
elements are permanent cycles; cf. 1.2.11 and 1.2.13.)
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PROOF. Recall that A, = Z/(p)[th to, .. ] ® E(eo, €1, .. ) with
Aty) = Z t; ® tf;_i and Alen) =1®e, + Z e ® tf;_i

0<i<n 1<i<n

where to = 1. Here t,, and e,, are the conjugates of Milnor’s &, and 7,, (3.1.1). The
map BP,(BP) — A, sends t,, € BP,(BP) to t,, € A..

Now recall the I-adic filtration of 4.4.4. Vye can extend it to the comodules M™
and N" by saying that a monomial fraction 7 is in F' * iff the sum of the exponents
in the numerator exceeds that for the denominator by at least k. (This k may be
negative and there is no k such that F¥M"™ = M™ or FFN™ = N"™. However, there
is such a k for any finitely generated subcomodule of M™ or N™.) For each k € Z
the sequence

0— FFN™ — FFM™ — FFN™ — 0
is exact. It follows that a: Ext®(N™) — Ext®**"(BP,) (5.1.18) preserves the I-adic
filtration and that if € F' Ext’(N') then ®a(z) = 0.

Easy inspection of 5.2.6 shows that the only elements in Ext’(M?') not in F'

are a1 and, for p =2, ay /o, and ay 4, and the result follows. ([l

Now we turn to the computation of Ext'(BP,/I,,) for n > 0; it is a module
over Ext’(BP,/I,,) which is Z/(p)[v,] by 4.3.2. We denote this ring by k(n).. It is
a principal ideal domain and Ext'(BP,/I,,) has finite type so the latter is a direct
sum of cyclic modules, i.e., of free modules and modules of the form k(n)./(vi)
for various i > 0. We call these the wv,-torsion free and wv,-torsion summands,
respectively. The rank of the former is obtained by inverting v,,, i.e., by computing
Ext'(M?). The submodule of the v,-torsion which is annihilated by v, is precisely
the image of Ext®(BP, /I,,11) = k(n+1), under the connecting homomorphism for
the short exact sequence

(5.2.9) 0 — xdmvpp /1, * BP,/I, — BP,/I,,;1 — 0.

We could take these elements in Ext'(BP,/I,,) and see how far they can be divided
by v, by analyzing the long exact sequence for 5.2.9, assuming we know enough
about Ext'(BP,/I,,1) to recognize nontrivial images of elements of Ext*(BP,/I,,)
when we see them. This approach was taken by Miller and Wilson [3].

The chromatic spectral sequence approach is superficially different but one ends
up having to make the same calculation either way. From the chromatic spectral
sequence for Ext(BP,/I,) (5.1.11) we get a short exact sequence

(5.2.10) 0 — EL’ - Ext(BP,/I,) — E%! =0,

where EL? = Fy” is a subquotient of Ext®(M}!, ) and is the v,-torsion summand,
while E%! = E' Ext!(M?) is the v,-torsion free quotient. To get at Ext’ (M})
we study the long exact sequence for the short exact sequence

0— M2, L pdimvnppl oy At 0

as in 5.1.17; this requires knowledge of Ext’(MY, ;) and Ext'(M?_ ;). To determine
the subgroup E%! of Ext'(M?) we need the explicit representatives of generators
of the latter constructed by Moreira [1, 3].

The following result (to be proved later as 6.3.12) then is relevant to both E%:!
and EL in 5.2.10.
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5.2.11. THEOREM. Ext!(M?) forn >0 is the K(n).-vector space generated by
h; € Ext"P'? for0 <i<n-—1 repre;sented by tfl, Cn € Ext!0 (forn > 2)represented
forn = 2 by vy tty 4+ vy P(th — 2" P) — vy " Pust?, and (if p = 2 and n > 1)
pn € Ext™?. (¢, and p, will be defined in 6.3.11). O

5.2.12. REMARK. For ¢ > n, h; does not appear in this list because the equation
NR(Vnt1) = Vpt1 +vpt] —oPty mod I,

leads to a cohomology between h,,; and v,(zp —br'y,

7

Now we will describe Ext®(M}) and EL°. The groups are v,-torsion modules.
v

The submodule of the former annihilated by v, is generated by {T“ t e Z}.

Only those elements with ¢ > 0 will appear in EL?; if t = 0 the element is in im d;,

and ker d; is generated by those elements with ¢ > 0. We need to see how many

times we can divide by v, and (still have a cocycle). An easy calculation shows
. t

that if ¢ = sp* with p 1 s, then v:gl is a cocycle whose image in Ext'(M?, ) is

svff_;ll)p ' hn+i, but by 5.2.12 these are not linearly independent, so this is not the

best possible divisibility result. For example, for n = 1 we find that

p p°—p+1 —p

p
Vo Uy Uy U3
z p)
vi+p G U1

is a cocycle.
The general result is this.

5.2.13. THEOREM. As a k(n).-module, ExtO(M,{) is the direct sum of
(i) the cyclic submodules generated by ;T;ff,ii fori>0,pts; and

(ii) K(n)«/k(n)., generated by v% forj>1.
The x,,; are defined as follows. !

T1,0 = V1,

=00 ifp>2 and o} +4vilvy  ifp=2,

T1; =2t for 22,
T2,0 = V2,

PN p,,—1
T2,1 = Uy — U Vy U3,

2 2 2 2
_ P p°—1_p“—p+1 p°+p—1_ p“—2p
T22 = ZZ?271 — U7 Uy — U1 Uy V3,

To; = x%,iq fori >3 ifp=2

and

boi (p—1)p'~! ) .
x;i_l — 2v12"v§p Dpi+t fori>3 ifp>2,
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where
by = (p+ 1" —1),
Tn,0 = Un for n > 2,

P __ P -1
Tn,l = VUp — Uy _1VUn Un+1,

Tpi =1, 4 for i>1 and i#1 mod (n—1),
. 7 i—1
Tn,i = xfm‘—l — vi’l‘lvﬁ PHL for i>1, and i=1 mod (n—1)
where

bn,i = L1 for i=1 mod (n—1).
The ay,; are defined by
aio=1
ai; =1+2 forp=2 and i>1,
a1 =1+1 forp>2 and i>1,
azo =1,
az,z‘:pieri*lfl forp>2 and i>1 orp=2 and i=1,
ag; =3-271 forp=2andi>1,
apo =1 formn > 2,
an,1 =D,
Gn,i = PQni—1 fori>1 and i#1 mod (n—1),
and
Qnyi = Pln; +p—1 fori>1 and i=1 mod (n—1).

(]

This is Theorem 5.10 of Miller, Ravenel, and Wilson [1], to which we refer the
reader for the proof.

Now we need to compute the subquotient Ey? of Ext®(M}). Tt is clear that the
summand of (ii) above is in the image of d; and that ker d; is generated by elements

of the form w"% for s > 0. Certain of these elements for s > 0 are not in ker d;;
1

e.g., we saw in 5.2.6 that d (z“) # 0. More generally we find d; (u) #£0iff

8 vy

s=1and p' < j < api1, (see Miller and Wilson [3]), so we have

5.2.14. COROLLARY. The v,-torsion summand of Ext'(BP,/I,) is generated
by the elements listed in 5.2.13(i) for s > 0 with (when s = 1) 2% replaced by
Intli ' O

7

p
U’!L

Now we consider the k(n).-free summand E%! ¢ Ext!(M?). We assume n > 1
(n = 1 is the subject of 5.2.2); 5.2.11 tells us that E%! has rank n+1 for p > 2 and
n+2 for p = 2. We need to determine the image of Ext'(BP,/I,,) in Ext' (M?). To
show that an element in the former is not divisible by v,, we must show that it has
a nontrivial image in Ext*(BP,/I,;1). The elements h; € Ext!'(M?) clearly are in
the image of Ext'(BP,/I,) and have nontrivial images in Ext'(BP,/I,,1). The
elements ¢, and p,, are more complicated. The formula given in 5.2.11 for (5 shows
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that vy TP ¢, pulls back to Ext!(BP, /I,) and projects to vsh, € Ext'(BP, /I3). This
element figures in the proof of 5.2.13 and in the computation of Ext*(BP,) to be
described in Section 4.

The formula of Moreira [1] for a representative of ¢, is

k—i n—i n—i+j
(5.2.15) To= Y ub, " eltej)?
1<i<j<k<n
where the u,4; € MY are defined by
(5.2.16) up, = v, ' and Z “n+ivzi+k4 =0 fork>0.

0<i<k

One sees from 5.2.16 that un+i_1v£lp171)/(p71) € BP,/I, so fn = vr(lpnfl)/(pfl)Tn S
BP.(BP)/I,. In 5.2.15 the largest power of v, ! occurs in the term with i = j =
k= 1; in T, this term is o /@ Yoy, 1" and its image in Ext'(BP, /I, 11)
is (_1)n+1v({;1—1)/(17—1)hn_1'

The formula of Moreira [3] for a representative U,, of p,, is very complicated
and we will not reproduce it. From it one sees that vZf"*H?"‘l U, € BP.(BP)/I,
reduces to vi?{lflt%nfl € BP,(BP)/I+1.

Combining these results gives
5.2.17. THEOREM. The k(n).-free quotient E%:! of Ext'(BP,./I,) for n > 1

is generated by h; € Ext!®'d for0<i<n-1,¢(= v,(lpn_l)/(p_l)Cn, and (for

p=2) pp = 11%2"*2”_171[)". The imagas of Cn and ppn in Ext'(BP,/I,11) are
n—1 e
(—1)""‘11)3:_1 71)/(p71)hn,1 and Uij_l lflhn,l, respectively. O

3. Ext(M!) and the J-Homomorphism

In this section we complete the calculation of Ext(M!') begun with 5.2.6 and
describe the behavior of the resulting elements in the chromatic spectral sequence
and then in the Adams—Novikov spectral sequence. Then we will show that the
elements in Ext'(BP,) (and, for p = 2, Ext® and Ext®) detect the image of the
homomorphism J: 7, (SO) — 7% (1.1.12). This proof will include a discussion of
Bernoulli numbers. Then we will compare these elements in the Adams—Novikov
spectral sequence with corresponding elements in the Adams spectral sequence.

We use the method of 5.1.17 to compute Ext(M1); i.e., we study the long exact
sequence of Ext groups for

(5.3.1) 0— MY L Mt 2 a5 0.

Ext(M?) is described in 5.2.6 and the computation of Ext’(M?) is given in 5.2.6
Let 6 be the connecting homomorphism for 5.3.1. Then from the proof of 5.2.6 we
have

5.3.2. COROLLARY. The image of 6 in Ext'(M?) is generated by (a) vihg for
all t # 1 when p is odd and
(b) vihg for all even t and vipy for all t #0 when p = 2. O

For odd primes this result alone determines all of Ext(M1'). Ext*(M}) = 0
for s > 1 and there is only one basis element of Ext!(M?) not in im d, namely
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—1
vflho. Its image under j is represented by %. Since Ext? (M?) = 0, there is no

obstruction to dividing j(vy 1h0) by any power of p, so we have

Q/Z(p) fort=20

1.t 1y
(5.3.3) Extb (M) = {0 for £ .0

for any odd prime p. We can construct a representative of an element of order p* in
Ext"?(M") as follows. From 4.3.1 we have ng(v1) = v; = put; where u = 1 —pP~1.
Then a simple calculation shows that

ivfiuiti
(5.3.4) Y =~ Z(_l) ill,qulfli

i>1

is the desired cocycle. (This sum is finite although the ith term for some i >
k could be nonzero if p | i.) The group Ext'®(M') + E;'"Y cannot survive in
the chromatic spectral sequence because it would give a nontrivial ExtQ’O(BP*)
contradicting the edge theorem, 5.1.23. It can be shown (lemma 8.10 of Miller,
Ravenel, and Wilson [1]) that this group in fact supports a d; with trivial kernel.
Hence we have

5.3.5. THEOREM.
(a) for p > 2 the group Ext®'(M?) is

Q/Z(p) generated by 1% for (s,t) = (0,0).

Z/(p'th) generated by Zl—il for ptr and (s,t) = (0,rp'q),
Q/Z ) generated by yy. (5.3.4) for (s,t) = (1,0) and
0 otherwise.

(b) In the chromatic spectral sequence, where Ext®'(M') = EP®'E]%° € im d;
and ker di @, E% so EL* = Ext!(BP,) and kerd; = Do B, so EL =
Ext!(BP,) is generated by the groups Ext® (M%) fort > 0. O

We will see below that each generator of Ext!(BP,) for p > 2 is a permanent
cycle in the Adams—Novikov spectral sequence detecting an element in the image
of J (1.1.12).

The situation for p = 2 is more complicated because Ext(MY?) has a polynomial
factor not present for odd primes. We use 5.3.2 and 5.2.2 to compute Ext®(M?!)
for s > 1. The elements of order 2 in Ext"®(M") are the images under j (5.3.1) of
vhhg for t odd and vip; for ¢ odd and ¢t = 0.

We claim j(p;) is divisible by any power of 2, so Ext*®(M") contains a sum-
mand isomorphic to Q/Z3) as in the odd primary case. To see this use 5.2.4 to
compute

v %00 + 20703\ oMy F o2 207 wr (et ot 4 uity)
a( )= + :
4 4 2
showing that ys (5.3.4) represents j(p1); the same calculation shows that

vyt vt
1=

2
is a coboundary. Hence the y; for k > 2 give us the cocycles we need.
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Next we have to deal with j(vihg) and j(vip;) for odd t. These are not divisible
by 2 since an easy calculation gives §;(viz) = vfflhox for t odd and = = hit! or
hip1 for any i > 0. Indeed this takes care of all the remaining elements in the short
exact sequence for 5.3.1 and we get

5.3.6. THEOREM.
(a) For p =2, Ext®(M") is

Q/Z ) generated by 2%
for (s,t) = (0,0),
Z/(2) generated by %
for (s,t) = (0,2r) and r odd,

Z/(21+%) generated by 5

for (s,t) = (0,72'%?) and r odd,
Q/Z ) © Z/(2) generated by yy. (k> 2) and %

for (s,t) = (1,0),
Z/(2) generated by j(vihg)

for s >0,t=2(r+s), r odd, and (s,t) # (1,0)
Z/(2) generated by j(vpihi™")

for s >0, t+2(r+s—1), and r odd,

and

0 otherwise.

(b) In the chromatic spectral sequence for p = 2, EL%t is

Ext®!(M?") fort=2s+2r andr>1,r+#2,
2
Z/(4) generated by “L  for (s,t) = (0,4), and por—1 € T8 41,
and
0 otherwise

(See 5.1.22 for a description of differentials originating in EX*25t4) In other
words the subquotient of Ext(BP,) corresponding to EL* is generated by Ext' (BP,)
(5.2.6) and products of its generators (excluding ay/p € Ext1’4) with all positive
powers of aq € Exth?.

PROOF. Part (a) was proved above. For (b) the elements said to survive, i.e.,
those in E;° and j(v}p1hS™!) for s > 0 with odd 7 > 5 and j(v}hg) for s > 0 with
odd r > 1, are readily seen to be permanent cycles. The other elements in E11 ** for
s > 0 have to support nontrivial differentials by the edge theorem, 5.1.23. O

Now we describe the behavior of the elements of 5.3.5(b) and 5.3.6(b) in the
Adams—Novikov spectral sequence. The result is

5.3.7. THEOREM.

(a) For p > 2, each element in Ext'(BP,) is a permanent cycle in the Adams-
Novikov spectral sequence represented by an element of im J (1.1.13) having the
same order.

(b) For p = 2 the behavior of Ext"*(BP,) in the Adams-Novikov spectral
sequence depends on the residue of t mod (4) as follows. If t = 1 mod 4 the
generator oy is a permanent cycle represented by the element oy 1 € 5,y of order
2 constructed by Adams [1]. In particular oy is represented by n (1.1.13). ajoy is
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represented by pa; = npoi—1 and ooy is represented by an element of order 2 in
im J C 75,1 (the order of this group is an odd multiple of 8). o 3ay = d3(afarss)
for all s > 0.

Ift =0 mod (4) then the generator a; of Ext™*'(BP,) is a permanent cycle
represented by an element of im J having the same order, as are a1y, and a3a.
o a, = d3(afoyia/3) fors > 0. In particular yy is represented by o € w7 (1.1.13).

Ift =2 mod (4), ay/e (twice the generator except when t = 2) is a permanent
cycle represented by an element in im J of order 8. (a2 has order 4 and 4 times
the generator of im J represents aicy_o as remarked above). In particular Qg 18
represented by v € 75 (1.1.13). O

This result says that the following pattern occurs for p = 2 in the Adams—
Novikov spectral sequence F..-term as a direct summand for all £ > 0:

(5.3.8)
3 a%@;k a%cukﬂ
I
I
I
I
2 aQy Q10gk41 :
I
I
[ |
s 1 Qqp, Q4f41 Qqf42/2
0
8k—1 8k 8k +1 8k + 2 8k + 3

t—s—

Where all elements have order 2 except ay4p42/2, which has order 4, and a4y, whose
order is the largest power of 2 dividing 16k; the broken vertical line indicates a
nontrivial group extension. The image of J represents all elements shown except
oai+1 and o o1

Our proof of 5.3.7 will be incomplete in that we will not prove that im J actually
has the indicated order. This is done up to a factor of 2 by [1] Adams [1], where
it is shown that the ambiguity can be removed by proving the Adams conjecture,
which was settled by Quillen [1] and Sullivan [1].

We will actually use the complex .J-homomorphism J: m,(U) — 72, where U
is the unitary group. Its image is known to coincide up to a factor of 2 with that
of the real J-homomorphism. We will comment more precisely on the difference
between them in due course.

An element € mo;_1(U) corresponds to a stable complex vector bundle £ over
S2t. Tts Thom spectrum T'(€) is a 2-cell CW-spectrum S° U e?! with attaching map
J(x) and there is a canonical map T'(¢) — MU. We compose it with the standard



3. Ext(M') AND THE J-HOMOMORPHISM 169

map MU — BP and get a commutative diagram

(5.3.9) T T(¢) Sft
S?p) Bp Bf
BP ABP

where the two rows are cofibre sequences. The map S?* — BP is not unique
but we do get a unique element e(z) € may(BP A BP)/imm(BP). Now Ey* of
the Adams—Novikov spectral sequence is by definition a certain subgroup of this
quotient containing e(z), so we regard the latter as an element in Ext“*(BP,).
Alternatively, the top row in 5.3.9 gives a short exact sequence of comodules which
is the extension corresponding to e(x). We need to show that if z generates mo;—1(U)
then e(z) generates Ext!(BP,) up to a factor of 2.

For a generator x; of ma;—1(U) we obtain a lower bound on the order of e(x)
as follows. If je(x;) = 0 for some integer j then for the bundle given by z = jx; €
ma¢—1(U) the map S?* — BP in 5.3.9 lifts to BP, so we get an element in mo; (BP).
Now consider the following diagram

(5.3.10) 7.(BU) . (MU) —2~7

L

H.(BU) =~ H,(MU)——Q

where the two left-hand vertical maps are the Hurewicz homomorphisms and 6 is
some ring homomorphism; it extends as indicated since 7, (MU)®Q = H,.(MU)®Q
by 3.1.5. Let ¢ be the composite map (not a ring homomorphism) from =, (BU) to
Q. If ¢(z¢) has denominator j;, then j; divides the order of e(z;).

According to Bott [2] the image of z; in Hy:(BU) is (t — 1)!'s; where s; is a
primitive generator of Hoi(BU). By Newton’s formula

z db(z)
b(z) dz

s(z) =

where s(z) = >,50 82" and b(z) = Y, 02", the by being the multiplicative
generators of H,(BU) = H,(MU) (3.1.4).

Now by Quillen’s theorem, 4.1.6, 6 defines a formal group law over Z (see
Appendix 2), and by 4.1.11

o(b(2)) = 2P

0s(2)) = ex;(z) de};z(Z) —L

where exp(z) is the exponential series for the formal group law defined by 6, i.e.,
the functional inverse of the logarithm (A2.1.5).
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The 6 we want is the one defining the multiplicative formal group law (A2.1.4)
x4y + xy. An easy calculation shows exp(z) = e* — 1 so

ze?

0(s(2)) = 1.

ez —1

This power series is essentially the one used to define Bernoulli numbers (see ap-
pendix B of Milnor and Stasheff [5]), i.e., we have

z | Brz?*
0(s(2)) = 5+ (U or

E>1

where By, is the kth Bernoulli number. Combining this with the above formula of
Bott we get

5.3.11. THEOREM. The image of a generator x; of mwor—1(U) = mey(BU) under
the map ¢: m.BU — Q of 5.3.10 is % ift=1,0 for odd t > 1, and +By/2k for
t = 2k. Hence the order of z; in Ext'(BP,) is divisible by 2 fort =1, 1 fort > 1,
and the denominator jor, of By /2k for t = 2k. O

This denominator joi is computable by a theorem of von Staudt proved in 1845;
references are given in Milnor and Stasheff [5]. The result is that p | jor, iff (p—1) | 2k
and that if p’ is the highest power of such a prime which divides 2k then p**! is the
highest power of p dividing jor. Comparison with 5.2.6 shows that Ext174k(BP*)
also has order p'*! except when p = 2 and k > 1, in which case it has order 2¢+2.
This gives

5.3.12. COROLLARY. The subgroup of Ext™?'(BP,) generated by e(z;) (5.3.9),
i.e., by the image of the complex J-homomorphism, has index 1 for t = 1 and 2.
and 1 or 2 fort > 3. Moreover each element in this subgroup is a permanent cycle
in the Adams—Novikov spectral sequence. ([

This completes our discussion of im J for odd primes. We will see that the above
index is actually 2 for all ¢ > 3, although the method of proof depends on the congru-
ence class of t mod (4). We use the fact that the complex J-homomorphism factors
through the real one. Hence for t =3 mod (4), e(z:) = 0 because ma:—1(SO) = 0.

For ¢t = 0 the map mo;—1(U) — moi—1(SO) has degree 2 in Bott [1] (and for
t = 2 it has degree 1) so e(x;) is divisible by 2 and the generator y of Ext'(BP,)
is as claimed in 5.3.7. This also shows that ny,, and n%y,, detect elements in im J.
Furthermore n? kills the generator of ma;_1(SO) by 3.1.26, so afy; must die in the
Adams—Novikov spectral sequence. It is nonzero at Es, so it must be killed by a
higher differential and the only possibility is d3(a12/3) = ajy; [here we still have
t=0 mod (4)].

For t = 1 the generator of mo;_1(SO) = Z/(2) is detected by n?y;_1 as observed
above, so e(z;) = 0. For t = 2 we just saw that the generator a3 of Ext!?! supports
a nontrivial d3 for ¢ > 2, so we must have e(x¢) = o s.

To complete the proof of 5.3.7 we still need to show three things: for t = 1
mod (4), oy is a permanent cycle, for t = 3, d3(a;) = aja;_o, and for t = 2m oy is
represented by an element of order 4 whose double is detected by a?a;_1. To do
this we must study the Adams—Novikov spectral sequence for the mod (2) Moore
spectrum M (2). Since BP,(M(2)) = BP,/(2) is a comodule algebra, the Adams—
Novikov Fs-term for M (2), Ext(BP,/(2)), is aring (A1.2.14). However, since M (2)
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is not a ring spectrum, the Adams—Novikov spectral sequence differentials need not
respect this ring structure. The result we need is

5.3.13. THEOREM. (a) Ext(BP./(2)) contains Z/(2)[v1, ho] @ {1,u} as a direct
summand where v, € Ext®?, hg € Ext?, and u € Ext"® are represented by vy, t1,
and t§ + vit3, v3? + vty + voty respectively. This summand maps isomorphically
to E%* in the chromatic spectral sequence for Ext(BP./(2)) (5.1.11).

(b) In the Adams—Novikov spectral sequence for M(2), vihiu® is a permanent
cycle for s >0,e=0,1, andt =0 or 1 mod (4). Ift =2 or 3 then d3(vihju®) =
ViT2hst3ue. Fort = 3, viue is represented by an element of order 4 in a1 7. (M(2))
whose double is detected by h%vf_lue.

(c) Under the reduction map BP, — BP,/(2) induced by S° — M (2), if t is
odd then the generator oy of ExtV*(BP,) maps to vi_lho. If t is even and at least
4 then the generator y; of Ext™*'(BP,) maps to vi™*u.

(d) Under the connecting homomorphism §: Ext*(BP,/(2)) — Ext*T'(BP,)
induced by M(2) — S' (2.3.4), v maps to oy € Ext"*(BP,) for all t > 0; uv,
maps to a1ys43 if t is odd and to 0 if t is even. O

In other words, the Adams—Novikov E.-term for M(2) has the following pat-
tern as a summand in low dimensions:

(5.3.14)
2 h% V1 h%
|
|
T I
|
s 1 ho : V1 ho
|
|
0 1 V1
0 1 2 3 4

t—s——

where the broken vertical line represents a nontrivial group extension. [Compare
this with 3.1.28(a) and 5.3.8.] The summand of (a) also contains the products of
these elements with v{'u® for ¢ > 0 and e = 0,1. The only other generators of
Ext®(BP,/(2)) for t — s < 13 are 1 € Ext"*, g € Ext®®, h§By/y € Ext! ™58+
for s =0,1,2 (where hgﬁg/g = [3%), and hBy € Ext!T10F2 for s =0, 1.

Before proving this we show how it implies the remaining assertions of 5.3.7
listed above. For t =1 mod (4), ay = §(v}) by (d) and is therefore a permanent
cycle by (b). For t =3, a; = §(v}) and § commutes with differentials by 2.3.4, so

ds(ar) = dds(v}) = d(hgvi~?)
= Oé:fat_Q.
For the nontrivial group extension note that for ¢t = 1 a?a; maps to an element
killed by a differential so it is represented in m,(S°) by an element divisible by 2.

Alternatively, az11 is not the image under § of a permanent cycle so it is not
represented by an element of order 2.
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PRrROOF OF 5.3.13. Recall that in the chromatic spectral sequence converging
to Ext(BP,/(2)), Ext{™ = Ext(M?), which is described in 5.2.2. Once we have
determined the subgroup EL* c E}"* then (c) and (d) are routine calculations,
which we will leave to the reader. Our strategy for proving (b) is to make low-
dimensional computations by brute force (more precisely by comparison with the
Adams spectral sequence) and then transport this information to higher dimensions
by means of a map a: XM (2) — M (2) which induces multiplication by v{ in BP-
homology. [For an odd prime p there is a map «a: XM (p) — M(p) inducing
multiplication by v;. v} is the smallest power of vy for which such a map exists at
p=2]

To prove (a), recall (5.2.2) that Ext(v; 'BP./(2)) = K(1).[ho,p1]/(p?) with
ho € Ext? and p; € Ext"’. We will determine the image of Ext(BP,/(2)) in this
group. The element u maps to vip;. [Our representative of u differs from that
of vipy given in 5.2.2 by an element in the kernel of this map. We choose this u
because it is the mod (2) reduction of y4 € Ext"®(BP,).] It is clear that the image
contains the summand described in (a). If the image contains v *h§ or vffth% p1 for
any t > 0, then it also contains that element times any positive power of hy. One
can show then that such a family of elements in Ext(BP,/(2)) would contradict
the edge theorem, 5.1.23.

To prove (b) we need some simple facts about ,(S°) in dimensions < 8 which
can be read off the Adams spectral sequence (3.2.11). First we have 3 = 4v in
73(S?). This means hjz must be killed by a differential in the Adams—Novikov
spectral sequence for M(2) for any permanent cycle z. Hence we get dz(v?) = h{
and d3(v}) = v1h3. Next, if we did not have mo(M(2)) = Z/(4) then v, € (M (2))
would extend to a map %2(M(2)) — M (2) and by iterating it we could show that
all powers of v; are permanent cycles, contradicting the above.

Now suppose we can show that v} and u are permanent cycles representing
elements of order 2 in 7, (M (2)), i.e., maps S™ — M (2) which extend to self-maps
Y"M(2) — M(2). Then we can iterate the resulting a: X8M(2) — M(2) and
compare with the map extending u to generalize the low-results above to all of (b).

A simple calculation with the Adams spectral sequence shows that w7 (M (2))
and mg(M (2)) both have exponent 2 and contain elements representing u and vf,
respectively, so we have both the desired self-maps. (I

4. Ext? and the Thom Reduction

In this section we will describe Extz(BP*) and what is known about its behavior
in the Adams—Novikov spectral sequence. We will not give all the details of the
calculation; they can be found in Miller, Ravenel, and Wilson [1] for odd primes and
in Shimomura [1] for p = 2. The main problem is to compute Ext’(M?) and the
map d? from it to Ext’(M?). From this will follow (5.4.4) that the v, € Ext®(BP,)
are nontrivial for all ¢ > 0 if p is odd. (We are using the notation of 5.1.19.) They
are known to be permanent cycles for p > 7 (1.3.18).

We will also study the map ® from Ext? to ES * of the Adams spectral sequence
as in 5.2.8 to show that most of the elements in the latter group, since they are not
im @, cannot be permanent cycles (5.4.7). The result is that im @ is generated by

{@(Bpr jpn—1)s ®(Bpr jpn): 0 > 1}
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and a certain finite number of other generators. It is known that for p = 2 the
®(Bpnjpn—1) are permenet cycles. They are the 7,42 € Hgn+2 constructed by
Mahowald [6] using Brown—Gitler spectra. For odd primes it follows that some
element closely resembling SBpn /pn_; for 1 <@ < p™ — 1 is a nontrivial permanent
cycle (5.4.9) and there is a similar more complicated result for p = 2 (5.4.10).

For p = 2, ®(Banjon) = b2, is known to be a permanent cycle iff there is a
framed (272 — 2)-manifold with Kervaire invariant one (Browder [1]), and such are
known to exist for 0 < n < 4 (Barratt et al. [2]). The resulting element in moj+1_o
is known as 6; and its existence is perhaps the greatest outstanding problem in
homotopy theory. It is known to have certain ramifications in the EHP sequence
(1.5.29).

For odd primes the situation with ®(5,» /pn) is quite different. We showed in
Ravenel [7] that this element is not a permanent cycle for p > 5 and n > 1, and
that B,n /pn itself is not a permanent cycle in the Adams-Novikov spectral sequence
for p >3 and n > 1; see 6.4.1.

To compute Ext? with the chromatic spectral sequence we need to know E%2,
ELL and E% . The first vanishes by 5.2.1; the second is given by 5.3.5 for p > 2 and
5.3.6 for p = 2. For odd primes Extl(Ml) = Ei’l vanishes in positive dimensions;
for p = 2 it gives elements in ExtQ(BP*) which are products of oy with generators
in Ext?(BP,). The main problem then is to compute EY* = Ext®(M?). We use
the short exact sequence

0— M — M2 M? 50

and our knowledge of Ext’(M{) (5.2.13). The method of 5.1.17 requires us to
recognize nontrivial elements in Ext'(M}). This group is not completely known but
we have enough information about it to compute Ext®(M?). We know Ext!(MJ)
by 5.2.11, and in proving 5.2.13 one determines the image of Ext’(M}) in it. Hence
we know all the elements in Ext'(M]) which are annihilated by v, so any other
element whose product with some v? is one of these must be nontrivial.

To describe Ext’(M?) we need some notation from 5.2.13. We treat the odd
primary case first. There we have

Z2,0 = V2,
— P p,,—1
T2,1 = Uy — V1Uy U3,

2 2 2 2
_ P p°—1 p“—p+1 p°+p—1_p“—2p
Ta2 =Ty — V] Uy — vy U5 vz, and

bai (p—1)p'~'+1 .
Toi =, | — 20" oPTIPTE for >3,

where by; = (p+ 1)(p~t —1). Also azg = 1 and az; = p' +p'~t — 1 for i > 1.
Then

5.4.1. THEOREM (Miller, Ravenel, and Wilson [1]). For odd primes p, Ext®(M?)

is the dz'regt sum of cyclic p-groups generated by
(i) pkmfillui with pts, j > 1, k >0 such that p* | j and j < as;— and either
Pty ora;_i_1 < j; and
(ii)ﬁforkZO,pﬂj,andel. O

Note that s may be negative.
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For p = 2 we define x; as above for 0 <i < 2, xp; = a3, | fori >3, azo =1,
az1 =2,and az; =3 - 2i=1 for 4 > 2. We also need 1,0 = V1, T1,1 = vf + 4111_11)2,
and x1; = 27, for i > 2. In the following theorem we will describe elements
in ExtO(MQ) as fractions with denominators involving z ;, i.e., with denomina-
tors which are not monomials. These expressions are to be read as shorthand for
sums of fractions with monomial denominators. For example, in we multiply

1
8x1,1
T1,1 2 — 4
T Now x7; = v{ mod (8) so we

numerator and denominator by x1,; to get

have
1 v% + 4oy 17}2 1 Vo

811 Suf v 207

5.4.2. THEOREM (Shimomura [1)). For p = 2, Ext’(M?) is the direct sum of
cyclic 2- -groups genemted by

() U2 9521 m22
2v17 209 7 20f 7

is excluded because 543/2 is divisible by 2);

)3

(k =

and either j is odd or as ;—1 < J;

fors odd, j,k>1,i>3, and ag;—k— 1<j2"<a2Z )

fors oddi>3,k>1,7 odd and > 1, and2k]<a21 k—1; and
forjoddand>1andk>1 |

IV) 2k+2 ]

(i
i) —
(
(

v) 2v“ 2k+2 J

This result and the subsequent calculation of Ext?(BP,) for p = 2 were obtained
independently by S. A. Mitchell.

These two results give us E12 % in the chromatic spectral sequence. The image of
dy is the summand of 5.4.1(ii) and 5.4.2(v) and, for p = 2, the summand generated
by fBi; this is the same d; that we needed to find Ext!'(BP,) (5.2.6). We know
that imds = 0 since its source, Eg’l, is trivial by 5.2.1. The problem then is
to compute dy: E2? — EP°. Clearly it is nontrivial on all the generators with
negative exponent s. The following result is proved for p > 2 as lemma 7.2 in
Miller, Ravenel, and Wilson [1] and for p = 2 in section 4 of Shimomura [1].

5.4.3. LEMMA. In the chromatic spectral sequence, dj : Ef’o — E?’O is trivial
on all of the generators listed in 5.4.1 and 5.4.2 except the following:

(1) all generators with s < 0;

(ii) % with p' < j < ag,, and i > 2, the image of this generator being

1

pi—1

%a and
2

J—P ’UP

pvy
iii) (for p =2 only) =22, whose image is
821,1

2

d

2uivg °

From this one easily read off both the structure of Ext?(BP,) and the kernel
of a: Ext®(N?3) — Ext®(BP,), i.e., which Greek letter elements of the y-family are
trivial. We treat the latter case first. The kernel of o consists of im d; ®im dy ®im d3.
For p = 2 we know that v, € imds by 5.1.22. ds for p > 2 and d3 for all primes
are trivial because E21 1 (in positive dimensions) and E§’2 are trivial by 5.3.5 and
5.2.1, respectively.

5.4.4. COROLLARY. The kernel of a: ExtO(NS) — Ext*(BP,) (5.1. 18) is gen-
erated by Vpijpi 5 fori > 1 with 1> j>p' =1 forp>2and1<j < pt forp=2;
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and (for p =2 only) v1 and ~,. In particular 0 # v, € Ext®(BP,) for all t > 0 if
p>2 and for allt > 2 if p=2.

5.4.5. COROLLARY.

(a) For p odd, Ext*(BP,) is the direct sum of cyclic p-groups generated by
Bopi/inte,g) fors > 1, pts, j>1,i>0, and ¢(i,j) > 0 where ¢(i, ) is the
largest integer k such that p* | j and

o ) a2k ifs>1ork>0
I = P ifs=1and k=0

This generator has order p*+?(»1) and internal dimension 2(p* — 1)sp’ —2(p — 1)j.

It is the image under o (5.1.18) of the element Iﬁi‘zi”)vf of 5.4.1.

(b) For p = 2, Ext*(BP,) is the direct sum of cyclic 2-groups generated by
18y, where ay; generates ExtV* (BP,) for t > 1 and t # 2 (see 5.2.6), and by
Bs2iin+e(i,) for s > 1, 5 odd, j > 1,4 >0, and ¢(i,j) > 0 where

0 if2|j and az;—1 < j < ag,
0 if j is odd and j < as;,
. 2 ifj=2andi=2,
¢(Z7]) = . - k—1 k . .
E>2 ifj=2 mod (27), j < agi—k, and i > 3,
k>1 if2F|j, agin1 <j<agiy, andi>3,
-1 otherwise

unless s = 1, in which case ag; is replaced by 2° in cases above where ¢(i,5) = 0,
#(2,2) = 1, and By is omitted. The order, internal dimension, and definition of
this generator are as in (a). O

For example when p = 2, ¢ = 3 and s is odd with s > 1, we have generators

2s
T332 .
ﬁSS/j,Q = j for J = 2747 6
4;}1
5% . .
Bss)j = o for 1 <j <12 and j # 2,4,6,
1

but Bg/; is not defined for 9 < j < 12. Similarly when p > 2, ¢ = 4 and s is prime
to p with s > 1, we have generators

T4
ﬁp4s/p2,3 = 3 p?
p SU1
T34 .. .
Bprsga = =55 for pli, j#p® and j <p®+p?—1
1
T3 4 . 4 3
Bpis/j = —= forother j <p®+p° -1,
pvy

but B,4/; is not defined for pt<ji<pt+pd—1L

Next we study the Thom reduction map ® from Ext?>(BP,) to E3* in the
classical Adams spectral sequence. This map on Ext! was discussed in 5.2.8. The
group Eg* was given in 3.4.1 and 3.4.2. The result is
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5.4.6. THEOREM. The generators of Ext*(BP,) listed in 5.4.5 map to zero
under the Thom reduction map ®: Ext(BP,) — Exta,(Z/(p),Z/(p)) with the fol-
lowing exceptions.

(a) (S. A.Mitchell). Forp=2

®(ai) = hi, ®(arayyy) = hihas,
D(Baij2i) = b3y, forj>1,
©(Baijai—1) = hihjio for j > 2,
®(Baj2,2) = hohy  and  ®(Bgje2) = hahs.

(b) (Miller, Ravenel, and Wilson [1]). For p > 2 ®(B,i/pi) = —b; for j > 0;
@(ﬂpj/pjfl) = hOhj—H fOT’j > 1, and (I)(ﬂg) = :tko.

PROOF. We use the method of 5.2.8. For (a) we have to consider elements of
Ext'(N1') as well as Ext®(N?). Recall (5.3.6) that the former is spanned by 1’)1

for odd s > 5 and % for odd s > 1. We are looking for elements with I—adlc
filtration > 0, and the ﬁltratlons of t; and p; are 0 and —4, respectively. Hence we
need to consider only 1p1 and 1 which give the first two cases of (a).

The remaining cases come from Ext’(N?). The filtration of Ta, is p' so B; Ji.k
has filtration i — j — k, and this number is positive in all cases except those indicated
above. We will compute ®(8;/2) and ®(f,/22), leaving the other cases of (a) and (b)
to the reader. [The computation of ®(3;) and ®(82) for p > 2 were essentially done

in 5.1.20.] Using the method of 5.1.20(a), we find that 3, > reduces to = 25 hod (2),
which in turn reduces to t?[t? mod I3, which maps under ® to h3. Slmllarly7 Baj2,2

reduces to f}tl + M mod (2) and to v3t?|t? + t§[t? mod I, which maps
under ® to hohy. O

This result limits the number of elements in Exti‘* (Z/(p),Z/(p)) which can be
permanent cycles. As remarked above (5.2.8), any such element must correspond
to one having Novikov filtration < 2. Theorem 5.4.6 tells us which elements in
Ext(BP,)? map nontrivially to the Adams spectral sequence. Now we need to see
which elements in Ext'(BP,) correspond to elements of Adams filtration 2. This
amounts to looking for elements in Ext’(N') with I-adic filtration 1. From 5.2.8
we see that ag/o and ay,4 for p = 2 have I-adic filtration 0, so az and ay/3 have
filtration 1 and correspond to hgho and hghg, respectively. More generally, a; for
all primes has filtration ¢ — 1 and therefore corresponds to an element with Adams
filtration > t. Hence we get

5.4.7. COROLLARY. Of the generators of Ext% (Z/(p),Z(p)) listed in 3.4.1 and
3.4.2, the only ones which can be permanent cycles in the Adams spectral sequence
are

(a) for p =2, b3, hoha, hohs, h3 for j > 1, hih; for j >3, hoha, and hahs;
and

(b) forp > 2, a, b; for j >0, a1, aphy for p =3, hoh; for j > 2, and ky. O

Part (a) was essentially proved by Mahowald and Tangora [8], although their
list included hghg. In Barratt, Mahowald, and Tangora [1] it was shown that hohs
is not a permanent cycle. It can be shown that ds3(8s6,2) # 0, while /52 is a
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permanent cycle. The elements h3, hohz, hohs for p = 2 and a2, a1, aghy (p = 3)
for odd primes are easily seen to be permanent cycles detecting elements in im J.

This leaves two infinite families to be considered: the b; (or h? 41 for p =2) for
J > 0 and the hohj (or hih;qq for p =2) for j > 1. These are dealt with in 3.4.4
and 4.4.22. In Section 6.4 we will generalize the latter to

5.4.8. THEOREM. (a) In the Adams—Novikov spectral sequence for p > 3,
d2p71(/8pj/pj) = alﬁﬁj—l/pjfl #0

modulo a certain indeterminacy for j > 1.
(b) In the Adams spectral sequence for p > 5, b; is not a permanent cycle for
j>1. O

The restriction on p in 5.4.8(b) is essential; we will see (6.4.11) that by is a
permanent cycle for p = 3.

The proof of 3.4.4(b) does not reveal which element in Ext?(BP,) detects
the constructed homotopy element. 5.4.5 implies that Ext>(1+P)4 is a Z/(p)
vector space of rank [j/2]; i.e., it is spanned by elements of the form do(z) for
x € Ext'(BP,/(p)). (This group is described in 5.2.14 and 5.2.17.) The 2 that we

want must satisfy vfjilﬁx = 6,(2"). (8 and 6, are defined in 5.1.2.) The fact
that the homotopy class has order p, along with 2.3.4, means that x itself [as well
as dg(r)] is a permanent cycle, i.e., that the map f: S™ — S for m = ¢(1+p’) -3
given by 3.3.4(d) fits into the diagram

f

sm— s g0

L,

XM (p) N X' M(p)

where M (p) denotes the mod (p) Moore spectrum and the vertical maps are inclu-
sion of the bottom cell and projection onto the top cell. Now f can be composed
with any iterate of the map a: X4M(p) — M(p) inducing multiplication by vy in
BP-homology, and the result is a map S™% — SO detected by dg(vix). This gives

5.4.9. THEOREM. (R.Cohen [3]) Let (j_1 € 75 _, be the element given by
3.4.4(d), where m = (14+p?)q—2. It is detected by an element y;_1 € Ext>*T™(BP,)
congruent to a1 Byi—1/pi-1 modulo elements of higher I-adic filtration (i.e., modulo

ker ®). Moreover for j >3 and 0 < i < p’~! —p?=2 —pi=3¢; 1, € ({j-1,p, 1) C

7T7€1—1+qi’ obtained as above, is mnontrivial and detected by an element in
Ext3*T™T4(BP,) congruent to 1 Bpi-1/pi-1_j- O

The range of i in 5.4.9(b) is smaller than in (a) because a8, /pi-14pi-2 =0

p]
for 7 > 2. To see this compute the coboundary of p%&%.

The analogous results for p = 2 are more complicated. 7; € ng is not known

to have order 2, so we cannot extend it to a map %2’ M(2) — S° and compose with
elements in 7,(M(2)) as we did in the odd primary case above. In fact, there is
reason to believe the order of n; is 4 rather than 2. To illustrate the results one
might expect, suppose (3;/2; is a permanent cycle represented by an element of
order 2. (This would imply that the Kervaire invariant element ;1 exists; see
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1.5.29.) Then we get a map f: £2 " ~2M(2) — S° which we can compose with the
elements of 7, (M (2)) given by 5.3.13. In particular, fv{* would represent B2i /25 — 4k
which is nontrivial for k& < 2972, fv; would represent (s; /231 (i.e., would be closely
related to n;42), and 2fv; would represent 04%621'/21‘7 leading us to expect 7,42 to
have order 4. Since the elements of 5.3.13 have filtration < 3, the composites with f
would have filtration < 5. Hence their nontriviality in Ext(BP,) is not obvious.

Now 5.3.13 describes 12 families of elements in Ext(BP,/(2)) (each family has
the form {v{*z: k > 0}) which are nontrivial permanent cycles: the six shown in
5.3.14 and their products with u. Since we do not know 6;,, exists we cannot show
that these are permanent cycles directly. However, five of them (viayq, vla%, UV,
uviaq, and uvia?) can be obtained by composing v; with mod (2) reductions of
permanent cycles in Ext(BP,), and hence correspond to compositions of ;41 with
elements in 7. Four of these five families have been shown to be nontrivial by
Mahowald [10] without use of the Adams—Novikov spectral sequence.

5.4.10. THEOREM (Mahowald [10]). Let ugr+1 € 75, , be the generator con-
structed by Adams [1] and detected by a1 € ExtV®**2(BP,), and let py € 7§, _,

be a generator of imJ detected by a generator ys of Extl’Sk(BP*). Then for
0 < k < 277 the compositions pusk+11;, NHsk+17j, PN, and npgn; are essential.
They are detected in the Adams spectral sequence respectively by th%hj, th?hj,
Pkilcohj, and Pkilcohlhj. O

This result provides a strong counterexample to the “doomsday conjecture”,
which says that for each s > 0, only finitely many elements of E5™ are permanent
cycles (e.g., 1.5.29 is false). This is true for s = 0 and 1 by the Hopf invariant one
theorem, 1.2.12, but 5.4.10 shows it is false for each s > 2.

5. Periodic Families in Ext?

This section is a survey of results of other authors concerning which elements
in Ext? (BP,) are nontrivial permanent cycles. These theorems constitute nearly
all of what is known about systematic phenomena in the stable homotopy groups
of spheres.

First we will consider elements various types of #’s. The main result is 5.5.5.
Proofs in this area tend to break down at the primes 2 and 3. These difficulties
can sometimes be sidestepped by replacing the sphere with a suitable torsion-free
finite complex. This is the subject of 5.5.6 (p = 3) and 5.5.7 (p = 2).

In 5.5.8 we will treat decomposable elements in Ext?.

The proof of Smith [1] that 3; is a permanent cycle for p > 5 is a model for
all results of this type, the idea being to show that the algebraic construction of
B¢ can be realized geometrically. There are two steps here. First, show that the
first two short exact sequences of 5.1.2 can be realized by cofiber sequences, so
there is a spectrum M (p,v1) with BP,(M(p,v1)) = BP./I5, denoted elsewhere
by V(1). [Generally if I = (go,q1,.-.,qn—1) € BP, is an invariant regular ideal
and there is a finite spectrum X with BP,(X) = BP,/I then we will denote X
by M(qo,...,qn—1).] This step is quite easy for any odd prime and we leave the
details to the reader. It cannot be done for p = 2. Easy calculations (e.g., 5.3.13)
show that the map S? — M(2) realizing v; does not have order 2 and hence
does not extend to the required map X2M(2) — M (2). Alternatively, one could
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show that H*(M(2,v1);Z/(2)), if it existed, would contradict the Adem relation
Sq¢2Sq* = S¢3Sq*.

The second step, which fails for p = 3, is to show that for all t > 0, v! €
Ext’(BP,/I,) is a permanent cycle in the Adams Novikov spectral sequence for
M (p,v1). Then 2.3.4 tells us that 8; = dpd1(vs) detects the composite

§2t(p° 1) 2y M(p,v1) — Zq+1M(p) — §9t2,

where ¢ = 2p — 2 as usual. One way to do this is to show that the third short exact
sequence of 5.1.2 can be realized, i.e., that there is a map f: 22(3”2_1)M(p7 v1) —
M (p, v1) realizing multiplication by vy. This self-map can be iterated ¢ times and
composed with inclusion of the bottom cell to realize v&. To construct 3 one must
first show that vo is a permanent cycle in the Adams—Novikov spectral sequence
for M(p,v1). One could then show that the resulting map S2°-1) M(p,v1)
extends cell by cell to all of $20° -1 pf (p,v1) by obstruction theory. However, this
would be unnecessary if one knew that M (p,v;) were a ring spectrum, which it is
for p > 5 but not for p = 3. Then one could smash vy with the identity on M (p,v;)
and compose with the multiplication, giving

22(1)2—1)]\/_/(17, v1) — M(p,v1) A M(p,v1) — M(p,v1),

which is the desired map 3.

Showing that M (p,v;) is a ring spectrum, i.e., constructing the multiplication
map, also involves obstruction theory, but in lower dimensions than above.

We will now describe this calculation in detail and say what goes wrong for
p = 3. We need to know Ext®!(BP,/I,) for t —s < 2(p> — 1). This deviates from
Ext(BP./I) = Extp,(Z/(p),Z/(p)) only by the class vy € Ext®2®* =1 It follows
from 4.4.8 that there are five generators in lower dimensions, namely 1 € Ext®?,
ho € Ext™, by € Ext®P9, hoby € Ext®®tV h € Ext"P4, and Ext®' = 0 for
t —s=2(p? —1) — 1 s0 vy is a permanent cycle for any odd prime.

To show M (p,v1) is a ring spectrum we need to extend the inclusion S° —
M (p,v1) to a suitable map from X = M (p,v1) A M(p,v1). We now assume p = 5
for simplicity. Then X has cells in dimensions 0, 1, 2, 9, 10, 11, 18, 19, and 20,
so obstructions occur in Ext®' for ¢ — s one less than any of these numbers. The
only one of these groups which is nontrivial is Ext®® = Z/(p). In this case the
obstruction is p times the generator (since the 1-cells in X are attached by maps
of degree p), which is clearly zero. Hence for p > 5 M(p, v1) is a ring spectrum and
we have the desired self-map 8 needed to construct the S;’s.

However, for p = 3 obstructions occur in dimensions 10 and 11, where the Ext
groups are nonzero. There is no direct method known for calculating an obstruction
of this type when it lies in a nontrivial group. In Toda [1] it is shown that the
nontriviality of one of these obstructions follows from the nonassociativity of the
multiplication of M (3).

We will sketch another proof now. If M(3,v1) is a ring spectrum then each S,
is a permanent cycle, but we will show that £, is not. In Ext®8%(BP,) one has
B%5, and 5lﬂ§ /3 These elements are actually linearly independent, but we do not

need this fact now. It follows from 4.4.22 that d5(616§/3) = +a13{B3/3 # 0. The

nontriviality of this element can be shown by computing the cohomology of P, in
this range.
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Now 3 € Ext®®(BP,) is a permanent cycle since S5 is. If we can show
(5.5.1) B3 = £4153)5 + B Ba

then 3?34 and hence 34 will have to support a nontrivial ds. We can prove 5.5.1 by
reducing to Ext(BP,/I3). By 5.1.20 the images of 81, 2, and B4 in this group are
+b1g, Tvob1g £+ kg, and :|:’Ugb10, respectively, and the image of 53/3 is easily seen
to be +b11. Hence the images of 8%0;, 6165/3, and 33 are +v3b3,, +b1ob?; and
+v3b3, + k3 respectively. Thus 5.5.1 will follow if we can show k3 = £b1ob?,. (At
any larger prime p we would have k = 0.) ko is the Massey product £(hg, h1, h1).
Using A1.4.6 we have up to sign

<h03 hla h1><h07 hlv hl
< <h07h17h1> h17h1
((ho, ho, h1)hi, b, by
= (ho, ho, h1){h1, h1, hy
gob11

~ ~ ~ ~

and

kg = (ho, h1,h1){ho, ho, h1)b11
= (ho(ho, ho, h1), h1, h1)b11
= ((ho, ho, ho)h1, h1, h1)b11
= (ho, ho, ho) (h1, h1, h1)bi1

= biob?, as claimed.

5.5.2. THEOREM (Smith [1]). Letp > 5

(a) B € BExt>9(P+Dt=1) 4o o nontrivial permanent cycle in the Adams—Novikov
spectral sequence for all t > 0.

(b) There is a map B: 22(”2_1)M(p, v1) — M (p,v1) inducing multiplication by
ve in BP-homology. B; detects the composite

S =1) EQt(pQ_l)M(p, v1) AN M(p,vy) — S?.
(¢) M(p,v1) is a ring spectrum. O

5.5.3. THEOREM (Behrens and Pemmaraju [1]). (a) For p = 3 the complex
V(1) admits a self-map realizing multiplication by v in BP-homology.

(b) The element B, € Ext24((PDD G o nontrivial permanent cycle in the
Adams—Novikov spectral sequence for t congruent to 0, 1,2, 5, or 6 modlulo 9.

To realize more general elements in Ext?(BP,) one must replace I in the above
construction by an invariant regular ideal. For example a self-map 3 of M (p?,v7)

inducing multiplication by v§2 (such a map does not exist) would show that (3,2 /.2
is a permanent cycle for each t > 0. Moreover we could compose 8¢ on the left with
maps other than the inclusion of the bottom cell to get more permanent cycles.
Ext’(BP,/(p?,v})) contains pvi for 0 < i < p, and each of these is a permanent
cycle and using it we could show that ;)2 ,,_; is a permanent cycle.



5. PERIODIC FAMILIES IN Ext? 181

It is easy to construct M(pi“,vfpi) for s > 0 and p odd. Showing that it is
a ring spectrum and constructing the appropriate self-map is much harder. The
following result is a useful step.

5.5.4. THEOREM. (a) (Mahowald [11]). M (4,v{!) is a ring spectrum fort > 0.

(b) (Oka [7]). M(2i+2,v%it + 2”1151)%%_31)2) is a ring spectrum for i > 2 and
t>2. |

(c) (Oka [7]). Forp > 2, M(p”lvfzt) is a ring spectrum for i > 0 and t > 2
[Recall M (p,v1) is a ring spectrum for p > 5 by 5.5.2(c).] O

Note that M (p?, v{) is not unique; the theorem means that there is a finite ring
spectrum with the indicated B P-homology.

Hence we have a large number of four-cell ring spectra available, but it is still
hard to show that the relevant power of v, is a permanent cycle in Ext°.

9.5.5. THEOREM.

(a) (Davis and Mahowald [1], Theorem 1.3). For p = 2, there is a map
SBM(2,v}) = M(2,v}) inducing multiplication by v§, so Bst/a and Bg /3 are per-
manent cycles for all t > 0.

(b) Forp > 5 the following spectra exist: M(p,v? ™", vb) (Oka [4, 1], Smith [2],

2
Zahler [2]); M(p,v%,vf) for t > 2 (Oka [5]); M(p,vi* %02 ) (Oka [6]);
2 2

M (p,v3? 0F") for t > 2 (Oka [6]); M(p?,v?,v") for t > 2 (Oka [6]); and conse-
quently the following elements in Ext? (BP.) are nontrivial permanent cycles: Byy);
fOT‘t > O; 1<q <p- 17 /Btp/p fO’f’t > 27 Bth/i fOT’t > O; 1< < 217—27 /Btp2/2p
and Bipz jap—1 for t > 2; and Byp2/p o fort > 2.

(c) (Oka [10]). For p > 5 the spectra M(p,v2" "2 o2"") for t > 2 and n > 3,

and M (p, vfn_sp,vgn) for n > 3 exist. Consequently the following elements are
nontrivial permanent cycles: Bpny/s fort > 2, n > 3, and 1 < s < 2" 2p: and
Bpriys fort > 1, n >3, and 1 < s < 2"=3p. In particular the p-rank of w3 can be
arbitrarily large. O

Note that in (a) M(2,v}) is not a ring spectrum since M (2) is not, so the proof
involves more than just showing that v§ € Ext’(BP,/(2,v})) is a permanent cycle.

When a spectrum M (p, v1, v§) for an invariant ideal (p?, v?, v5) C BP, does not
exist one can look for the following sort of substitute for it. Take a finite spectrum X
with torsion-free homology and look for a finite spectrum X M (p?, v], v%) whose BP
homology is BP.(X) ®gp, BP./(p',v],v5). Then the methods above show that
the image Bk/j,i of Byy;,; induced by the inclusion S% — X [assuming X is (—1)-
connected with a single 0-cell] is a permanent cycle. The resulting homotopy class
must “appear” on some cell of X, giving us an element in 72 which is related to
Bryji- The first example of such a result is

5.5.6. THEOREM (Oka and Toda [8]). Let p = 3 and X = S° Ug, e'!, the
mapping cone of B.

(a) The spectrum X M(3,v1,vq) exists so f; € Ext>(BP.(X)) is a permanent
cycle for each t > 0.

(b) The spectrum X M (3,v},v3) ezists so Bs 2 € Ext?(BP,(X)) is a permanent
cycle for each t > 0.

Let p=>5 and X = S° Ug, €.
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(¢) The spectrum X M (5,v1, va,v3) exists so 7, € Ext®(BP,(X)) is a permanent
cycle for all t > 0. (]

Hence Bt detects an element in m16—6(X) which we also denote by B¢. The
cofibration defining X gives an long exact sequence

o (80) B 1 (X) D 11 (S0) 2 11 (S0) = -

where the last map is multiplication by 81 € m10(S°). If B, & imi then j(3;) # 0,
so for each t > 0 we get an element in either m{y;,_g or mik;_17. For example, in
the Adams—Novikov spectral sequence for the sphere one has ds(84) = a1/3%33 /3 SO
By € imi and j(B4) € 77; is detected by a1 81833, i-e., j(Bs) = Bre’ (see 5.1.1). We
can regard j(3;) as a substitute for §; when the latter is not a permanent cycle.

In the above example we had BP,(X) = BP, ® Y!BP, as a comodule, so
Ext(BP,) is a summand of Ext(BP,(X)). In the examples below this is not the
case, so it is not obvious that By;; # 0.

5.5.7. THEOREM (Davis and Mahowald [1] and Mahowald [12]). Let p = 2,
X =5U,e, W=28"U,e!, and Y = X ANW. Part (a) below is essentially
theorem 1.4 of Davis and Mahowald [1], while the numbers in succeeding statements
refer to theorems in Mahowald [12]. Their Y and Ay are XM (2) and XM (2,v;)
i our notation.

(a) XM (2,v1,08) exists and Bg; € Ext?(BP,(X)) is a nontrivial permanent
cycle.

(b) (1.4) In the Adams—Nowvikov spectral sequence for SO, Bs; is not a permanent
cycle and fBg; € Tagt—a(X) projects under the pinching map X — S? to an element
detected by a%ﬂgt/g if this element is nontrivial.

(c) (1.5) 05" € Ext®(BP.(X)/Is) and Bsi41 € (BP.(X)) are nontrivial per-
manent cycles. Pgiy1 € ExtQ(BP*) is not a permanent cycle and Bgi+1 € Tagtr2(X)
projects to an element detected by ciay4fse/3 € Ext4(BP*) if this element is non-
trivial.

PRrROOF. (a) Davis and Mahowald [1] showed that X M (2,v;) admits a self-map
realizing v§. This gives the spectrum and the permanent cycles. To show fg; # 0
it suffices to observe that Sg; € Extz(BP*) is not divisible by ;.

(b) Mahowald [12] shows that Bs; € ms¢—4(X) projects nontrivially to mis;, -
By duality there is a map f: X48=4(X) — S° which is nontrivial on the bottom
cell. From 5.3.13 one can construct a map L4814 X — 348=10 )/ (2) which is v;n?
on the bottom cell and such that the top cell is detected by v} € Ext"(BP,/(2)).
Now compose this with the extension of g/, 3% ~10M(2) — SO given by 5.5.4(a).
The resulting map g: X4 ~4X — S0 is a%ﬂgt/g on the bottom cell and the top cell
is detected by (s;. Hence this map agrees with f modulo higher Novikov filtration.
If affgis #0 € Ext*(BP,) it follows that the bottom cell on f is detected by that
element. [It is likely that of Bg; /3 = 0 (this is true for ¢ = 1), so the differential on
Bst is not a ds.]

(c) As in (b) Mahowald [12] shows the projection of fg;y1 in 7ig, is nontriv-
ial. To show that ajcy/sfs:/3 detects our element if it is nontrivial we need to
make a low-dimensional computation in the Adams—Novikov spectral sequence for
M (2,v}) where we find that vjv, € Ext™'?(BP,/(2,v})) supports a differential
hitting viay/403 € Ext®'*. It follows that jon € m1(M(2,v})) extends to a map
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YOX — M(2,v%) with the top cell detected by vevs. Suspending 48t — 10 times
and composing with the extension of 3g/4 to L8-1001(2, vf) gives the result. O

Now we consider products of elements in Ext’.

5.5.8. THEOREM. Let a; be a generator of Ext"%*(BP,) (see 5.2.6).
(a) (Miller, Ravenel, and Wilson [1]). For p > 2, asa; =0 for all s,t > 0.
(b) Forp=2
(i) If s ort is odd and neither is 2 then a1y = a1@s44—1 # 0.
(i) 63 = Bz/2.
(il)) a3 = Baja + Bs-
(Presumably, all other products of this sort vanish.)

In an earlier version (iii) read @i = (44 instead of the above. This error was
brought to my attention by Hans-Werner Henn in 2016.

PROOF. Part (a) is given in Miller, Ravenel, and Wilson [1] as theorem 8.18.
The method used is similar to the proof of (b) below. .
For (b)(i) assume first that s and ¢ are both odd. Then &, = % and the

s+t—1
mod (2) reduction of @y is vi_ltl. Hence a0 = -2 b1 = Qgpt—1001-

2
For s odd and ¢ = 2 we have

s s—t
050 = %(t% +uty) = d(vl 5 UZ) S0 agap = 0.
For t even and t > 2, recall that
t/2
ap = Z—t where x = v% — 4vf102
and
d(xz) =38p
where

p = vy 2oty — vy H(te +£3) + 2(v1ty 4 v 2] + o] 2ty + o 3uetd)  mod (4).

Hence for even ¢t > 2 the mod (2) reduction of @; is v!~?p and for odd s

A pit2 gy (st D)/2
st = B) p= B) p-
Since
pz(HED/2N gy (o112 plsHt+1)/24
— | =z p + PO TPSTEETY
2(s+t+1) 2 2(s+t+1)

SO QsQyp = 1 Qs4¢—1 as claimed.

For (ii) we have a3 = M
cohomologous to (/5.

For (iii) we have ai/4 € Ext®'% which is (Z/(2))® generated by ajaz, 3, and

Basa. aiay is not a permanent cycle (5.3.7) so ai /4 TSt be a linear combination

-2 2
Yy Y3

5—= shows this is

. The coboundary of g—i +

of B4/4 and f5. Their reductions mod I, t}[t] and vst}|t1, are linearly independent
so it suffices to compute aZM mod Is. The mod I reduction of Qg4 18 t‘ll + voty,
so the result follows. O
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6. Elements in Ext® and Beyond

We begin by considering products of elements in Ext? with those in Ext' and
Ext?. If z and y are two such elements known to be permanent cycles, then the
nontriviality of zy in Ext implies that the corresponding product in homotopy is
nontrivial, but if zy = 0 then the homotopy product could still be nontrivial and
represent an element in a higher Ext group. The same is true of relations among
and divisibility of products of permanent cycles; they suggest but do not imply
(without further argument) similar results in homotopy.

Ideally one should have a description of the subalgebra of Ext(BP,) generated
by Ext! and Ext? for all primes p. Our results are limited to odd primes and fall
into three types (see also 5.5.8). First we describe the subgroup of Ext? generated
by products of elements in Ext' with elements of order p in Ext® (5.6.1). Second we
note that certain of these products are divisible by nontrivial powers of p (5.6.2).
These two results are due to Miller, Ravenel, and Wilson [1], to which we refer for
most of the proofs.

Our third result is due to Oka and Shimomura [9] and concerns products of
certain elements in Ext® (5.4.4-5.4.7). They show further that in certain cases when
a product of permanent cycles is trivial in Ext*, then the corresponding product in
homotopy is also trivial.

This brings us to 4’s and §’s. Toda [1] showed that ~; is a permanent cycle for
p > 7 (1.3.18), but left open the case p = 5. In Section 7.5 we will make calcula-
tions to show that 3 does not exist. We sketch the argument here. As remarked in
Section 4.4, 4.4.22 implies that d33(a1ﬂ§/5) = 2! (up to a nonzero scalar). Calcula-

tions show that a15§/5 is a linear combination of 333 and 1 (a1 83, B1,72). Hence

if the latter can be shown to be a permanent cycle then we must have dz3(v3) = 5:8.

Each of the factors in the above Massey product is a permanent cycle, so it suffices
to show that the products a;B38; € m323(S°) and Byye € me19(S°) both vanish.
Our calculation shows that both of these stems have trivial 5-torsion.

To construct §; one could proceed as in the proof of 5.5.2. For p > 7 there
is a finite complex V(3) with BP,(V(3)) = BP./I4. According to Toda [1] it is
a ring spectrum for p > 11. Hence there is a self-map realizing multiplication by
vg iff there is a corresponding element in 7, (V(3)). We will show (5.6.13) that
the group ExtQp_l’Q(p4+p_2)(BP*/I4) is nonzero for all p > 3, so it is possible that
dgp_l(v4) 7’5 0.

The following result was proved in Miller, Ravenel, and Wilson [1] as theo-
rem 8.6.

5.6.1. THEOREM. Let m >0, pts, s > 1,1 < j < ag., (where agym is as in
54.1) for s > 1 and 1 < j < p™ for s = 1. Then afBsym;; # 0 in Ext®(BP,) iff
one of the following conditions holds

(i) 7 =1 and either s Z —1 mod (p) or s = —1 mod (p™*+?).

(i) j=1and s=p—1.

(lll) _] > 1+ a27m_y(j_1)_1-

In case (ii), we have a1fp—1 = —7y1 and for m > 1, 2018, 1)pm = —Vpm /pm pm -
The onfy linear relations among these classes are

alﬂspQ/p-‘rQ = 804153;;2—17
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and

a168p2m+2/2+a21m+1 = 280{163p2m+2_pm fOT m > 1. (I

This result implies that some of these products vanish and therefore certain
Massey products (A1.4.1) are defined. For example, a;Bp—1)pm = 0if t > 1 and
p™ T2t t so we have Massey products such as (f82,-1,a1,a;1) represented up to
nonzero scalar multiplication by

2p 2p—1,2 p—1
vyt vy ] — 2vy Twsly

T .
pu P pU1

This product has order p? but many others do not. For example, o Bps2 = 0 and
(Bpj2, 1, 1) is represented by

p—1_p D12
2v] vty vty

2,.P - 2
p vy pvy

which has order p? and P(Bp/2, 1, 1) = a1 3, up to nonzero scalar multiplication.
Similarly, one can show

alﬁpz = p</6p2/2a ay, O[1> = p2</8p2/37 ay, 0, a1>'
The following results were 2.8(c) and 8.17 in Miller, Ravenel, and Wilson [1].

5.6.2. THEOREM. With notation as in 5.6.1, if a1Bsym/; # 0 in Ext®(BP,),
then it is divisible by at least p* whenever 0 < i <m and j > ag.m—;. (]

5.6.3. THEOREM. With notation as above and with t prime to p,
aspk/k+1ﬂtp7”/j = salﬁtpm/j,spk+1 m EXt3<BP*) U

Now we consider products of elements in Ext?, which are studied in Oka and
Shimomura [9].

5.6.4. THEOREM. For p > 3 we have ijB,8: = stp;f; in Ext? fori+j=s+t.

PrROOF. To compute SB,8; we need the mod Is reduction of 3;, which was com-
puted in 5.1.20. Hence we find S40; is represented by

_tvg+t71b10 + (;)U§+t72k0

bu1

Now let

vmeP TPy kok—1

2V 17 Ugl2 n Vg
PPy i pu

A routine computation gives

Um =

2p+1
(txl)tQ - t1p+ )-

t svstt=1py s
d<fs _):27—7 t—Dostt=2g
5 Us+i-1 o 2(8 + )Jv3 0

—2
_stvy " %ko

5 and the result follows. O
pv1

and hence (§s0; is represented by

The analogous result in homotopy for p > 5 was first proved by Toda [7]. The
next three results are 6.1, A, and B of Oka and Shimomura [9].
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5.6.5. THEOREM. For p > 3 the following relations hold in Ext* for s,t > 0.
(i) BsBipksr =0 fork>1,t>2 and r < azy.
(i) BsBp2 /p2 = Bsttp>—p)Btp/p-
(iii) For t,k > 2,

ﬁ2ﬁtpk/a2yk = /Ber(tpfl)(pk*l7p)5tp2/a2,2
(t/2)ﬁs+(tp—1)p’“‘l—(2p—1)p/82p2/a2,2' 0

5.6.6. THEOREM. For p > 5, 0 <r <p, withr <p—1ift =1, the element
BsBipr is trivial in 7.(S°) if one of the following conditions holds.

(i)r<p-2.

(ii) r=p—1 and s Z -1 mod (p).

(iii)r=p—1orpandt =0 mod (p). O

5.6.7. THEOREM. For p > 5, s Z 0 or 1, t Z 0 mod (p), and t > 2, the
elements BB p and BsBip2 /p 2 are nontrivial. O

Now we will display the obstruction to the existence of V'(4), i.e., a nontrivial
element in Ext2p_l’2(p4+p_2)(BP*/I4). This group is isomorphic to the correspond-
ing Ext group for P, = P[ty,ts,...], the dual to the algebra of Steenrod reduced
powers. To compute this Ext we use a method described in Section 3.5. Let

P(1), = P/(tfz,tg,tg, ...), the dual to the algebra generated by P! and PP. We
will give P, a decreasing filtration so that P(1), is a subalgebra of EyP.. We let

ti,t € Fy, and t];2,tf+1,ti+2 € F®'=D/(=1) for § > 1. Then as an algebra we have

(5.6.8) EoP, = P(1). ® T(tiy2,0,tiy1,1) @ P(tiz2),

where ¢ > 1, ; ; corresponds to 7 ’ , and T denotes the truncated polynomial algebra
of height p. Let R denote the tensor product of the second two factors in 5.6.8.
Then

(5.6.9) P(1), — EoP, » R

is an extension of Hopf algebras (A1.1.5) for which there is a Cartan—Eilenberg
spectral sequence (A1.3.14) converging to

Extg,p,(2/(p), Z/(p))
with
(5.6.10) Ey = Extp).(Z/(p), Extr(Z/(p), Z/(p))).
The filtration of P, gives a spectral sequence (A1.3.9) converging to
Extp-(Z/(p), Z/(p))
with
(5.6.11) Ey = Extg,p.(Z/(p), Z/(p))-

In the range of dimensions we need to consider, i.e., for t —s < 2(p* — 1) Extg
is easy to compute. We leave it to the reader to show that it is the cohomology of
the differential P(1).-comodule algebra

E(h12, hat, hso, h1s, haa, ha1, hag) ® P(bi2, b2y, b3o)
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with d(ha2) = highis, d(hs1) = hoihis, and d(hgo) = hszohiz. In our range this
cohomology is
(5.6.12) E(hi2, ha1, hso, hiz)/hiz(hi2, b1, hao) @ P(b12,b21, bs0),
where the nontrivial action of P(1) is given by
P'hso = ha1, PPhgy =hia, and  PPbyy = boy.
We will not give all of the details of the calculations since our aim is merely to

find a generator of Extzp7172(p4+p72)

(5.6.13) bho *hi1haohishat hao.

We leave it to the interested reader to decipher this notation and verify that it is a
nontrivial cocycle.

. The element in question is






CHAPTER 6

Morava Stabilizer Algebras

In this chapter we develop the theory which is the mainspring of the chromatic
spectral sequence. Let K(n). = Z/(p)[vn, v, ] have the BP.,-module structure
obtained by sending all v;, with ¢ # n to 0. Then define X(n) to be the Hopf
algebra K(n). ®pp, BP.(BP) ®@pp, K(n).. We will describe this explicitly as a
K (n).-algebra below. Its relevance to the Adams—Novikov spectral sequence is the

isomorphism (6.1.1)
Extpp, (pp)(BP:, v, ' BP,/I,) = Exts () (K (n)s, K(n).),

*y Yn

which is input needed for the chromatic spectral sequence machinery described in
Section 5.1. In combination with 6.2.4, this is the result promised in 1.4.9. Since
Y(n) is much smaller than BP,(BP), this result is a great computational aid. We
will prove it along with some generalizations in Section 1, following Miller and
Ravenel [5] and Morava [2].

In Section 2 we study X (n), the nth Morava stabilizer algebra. We will show
(6.2.5) that it is closely related to the Z/(p)-group algebra of a pro-p-group S,, (6.2.3
and 6.2.4). S, is the strict automorphism group [i.e., the group of automorphisms
f(z) having leading term z] of the height n formal group law F,, (see A2.2.18 for
a description of the corresponding endomorphism ring). We use general theorems
from the cohomology of profinite groups to show .S, is either p-periodic (if (p—1) | n)
or has cohomological dimension n? (6.2.10).

In Section 3 we study this cohomology in more detail. The filtration of 4.3.24
leads to a May spectral sequence studied in 6.3.3 and 6.3.4. Then we compute H'!
(6.3.12) and H? (6.3.14) for all n and p. The section concludes with computations
of the full cohomology for n = 1 (6.3.21), n = 2 and p > 3 (6.3.22), n = 2 and
p=3(6.3.24), n=2and p=2 (6.3.27), and n = 3, p > 3 (6.3.32).

The last two sections concern applications of this theory. In Section 4 we
consider certain elements 3, /,: in Ext?(BP,) for p > 2 analogous to the Kervaire
invariant elements i 5: for p = 2. We show (6.4.1) that these elements are not
permanent cycles in the Adams—Novikov spectral sequence. A crucial step in the
proof uses the fact that S;,_; has a subgroup of order p to detect a lot of elements
in Ext. Theorem 6.4.1 provides a test that must be passed by any program to prove
the Kervaire invariant conjecture: it must not generalize to odd primes!

In Section 5 we construct ring spectra T'(m) satisfying BP,(T'(m)) =
BP,[t1,...,ty] as comodules. The algebraic properties of these spectra will be
exploited in the next chapter. We will show (6.5.5, 6.5.6, 6.5.11, and 6.5.12) that
its Adams—Novikov Fs-term has nice properties.

1. The Change-of-Rings Isomorphism
Our first objective is to prove

189
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6.1.1. THEOREM (Miller and Ravenel [5]). Let M be a BP.(BP)-comodule
annihilated by I, = (p,v1,...,vn_1), and let M = M ®pp, K(n).. Then there is a
natural isomorphism

Extgp. (5p)(BP:, v, ' M) = Exts,) (K (n)., M).

*y Ym

Here v,;'M denotes v,, ' BP, ®pp, M, which is a comodule (even though v, ' BP,
is not) by 5.1.6. O

This result can be generalized in two ways. Let
E(n). = v, 'BP,/(vnyi: i > 0)

and
E(n)«(E(n)) = E(n)« @pp, BP(BP) ®@pp, E(n)..

It can be shown, using the exact functor theorem of Landweber [3], that
E(n). ®pp, BP.(X) is a homology theory on X represented by a spectrum FE(n)
with m.(E(n)) = E(n)., and with E(n).(E(n)) being the object defined above.
We can generalize 6.1.1 by replacing X(n) with E(n).(E(n)) and relaxing the hy-
pothesis on M to the condition that it be I,,-nil, i.e., that each element (but not
necessarily the entire comodule) be annihilated by some power of I,,. For example,
N™ of Section 5.1 is I,,-nil. Then we have

6.1.2. THEOREM (Miller and Ravenel [5]). Let M be I,-nil and let
M = M ®pp, E(n).. Then there is a natural isomorphism

EXth*(Bp)(BP*,’UglM) = EXtE(n)*(E(n))(E(n)*,M).

There is another variation due to Morava [2]. Regard BP, as a Z/2(p™ — 1)-
graded object and consider the homomorphism 8: BP, — Z/(p) given by 6(v,,) =1
and O(v;) = 0 for i« # n. Let I C BP, be kerf and let Vy and VT, denote
the I-adic completions of BP, and BP,(BP). Let Ey = Vy(vpy: i > 0) and
EHy = Ey ®vy, VIy Qy, Ep.

6.1.3. THEOREM (Morava [2]). With notation as above there is a natural iso-
morphism

EXtVTg (V‘g, M) = EXtEHg (Eg, M)
where M is a VTy-comodule and M = M ®v, Eg. O

Of these three results only 6.1.1 is relevant to our purposes so we will not prove
the others in detail. However, Morava’s proof is more illuminating than that of
Miller and Ravenel [5] so we will sketch it first.

Morava’s argument rests on careful analysis of the functors represented by the
Hopf algebroids VTy and EHy. First we need some general nonsense.

Recall that a groupoid is a small category in which every morphism is invertible.
Recall that a Hopf algebroid (A,T") over K is a cogroupoid object in the category
of commutative K-algebras; i.e., it represents a covariant groupoid-valued functor.
Let o, 8: G — H be maps (functors) from the groupoid G to the groupoid H. Since
G is a category it has a set of objects, Ob(G), and a set of morphisms, Mor(G),
and similarly for H.
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6.1.4. DEFINITION. The functors o, B: G — H are equivalent if there is a map
0: Ob(G) — Mor(H) such that for any morphism g: g1 — g2 in G the diagram

algr) =2 a(g)

0(g1) 0(g2)
B(g)
B(g1) — B(g2)

commutes. Two maps of Hopf algebroids a,b: (A, T') — (B,X) are naturally equiv-
alent if the corresponding natural transformations of groupoid-valued functors are
naturally equivalent in the above sense. Two Hopf algebroids (A,T) and (B,X) are
equivalent if there are maps f: (A,T) — (B,X) and h: (B,X) — (A,T) such that
hf and fh are naturally equivalent to the appropriate identity maps. O

Now we will show that a Hopf algebroid equivalence induces an isomorphism
of certain Ext groups. Given a map f: (A,T') — (B,X) and a left I'-comodule M,
define a 3-comodule f*(M) to be B ®4 M with coactions

BRaM —-BIIaT'Qa M 5> BRRpX94a M =X B4 M.

6.1.5. LEMMA. Let f: (A, T) — (B,X) a Hopf algebroid equivalence. Then there
is a natural isomorphism Extr(A, M) = Exts(B, f*(M)) for any T'-comodule M.

PROOF. It suffices to show that equivalent maps induce the same homomor-
phisms of Ext groups. An equivalence between the maps a,b: (A,T) — (B,X)
is a homomorphism ¢: I' — B with suitable properties, including ¢nr = a and
¢nr, = b. Since nr and 7y are related by the conjugation in I'; it follows that
the two A-module structures on B are isomorphic and that a*(M) is naturally iso-
morphic to b*(M). We denote them interchangeably by M’. The maps a and b
induce maps of cobar complexes (A1.2.11) Cr(M) — Cx(M’). A tedious routine
verification shows that ¢ induces the required chain homotopy. (I

Now we consider the functors represented by V7T and EFHy. Recall that an
Artin local ring is a commutative ring with a single maximal ideal satisfying the
descending chain condition, i.e., the maximal ideal is nilpotent. If A is such a ring
with finite residue field k then it is W (k)-module, where W (k) is the Witt ring of
A2.2.16. Let Arty denote the category of Z/(2(p" — 1))-graded Artin local rings
whose residue field is an F,-algebra. Now let my = ker C BP,. Then BP./mj
with the cyclic grading is is object in Arty, so Vy = l'ngP* /mj is an inverse
limit of such objects as is VTy. For any A € Arty, we can consider Hom®(V Ty, A),
the set of continuous ring homomorphisms from VTy to A. It is a groupoid-valued
functor on Arty pro-represented by VTy. (We have to say “pro-represented” rather
than “represented” because VTy is not in Artg.)

6.1.6. PROPOSITION. VTy pro-represents the functor liftsy from Arty to the
category of groupoids, defined as follows. Let A € Arty have residue field k. The
objects in liftsg(A) are p-typical liftings to A of the formal group law over k in-
duced by the composite BP, LN F, — k, and morphisms in liftsg(A) are strict
isomorphisms between such liftings. [

6.1.7. DEFINITION. Let ma C A be the mazimal ideal fgré € Arty. Given a
homomorphism f: F — G of formal group laws over A, let f: F' — G denote their
reductions mod my. f is a x—isomorphism if f(z) = x.
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6.1.8. LEMMA. Let F and G be objects in liftsy(A).  Then the map
Hom(F,G) — Hom(F,G) is injective.

PROOF. Suppose f = 0, i.e., f(x) =0 mod m,. We will show that f(z) =0
mod m’y implies f(z) = 0 mod m';™" for any r > 0, so f(z) = 0 since m, is
nilpotent. We have

G(f(x), f(y) = f(z) + f(y) mod m%
since
G(z,y) =x+y mod (z,y)°
Consequently,
[pla(f(x)) =pf(z) mod m¥ =0 mod m’
since p € my. On the other hand

Pla(f(z)) = f([plr(2))
r+1

and we know [p|p(z) = 2?" mod m4 by A2.2.4. Hence f([p]#(z)) =0 mod m’}
gives the desired congruence f(z) =0 mod m’. O

Now suppose f1, fo: F — G are x-isomorphisms (6.1.7) as is g: G — F. Then
gfi = gf2 by 6.1.8 so fi = fs; i.e. *-isomorphisms are unique. Hence we can make

6.1.9. DEFINITION. liftsj(A) is the groupoid of x-isomorphism classes of objects
in liftsg A.

6.1.10. LEMMA. The functors liftsy and lifts; are naturally equivalent.

PROOF. There is an obvious natural transformation a: liftsg — lifts}, and we
need to define 3: lifts; — liftsy, of each #-isomorphism class. Having done this,
af will be the identity on lifts; and we will have to prove B« is equivalent (6.1.4)
to the identity on liftsy.

The construction of 3 is essentially due to Lubin and Tate [3]. Suppose G; €
liftsg(A) is induced by 6;: BP, — A. Using A2.1.26 and A2.2.6 one can show that
there is a unique Gy € liftsy(A) *-isomorphic to G; and induced by 65 satisfying
O(vpyi) = 0 for all ¢ > 0. We leave the details to the interested reader. As
remarked above, the *-isomorphism from G; to G2 is unique. The verification that
Ba is equivalent to the identity is straightforward. O

To prove 6.1.3, it follows from 6.1.5 and 6.1.10 that it suffices to show EHy
pro-represents liftsj. In the proof of 6.1.10 it was claimed that any suitable formal
group law over A is canonically *-isomorphic to one induced by : BP, — A which
is such that it factors through Ey. In the same way it is clear that the morphism
set of liftsy(A) is represented by EHy, so 6.1.3 follows.

Now we turn to the proof of 6.1.1. We have a map BP,(BP) — ¥(n) and
we need to show that it satisfies the hypotheses of the general change-of-rings
isomorphism theorem A1.3.12, i.e., of A1.1.19. These conditions are

(6.1.11) (i) the map I'' = BP,(BP) ®pp, K(n). — (n) is onto and
(ii) I Oy K(n), is a K(n),-summand of I"".

Part (i) follows immediately from the definition X(n) = K(n). ®gp, I''. Part
(ii) is more difficult. We prefer to replace it with its conjugate,
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(ii) K (n)«Oxm) K(n)«(BP) is a K(n), summand of K (n).BP which is defined
to be K(n). ®pp, BP.(BP). Let B(n), denote v, BP,/I,. Then the right BP,-
module structure on K (n).(BP) induces a right B(n).- module structure.

6.1.12. LEMMA. There is a map
K(n).,BP — X(n) @), B(n)«
which is an isomorphism of ¥(n)-comodules and of B(n).-modules, and which car-
ries 1 to 1.
PROOF. Our proof is a counting argument, and in order to meet requirements
of connectivity and finiteness, we pass to suitable “valuation rings”. Thus let
k(0), = Z(p) C K(0),,
k(n). = Fplvp] C K(n)s, n >0,
k(n),BP = k(n), ®pp, BP.(BP) C K(n).BP,
b(n). = k(n)ur,uz,...] C Bn).,
where uy, = v, 1v, k.
It follows from A2.2.6 that in k(n).BP,
n K
(6.1.13) NR(Untk) = vnth — 08t mod (Nr(vn41),- - NR(Vntk-1)).

Hence ng: BP. — k(n).BP factors through an algebra map b(n). — k(n).BP.
It is clear from 6.1.13 that as a right b(n),-module, k(n).BP is free on generators

t* = t7t5? ... where 0 < a; < p™ and all but finitely many «; are 0; in particular,
it is of finite type over b(n).,.
Now define

o(n) = k(n) BP @), k(n). C B(n);

by the above remarks o(n) = k(n).[t1,t2, ... }/(ti,n —vﬁkiltk: k > 1) as an algebra.
(k(n)«,o(n)) is clearly a sub-Hopf algebroid of (K (n)., X(n)), so o(n) is a Hopf
algebra over the principal ideal domain k(n)..

The natural map BP,(BP) — o(n) makes BP,(BP) aleft o(n)-comodule, and
this induces a left o(n)-comodule structure on k(n).BP. We will show that the
latter is an extended left o(n)-comodule.

Define a b(n),-linear map f: k(n).BP — b(n). by

f(to‘):{l if a = (0,0,...)

0 otherwise.

Then f satisfies the equations
fir =1id: b(n), — b(n)x,
[ ®p(n), k(n)s =€: 0(n) = k(n)..

Now let f be the ¢(n)-comodule map lifting f:

(6.1.14) k(n).BP —"> 6(n) ®g(n- k(n). BP

\ \La(n)@f
f

a(n) @pmy+ b(n)«
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Since Yijp(x) = 1 ® fr(z), ¥ is b(n),-linear, so f is too. We claim f is an isomor-
phism. Since both sides are free of finite type over b(n), it suffices to prove that
f ®p(n). k(n) is an isomorphism. But 6.1.14 is then reduced to

a(n) —2> 0(n) Dk(n), o(n)
. 1®e
f@bm l

o(n) @km), k(n).

so the claim follows from unitarity of A.
Now the map K (n). @), [ satisfies the requirements of the lemma. O

6.1.15. COROLLARY. 7r: B(n). — K(n), Oxy) K(n).BP is an isomorphism
of B(n)«-modules.

ProoF. The natural isomorphism
B(n). = K(n)s Og(n) (3(n) @k (). B(n)«)

is B(n).-linear and carries 1 to 1. Hence

K(n)« Oggny (2(n) @k (n), B(n):)

1R

commutes, and 7jg is an isomorphism. O

Hence 6.1.11(ii) follows from the fact that K(n), is a summand of X(n), and
6.1.1 is proved. From the proof of 6.1.12 we get an explicit description of X(n),
namely

6.1.16. COROLLARY. As an algebra
S(n) = K(n)u[t1, ta, ... ]/ (oat?" =02 t;: i > 0).
Its coproduct is inherited from BP,(BP), i.e., a suitable reduction of 4.3.13 holds.

2. The Structure of X(n)

To study ¥(n) it is convenient to pass to the corresponding object graded
over Z/2(p" — 1). Make F, a K(n).-module by sending v,, to 1, and let S(n) =
X(n) ®k(n). Fp. For a ¥(n)-comodule M let M=M @K (n), Fp, which is easily
seen to be an S(n)-comodule. The categories of X(n)- and S(n)-comodules are
equivalent and we have

6.2.1. PROPOSITION. For a ¥(n)-comodule M,

EXtE(n)(K(n)*v M) ®K(n)* FP = EXtS(n)(vaﬂ)' U
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We will see below (6.2.5) that if we regard S(n) and M as graded merely over
Z/(2), there is a way to recover the grading over Z/2(p™ —1). If M is concentrated
in even dimensions (which it is in most applications) then we can regard M and
S(n) as ungraded objects. Our first major result is that S(n) ® Fpn (ungraded) is
the continuous linear dual of the Fyn-group algebra of a certain profinite group S,
to be defined presently.

6.2.2. DEFINITION. The topological linear dual S(n)* of S(n) is as follows.
[In Ravenel [5] S(n)* and S(n) are denoted by S(n) and S(n)., respectively.] Let
S(n)qy be the sub-Hopf algebra of S(n) generated by {t,...,t;}. It is a vector space
of rank p™ and S(n) = lignS(n)(i). Then S(n)* = @Hom(S(n)(i), F,), equipped
with the inverse limit topology. The product and coproduct in S(n) give maps of
S(n)* to and from the completed tensor product

S(n)*® S(n)* = T&nHom(S(n)(i) ®S(n);, Fp).

To define the group S, recall the Z,-algebra E,, of A2.2.17, the endomorphism
ring of a height n formal group law. It is a free Z,-algebra of rank n? generated
by w and S, where w is a primitive (p™ — 1)th root of units, Sw = wPS, and S™ = p.
Sp, C EJ, is the group of units congruent to 1 mod (5), the maximal ideal in
E,. S, is a profinite group, so its group algebra F,»[S,] has a topology and is a
profinite Hopf algebra. S,, is also a p-adic Lie group; such groups are studied by
Lazard [4].

6.2.3. THEOREM. S(n)*®F, = F,[S,] as profinite Hopf algebras, where g = p”,
Sp s as above, and we disregard the grading on S(n)*.

PrOOF. First we will show S(n)* ® Fy, is a group algebra. According to
Sweedler [1], Proposition 3.2.1, a cocommutative Hopf algebra is a group algebra
iff it has a basis of group-like elements, i.e., of elements x satisfying Az = x®x. This
is equivalent to the existence of a dual basis of idempotent elements {y} satisfying
y? = y;, and y;y; = 0 for i # j. Since S(n) @ Fy, is a tensor product of algebras of
the form R = F,[t]/(t? —t), it suffices to find such a basis for R. Let a € F{ be a
generator and let

— 3 (a%t)! for0<i<gq,
r; = 0<j<q
1—tat for i = 0.
Then {r;} is such a basis, so S(n)* ® Fy, is a group algebra.

Note that tensoring with F, cannot be avoided, as the basis of R is not defined
over F,,.

For the moment let G,, denote the group satisfying F,[G,] = S(n)* ® F,. To
get at it we define a completed left S(n)-comodule structure on F,[[z]], thereby
defining a left G,-action. Then we will show that it coincides with the action of S,
as formal group law automorphisms given by A2.2.18.

We now define the comodule structure map

i Folla]] = S(n) ® Fy[[z]]
to be an algebra homomorphism given by

P(x) = ZFti ®ar,

i>0
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where t5 = 1 as usual. To verify that this makes sense we must show that the
following diagram commutes.

F,[[e]] — = S(n) & F,[[2]

‘| =

S(n) & Fy[[z] —> S(n) & S(n) & Fy[[a]]

for which we have

Aol =ne)Y tod

i>0

F F J i
=3y ti ot | @aP
i>0  \j—k=i
=Y e o

3,k>0

This can be seen by inserting x as a dummy variable in 4.3.12. We also have

(1®Y)() = (1@ ) (Z% ® )
7>0

i

p
— ZFti@@ (Zth@;xP”’)

j=0 j=0
F i it
= E ti®t§ ®zP .
1,520

The last equality follows from the fact that F(aP,y?) = F(x,y)?. The linearity of
1 follows from A2.2.21(b), so ¢ defines an S(n) ® F-comodule structure on F,[[z]].

We can regard the ¢;, as continuous Fy-valued functions on G, and define an
action of G,, on the algebra F[[z]] by

F i
g(z) = ti(g)a”
i>0
for g € G,. Hence G(z) = x iff g = 1, so our representation is faithful.

We can embed G, in the set of all power series of the form Zfzo a;z?" which
is E, by A2.2.21 so the result follows. (]

6.2.4. COROLLARY. If M is an ungraded S(n)-comodule, then 6.2.3 gives a
continuous Sy-action on M @ Fy, and

Extg () (Fp, M) @ Fy = HX (G, M @ Fy)
where HY denotes continuous group cohomology. O

To recover the grading on S(n) ® M, we have an action of the cyclic group of
order ¢ — 1 generated by @w'w’ via conjugation in F,,.

6.2.5. PROPOSITION. The eigenspace of S(n) ® F, with eigenvalue &' is the
component S(n)q; ® Fy of degree 2i.
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PROOF. The eigenspace decomposition is multiplicative in the sense that if x
and y are in the eigenspaces with eigenvalues @’ and @?, respectively, the zy is
in the eigenspace with eigenvalue @*t7. Hence it suffices to show that t; is in the
cigenspace with eigenvalue @? 1.

To see this we compute the conjugation of #,S* € E, by w and we have

Wt SF)w = w’ltkwpksk = w”k’ltkSk. O

Corollary 6.2.4 enables us to apply certain results from group cohomology the-
ory to our situation. First we give a matrix representation of E, over W (Fy).

6.2.6. PROPOSITION. Let e =}, _, e;S* with e; € W(F,) be an element of
E,. Define an n x n matriz (e; ;) over W(F,) by

€it1,j4+1 = € Jori<j
1 ] - i . .
Py fori>j.

Then (a) this defines a faithful representation of E,; (b) the determinant |e; ;| lies
n Zy.

PRrROOF. Part (a) is straightforward. For (b) it suffices to check that w and S
give determinants in Z,. ([

We can now define homomorphisms c: Z,, —+ S, and d: S,, — Z,, for p > 2, and
c: Zy — S, and d: Z; for p = 2 by identifying S,, with the appropriate matrix
group. (Z, is to be regarded here as a subgroup of Z)'.) Let d be the determinant
for all primes. For p > 2 let ¢(z) = exp(pz)I, where I is the n x n identity matrix
and x € Zy; for p =2 let ¢(x) = zI for z € ZJ.

6.2.7. THEOREM. Let S} = kerd.
(a) Ifp>2 andptn then S, 2 Z,d S}.
(b) If p=2 and n is odd then S, = S} & Z.

PrROOF. In both cases one sees that imc lies in the center of S,, (in fact ime
is the center of S),) and is therefore a normal subgroup. The composition dc is
multiplication by n which is an isomorphism for p t n, so we have the desired
splitting. O

We now describe an analogous splitting for S(n). Let A* = F,[Z,] for p > 2
and A* = Fo[Z)] for p = 2. Let A, be the continuous linear dual of A.

6.2.8. PROPOSITION. As an algebra A = Fj[uy,uz,...]/(u; —u?). The coprod-

uct A is given by
G G
5 )= Y wen
i>0 3,j>0
where ug = 1 and G is the formal group law with
2P’

IOgG(X) = Z pi :

PROOF. Since A = F,[5], this follows immediately from 6.2.3. O

We can define Hopf algebra homomorphisms ¢,: S(n) @ F;, - A ® F, and
di: AQF,; — S(n) ® F, dual to the group homomorphisms ¢ and d defined above.
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6.2.9. THEOREM. There exist maps c,: S(n) — A and d.: A — S(n) corre-
sponding to those defined above, and for pfn, S(n) = A® B, where B®Fy, is the
continuous linear dual of Fy[SL], where S}, is defined in 6.2.7.

n’

PrOOF. We can define ¢, explicitly by

Us; ifnl
Cyty = on | .
0 otherwise.

It is straightforward to check that this is a homomorphism corresponding to the c,
defined above. In lieu of defining d. explicitly we observe that the determinant of
Y isotiS?, where t; € W(F,) and t; = t!, is a power series in p whose coefficients
are polynomials in the ¢; over Z,. It follows that d. can be defined over F,,. The
splitting then follows as in 6.2.7. (]

Our next result concerns the size of Ext g, (F,, F}), which we abbreviate by
H*(S(n)).

6.2.10. THEOREM.

(a) H*(S(n)) is finitely generated as an algebra.

(b) If (p — 1) t m, then H'(S(n)) = 0 for i > n? and H'(S(n)) = H" ~1(S(n))
for 0 <i<n?, ie., H*(S(n)) satisfies Poincaré duality.

(c) If (p—1) | n, then H*(S(n)) is p-periodic, i.c., there is some x € H*(S(n))
such that H*(S(n)) above some finite dimension is a finitely generated free module
over Fplz]. O

We will prove 6.2.10(a) below as a consequence of the open subgroup theorem
(6.3.6), which states that every sufficiently small open subgroup of S,, has the same
cohomology as Zf. Then (c) and the statement in (b) of finite cohomological
dimension are equivalent to saying that the Krull dimension of H*(S(n)) is 1 or 0,
respectively. Recall that the Krull dimension of a Noetherian ring R is the largest
d such that there is an ascending chain py C p; C -+ C pg of nonunit prime ideals
in R. Roughly speaking, d is the number of generators of the largest polynomial
algebra contained in R. Thus d = 0 iff every element in R is nilpotent, which in
view of (a) implies (b). If d =1 and R is a graded F,-algebra, then every element
in R has a power in F,[z] for a fixed x € R. R is a module over Fp[z], which
is a principal ideal domain. Since H*(S(n)) is graded and finitely generated, it
is a direct sum of cyclic modules over F,[x]. More specifically it is a direct sum
of a torsion module (where each element is annilhilated by some power of z) and
a free module. Since it is finitely generated, the torsion must be confined to low
dimensions, and H*(S(n)) is therefore a free F,,[z]-module in high dimensions, so
(a) implies (c).

The following result helps determine the Krull dimension.

6.2.11. THEOREM (Quillen [3]). For a profinite group G the Krull dimension

of H*(G;F)) is the mazimal rank of an elementary abelian p-subgroup of G, i.e.,
subgroup isomorphic to (Z/(p))?. O

To determine the maximal elementary abelian subgroup of .S,,, we use the fact
that D,, = E,, ® Q is a division algebra over Q,, (A2.2.17), so if G C S, is abelian,
then the Qp-vector space in D,, spanned by the elements of G is a subfield K C D,,.
Hence the elements of G are all roots of unity, G is cyclic, and the Krull dimension
is 0 or 1.
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6.2.12. THEOREM. A degree m extension K of Q, embeds in D,, iff m | n.

PROOF. See Serre [1, p.202] or Cassels and Frohlich [1, p. 138]. O

By 6.2.11 H*(S(n)) has Krull dimension 1 iff S,, contains pth roots of unity.
Since the field K obtained by adjoining such roots to Q, has degree p — 1, 6.2.12
gives 6.2.10(c) and the finite cohomological dimension statement in (b). For the
rest of (b) we rely on theorem V.2.5.8 of Lazard [4], which says that if S,, (being
an analytic pro-p-group of dimension n?) has finite cohomological dimension, then
that dimension is n? and Poincaré duality is satisfied.

The following result identifies some Hopf algebra quotients of S(n)®@F,». These
are related to the graded Hopf algebras X 4(n) discussed in Ravenel [10]. More
precisely, S(d, f)q is a nongraded form of ¥ 4(d/f), where A is the ring of integers
in an extension K (depending on a) of Q,, of degree fn/d and residue degree f.

6.2.13. THEOREM. Let a € F, be a (p™ — 1)th root of unity, let d divide n, and
let f divide d. Then there is a Hopf algebra

d
S(d, fla=Fpnlts, toy,...1/(t]; —
where a; = apid’l, and a surjective homomorphism

0:S(n)®Fpn — S(d, fa

aitifi 7> 0)

given by
t, r—>{ ti if fli

0 otherwise.
The coproduct on S(d, f), is determined by the one on S(n). This Hopf algebra is
cocommutative when f = d.
PROOF. We first show that the algebra structure on S(d, f), is compatible
d
with that on S(n). The relation ¢}, = a;t;; implies

tf;d = (aitif)l’d = a§p2d_1)/(pd—l)tif = a(pi’i—l)(p”—l)/(pd_l)tif
t?;d = oMDET /6Dy
= PNy

so 6 exists as an algebra map.
For the coproduct in S(n) we have

F i F 7 it
A =Y et ar
120 4,520
(where x is a dummy variable) which induces
F if F if G+ f
Z A(tif)xp = Z tif ® téjf P
i>0 1,520

in S(d, f)a. We need to show that this is compatible with the multiplicative rela-
tions. We can write if = kd + £f with 0 < /f < d, so we can rewrite the above
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as
F if F kd-+Lf  (i+)f
=0 0,520
F o ef kd_ a_ O i
= PP =1/ (0 =1y ptt plitis
4,520
= ZF " P -DE =D/ -y ﬁ;;;fxpwrj)f7
4,j>0

which gives a well defined coproduct in S(d, f)q.
If f = d then the right hand side simplifies to

I e TG TR
4,520

which is cocommutative as claimed. O

3. The Cohomology of 3(n)

In this section we will use a spectral sequence (A1.3.9) based on the filtration
of ¥(n) induced by the one on BP,(BP)/I, given in 4.3.24. We have

6.3.1. THEOREM. Define integers dy ; by

Lo ifi<0
e max(i, pdy ;—n) fori> 0.

Then there is a unique increasing filtration of the Hopf algebra S(n) with deg tfj =dp;
for0<j<n. O

The following is a partial description of the coproduct in the associated graded
object E°S(n). For large i we need only partial information about the coproduct
on t; ; in order to prove Theorem 6.3.3. I am grateful to Agnes Beaudry for finding
an error in an earlier version of the following.

6.3.2. THEOREM. Let E°S(n) denote the associated bigraded Hopf algebra. Its
algebra structure is

E°S(n)=T(t;;j:i>0, j€Z/(n)),
where T(+) denotes the truncated polynomial algebra of height p on the indicated

elements and t; ; corresponds to tfj. The coproduct is induced by the one given in
4.3.34. Explicitly, let m = pn/(p —1). Then

Z T @ tik k4 if i <m,
0<k<i

thi @ti—phai + Dicnign_1 ifi=m,
A(ti,j) _ ngk:gi kg @ imk,k45 T Oimn j4n—1

ti;®@14+1®t; +bipjin-1
mod (tge: k <i—n—1) if i > m,

where tg j = 1 and Z_)i,j corresponds to the b; j of 4.3.14. (]
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As in the case of the Steenrod algebra, the dual object EyS(n)* is primitively
generated and is the universal enveloping algebra of a restricted Lie algebra L(n).
L(n) has basis {x; j: i >0, j € Z/(n)}, where z; ; is dual to ¢, ;.

6.3.3. THEOREM. EyS(n)* is the restricted enveloping algebra on primitives
255 with bracket

1 1 .
s 5] = iy Titky — 5i+1xi+k71 for i + k <m,
7, = .
77 0 otherwise,

where m is the largest integer not exceeding pn/(p—1), and 67 =1 iff s =t mod (n)
and 0] = 0 otherwise. The restriction £ is given by

Titn,j+1 ifi>n/(p—1)
ori=n/(p—1) and p > 2

Zonj + Tonj+1 ifi=mnand p=2

0 ifi<n/p—1. O

§(xi5) =

The formula for the restriction was given incorrectly in the first edition, and
this error led to an incorrect description in 6.3.24 of the multiplicative structure
of H*(S(2)) for p = 3. The correct description is due to Henn [1] and will be
given below. The corrected restriction formula was given to me privately by Ethan
Devinatz.

PRrROOF OF 6.3.3. The formula for the bracket can be derived from 6.3.2 as
follows. The primitive x; ; is dual to ¢; ;. The bracket has the form

_ a,b
[i,5, Tkl = Ci gk 0 Lab

m,n

where the coefficient ¢ k ¢ 1s nonzero only if the coproduct expansion on ¢, con-
tains a term of the form tl @tk or ty e ®1t; ;. This can happen only when the the
two expressions have the same bidegree. This means that

dn,a = dmi + dn,k)
and 2pb(pa -1 = 2pj(pi - 1)+ 2p£(pk -1 mod 2(p" — 1)

This happens only when a =i+ k < m and b = j or £. Inspection of the coproduct
formula leads to indicated Lie bracket.

The restriction requires more care. For finding the restriction on z; ; it suffices
to work in the subalgebra of EyS(n)* generated by xy ¢ for k > 1.

It is also dual to passing to the quotient of E°S(n) obtained by killing ¢ ¢ for
k < i. Hence description of A(t; ;) for ¢ > m given in 6.3.2 is sufficient for our
purposes.

When ¢ > m we have

Altij) = ti;®1+1@t; +bi—pj1

(P ¢
= ti,;®14+1®0¢t;,; — Z D 1<€>tfw.1®tf 10
0<l<p
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so fori >n/(p—1),

Altitnjt1) = tign 1 @ 1L+ 1@ tign i1 — Z pt (IZ) tfﬂ- ® tf;e
0<l<p
mod (tre: k <i—1).
For brevity let B = E°S(n)/(tye: k <i—1) and let B = B/F,, denote the unit
coideal, the dual of the augmentation ideal in B*.
It follows that under the reduced iterated coproduct

B AP~1 B®p E@p

we have
Litn,j+1 4 @t ; @ - Q4 5,
which leads to the desired value of §(x; ;) for ¢ > n/(p — 1). The argument for
i=mn/p—1 and p odd is similar.
For the case p =2 and ¢ = n, 6.3.2 gives

Altzag) = Y thj®ton—ikry + bnjo1

0<k<2n

= b1 @tag1t Y bk ® ke
0<k<2n

= lnj1Q@tpj1+tn; Qtn;

+ Z (tr,j @ ton—k,j+k + ton—k; @ thj—k),
0<k<n
and the formula for {(z,, ;) follows.
For i < n/(p — 1) there are no terms in A(¢;4p ) for any k that would lead to
a nontrivial restriction on x; ;. O

Recall that Theorem 6.2.3 identifies S(n)* ® F, with the group ring F,[S,]
and that S,, is the group of units in the Z,-algebra FE,, congruent to 1 modulo the
maximal ideal (5). Killing the first few ¢;s in S(n) as we did in the proof above
corresponds to replacing the group S, by the subgroup of units congruent to 1
modulo a power of (S).

Let L(n) be the Lie algebra without restriction with basis x; ; and bracket as
above. We now recall the main results of May [2].

6.3.4. THEOREM. There are spectral sequences

(a) By = H*(L(n)) & P(bi;) = H*(EoS(n)°),

(b) Bz = H*(BoS(n)") = H*(S(n)),
where b ; € H*%(EyS(n)*) with internal degree 2p"+1(p* — 1) and P(-) is the
polynomial algebra on the indicated generators. O

Now let L(n, k) be the quotient of L(n) obtained by setting z; ; = 0 for ¢ > k.
Then our first result is

6.3.5. THEOREM. The Ey-term of the first May spectral sequence [6.3.4(a)] may
be replaced by H*(L(n,m)) @ P(b; j: i < m—n), where m = [pn/(p—1)] as before.

PROOF. By 6.3.3 L(n) is the product of L(n,m) and an abelian Lie algebra,
S0
H*(L(n)) = H*(L(n,m)) ® E(h; j: i >m),
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where E(-) denotes the exterior algebra on the indicated generators and h;; €
H'L(n) is the element corresponding to z; ;. It also follows from 6.3.4 that the
appropriate differential will send h; ; to —b;—p j—1 for i > m. It follows that the
entire spectral sequence decomposes as a tensor product of two spectral sequences,
one with the Es-term indicated in the statement of the theorem, and the other
having Ey = E(h; j) @ P(b;—y,;) with ¢ > m and Eo = F,,. ]

If n < p—1 then 6.3.5 gives a spectral sequence whose Ex-term is H*(L(n, n)),
showing that H*(S(n)) has cohomological dimension n? as claimed in 6.2.10(b).

In Ravenel [6] we claimed erroneously that the spectral sequence of 6.3.4(b)
collapses for n < p — 1. The argument given there is incorrect. For example, we
have reason to believe that for p =11, n = 9 the element

(h1oh2,0---h70)(haghs7---h73)
supports a differential that hits a nonzero multiple of
hi,0h2,0(higha 7 he3)(ho,1ths1--he1).

We know of no counterexample for smaller n or p.
Now we will prove 6.2.10(a), i.e., that H*(S(n)) is finitely generated as an
algebra. For motivation, the following is a special case of a result in Lazard [4].

6.3.6. OPEN SUBGROUP THEOREM. FEwvery sufficiently small open subgroup of
Sy is cohomologically abelian in the sense that it has the same cohomology as Z;,Lz,
i.e., an exterior algebra on n? generators. d

We will give a Hopf algebra theoretic proof of this for a cofinal set of open
subgroups, namely the subgroups of elements in E,, congruent to 1 modulo (S%)
for various ¢ > 0. The corresponding quotient group (which is finite) is dual the
subalgebra of S(n) generated by {tx: k < i}. Hence the ith subgroup is dual to
S(n)/(tg: k < i), which we denote by S(n, ).

The filtration of 6.3.1 induces one on S(n, i) and analogs of the succeeding four
theorems hold for it.

6.3.7. THEOREM. Ifi >n andp > 2, ori >n and p =2, then
H*(S(n,i)) =E(hg;j: i<k <i+mn, j€Z/(n)).

PRrOOF. The condition on ¢ is equivalent to ¢ > n — 1 and ¢ > m/2, where as
before m = pn/(p — 1). In the analog of 6.3.3 we have i,k > m/2soi+k >m
so the Lie algebra is abelian. We also see that the restriction £ is injective, so the
spectral sequence of 6.3.5 has the Eo-term claimed to be H*(S(n,)). This spectral
sequence collapses because hy ; corresponds to tZJ € S(n, i), which is primitive for
each k and j. ([

PROOF OF 6.2.10(a). Let A(z) be the Hopf algebra corresponding to the quo-
tient of S,, by the ith congruence subgroup, so we have a Hopf algebra extension
(A1.1.15)

A(i) = S(n) — S(n,i).
The corresponding Cartan—FEilenberg spectral sequence (A1.3.14) has

Ey = Ext ;) (Fp, H*(S(n,1)))
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and converges to H*(S(n)) with d,: E, — ESTH="+t1 Each E,-term is finitely
generated since A(i) and H*(S(n,)) are finite-dimensional for ¢ > m/2. Moreover,
E,» = Ew, 50 E5 and H*(S(n)) are finitely generated. O

Now we continue with the computation of H*(S(n)). Theorem 6.3.5 indicates
the necessity of computing H*(L(n, k)) for k < m, and this may be done with the
Koszul complex, i.e.,

6.3.8. THEOREM. H*(L(n,k)) for k < m is the cohomology of the exterior
complex E(h; ;) on one-dimensional generators h; j withi < k and j € Z/(n), with
coboundary

d(hij) = > hejhioserj.
0<s<i
The element h; ; corresponds to the element x; ; and therefore has filtration degree
i and internal degree 2p’ (p* — 1).

PRrROOF. This follows from standard facts about the cohomology of Lie algebras
(Cartan and Eilenberg [1, XII, Section 7]). O

Since L(n, k) is nilpotent its cohomology can be computed with a sequence of
change-of-rings spectral sequences analogous to A1.3.14.

6.3.9. THEOREM. There are spectral sequences with
E; = E(hg,;) @ H*(L(n,k — 1)) = H*(L(n, k))
and F3 = E.

PROOF. The spectral sequence is that of Hochschild—Serre (see Cartan and
Eilenberg [1, pp. 349-351] for the extension of Lie algebras
A(n,k) = L(n,k) = L(n,k —1)
where A(n, k) is the abelian Lie algebra on xj ;. Hence H*(A(n,k)) = E(hy;).
The Es-term, H*(L, (n,k — 1), H*(A(n, k)) is isomorphic to the indicated tensor
product since the extension is central.
For the second statement, recall that the spectral sequence can be constructed

by filtering the complex of 6.3.8 in the obvious way. Inspection of this filtered
complex shows that F3 = F. O

In addition to the spectral sequence of 6.3.4(a), there is an alternative method of
computing H x EqS(n)*). Define L(n, k) for k < m to be the quotient of PEyS(n)*
by the restricted sub-Lie algebra generated by the elements x; ; for £ < i < m, and
define F'(n, k) to be the kernel of the extension

0— F(n,k) = L(n,k) = L(n,k —1) = 0.

Let H*(L(n,k)) denote the cohomology of the restricted enveloping algebra of
L(n, k). Then we have

6.3.10. THEOREM. There are change-of-rings spectral sequences converging to
H*(L(n, k)) with
Ey = H*(F(n,k)) @ H*(L(n,k — 1))
where
E(hk,;) fork>m—n

H(F(n,k)) = {E(h;w») ® Plby;) fork<m-n
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and H*(L(n,m)) = H*(EoS(n)*).

PRrROOF. Again the spectral sequence is that given in Theorem XVI1.6.1 of Car-
tan and Eilenberg [1]. As before, the extension is cocentral, so the Es-term is the
indicated tensor product. The structure of H*(F(n, k)) follows from 6.3.3 and the
last statement is a consequence of 6.3.5. [

We begin the computation of H!(S(n)) with:

6.3.11. LEMMA. H(EpS(n)*) = H'(E®S(n)) is generated by
Zh nj and pp = Zhgn] for p = 2;

and forn > 1, hyj for each j € Z/(n).

PROOF. By 6.3.4(a) and 6.3.5 H'(EyS(n)) = H'L(n,m)). The indicated ele-
ments are nontrivial cycles by 6.3.8. It follows from 6.3.3 that L(n, m) can have no
other generators since [xl,j7xi—1,j+1] =Ty — 5§+]‘xi,j+1- [l

In order to pass to H!(S(n)) we need to produce primitive elements in S(n).
corresponding to (, and p, (the primitive tlf] corresponds to hi ;). We will do
this with the help of the determinant of a certain matrix. Recall from (6.2.3) that
S(n) @Fpn was isomorphic to the dual group ring of S,,, which has a certain faithful
representation over W (Fp») (6.2.6). The determinant of this representation gave
a homomorphism of S(n) into Z, the multiplicative group of units in the p-adic
integers. We will see that in H' this map gives us ¢, and p,.

More precisely, let M = (m; ;) be the n by n matrix over Zy[t1,ta, . ..]/(t;—t"")
given by

B %:Opktznﬂ ; fori < j

mij—
. k+14p S
2p+t,m+] ; fori>j
E>0

where to = 1.

Now define T,, € S(n). to be the mod (p) reduction p~!(det M — 1) and for
p = 2 define U, € S(n). to be the mod (2) reduction of (det M? —1). Then we
have

6.3.12. THEOREM. The elements T,, € S(n) and, for p = 2, U, € S(n) are
primitive and represent the elements ¢, and p,+C, € H*(S(n)), respectively. Hence
H'(S(n)) is generated by these elements and for n > 1 by the hy ; for j € Z/(n)

PROOF. The statement that T;, and U,, are primitive follows from 6.2.6. That
they represent (, and p,, + (, follows from the fact that

Tn:th mod (t1,tg,. .., th_1)

and
n_Zt +12 mod (t1,ta, ... ta_1). 0
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EXAMPLES.
Ti=t, U=t +ts, To=ty+1t5—t;7,
Up = tg + 15 4 t115 + titz + tity + £33,
and
Ty =t + 18+ 18 + 7P gy,

Moreira [1, 3] has found primitive elements in BP,(BP)/I, which reduce to
our T,,. The following result is a corollary of 6.2.7.

6.3.13. PROPOSITION. Ifp{n, then H*(S(n)) decomposes as a tensor product
of an appropriate subalgebra with E((,) for p > 2 and P((,) Q@ E(pyn) forp=2. O

We now turn to the computation of H2(S(n)) for n > 2. We will compute all
of H*S((n)) for n = 2 below.

6.3.14. THEOREM. Letn > 2

(a) For p = 2, H?(S(n)) is generated as a vector space by the elements (2,
PnCns Cns Cuhaj, pnhaj, and hyihy; for i # j £ 1, where hiih1; = hyjhi; and
W%

(b) For p > 2, H%(S(n)) is generated by the elements

Caha, b1y gi = (P1iy haivr, haa)s ki = (haigrs Pair, hai)
and h17ih17j fori £ j+£1, where hl,ihl,j + thhlﬂ‘ = 0. U
Both statements require a sequence of lemmas. We treat the case p = 2 first.

6.3.15. LEMMA. Let p=2 and n > 2.

(a) HY(L(n,2)) is generated by hy,; fori € Z/(n).

(b) H%(L(n,2)) is generated by the elements hyh1; for i # j+1, gi, ki,
and e3; = (h14,h1,4+1,h1,i+2). The latter elements are represented by hy;ha,
hl,i+lh2,i; and hl’ihgﬂqu + h27ih17i+2, Tespectively.

(c) esih1,i41 = h1iesit1 + esiha ki3 = 0, and these are the only relations
among the elements hi ;es ;.

PrOOF. We use the spectral sequence of 6.3.9 with Ey = E(hi;, he;) and
da(ha,;) = h1ih1,:41. All three statements can be verified by inspection. O

6.3.16. LEMMA. Let p=2,n>2, and 2 < k < 2n.

(a) HY(L(n,k)) is generated by the elements hy ; along with (, for k > n and
pn for k = 2n.

(b) H%(L(n,k)) is generated by products of elements in H'(L(n,k)) subject to
h17ih1,i+1 = 0, along with

gi = (hrishii, haiva), ki = (hag, Paivrs haig)s
Q; = <h1,i,h1,i+1,h1,i+2, h1,1+1>, and
eht1,s = (M1 Rl it1s oo PLigh)-

The last two families of elements can be represented by hs;h1 ;41 + haiho 11 and
Yshs ihky1—s,i+1 TEspectively.

(€) hii€kt1,i+1+€k+1,h1 114k = 0 and no other relations hold among products
of the exy1,; with elements of Ht.
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PRrROOF. Again we use 6.3.9 and argue by induction on k, using 6.3.15 to start
the induction. We have Ey = E(hg;) ® H*(L(n,k — 1)) with do(hy ;) = ex,;. The
existence of the o follows from the relation e3 ;b ;11 = 0 in H3(L(n,2)) and that
of ext1, from hy ek ir1h1 ik = 0 in H3(L(n,k — 1)). The relation (c) for k < 2
is formal; it follows from a Massey product identity A1.4.6 or can be verified by
direct calculation in the complex of 6.3.8. No combination of these products can
be in the image of ds for degree reasons. O

6.3.17. Let p=2 and n > 2. Then H?(EqS(n)*) is generated by the elements
Pulns pliis Cuhasis haghay fori # § £ 1, ai, and by ; = by for 1 <i < n,j €

Z/(n).

PrROOF. We use the modified first May spectral sequence of 6.3.5. We have
m = 2n and H?(L(n,m)) is given by 6.3.16. By easy direct computation one sees
that d2(gi) = bl,ihl,iJrl and dg(/ﬁ) = h1’ib1’i+1. We will show that d2(e2n+1,i) =
hi,ibn,i + P1ignbni-1.

j
Altan1) =Dt ® 15,1 5 +bsino
modulo terms of lower filtration by 4.3.15. Then by 4.3.22
d<bn+1,n71) =1 ® bn,n + bn,nfl @t

modulo terms of lower filtration and the nontriviality of da(egny1,;) follows. O

PROOF OF 6.3.14(a). We now consider the second May spectral sequence
(634(b)) By 4.3.22 we have dg(biﬁj) = hl,j—&-lbi—l,j—i-l + hl,i—i—jbi—l,j # 0 for
i > 1. The remaining elements of H?>FEyS(n) survive either for degree reasons
or by 6.3.12. (I

For p > 2 we need an analogous sequence of lemmas. We leave the proofs to
the reader.

6.3.18. LEMMA. Letn > 2 and p > 2.
(a) H'(L(n,2)) is generated by hy ;.
(b) H?(L(n,2)) is generated by the elements hy;h1; (with hyihi i1 = 0).
gi = h1iha g, ki = hiiq1ho; and e3; = hyjhoiy1he by iqo.
(c) The only relations among the elements hy jes ; are hi ;€3 ;41—e3;h1 43 = 0.
[l

6.3.19. LEMMA. Letn >2,p> 2, and 2 < k <m. Then
(a) HY(L(n,k)) is generated by hy,; and, for k > n, (.
(b) H2(L(n,k)) is generated by hy ;h1; (with hy ih1it1 =0), g, hi,

Cht1,i = E hjihrg1—jitj
0<j<k+l

and, for k > n, Gyhy ;.
(c) The only relations among products of elements in H' with the eyy1,; are
hii€k+1,i+1 — €kt1,ih1 k41 = 0. O

6.3.20. LEMMA. Let n > 2 and p > 2. Then H?(EyS(n)*) is generated by the
elements b; ; for i < m —n and by the elements of H*(L(n,m)).
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PROOF OF 6.3.14(b). Again we look at the spectral sequence of 6.3.4(b). By
arguments similar to those for p = 2 one can show that

dp(bij) = hiigjbi-1 = hijpabia e fori>1
and
ds(em+1,i) = M mt1+i—nbm—n,i=1 — h1,ibm—pn; where s=1+4+pn— (p—1)m,

and the remaining elements of H2(EyS(n)*) survive as before. O
Now we will compute H*(S(n)) at all primes for n < 2 and at p > 3 for n = 3.

6.3.21. THEOREM.

(a) H*(S(1)) = Plh10) ® E(pr) for p = %

(b) H*(8(1)) = E(hr.0) for p > 2

[note that S(1) is commutative and that (1 = h1 ).

PRrOOF. This follows immediately from 6.3.3, 6.3.5, and routine calculation.
O

6.3.22. THEOREM. For p > 3, H*(S(2)) is the tensor product of E((2) with the
subalgebra with basis {1, h1,0, k1.1, 90,91, goh1,1} where
gi = (h1is haiva, haa),
hi,091 = goh1,1,  hi0g0 = h1,191 =0,
and
hioh11 =hig=hi, =0.
In particular, the Poincaré series is (1 +1)%(1 +t +t2).

PRrROOF. The computation of H*(L(2,2)) by 6.3.8 or 6.3.9 is elementary, and
there are no algebra extension problems for the spectral sequences of 6.3.9 or
6.3.4(b). O

We will now compute H*(S(2)) for p = 3. Our description of it in the first
edition was incorrect, as was pointed out by Henn [1]. The computation given here
is influenced by Henn but self-contained. Henn showed that there are two conjugacy
classes of subgroups of order 3 in the group S3. In each case the centralizer is the
group of units congruent to one modulo the maximal ideal in the ring of integers of
an embedded copy of the field K = Qgs[(], where ( is a primitive cube root of unity.
Let C; and Cy denote these two centralizers. Henn showed that the resulting map

is a monomorphism.
We will describe this map in Hopf algebraic terms. Choose a fourth root of
unity ¢ € Fg, let a = +¢, and consider the two quotients

S2), =S(1,1);  and  S2)_=S5(1,1),

where S(1,1), is the quotient of S(2) ® Fy described in 6.2.13. Henn’s map is
presumably equivalent to

(6.3.23) H*(S(2)) @ Fo — H*(S(2),) & H*(5(2) ).

In any case we will show that this map is a monomorphism.



3. THE COHOMOLOGY OF X(n) 209

We have the following reduced coproducts in S(2), .
El — 0
ta — at;1 @t
I o L 0h+hbeoh-dEeoh+hL o)
It follows that to + af? and t3 — t1ty are primitive. The filtration of 6.3.1 induces
one on S(2),, and the methods of this section lead to

H*(5(2),) = E(h1,0, ho,0, h3,0) @ P(b1,0)
with the evident notation.
6.3.24. THEOREM. For p =3, H*(5(2)) is a free module over
E(G2) ® P(b1,0)
on the generators
{1, k1o, hag, b11, &, ao, an, b1aé},

where the elements & € H? and ag,a1 € H? will be defined below. The algebra
structure is indicated in the following multiplication table.

1 hio | hia b1 § ag ay
hio 0 0 | =biohi1 0 —b1,1& | —b1,0
hi1 0 b1,0hi,0 0 —b1,0§ | b1,1€
b1 —bi, b1,1& | —bipa1 | bioao

¢ 0 0 0
Qo 0 0
aq 0

In particular, the Poincaré series is

(1421 +t3) /(1 —1).

Moreover the map of (6.3.23) is a monomorphism.

PROOF. Our basic tools are the spectral sequences of 6.3.10 and some Massey

product identities from Al.4. We have H*(L(2,1)) = E(hy1,0,h1,1) ® P(b1,0,b1,1),
and a spectral sequence converging to H*(L(2,2)) with Ey = E((o, n)@H*(L(2,1)),
where

G = hoo+ha, n = ha1—hap,

da(¢2) = 0, do(n) = hiohi,
and E3 = E. Hence E is a free module over E({2) ® P(b1,,b1,1) on generators

{1, h1,0, h1,1, 9o, 915 h1,091 = h1,190, },

where g; = (h1, h1,i+1, h1,s). This determines the additive structure of H*(L(2,2)),
but there are some nontrivial extensions in the multiplicative structure. We know by
6.3.13 that we can factor out E((2), and we can write b1 ; as the Massey product
—<h1,i,h1)i,h17i>. Then by A1.4.6 we have hl,igi = —b17ih1)i+1, g? = _bl,igi+1a
9i9i+1 = bl,ibl,i—i-l- These facts along with the usual h%l = h1,0h1,1 = 0 determine
H*(L(2,2)) as an algebra.

This algebra structure allows us to embed H*(L(2,2)) in the ring

R = E(Cz» h1,07 hl,l) (24 P(So, 81)/(h1,0h1,1, h1,081 - h1,180)
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by sending (2 and h; to themselves and

3

bl,i = =S
2

go S0S1

2

g1 *— So0S1-

Here the cohomological degree of s; is 2/3, and H*(L(2,2)) maps isomorphically
to the subring of R consisting of elements of integral cohomological degree.
Next we have the spectral sequence of 6.3.10 converging to

H*(L(2,3)) = H*(E"S(2))
with Ey = E(hg,, h371)®H*(I~/(2, 2)), and da(hs ;) = g; —b1,i+1. We will see shortly

that E3 = E for formal reasons. Tensoring this over H*(z(2, 2)) with R gives a
spectral sequence with

E;, = E(hso, hs1)®R
and da(hso) = si(sg+s7)
dao(hs) = so(sg+si).
This can be simplified by tensoring with Fg (which contains ¢ = v/—1) and defining
o = hio+ihig 1 = hio—thi1
Yo = So + i81 Yyr = So — i51
20 = ihg,o + h371 z1 = —thso+ h3,1

The Galois group of Fg over F3 acts here by conjugating scalars and permuting the
two subscripts. Then we have

R® Fg = E((2, T, 71) ® P(yo, y1)/(ToT1, Toy1 — T1Y0),

where the cohomological degrees of z; and y; are 1 and 2/3 respectively. In the
spectral sequence we have

(6.3.25) da(20) = Yo and dao(21) = yoy?.
The image of H*(L(2,2)) ® Fg in R® Fy is a free module over the ring
B = E(() @ P(ys,yY)

on the following set of six generators.

C = {1, zo, 1, Y3y1, Yoy, ToYoyi = T1Ygy1 }

Hence the image of E(hs3, hs1) ® H*(L(2,2)) ® Fyg is a free B-module on the set
{17 20, 21, 2021} ® Cu

but it is convenient to replace this basis by the set of elements listed in the following
table.

1 20 z1 Z0%1
Zo To20 B = x021 — 120 —Z020%1
I 0= —T120 — Xp<1 121 12021
y(Q)yl Q] = ZJ(Q)%ZO - y821 €= y(QJylzl - yOy%ZO y3y12021
yoy% Y= —yoyfzo - y3y121 Qg = yoy%m - yf’zo _yOy%ZOZI
xoyoy% —Zo€ T1€ Sﬂoyoyfzoﬁ
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This basis is Galois invariant up to sign, i.e., the Galois image of each basis element
is another basis element. The elements 1, 2¢yoy?, J, and 7 are self-conjugate, while
B, &, z0z1 and Toyoyizoz1 are antiself-conjugate. The remaining elements form
eight conjugate pairs.

In the spectral sequence the following twelve differentials (listed as six Poincaré
dual pairs) are easily derived from (6.3.25) and account for each of these 24 basis
elements.

d2(20> = y%yl dg(xlzozl) = X1€

do(z1) = woyi do(— $0Z0Z1) = —Tg€
da(z021) = ¢ d2(0) = woyoy?
da(zozo) = yila1) do(Y3y12021) = yi(ao)
da(x121) = yi(xo) dao(=yoyiz021) = yilo)

da(y) = ydui(1) da(zoyoyizos1) = yoyi(B)

The spectral sequence collapses from FE3 since there are no elements in E;"t for
t > 1. The image of H*(L(2,3)) ® Fy in the Ey-term is the B-module generated
by

{1, o, w1, v, a1, B}

subject to the module relations

yoyi(1) = 0, vayi(B) = 0,
yg(xl) = 0, yg(ao) = 0,
yi(zg) = 0, and yi(ay) = 0.

The only nontrivial products among these six elements are
Toa; = —yp 3 and 100 = 15 .

Equivalently the image is the free module over E((2) ® P(y3 +v3) on the eight
generators

(6326) {1; To, T1, y%7 67 @, O, y%ﬂ}

with suitable algebra relations.

It follows that H*(E°S(2)) itself is a free module over E({2) ® P(b1 ) on the
eight generators

{1, h10, h11, b11, &, ao, ar, b1 16}
where
£ =10, ao = ag + o, and ap =il — ay).

It also follows that EYH*(S(2)) has the relations stated in the theorem. The absence
of nontrivial multiplicative extensions in H*(S(2)) will follow from the the fact that
the map of (6.3.23) is monomorphic and there are no extensions in its target.

Now we will determine the images of the elements of (6.3.26) under the map of
(6.3.23). Recall that

H*(S(2),) = E(h1,0, ha,0, h3,0) @ P(b1,0)
As before it is convenient to adjoin a cube root 5y of —5170 and let
Ry = E(h1,0, ha2,0) ® P(50).

The map
H*(5(2)) ® Fg — E(hso) ® Ry @ E(hso) ® R_
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behaves as follows.

g > (0, _EI,O) T, > (_El’o, O)
Yo +— (0, —30) y1 (=50, 0)
Z0 (—iﬁ370L0) o Z1 (O, ih370)
B+ (—ihiohso, —ihi0hs0) 7
oy — (Z.Eghg’m 0) o (0, —Z'E%hg’o)
It follows that Henn’s map is a monomorphism. (]

We now turn to the case n = p = 2. We will only compute EYH*(S(2)), so
there will be some ambiguity in the multiplicative structure of H*(S(2)). In order
to state our result we need to define some classes. Recall (6.3.12) that H!(S(2)) is
the Fa-vector space generated by hi 0, h1,1, (2 and p2. Let

Qq S <C27h’1,07h1,1>7 /B S <h1,07<—27<—227h1,1>; g = <h7h’27h'7 h2>;

where h = hi o + h11, @ = (x,h,h?) for x = (o, ap, (3, and apls (more precise
definitions of «p and 8 will be given in the proof).

6.3.27. THEOREM. ECH*(S(2)) for p = 2 is a free module over P(g) @ E(p2)
on 20 generators: 1, hy o, h11, hio, hil, hio, B, Bhio, Bhi1, ﬂhio, ﬁhil, Bhio,
(2, g, €3, apCa, Ca, @0, 522, aoCa, where a € H?(S(2)) and has filtration degree 4,
B € H3(S(2)) and has filtration degree 8, g € H*(S(2)) and has filtration degree 8,
and the cohomological and filtration degrees of T exceed those of x by 2 and 4,
respectively. Moreover h‘;”o = h:{”l, ak = 522, and all other products are zero. The
Poincaré series is (1 +t)2(1 — %) /(1 — t)2(1 + t2).

PRrROOF. We will use the same notation for corresponding classes in the various
cohomology groups we will be considering along the way.

Again our basic tool is 6.3.10. It follows from 6.3.5 that H*(EyS(2)*) is the
cohomology of the complex

P(h10,h1,1,C2, ha0) @ E(hs0, k31, p2, hao)
with
d(h1,:) = d(¢2) = d(p2) = 0,
d(hs;) = h1,iC2, d(hap) = hiohi,

and

d(hao) = h1ohaa + hi1hso + G-

This fact will enable us to solve the algebra extension problems in the spectral
sequences of 6.3.10.

For H*(f/(2,2)) we have a spectral sequence with Ey = P(hq 9, h11, (2, h2,0)
with da(¢2) = 0 and da(ha,0) = h1,0h1,1. It follows easily that

H*(L(2,2)) = P(h1,0,h1,1,C2,b2,0)/(h1,0h11)

_p2
where b2,0 = hz,o = <h1,07h1,1, h1,0>h1,1>~

For H*(L(2,3)) we have a spectral sequence with

Ey = E(h3,h31) @ H*(L(2,2))
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and dg(hg,i) = h171‘<2. Let
a; = hiip1hs; + Choy € (Co, b, haigr)-
Then H*(L(2,3)) as a module over H*(L(2,2)) is generated by 1, ap, and a; with

Gohii = Glag + o1 + () = b = (ohiipia; = 0
and
ag = (oo, af =G +ba0),  aoar = G (ag + bay).
The Poincaré series for H*(L(2,3)) is (1 +t+t2)/(1 —t?).

For H*(L(2,4)) we have a spectral sequence with

EZ = E(h4,05 PZ) & H*(L(Z’ 3))7
da(p2) = 0, and da(ha) = ap + 1. Define B € H3(L(2,4)) by
B =haolag +ay + )+ Chaohsy € (h1o,C2,Cayhia).

Then H*(L(2,4)) is a free module over E(p2) ® P(bso) on generators 1, h’-j)i, (o,
(3, a0, apCe, B, and Bhi,;, where t > 0. As a module over H*(L(2,3)) ® E(p2)
it is generated by 1 and 3, with (ap + 1)1 = (3(1) = ap3(1) = 0. To solve
the algebra extension problem we observe that 5(s = 0 for degree reasons; So; =
ﬂ<€27 hl,ia hl,i+1> = <ﬂ, <2, h17i>h17i+1 = 0 since <IB, CQ, h171'> = 0 for degree reasons;
and E(p2) splits off multiplicatively by the remarks at the beginning of the proof.
This completes the computation of H*(ES(2)*). Its Poincaré series is
(1 +t)?2/(1 —t)2. We now use the second May spectral sequence [6.3.4(b)] to
pass to EYH*(S(2)). H*(EyS(2)*) is generated as an algebra by the elements hy o,
hi1, C2, p2, o, bao, and B. The first four of these are permanent cycles by 6.3.12.
By direct computation in the cobar resolution we have

(6.3.28) d(ts +t1t3) = G @ t,

so the Massey product for ag is defined in H*(S(2)) and the o is a permanent
cycle. We also have

Aty @ty +1, @3ty + 11t Rt =t Rt @ty +12 2 13,

s0 da(ba,0) = hi o+ h? . Inspection of the E3 term shows that b3 o = (h, h? h, h?),
(where h = hy o+ h1,1) is a permanent cycle for degree reasons.

We now show that 3 = (h1,0, (2, (3,1 1) is a permanent cycle by showing that
its Massey product expression is defined in E°H*(S(2)). The products hj o2 and
(3hy,1 are zero by 6.3.28 and we have

(6.3.29) Atz @t + Tots @ + To @ty + To @13 + To @ 5 (1 + to +13))
=TT, 1T,

where 3 = t3 + t1t3 and Th = to + 3 + 13, so (3 = 0 in H*(S(2)). Inspection of
H3(E(S(2)*) shows there are no elements of internal degree 2 or 4 and filtration
degree > 7, so the triple products (h1 o, (2, ¢3) and ({2, (3, h1,1) must vanish and 3
is a permanent cycle.

Now the Fj3 term is a free module over E(py) ® P(b3 ) on 20 generators: 1,
hLO’ h1,17 h%,Ov h?,la h?,o = hilv B ﬁhl,Oa /Bhl,la /Bh%,la /Bj%m 5}1?,07 <27 Qo, <227 aoC2,
Cab1,0, b0, C2252,07 C2agba,0. The last four in the list now have Massey product
expressions ((a, b, h2), (ag, h, h%), (C2, h, h?), and (ag, (2, h, h?), respectively. These
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elements have to be permanent cycles for degree reasons, so F3 = FE,, and we have
determined E°H*(S(2)). O

We now describe an alternative method of computing H*(S(2) ® F4), which is
quicker than the previous one, but yields less information about the multiplicative
structure. By 6.3.4, this group is isomorphic to H*(S2;F4), the continuous coho-
mology of certain 2-adic Lie group with trivial coefficients in Fy4, So is the group
of units in the degree 4 extension F; of Zs obtained by adjoining w and S with
Ww4+w+1=0,5%=2and Sw=w?S.

Let @ denote the quaternion group, i.e., the multiplicative group (with 8 ele-
ments) of quaternionic integers of modulus 1.

6.3.30. PROPOSITION. There is a split short exact sequence of groups

(6.3.31) 15658501
The corresponding extension of dual group algebras over is
Q. 5 5(2) = a,

where Q. = Fylz,y]/(x* —x, y? —y) and G, = S(2)/(t1,ta +wt3) as algebras where
Je() = t1, ju(y) = Ot + 02?2, and & is the residue class of w.

PRrROOF. The splitting follows the theory of division algebras over local fields
(Cassels and Frohlich [1, pp. 137-138]]) which implies that EFs ® Qg is isomorphic
to the 2-adic quaternions. We leave the remaining details to the reader. O

6.3.32.
(a) H*(Q;F2) = P(h10,h11,9)/(h1oh11, b o + b3 ).
(b) H*(G;F2) = E(C2, p2, h3,0,h3,1)-

PROOF. Part (a) is an easy calculation with the change-to-rings spectral se-
quence (A1.3.14) for Falz]/(z* + 2) — Q. — Fay]/(y® +y). For (b) the filtration
of S(2) induces one on G,. It is easy to see that EYG, is cocommutative and the
result follows with no difficulty. O

6.3.33. PROPOSITION. In the Cartan—Filenberg spectral sequence for 6.3.31,
E5 = Eo and we get the same additive structure for H*(S(2)) as in 6.3.27.

PROOF. We can take H*(G) ® H*(Q) as our Fi-term. Each term is a free
module over E(p2) ® P(g). We leave the evaluation of the differentials to the
reader. O

Finally, we consider the case n = 3 and p > 5. We will not make any attempt
to describe the multiplicative structure. An explict basis of ECH*(S(3)) will be
given in the proof, from which the multiplication can be read off by the interested
reader. It seems unlikely that there are any nontrivial multiplicative extensions.

6.3.34. THEOREM. For p > 5, H*(S(3)) has the following Poincaré series:
(1+1)3(1 +t + 6t% 4 3t> 4 6t* + t° + 19).

ProoF. We use the spectral sequences of 6.3.9 to compute H*(L(3,2)) and
H*(L(3,3)). For the former the Es-term is H(h1;) ® E(he;) with ¢ € Z/(3),
dg(hLi) = 0 and dg(hgi) = hl,ihl,i—i-l- The Poincaré series for H*(L(3,2)) is
(14+1)2(1 4+t + 5t2 + 3 + t*) and it is generated as a vector space by the following
elements and their Poincaré duals: 1, hy;, g; = hiih2i, ki = hoihii41, €35 =
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hiihaiy1 + hoihiivo (Where Y es3; = 0), gihiiv1 = hiiki = hiihaihi i1, and
h1,1'63,z‘ = gih1,i42 = hl,ihQ,ihl,i+2-

For H*(L(373)) we have E2 = E(hgwi X H*(L(3,2))) with dg(hg,i) = €3,i, SO
da(3>- hs i) =0. H*(L(3,3)) has the indicated Poincaré series and is a free module
over E((3), where (3 =Y hs;, on the following 38 elements and the duals of their
products with (3:

1, hi4, Gis ki, b1ir2 = hiihss + hoihoiro + haihi g,
gih1iv1 = h1i, ki, highaihoito, hishoihaiv1 + hyshyipihs g,

hl,ihZ,ihS,i; hl,ih27i+2h3,i+17 Z(hl,ihZ,iJrl - hl,i+1h2,i+2)h3,ia hl,ikih&j
(where hl,iki Zj h37j is divisible by Cg), and h17i+2h17ih27i(h371‘ + h37i+1) +
hiihaoho 1hao. O

4. The Odd Primary Kervaire Invariant Elements

The object of this section is to apply the machinery above to show that the
Adams-Novikov element i/, € Ext? (see 5.1.19) is not a permanent cycle for
p > 2 and ¢ > 0. This holds for the corresponding Adams element b; (4.3.2) for
p >3 and i > 0; by 5.4.6 we know i /,,; maps to b;. The latter corresponds to the

secondary cohomology operation associated with the Adem relation plr=1p" pr’ —
-+ The analogous relation for p = 2 is S¢? S¢? = ---, which leads to the element
h2, which is related to the Kervaire invariant by Browder’s theorem, hence the title
of the section. To stress this analogy we will denote By i by 0;.

We know by direct calculation (e.g., 4.4.20) that 6y is a permanent cycle cor-
responding to the first element in coker J. By Toda’s theorem (4.4.22) we know 6,
is not a permanent cycle; instead we have da,—1(61) = 16} (up to nonzero scalar
multiplication) and this is the first nontrivial differential in the Adams—Novikov
spectral sequence. Our main result is

6.4.1. ODD PRIMARY KERVAIRE INVARIANT THEOREM. In the Adams—Novikov
spectral sequence for p > 2 dap—1(0i+1) = a16? mod ker 0y (up to nonzero scalar
multiplication) where a; = p(p* —1)/(p — 1) and 167 is nonzero modulo this inde-
terminacy. ([l

Our corresponding result about the Adams spectral sequence fails for p = 3,
where by is a permanent cycle even though b; is not.

6.4.2. THEOREM. In the Adams spectral sequence for p > 5 b; is not a perma-
nent cycle for i > 1. O

From 6.4.1 we can derive the nonexistence of certain finite complexes which
would be useful for constructing homotopy elements with Novikov filtration 2.

6.4.3. THEOREM. There is no connective spectrum X such that
BP.(X) = BP./(p,o} v} )
fori>0 andp > 2.

PrOOF. Using methods developed by Smith [1], one can show that such an X
must be an 8-cell complex and that there must be cofibrations
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() o' -vy Ly x|

(i) 227" ®P=Vy(0) L V(0) - Y,

(iii) =2 -V (0) L5 V(0) = V',
where V(0) is the mod (p) Moore spectrum, g and ¢’ induce multiplication by vfi
in BP.(V(0)) = BP,/(p), and f induces multiplication by vgi in

BP.(Y) = BP,(Y') = BP,/(p,v"").
V(0) and the maps g, ¢’ certainly exist; e.g., Smith showed that there is a map
a: 2Py (0) = V(0)

which includes multiplication by v, hence o induces multiplication by vy 1, but it
may not be the only map that does so.

Hence we have to show that the existence of f leads to a contradiction. Consider
the composite

520 (PP =1) Iy 2t (P =1)y Sy Ky S2+2pi(p_1);

where j is the inclusion of the bottom cell and k is the collapse onto the top cell.
We will show that the resulting element in ﬂ';pi+1(p71)72 would be detected in the
Novikov spectral sequence by 6;, thus contradicting 6.4.1. The cofibrations (ii) and
(iii) induce the following short exact sequence of BP* modules

0= S0 VBP, /(p) s BP./(p) = BP0, 0}) 0.

and the cofibration
50 2 8% 5 v(0)
induces
0 — BP, % BP, — BP,/(p) — 0.

Hence we get connecting homomorphisms

51: Ext(BP./(p,o?")) — Ext'(BP./(p))

and
So: Ext’(BP./(p)) — Ext?*(BP,).

The element fj € mopi(p2—1)(Y") is detected by vgi € Ext’(BP,/(p, v{’i)). We know
(5.1.19) that

0; = 6001 (v} ) € Ext*(BP,)

detects the element kfj € ﬂ'ZSle( a

p—1)—2"

The statement in 6.4.1 that a;6? is nonzero modulo the indeterminacy is a
corollary of the following result, which relies heavily on the results of the previous
three sections.

6.4.4. DETECTION THEOREM. In the Adams—Novikov Ex-term for p > 2 let 01
be a monomial in the 0;. Then each 61 and 1607 is nontrivial. O

We are not asserting that these monomials are linearly independent, which
indeed they are not. Certain relations among them will be used below to prove
6.4.1. Assuming 6.4.4, we have
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PROOF OF 6.4.1. We begin with a computation in Ext(BP,/(p)). We use the
symbol 6; to denote the mod p reduction of the 6; defined above in Ext(BP,). We

also let h; denote the element —[t’fl]. In the cobar construction we have

1 . .
d[ta] = —[t1]t]] + 01 Z (P) [t 165 7]
0<j<pp J

SO
(645) 1}190 = —hohl.

May [5] developed a general theory of Steenrod operations which is applicable to
this Ext group (see A1.5). His operations are similar to the classical ones in ordinary
cohomology, except for the fact that P # 1. Rather we have P%(h;) = h;41 and
P%(0;) = ;1. We also have SP%(h;) = 6;, BP°(6;) = 0, BP°(v1) = 0, P*(6;) = 67
and the Cartan formula implies that PP’ (0?7) = Hfﬁl. Applying BP° to (6.4.6)
gives

(6.4.6) 0 = Ogha — h16;.
If we apply the operation PP~ PP~ ... P! to (6.4.5) we get
(6.4.7) h1sil? = oy

Now associated with the short exact sequence

0— BP, % BP, — BP,/(p) = 0
there is a connecting homomorphism
§: BExt**(BP,/(p)) — Ext*T'*(BP,)

with §(h;11) = 6;. Applying 0 to 6.4.7 gives
(6.4.8) 0.0 = 01100 € Ext(pp.pp.)(BP., BP,).

We can now prove the theorem by induction on ¢, using 4.4.22 to start the
induction. We have for ¢ > 0

d2p71(97ﬁ+1)9€i = d2p71(0i+198i)
— doy 1 (0:67)
= d2p—1(9i)9§)i
= hot”_,0" mod ker g
= ho(ez‘—ﬁ’fiil)p
= ho(6:68 )P
= hot07

SO

d2p71(9i+1) = hoef mod ker 981 O
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We now turn to the proof of 6.4.4. We map Ext(BP,) to Ext(v,, ! BP./I,) with
n = p—1. By 6.1.1 this group is isomorphic to Exts ) (K (n)., K(n).), which is
essentially the cohomology of the profinite group S,, by 6.2.4. By 6.2.12 S,, has
a subgroup of order p since the field K obtained by adjoining pth roots of unity
to Qp has degree p — 1. We will show that the elements of 6.4.4 have nontrivial
images under the resulting map to the cohomology of Z/(p). In other words, we
will consider the composite

BP,(BP) = X(n) = S(n) @ Fpn — C,

where C' is the linear dual of the group ring Fy»[Z/(p)].

6.4.9. LEMMA. Let C be as above. As a Hopf algebra
C=Fult]/(t’ —t) with At=t®1+10t.
PRrROOF. As a Hopf algebra we have F,n[Z/(p)] = Fpn[u]/(u? — 1) with Au =
u®u, where u corresponds to a generator of the group Z/(p). We define an element

t € C by its Kronecker pairing (u’,t) = i. Since the product in C is dual to the
coproduct in the group algebra, we have

(w' %) = (A(u'), t @ ") = (u', 1) (', ")
so by induction on k
(6.4.10) (ul, t*y = 4.

We also have (u’,1) = 1.
We show that {1,¢,¢2,...,t?71} is a basis for C by relating it to the dual basis
of the group algebra. Define z; € C' by

zp= > (G
0<k<p
for 0 < j<pandzy= 1+20<j<pmj‘ Then

o) = (it X G0 )= B

0<k<p 0<k<p

. -1 ifij=1 mod
_ Z(Z])k{ J p

0 otherwise

0<k<p
and
) ) 1 ifi=0
ai-fans 520 1
0<j<p L
so {xg, —x1, —x2,...,—xp_1} is the dual basis up to permutation.

Moreover, 6.4.10 implies that ¢ =t so C' has the desired algebra structure.
For the coalgebra structure we use the fact that the coproduct in C' is dual the
product in the group algebra. We have

WeouwWtel+let)=1i+]
and
(' @ul, At)) = (ut t)y =i+j
so At=t®1+1®¢t O
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To proceed with the proof of 6.4.4; we now show that under the epimorphism
f:E(n) ®km), Fpn = C  (wheren=p—1), f(t1) #0.

From the proof of 6.2.3, ¢; can be regarded as a continuous function from S,, to

F,n. It follows then that the nontriviality of f(¢1) is equivalent to the nonvanishing

of the function ¢; on the nontrivial element of order p in S,,. Suppose z € S,_; is
such an element. We can write
r=1+ Z ;S

i>0
with e; € W(F,») and efn = ¢;. Recalling that SP~! = p, we compute
1=2 =1+pe; S+ (e18)? mod (S)1?
and )
(e19)P = egp “D/e-Dgr  110d (S)1+P
so it follows that )
el + egp D/ = g mod (p)-

[Remember that t1(x) is the mod (p) reduction of e;.] Clearly, one solution to
this equation is e; = 0 mod (p) and hence e; = 0. We exclude this possibility by
showing that it implies that x = 1. Suppose inductively that e; = 0 for ¢ < k. Then
r =1+ ¢e,5% mod (S¥11) and 2P = 1 + perS* mod (S**P) so e, = 0 mod (p).
Since e} — ej, = 0, this implies ej = 0.

Hence, f is a map of Hopf algebras, f(t1) primitive, so f(t1) = ct where ¢ € Fpn
is nonzero. Now recall that

EXtC(Fpnva") = H*(Z/(p)QFp") = E(h)® P(b),

where E() and P() denote exterior and polynomial algebras over F,n, respectively,

h=[t] € H, and
1 P) i lep—7 2
b= —| ") [P € H=.
> p( [t7]tP~]

0<j<p J
Let f* denote the composition
Ext(BP,) — Ext(v, ' BP./I,)

= Extygn (K(n)., K(n)) — Exte(Fpn, Fyn) = H*(Z/(p); Fpn).

Then it follows that f*(hg) = —ch and f*(b;) = —c?"'b and 6.4.4 is proved.

Note that the scalar ¢ must satisfy 1+ ¢®"~2)/(?=1) = (. Since Pl = 1, the
equation is equivalent to 1 + PP =D/(=1) = 0. Tt follows that ¢ = w®P~1/2 for
some generator w of F;,,_l, so ¢ is not contained in any proper subfield of F,»-1.
Hence tensoring with this field is essential to the construction of the detecting
map f.

Now we examine the corresponding situation in the Adams spectral sequence.
The relations used to prove 6.4.1 (apart from the assertion of nontriviality) are
also valid here, but the machinery used to prove 6.4.4 is, of course, not available.
Indeed the monomials vanish in some cases. The following result was first proved
by May [1].

6.4.11. PROPOSITION. For p = 3, hob = 0 in Exta,(Z/(3),Z/(3)); i.e., by
cannot support the expected nontrivial differential.
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PROOF. We use a certain Massey product identity (A1.4.6) and very simple
facts about Ext 4, (Z/(3),Z/(3)) to show hob? = 0. We have

hobf = —ho(h1, by, ha)bi = —(ho, h, ha)hiby.
By (647) hlbl = hgbo7 SO
hob? = —(ho, h1,h1)haby = —(h1, ho, h1)haby = —hy (ho, hy, ha)bg.

The element (hq, h1,hs) is represented in the cobar construction by £9|&s + £5|&1,
which is the coboundary of &3, so hob? = 0. (]

The case of by at p = 3 is rather peculiar. One can show in the Adams—
Novikov spectral sequence that ds(87) = +a133 /3. (This follows from the facts
that ds(84) = +a187Bs/3, B = £B167, BaPsszs = £P186/3, and 533,’/3 = 87863
We leave the details to the reader.) Hence fy/9 & 37 is a permanent cycle mapping
to by. The elements 87 and alﬁg’/g = ialﬁ%/36/3 correspond to Adams elements in
filtrations 8 and 10 which are linked by a differential. We do not know the fate of
the b; at p =3 for i > 2.

To prove 6.4.2 we will need two lemmas.

6.4.12. LEMMA. Forp >3

(i) EXt2,qp1+2(BP*) is generated by the [(i + 3)/2] elements By, , /pi+s—2i, where
J=1,2,...,[(i+3)/2], a;j = T2 +p"*372)/(p+1), and [(i+3)/2] is the largest
integer < (i + 3)/2. Each of these elements has order p.

(i) Each of these elements except Bpit1pi1 reduces to zero in

Ext>? " (BP*/I3). O
6.4.13. LEMMA. For p > 5, any element of Ext2’qpi+2(BP*) (for i > 0) which
maps to b1 in the Adams Ea-term supports a nontrivial differential dap_;. O

We have seen above that 6.4.13 is false for p = 3.

Theorem 6.4.2 follows immediately from 6.4.13 because a permanent cycle in
the Adams spectral sequence of filtration 2 must correspond to one in the Adams—
Novikov spectral sequence of filtration < 2. By sparseness (4.4.2) the Novikov
filtration must also be 2, but 6.4.13 says that no element in Ext?(BP,) mapping to
b; for ¢ > 1 can be a permanent cycle.

PROOF OF 6.4.12. Part (i) can be read off from the description of Ext®*(BP,)
given in 5.4.5.

To prove (ii) we recall the definition of the elements in question. We have short
exact sequences of BP,(BP)-comodules

(6.4.14) 0 — BP, — BP, % BP,/(p) — 0.
pit3—2j its_2j
(6.4.15) 0 — BP./(p) ~—— BP./(p) = BP./(p,v" ) —0.
1

Let 6o and 41, denote the respective connecting homomorphisms. Then we have
vs" € ExtSp, pp(BPy, BP./(p,v{"> %)) and Ba, ,pi+s-2 = 6o01(vy"?). The ele-
ment B,i+1/,:+1 the above element for j = 1) can be shown to be b;;1 as follows.
The right unit formula 4.3.21 gives

(6.4.16) nr(v2) = ve + v1t] — 0ty mod (p),

i+1 142 1+2 i+1 i+1
D’ __ 4P p'TE—p P
Si(vy )=t — 51
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and 50(15’1#2) = b;j+1. Moreover 6.4.16 implies that in Ext(BP,/(p)),

P’ pi+l o P TP pi TP —pi Tl pttt o pitP-1
vy ty =wv; 17, so v ty = ty.

This element is the mod ( ) reduction of p_i_Qéo(foz) and is therefore in ker .
i1

Hence 6061(’1)2 ) = 50(tp ) = b7;+1.
This definition of Bpl+1/p7+1 differs from that of 5.4.5, where for ¢ > 0 it is

defined to be dpd; (v2 —f 711}5 Pl

In principle one can compute this element explicitly in the cobar complex
(A1.2.11) and reduce mod I3, but that would be very messy. A much easier
method can be devised using Yoneda’s interpretation of elements in Ext groups
as equivalence classes of exact sequences (see, for example, Chapter IV of Hilton
and Stammbach [1]) as in 5.1.20(b). Consider the following diagram.
(6.4.17)

i+3-3j i+3—25

0 BP, BP,>—~BP,/(p) —Z=BP,/(p,v?" )—=0

ipl lpz ips
i+3—25

0 —— BP./(p,v1,v2) M, Mo BP./(p,v} ) ——0.

The top row is obtained by sphcmg 6.4.14 and 6.4.15 and it corresponds to an
pitss
element in Ext?(BP,/(p, v} "), BP,). Composing this element with

05 € Ext’(BP./(p, v} 7))

gives /Baiyj/pi+3—2j.

We let p; be the standard surjection. It follows from Yoneda’s result that if we
choose BP,BP-comodules M; and M5, and comodule maps ps and ps such that
the diagram commutes and the bottom row is exact, then the latter will determine
the element of

Extpp, BP(BP /(p,v17°7%), BP, /(p, v1,v2))

which, when composed with vy"? | will give the mod I3 reduct1on of Ba, ; /pi+3—2i. We

choose My = BP,/(p? pv1,v},pvs) and My = BP,/(p, v} 24p" 21) and let po and
p3 be the standard surjections. It is easy to check that M1 and My are comodules
over BP,(BP), i.e., that the corresponding ideals in BP, are invariant. (The ideal
used to define M; is simply I3 + I;113.) Moreover, the resulting diagram has the
desired properties.

The resulting bottom row of 6.4.17 is the splice of the two following short exact
sequences.

(6.4.18) 0~ BP./(p,v1,02) = BP./(p*, pvr, pv2,v}) — BP/(p,v}) = 0,
'L+3 23
i+3—2j

(6.4.19) 0 — BP,/(p,v?) 2—— BP,/(p,v>"""" ) = BP./(p,o" ) —0.

Let 4}, 7 denote the corresponding connecting homomorphisms. The elements we
are interested in then are §)d; (vy™’).

To compute &1 (vy*’) we use the formula d(vy) = (va + vlvltl —olt)™ — vk,
implied by 6.4.16, in the cobar construction for BP,/(p, v; 2ptTEH ). Recall that

aij=@E+p ) /(p+1) 1<j <[ +3)/2).
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o Ao . by pit3—20  pita—2j
Hence a; ; = p"*372 mod (p*+*727) and d(vy™’) = vy 7 0¥ [th ], s0

y by i r,pit3—20
31 (vy") = vy [t} I,

where b ; = a; ; — p™"3 7% = (pi*? — p™HTH) /(p +1).
FOI‘j = 1, bi,1 =0 and

Qa; 1 1 p k g —k i
i) == X 5 (1) = <
O<k<pp
For j > 1, b; ; is divisible by p and d(vgi’j) =0 mod (p?, pv1,v?) and

23

vgi‘jd(tﬁ’iﬂi ) =0 mod (puva),
so 8, vy € BExt'(BP,/(p,v?})) pulls back in 6.4.17 to an element of
Ext!'(BP,/(p?, pv1, pva,v?)) and  6,0](ve™?) = 0,
completing the proof. O

PROOF OF 6.4.13. Any element of Ext2% (BPy) can be written uniquely as
cbi+1 + x where z is in the subgroup generated by the elements [, ,/pi+s—2; for
j > 1. In 5.4.6, we showed that = maps to zero in the classical Adams Fs-term.
Hence it suffices to show that no such x can have the property

d2p—1($) = d2p—1(bi+l)

By 5.5.2 for p > 5 there is an 8-cell spectrum V(2) = M(p,v1,vs) with
BP.(V(2)) = BP./(p,vi,v2), and a map f: S° — V(2) inducing a surjection
in BP homology. f also induces the standard map

fx: Ext(BP,) — Ext(BP,/I3).
Lemma 6.4.12 asserts that f.(8,, /pits—2) = 0 for j > 1, so fu(dzp—1(x)) = 0
where z is as above. However, 6.4.1 and the proof of 6.4.4 show that

gx(dap—1(bit1)) # 0,
where g, is induced by the obvious map
g: BP, - v, ' BP, /I, ;.

Since g factors through BP, /I3, this shows that f.(dap—1(bi+1)) # 0, completing
the proof. 0

5. The Spectra T'(m)

In this section will we construct certain spectra T'(m) and study the corre-
sponding chromatic spectral sequence. T'(m) satisfies

BP,(T(m)) = BP,[t1,ts,...,tm] C BP.(BP,)

as a comodule algebra. These are used in Chapter 7 in a computation of the Adams—
Novikov Es-term. We will see there that the Adams—Novikov spectral sequence for
T(m) is easy to compute through a range of dimensions that grows rapidly with
m, and here we will show that its chromatic spectral sequence is very regular.

To construct the T'(m) recall that BU = QSU by Bott periodicity, so we
have maps QSU(k) — BU for each k. Let X(k) be the Thom spectrum of
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the corresponding vector bundle over QSU(k). An easy calculation shows that
H.(X(k)) =Z[b1,bs,...,bk_1] C H (MU). Our first result is

6.5.1. SPLITTING THEOREM. For any prime p, X (k) is equivalent to a wedge
of suspensions of T'(m) with m chosen so that p™ < k < p™*!, and BP.(T(m)) =
BP,[t1,...,tm] C BP.(BP). Moreover T(m) is a homotopy associative commuta-
tive ring spectrum. ([l

From this we get a diagram
Sty =T(0) = T(1) = T(2) = -+ — BP.

In Ravenel [8, §3] we show that after p-adic completion there are no essential maps
from T'(i) to T'(j) if ¢ > j or from BP to T'(7).

This theorem is an analog of 4.1.12, which says that MU, splits into a wedge
of suspensions of BP, as is its proof. We start with the following generalization of
4.1.1.

6.5.2. DEFINITION. Let E be an associative commutative ring spectrum. A
complex orientation of degree k for E is a class g € E*(CP¥) whose restriction
to E?(CP) = 1o(E) is 1. O

A complex orientation as in 4.1.1 is of degree k for all £ > 0. This notion is
relevant in view of

6.5.3. LEMMA. X (k) admits a complex orientation of degree k.

Proor. X(k) is a commutative associative ring spectrum (up to homotopy)
because QSU (k) is a double loop space. The standard map CP*~! — BU lifts to
QSU (k). Thomifying gives a stable map CP* — X (k) with the desired properties.

(Il

X (k) plays the role of MU in the theory of spectra with orientation of degree
k. The generalizations of lemmas 4.1.4, 4.1.7, 4.1.8, and 4.1.13 are straightforward.
We have

6.5.4. PROPOSITION. Let E be an associative commutative Ting spectrum with
a complex orientation rg € EQ(CPk) of degree k.

(a) EB*(CP*) = m(B)[zp]/(a}).

(b) E*(CP* x CP*) = m.(E)[zp ® 1,1 @ xp] /(25 @ 1,1 @ i),

(c) For 0 < i < k the map t: CP* x CP*~% — CP* induces a formal group
law k-chunk; i.e., the element t*(xg) in the truncated power series ring

W*(E)[xE ®1,1® {ITE]/(I'E ®1L,1® $E)k+1
has properties analogous to an formal group law (A2.1.1).
(d) E.(X (k) = m(E)[bE,...,bF || where bF € Es(X(k)) is defined as in
4.1.7.
(e) With notation as in 4.1.8, in (E A X (k))?(CP*) we have

Exgy = Y bPAYT where by=1.
0<i<k—1
This power series will be denoted by gg(TE).

(f) There is a one-to-one correspondence between degree k orientations of E
and multiplicative maps X (k) — E as in 4.1.13. O
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We do not have a generalization of 4.1.15, i.e., a convenient way of detecting
maps X (k) — X (k), but we can get by without it. By 6.5.4(f) a multiplicative map
g: X(k)py = X (k)(p) is determined by a polynomial f(z) = >, cp_; fiz' T with
fo=1and f; € m;(X(k)(p)). In this range of dimensions 7, (X (k)) is isomorphic
to m.(MU), so we can take f(z) to be the truncated form of the power series of
A2.1.23. Then the calculations of 4.1.12 show that g induces an idempotent in
ordinary or BP,-homology. In the absence of 4.1.15 it does not follow that g itself
is idempotent. Nevertheless we can define

T(m) = limg X(kj)(p),

i.e., T'(m) is the mapping telescope of g. Then we can compose the map X (k)(,) —
T'(m) with various self-maps of X (k),) to construct the desired splitting, thereby
proving 6.5.1.

Now we consider the chromatic spectral sequence for T'(m). Using the change-
of-rings isomorphism 6.1.1, the input needed for the machinery of Section 5.1 is
Exty;(n) (K (1), K(n)«(T(m))) where K (n).(T(m)) = K(n)«[t1,...,tm,]. Using no-
tation as in 6.3.7, let 3(n,m + 1) = Z(n)/(t1,...,tm). Then we have

6.5.5. THEOREM. With notation as above we have

Extys () (K (1), K(n).(T(m)))
= K(n)* [un+1a ce 7un+m] QK (n), EXtE(n,erl) (K(?’L)*, K(?’L)),

where dimwu; = dimwv;. Moreover w; maps to v; under the map to
Exty(n) (K (1), K(n)«(BP)) = B(n). (6.1.11) induced by T(m) — BP. In other
words its image in K (n).(BP) coincides with that of nr(v;) € BP.(BP) under the
map BP,(BP) — K(n).(BP). O

Applying 6.3.7 gives

6.5.6. COROLLARY. Ifn<m+2 andn <2(p—1)(m+1)/p then

= K(n)s[tnt1s - Ungm] @ E(hgj: m+1<k<m+mn, je€Z/(n)).
]
PRrROOF OF 6.5.5. The images of nr(v,+;) (for 1 < j < m) in K(n).(T(m))
are primitive and give the u,4;. The image of BP,(T(m)) — BP,(BP) — X(n)

is the subalgebra generated by {t,: n < m}. The result follows by a routine
argument. O

Now we will use the chromatic spectral sequence to compute Ext®(BP,(T(m)))
for s =0 and 1. We assume m > 0 since T'(0) = S°, which was considered in 5.2.1
and 5.2.6. By 6.5.5 and 6.5.6 we have

(6.5.7) Exts(0)(K(0)«, K(0)«(T(m))) = Qlua, ..., um] and
Exty)(K(1)s, K(1)«(T(m))) = K(1)4[uz, . .., tms1] ® E(hmi1,0)-

The short exact sequence

(6.5.8) 0— M°® BP,(T(m)) %> M' ® BP.(T(m)) & M' @ BP,(T(m)) = 0
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induces a six-term exact sequence of Ext groups with connecting homomorphism 4.
For j <m, nr(v;) € BP.(T(m)) C BP.(BP), so if u is any monomial in these ele-
ments then &(u/p’) = 0 for all i > 0 and Ext®(M' @ BP,(T(m))) has a correspond-
ing summand isomorphic to Q/Z(p). Hence in the chromatic spectral sequence,
Ell’0 has a summand isomorphic to Z,)[u1,...,u,] ® Q/Z(p), which is precisely
the image of d; : E?’O — E%’O, giving

6.5.9. PROPOSITION.
Ext”(BP.(T(m))) = Z [, - - -, ). O

Next we need to consider the divisibility of uf,,,/p € Ext®(M'® BP,(T(m))).
Note that g (vim41) is not in BP,(T(m)) but nr(vm+t1) — ptm+1 (where vy, 41 is
Hazewinkel’s generator given by A2.2.1) is, so we call this element 1. It follows
that in the cobar complex C(BP,(T(m))) (A1.2.11) d(um+1) = ptm+1 and

t
(6.5.10) i) = pruth s + 57 (5 )it mod (20)

where the second term is nonzero only when p = 2 and ¢ is even. Thus the situation
is similar to that for m = 0 where we have v; = uw;. Recall that in that case the
presence of the second term caused Ext' to behave differently at p = 2. We will
show that this does not happen for m > 1 and we have

6.5.11. THEOREM. For m > 1 and all primes p
Ext'(BP,(T(m))) = Ext’(BP.(T(m))) ® {ul,,,/pt: t > 0}.

PROOF. For p > 2 the result follows from 6.5.10 as in 5.2.6. Now recall the
situation for m = 0, p = 2. For t = 2, 6.5.10 gives d(v?) = 4(v1t; + t3) and we
have d(4vy  vs) = 4(vaty +13) mod (8), so we get a cocycle (v} + 4vy 'vy)/8. The
analogous cocycle for m > 1 would be something like

(Ui s1 + 400 ums2) /g
where w12 is related somehow to v, 2. However, the relevant terms in ng(v;m12)
mod (2) are vitZ, | + v§m+1tm+1, which does not bear the resemblance to 6.5.10
for m > 1 that it does for m = 0. In other words uf,:fltfn 41 is not cohomologous

mod (2) to U:;_iltm_irl, so the calculation for p = 2 can proceed as it does for
p> 2. ([

Our last result is useful for computing the Adams—Novikov Ea-term for T'(m)
by the method used in Section 4.4.

6.5.12. THEOREM. Fort < 2(p*™*2 —1)
Ext(BP.(T(m))/Im+1) = Z/ (D) [tmt1; tm2, - - - tzms1] @ E(hi ) @ P(by;)
withi>m+1,i+j <2m+2, hyj € ExtV? @D gnap, . e Ext>2 " #'-1),

6.5.13. EXAMPLE. For m = 1 we have
Ext(BP.(T(1))/12) = Z/(p)|uz, us) ® E(h2,0,h2,1,h22,hs0,h31)
®P(ba,0,b2,1,03,0)
in 6.5.1 for t < 2(p* — 1)
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PROOF OF 6.5.12. By a routine change-of-rings argument (explained in Sec-
tion 7.1) the Ext in question is the cohomology of Cr(BP;/In+1) (Al1.2.11) where
I' = BP.(BP)/(t1,...,tm). Then from 4.3.15 and 4.3.20 we can deduce that v;
and ¢; are primitive for m +1 <4 < 2m + 1. h;; corresponds to tfl and b; ; to

=2 0<k<p p (%) tfpj |tl(-p7k)pj . The result follows by routine calculation. O



CHAPTER 7

Computing Stable Homotopy Groups with the
Adams—Novikov Spectral Sequence

In this chapter we apply the Adams—Novikov spectral sequence to the moti-
vating problem of this book, the stable homotopy groups of spheres. Our main
accomplishment is to find the first thousand stems for p = 5, the previous record
being 760 by Aubry [1]. In Section 1 we describe the method of infinite descent
for computing the Adams—Novikov spectral sequence Fa-term in a range of dimen-
sions, namely to find it for the spectra T'(m) of Section 6.5 by downward induction
on m. Recall BP.(T(m)) = BPy[t1,...,tn] as a comodule, so T'(m) is equivalent
to BP in dimensions less than |v,,1|. This starts our downward induction since
we always restrict our attention to a finite range of dimensions.

In Section 2 we construct a resolution enabling us in theory to extract the
Adams-Novikov Es-term for S° from that for T(1). In practice we must proceed
more slowly, computing for skeleta 7'(1)(?'=1¢ by downward induction on i. In
Section 3 we do this down to i = 1; see 7.5.1. T(1)?~14 is a complex with p cells,
its Adams—Novikov spectral sequence collapses in our range, and its homotopy is
surprisingly regular.

In Section 4 we take the final step from T'(1)P~19 to S°. We have a spectral
sequence (7.1.16) for this calculation and a practical procedure (7.1.18) for the
required bookkeeping. We illustrate this method for p = 3, but here our range of
dimensions is not new; see Tangora [6] and Nakamura [3].

In Section 5 we describe the calculations for p = 5, giving a running account of
the more difficult differentials in the spectral sequence of 7.1.16 for that case. The
results are tabulated in Appendix 3 and range up to the 1000-stem.

In more detail, the method in question involves the connective p-local ring
spectra T'(m) of 6.5, which satisfy

BP.(T(m)) = BP,[t1,...,tm] C BP.(BP).
T(0) is the p-local sphere spectrum, and there are maps
SO =7(0) - T(1) = T(2) = ---— BP.

The map T(m) — BP is an equivalence below dimension |v,, 1| — 1 = 2p™*+! — 3.

To descend from 7, (T(m)) to m.(T(m — 1)) we need some spectra interpolat-
ing between T'(m — 1) and T(m). Note that BP.(T(m)) is a free module over
BP,.(T(m — 1)) on the generators {tJ, : j > 0}. In Lemma 7.1.11 we show that for
each h there is a T'(m — 1)-module spectrum T'(m — 1), with

BP.(T(m — 1)) = BP.(T(m — 1)){tJ,: 0 < j < h}.

We will be most interested in the case where h is one less than a power of p, and
we will denote T'(m),i_1 by T'(m) ).
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We have inclusions
T(m — 1) = T(m — 1)(0) — T(m — 1)(1) — T(m — 1)(2) — - T(m)
and the map T'(m — 1)¢;y — T(m) is an equivalence below dimension p'|t,| — 1 =
20h+1)(p™ — 1) — 1.
For example when m = i = 0, the spectrum T'(m) ;) is S° while T'(m)pi+1_; is
the p-cell complex

Y =50 Uq, €7 Uy, €2 U,, eP 19,
where ¢ = 2p — 2.
In Theorem 7.1.16 we give a spectral sequence for computing 7.(7'(m — 1);))
in terms of 7, (T'(m — 1)(i41). Its Ei-term is
E(him,i) ® P(bm,i) ® mu(T(m — 1)(i+1)

where the elements

B € E1172p"(p’”—1)

itl, om
and b, € Ef’Qp " -1)

are permanent cycles.
In the case m = ¢ = 0 cited above, the Fq-term of this spectral sequence is

E(hlyo) & P(bl,o) ® W*(Y)

where h; o and by o represent the homotopy elements a; and (4 (a% for p = 2)
respectively.

Thus to compute 7, (SY) below dimension p®(2p—2) we could proceed as follows.
In this range we have
We then use the spectral sequence of 7.1.16 to get down to T'(2), which is equivalent
in this range to T'(1)(2), then use it twice to get down to T'(1) = T'(0)(s), and so
on. This would make for a total of six applications of 7.1.16. Fortunately we have

some shortcuts that make this process easier.
The Adams—Novikov Es-term for T'(m) is

Extpp, (p)(BP:, BP(T(m))).

From now on we will drop the first variable when writing such Ext groups, since
we will never consider any value for it other than BP,. There is a change-of-rings
isomorphism that equates this group with

Extp(mi1)(BPx)

where
I'(m+ 1) = BP.(BP)/(t1,...,tm) = BPi[tm+1,tm+2,.-.]

Using our knowledge of Ext%(mﬂ) (BP,) (Proposition 7.1.24) and Ext%ﬂ(mﬂ) (BP,)
(Theorem 7.1.31) in all dimensions, we will construct a 4-term exact sequence

0—BP,—D% ., —D}. . —E2 =0
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of I'(m+1)-comodules. The two D}, ,, are weak injective, meaning that all of their
higher Ext groups (above Ext’) vanish (we study such comodules systematically at
the end of Section 1), and below dimension p?|v,, 1]

EXt%(m—O—l)(Din—O—l) = EXt%(m+1)(BP*)~
It follows that in that range

EXtP (g 1) (Bt1) = Extif? | (BP.)  for all s > 0.

The comodule EZ, 4 is (2p™ %2 —2p—1)-connected. In Theorem 7.2.6 we determine
its Ext groups (and hence those of BP,) up to dimension p?|v,,,1|. There are no
Adams—Novikov differentials or nontrivial group extensions in this range (except in
the case m = 0 and p = 2), so this also determines 7, (7'(m)) in the same range.

Thus Theorem 7.2.6 gives us the homotopy of 7'(0)(3) in our range directly
without any use of 7.1.16. In a future paper with Hirofume Nakai we will study
the homotopy of T'(m)(2) and the spectral sequence of 7.1.16 for the homotopy of
T(m)@) below dimension p®|vy,41]. There are still no room for Adams—Novikov
differentials, so the homotopy and Ext calculations coincide. For m = 0 this com-
putation was the subject of Ravenel [11].

It is only when we pass from 7'(m)y to T'(m) ) = T'(m) that we encounter
Adams-Novikov differentials below dimension p®|vy,41]. For m = 0 the first of
these is the Toda differential

d2p71(ﬁp/p) = alﬂlf
of Toda [3] and Toda [2].

1. The method of infinite descent
First we define some Hopf algebroids that we will need.
7.1.1. DEFINITION. I'(m + 1) is the quotient BP.(BP)/(t1,t2,...,tm),
A(m) = BP,Or(;m41)BPs = Z()[v1,02, ..., U]

and
G(m + 1,k — 1) = F(m + I)Dr(m+k+1)BP* = A(m + ]{i)[tm+1, 25 at7n+k]

We abbreviate G(m + 1,0) by G(m + 1), and is understood that G(m + 1,00) =
I(m+1).

In particular, I'(1) = BP,.(BP).

7.1.2. PROPOSITION. G(m + 1,k —1) > T'(m+1) > T'(m+k+1) is a Hopf
algebroid extension (A1.1.15). Given a left T'(m+1)-comodule M there is a Cartan—
Eilenberg spectral sequence (A1.3.14) converging to Extp(y,41)(BPx, M) with

Ezs’t = EXtZ‘(m—H,k—l) (A(m + k)v EXt{"(m+k+1)(BP*’ M))

and d, : B3t — ESTrt=r+1 (We use the notation ES* to distinguish the Cartan—
Filenberg spectral sequence from the resolution spectral sequence.)
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7.1.3. COROLLARY. Let M be a T'(m+1)-comodule concentrated in nonnegative
dimensions. Then

EXtF(m+k+1)(BP*’ M) = EXtF(m+1)(BP*, Gm+1,k—-1) @ A(m+k) M).

In particular, Extf;’(tm_ﬂ)(BP*, M) fort < 2(p™*+L—1) is isomorphic to M for s =0

and vanishes for s > 0. Moreover for the spectrum T(m) constructed in 6.5 and

having BP,(T(m)) = BPy[t1,...,tm],
EXth*(Bp)(BP*, BP*(T(m))) = EXtF(m+1)(BP*, BP*)

The following characterization of the Cartan—Eilenberg spectral sequence is a
special case of (A1.3.16).

7.1.4. LEMMA. The Cartan—Filenberg spectral sequence of 7.1.2 is the one as-
sociated with the decreasing filtration of the cobar complex Cp(py1)(BPx, M) (see
below) defined by saying that

71®®’Ys®m60§(m+1)(BP*aM)
is in F* if i of the v’s project trivially to T'(m + k + 1).

The method of infinite descent for computing Extpp, pp)(BPs, M) for a con-
nective comodule M (e.g. the BP-homology of a connective spectrum) is to compute
over Ext over I'(m + 1) by downward induction on m. To calculate through a fixed
range of dimensions k, we choose m so that k < 2(p™*+! — 1) and use 7.1.3 to start
the induction. For the inductive step we could use the Cartan—FEilenberg spectral
sequence of 7.1.2; but it is more efficient to use a different spectral sequence, which
we now describe.

7.1.5. DEFINITION. A comodule M over a Hopf algebroid (A,T) is weak in-
jective (through a range of dimensions) if Ext®*(M) = 0 for s > 0 (through the
same range).

We will study such comodules in the at the end of this section.
7.1.6. DEFINITION. For a left G(m + 1,k — 1)-comodule M let
7j o M — xiltmeal g
be the group homomorphism defined by

JOM
MM G+ 1,k — 1) @ M 22 sl g

where pj : G(m+ 1,k — 1) — A(m + k) is the A(m + k)-linear map sending th+1
to 1 and all other monomials in the t,,+; to 0.

We will refer to this map as a Quillen operation. When m = 0 we denote it
simply by r;.

It follows that _
(@)=Yt @) +...,
J
where the missing terms involve t, for £ > m + 1.

The following is proved in Ravenel [12] as Lemma 1.10.

7.1.7. LEMMA. The Quillen operation 7; of 7.1.6 is a comodule map and for
7 > 0 it induces the trivial endomorphism in Ext.
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7.1.8. DEFINITION. Let T C G(m + 1,k — 1) denote the sub-A(m + k)-
module generated by {t,,,:0 < j < h}. We will denote TE,~' by 7. A

G(m+1,k—1)-comodule M is i-free if the comodule tensor product T ® A(m+k) M
is weak injective.

We have suppressed the index k from the notation 7" because it will usually
be clear from the context. In the case k = oo the Ext group has the topological
interpretation given in Lemma 7.1.11 below. The following lemma is useful in
dealing with such comodules. It is proved in Ravenel [12] as Lemma 1.12.

7.1.9. LEMMA. For a left G(m + 1)-comodule M, the group
Exte (1) (A(m + 1), T @ Ay M)
is isomorphic as an A(m)-module to
L= () ker 7 C M.
jzp?
The following is proved in Ravenel [12] as Lemma 1.14.

7.1.10. LEMMA. Let D be a weak injective comodule over I'(m + 1). Then
T,Sf) ® D is also weak injective with

Ext( .1y (T\) ® D) = A(m){t{nH: 0<j<p — 1} ® EXtp 11y (D).

Given g € Exth(erl)(D), the element isomorphic to tfnﬂ ® xo 15
> (- (2)%1 @z x TP @D
0<k<j
where x; € D satsifies
VAR
v = ¥ (3)ek o n
0<k<j

The following is proved in Ravenel [12] as Lemma 1.15. The only case of it
that we will need here is for m = 0, where T'(0)}, is the 2(p — 1)h-skeleton of T'(1).

7.1.11. LEMMA. For each nonnegative m and h there is a spectrum T(m)p
where BP,(T(m)n) C BP.(BP) is a free module over

BP.(T(m)) = BP[t1,. ., tm]
on generators {tﬁnH: 0 < j < h}. Its Adams—Novikov Ea-term is

Extgp, (ppy(BPs, BP.(T(m)n)) 2 Extr, 1) (BP., Tj,).

*ytm

We will denote T'(m)p:_1 by T'(m) ).

To pass from ExtG(erLk,l)(Tr(,iH) ® M) to Eth(m+17k,1)(Tn(:i) ® M) we can
make use of the tensor product (over A(m+k)) of M with the long exact sequence

d° d* 5 d?
R cee

Rl

(7.1.12) 0 T —L s RO
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where
Rte =yt 0" -Dp0) o 0 =01
s ?pi for s even
and = { T(p—1)pi for s odd,

which leads to a spectral sequence as in (A1.3.2).

7.1.13. THEOREM. For a G(m+1,k—1)-comodule M there is a spectral sequence
converging to Extg(m41,5—1)(M @ Ty(,:)) with

EYt = E(hms1,i) ® P(bmt1,i) ® Bxtl, g 1) (T8 ®@ M)

With hpy1.i € BY°, byniai € EY°, and d, 2 B3t — ESTmH If M s (i 4 1)-free
in a range of dimensions, then the spectral sequence collapses from Eo in the same
range.

Moreover dy is induced by the action on M of Ty, ., for s even and 7,1y
for s odd.

The action of dy is as follows. Let

r= Y toeomelPeM
0<j<pitt
Then dy is induced by the endomorphism

Z Z (i) tfnjfl ® T(pi—k)(my) for s even

0<k<pi k<j<pi+l

_ Z Z (i) t?r.nifl X ?((pfl)pifkr) (m]) fO?” s odd.

0<k<(p—1)p* k<j<pitt

X

We will refer to this as the small descent spectral sequence.

ProOF. Additively this spectral sequence is a special case of the one in (A1.3.2)
associated with M tensored with the long exact sequence (7.1.12), and the collapsing
for (i + 1)-free M follows from the fact that the spectral sequence is in that case
concentrated on the horizontal axis.

For the identification of dy, note that by (7.1.12) it is induced by the endomor-
phism

Z Tpi (tfﬁﬂ) ®@ m; for s even
v s o0sispt )

Z T(p—1)p (tm+1) & m; for s odd
0<j<pit?

Z <‘7 )tfnfl ®@ m; for s even

_ p<j<pit? P )
J j—(p—1)p*
Z ((p B 1)pi)tin+11) P ®m; for s odd.

(p—Dpi<j<pit?
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It follows from Lemma 7.1.7 that 7pia,, ., and 7(,—1)pia,,,, each induce trivial
endomorphisms in Ext, so d; is also induced by
—7pi(x) + Z Tpi (tfnﬂ) ® m; for s even
N R 0sj<pitl )
—Tpyypi () + Z Tp—1)pi (thy1) @ m;  for s odd,
0<j<pitt

which leads to the stated formula.

The multiplicative structure requires some explanation. The elements Ay,11,;
and by, +1 ; correspond under Yoneda’s isomorphism Hilton and Stammbach [1, page
155] to the tensor product of M with the exact sequences

0— TW — 721y sp'ftmnal ) 5
and
0 TW = 7Y 5 gp'ltmal 7D wo il 7@ 0
respectively. Products of these elements correspond to the splices of the these. It

follows that these two elements are permanent cycles and that the spectral sequence
is one of modules over the algebra E(hp,41,i) @ P(bm+1,:)- d

In practice we will find higher differentials in this spectral sequence by comput-
ing in the cobar complex Cg(y41,5-1) (M®T75~f)) or its subcomplex C(m41,5—1)(M).
As explained in the proof of (A1.3.2), it can be embedded by a quasi-isomorphism
(i.e., a map inducing an isomorphism in cohomology) into the double complex
B = @& 1>0B*" defined by

B>t = Cé‘(m+1,k71)(M ® R?)
with coboundary
0=d+ (-1)%d°,
where d is the coboundary operator in the cobar complex. Our spectral sequence
is obtained from the filtration of B by horizontal degree, i.e., the one defined by

F'B= @ B
s>r,t>0

Theorem 7.1.13 also has a topological counterpart in the case M = BP,. Before
stating it we need to define topological analogs of the operations 7 and 7(,_1)p:.
One can show that there are cofiber sequences

(7.1.14) T(m) sy = T(m)gny — ST (m) i1y

and

(7.1.15) T(m)pi(p—1y-1 — T(m) i1y — SEVP st T ()
We define

T(m) (i) N S bt 2 T (m) (1)

and

Ppi(p— i
T(m)(it1) _ e s(p-1)p [ttt 1T (m) (s 1y
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to be the composites
T(m) (141) = 7 1T (m) i 1)1 = 5P 1 T (m)
and ' v
T(m)(ir1) — Z(P*l)Pz‘tm+l|T(m)(i) N 2(?*1)p7/|tm+l|T(m)(i+1).
7.1.16. THEOREM. Let T'(m) ;) be the spectrum of Lemma 7.1.11. There is a

spectral sequence converging to m.(T(m)y) with

Ef’t = E(herLi) & P(berLi) &R Ty (T(m)(H_l)) and dy: Eﬁ’t — E5+T’t_r+l

i m+1_ i+1 m+1_
with hpmy1,i € E11’2p (p Y and bm+1,i € Ef’Zp (p b Moreover dy is ppi
for s even and P(p—1)pi for s odd. The elements hy41,; and by,y1,; are permanent
cycles, and the spectral sequence is one of modules over the ring

R = E(hm+1,i) ® P(berl,i)
We will refer to this as the topological small descent spectral sequence.

ProoF. This the spectral sequence based on the Adams diagram

X Yex’ X < Jatby/ -
}l/ E‘lY EiY E“LY
where
a = 2p°(p" —1) -1,
b= 2Pt 1) -2,
X = T(m)(i);
X' = Ty,
and Y = T(m)ut)-

We will show that the elements Ry, 11,; and b,,41 ; can each be realized by maps
of the form

S0 — > x —Lowrx
For hpy1,4, f is the boundary map for the cofiber sequence
T(m)® — T(m)?' 1 = ST (m) @),

and for by,4+1, it is the composite (in either order) of the ones for (7.1.14) and
(7.1.15). O

7.1.17. EXAMPLE. When m = i = 0, the spectrum T'(0) o) is S° while T°(0) (1)
is the p-cell complex

y =5° Uay €7 Uny e .. Uy elP—1a,
where ¢ = 2p — 2. The Fj-term of the spectral sequence of Theorem 7.1.16 is
E(hl,o) ® P(bl,O) & W*(Y)

where hi o and by o represent the homotopy elements a; and 81 (af for p = 2)
respectively.
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We will use this spectral sequence through a range of dimensions in the following
way. For each spectrum T'(m)11) the elements of Adams-Novikov filtration 0
and 1 are all permanent cycles, so we ignore them, replacing 7. (7'(m)(i4+1)) by an

appropriate subquotient of Extr(m+1)(T,Sf) ® E,2n+1). Let N be a list of generators
of this group arranged by dimension. When an element x has order greater than p,
we also list its nontrivial multiples by powers of p. Thus

N ® E(hmy1,i) @ P(bmy1,i)

contains a list of generators of the Ej-term in our range. Rather than construct
similar lists for each E, term we use the following method.

7.1.18. INPUT/OUTPUT PROCEDURE. We make two lists I (input) and O (out-
put). I is the subset of N ® E(hyy+1,) that includes all elements in our range.
Then O is constructed by dimensional induction starting with the empty list as fol-
lows. Assuming O has been constructed through dimensions k — 1, add to it the
k-dimensional elements of 1. If any of them supports a nontrivial differential in the
spectral sequence, remove both the source and target from O. (It may be necessary
to alter the list of (k — 1)-dimensional elements by a linear transformation so that
each nontrivial target is a “basis” element.) Then if k > |bp+1.4|, we append the
product of by, +1,; with each element of O in dimension k —|by,41,4|. This completes
the inductive step.

Note that each element in E; of filtration greater than 1 is divisible by b1 ;.
Since the spectral sequence is one of R-modules, that same is true of each E,.. In
7.1.18 we compute the differentials originating in filtrations 0 and 1. If d.(z) = y
is one of them, there is no chance that for some minimal ¢ > 0

dp (') = bl 1y withr! <7

because such an ' would have to be divisible by b,,+1,;. This justifies the removal
of bl,, 1 ;& and b, ., ;y for all £ > 0 from consideration.

We will consider various I'(m + 1)-comodules M and will abbreviate
Extr(p41)(BPy, M) by Extp(p41)(M) or simply Ext(M).

Excluding the case m = 0 and p = 2, we will construct a diagram of 4-term
exact sequences of T'(m + 1)-comodules

0 BP Dpia Diiq B 0
(7.1.19) 0 BP Db, v By —> Bl /(07°) —>0
0 BP, MO M? N? 0

where each vertical map is a monomorphism, M? and N? are as in 5.1.5, the
D, are weak injectives with Ext’(D9, ) = Ext’(BP,), Ext’(D},. ) contains
Ext'(BP,) (with equality holding for m = 0 and p odd), and E} ,, = D%, ,/BP..
Ext’(BP,) and Ext!(BP,) are given in 7.1.24 and 7.1.31 respectively.

It follows that for m = 0 and p odd, there is an isomorphism

EXt? (4 1) (Bry) = Ext‘liJ{TiH)(BP*),
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and for m > 0 there is a similar isomorphism below dimension p?|v,,,1| for all
primes. EZ2,_, is locally finite and (p|vm41]| — 1)-connected, which means that
Ext{ 41y for s > 1 vanishes below dimension plvy,41].

We will construct the map from BP, to the weak injective DY, _;, inducing an
isomorphism in Ext® , explicitly in Theorem 7.1.28. For m > 0 we cannot construct
a similar map out of E} ., = D% ., /BP,. Instead we will construct a map to a
weak injective D} 11 which enlarges Ext® by as little as possible. We will do this
by producing a comodule E2,_; C E} ., /v{° and using the induced extension

0 E71n+1 Ul_lE:nJ,-l — E’rln-i-l/(v%o) —0
(7.1.20) T T
0 B Dyiy Eria 0

The comodule EZ ,, for m > 0 will be described in the next section. For m = 0
and p odd, a map from E} to a weak injective D] inducing an isomorphism in Ext’
will be constructed in below in Lemma 7.2.1.

We will use the following notations for m > 0. We put hats over the symbols in
order to distinguish this notation from the usual one for elements in Extgp (pp).
For m = 0 we will use similar notation without the hats.

Ui = Ut ti = tmti, w = pm,
(7.1.21)
hij = hmtij, and bij = by

We will show that in dimensions below p?|01], E2, . is the A(m + 1)-module
generated by the set of chromatic fractions

~ea
Uy .
(7122) {M. €p, €1 >O7 €22€0+€1—1},

and its Ext group in this range is

(7.1.23) A(m+1)/I, ® E(h1.0) ® P(byo) ® {;i L ey > 1},
1

12w =1) corresponds to the primitive 4, € I'(m+1), and 6170 €

where 51,0 € Ext
Ext"?P(P“=1) ig its transpotent. In both cases there is no power of v; in the numer-
ator when m = 0. These statements will be proved below as Theorem 7.2.6.

An Adams—Novikov differential for 7'(m) originating in the 2-line would have
to land in filtration 2p + 1, which is trivial in the is range of dimensions, so by
proving 7.2.6 we have determined 7. (7(m)) in this range.

Our first goal here is to compute Ext’ and Ext'. The following generalization
of the Morava-Landweber theorem (4.3.2) is straightforward.

7.1.24. PROPOSITION.
Extp 1y (BPs/In) = A(n+m)/I,.

For n =0 each of the generators is a permanent cycle.
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PRrROOF. The indicated elements are easily seen to be invariant in I'(m +1). In
dimensions less that 01| —1, T'(m) is homotopy equivalent to BP, so the generators
v; for i < m are permanent cycles as claimed. O

Now we will describe a map from BP, to a weak injective DY, 11 inducing
an isomorphism in Ext®. D? m+1 18 the sub-A(m)-algebra of p~'BP, generated by

certain elements Xz for ¢ > 0 congruent to v;/p modulo decomposables.

To describe them we need to recall the formula of Hazewinkel [4] (see A2.2.1)
relating polynomial generators v; € BP, to the coeflicients ¢; of the formal group
law, namely

(7.1.25) pl; = Z Ejvfij for i > 0.
0<j<i

This recursive formula expands to

v
6 = 2
p
Vg vf“
by = = 5
p p
p p’ 1+p+p°
V3 V1Uy Va7 Uy
by = —+4+ 5 5 3
p P D p

We need to define reduced log coefficients lz for ¢ > 0 obtained from the ¢,,; by
subtracting the terms which are monomials in the v; for 5 < m. Thus for m > 0
we have

—~ O
21 —
p
. i)\g V1 ﬁ?{ i)\l ’U}ljw
b = —+— 2
p D D

The analog of Hazewinkel’s formula for these elements is
~ i ~ i—d,
(7126) péi = Z Ejvffj + Z Ei_jvﬁ’ .
0<j5<s 0<j<min(i,m+1)
We use these to define our generators X recursively for i > 0 by
(7.1.27) Xe=li— Y 4
0<j<
For m = 0 we will denote these by ;.
The following is proved as Theorem 3.12 and equation (3.15) in Ravenel [12].

7.1.28. THEOREM. The BP,-module D?,H_l C pilBP* described above is a

subcomodule over T'(m + 1) that is weak injective (7.1.5) with Ext® = A(m). In it
we have

nR(Xi) = X, + tAz mod decomposables.

Before proceeding further we need the following technical tool.
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7.1.29. DEFINITION. Let H be a graded connected torsion abelian p-group of
finite type, and let H; have order p™. Then the Poincaré series for H is

g(H) = Zhyt'.

7.1.30. EXAMPLE. Let I C BP, be the maximal ideal so that BP,/I = Z/(p).
Then the Poincaré series for I'(m + 1)/1 is

G (t) = H(l _ t"Um+i|)*1.
i>0
We will abbreviate t/"m+:l by z; and denote x; simply by . When m > 0 we will
denote tIi! for i < m by y; and t/*'! simply by .
For Ext! we have

7.1.31. THEOREM. Unless m = 0 and p = 2 (which is handled in (5.2.6)),
Ext%(m+1)(BP*, BP,) is the A(m)-module generated by the set

~J
{a () g>o),
JpP

where &g is the connecting homomorphism for the short exact sequence
0— BP, - M° = N' -0

as in (5.1.5). Its Poincaré series is

P
() 2 7 e

i>0
where x = tl'm+1l. Moroever each of these elements is a permanent cycle.

ProOF. The Ext calculation follows from (6.5.11) and (7.1.3). For the Poincaré
series, note that the set of A(m)-module generators of order p¢ is

~jip" !
{50 (”li ) :j>0},
p

i—1
P

1 gpi 1
To show that each of these elements is a permanent cycle, we will study the
Bockstein spectral sequence converging to m.(T'(m)) with

Ey =7Z/(p)lvo] @ m(V(0) AT (m)).

V(0) AT(m) is a ring spectrum in all cases except m = 0 and p = 2. We know that
T'(m) is a ring spectrum for all m and p and that V' (0) is one for p odd. The case
p =2 and m > 0 is dealt with in Lemma 3.18 of Ravenel [12].

Low dimensional calculations reveal that 7, € Ext®(BP,/p) is a homotopy

and its Poincaré series is

element. The elements &; = % can then be constructed in the usual way using the
self-map of V(0) A T'(m) inducing multiplictation by o7 followed by the pinch map
V(0) AT (m) — XT'(m).

In the Bockstein spectral sequence it follows that v7” " survives to Eif1, 50 Qgpi is
divisible (as a homotopy element) by p’. a
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Now we will recall some results about weak injective comodules M over a
general Hopf algebroid (A,I") over Z,). In most cases we will refer to Ravenel [12]
for the proofs. We will abbreviate Extr(A4, M) by Ext(M).

The definition 7.1.5 of a weak injective should be compared with other notions
of injectivity. A comodule I (or more generally an object in an abelian category) is
injective if any homomorphism to it extends over monomorphisms, i.e., if one can
always fill in the following diagram.

1

T\b
N
AN
PN
0——=M—N

This definition is rather limiting. For example if A is a free Z,)-module, then an
injective I must be p-divisible since a homomorphism A — [ must extend over
AR Q.

There is also a notion of relative injectivity (A1.2.7) requiring I to be a sum-
mand of I' ® 4 I, which implies that the diagram above can always be completed
when 7 is split over A. This implies weak injectivity as we have defined it here (see
(A1.2.8)(b)), but we do not know if the converse is true. In any case the require-
ments of our definition can be said to hold only through a range of dimensions.
The following is proved in Ravenel [12] as Lemma 2.1.

7.1.32. LEMMA. A connective comodule M over (A,T') is weak injective in a
range of dimensions iff Ext' (M) = 0 in the same range.

The following is proved in Ravenel [12] as Lemma 2.2.

7.1.33. LEMMA. Let
(D, ®) = (A,T) — (4,%)

be an extension (A1.1.15) of graded connected Hopf algebroids of finite type, and
suppose that M is a weak injective comodule over I'. Then M is also weak injective
over ¥, and Ext$ (A, M) is weak injective over ® with

Ext% (D, Ext% (A, M)) = Ext (A, M).

Here is a method of recognizing weak injectives without computing any higher
Ext groups. The following is proved in Ravenel [12] as Theorem 2.6.

7.1.34. THEOREM. Let (A,T') be a graded connected Hopf algebroid over Z,),
and let M be a connected torsion I'-comodule of finite type. Let I C A be the
mazimal ideal (so that A/I =7Z/(p)). Then

9(M) < g(Ext®(M))g(T'/I),

meaning that each coefficient of the power series on the left is dominated by the
corresponding one on the right, with equality holding if and only if M is a weak
ingective (7.1.5).

It would be nice if for any comodule M one could find a map M — W to a
weak injective inducing an isomorphism in Ext’, but this is not always possible. In
Ravenel [12, Example 2.8] we showed that it fails when (A4,T") = (A(1),G(1)) and
M = A/(p?).
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For future reference will need the Poincaré series of E},_, = DY ., /BP,. The
following is proved as Lemma 3.16 in Ravenel [12].

7.1.35. LEMMA. Let

wm® = I —

1<i<m 1=y
1
and Gn(t) = Hl—x-’
i>0 g

(with z; and y; as in 7.1.30) the series for A(m)/(p) and I'(m + 1)/I respectively.
Then the Poincaré series for E} ., = D% .| /BP, is

Gm (t) G (t) Z &

1—&57;.

2. The comodule E?,

In this section we will describe the comodule EZ | needed above in (7.1.20)
below dimension p?|v1|. This will determine 7. (7' (m)) below dimension p?|v;| — 3.
For m = 0 and p odd we can construct D} in all dimensions directly as follows.

7.2.1. LEMMA. For p odd there is a map Ef — D3 to a weak injective inducing
an isomorphism in Ext°.

PrOOF. M' = v 'E} is not a weak injective for m = 0 since Ext%(l)(Ml) =
Q/Z concentrated in degree 0.

We will construct D} as a union of submodules of M! as follows. Let Ky =
El ¢ M. For each i > 0 we will construct a diagram

Liy1=—— L
Ki Ml Li
K; K L

in which each row and column is exact. L} will be the sub-BP,-module of L; =
M?'/K; generated by the positive dimensional part of Ext’(L;). Tt is a subcomodule
of L;, K;11 is defined to be the induced extension by K;, and L;11 = Ml/KH_l.
Hence K;, K, 11, and L} are connective while L; and L;;1 are not.

We know that in positive dimensions Ky = E} has the same Ext” as M'. We
will show by induction that the same is true for each K;. In the long exact sequence
of Ext groups associated with the right column, the map Ext"(L}) — Ext"(L;) is an
isomorphism in positive dimensions, so the positive dimensional part of ExtO(LH_l)
is contained in Ext'(L/), which has higher connectivity than Ext®(L;).

It follows that the connectivity of L} increases with ¢, and therefore the limit
K has finite type. The connectivity of the positive dimensional part of ExtO(Li)
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also increases with 4, so Ext"(Ls) is trivial in positive dimensions. From the long
exact sequence of Ext groups for the short exact sequence

0= Koo = M'— Log =0
we deduce that Ext!(K,) = 0, so K, is a weak injective by Lemma 7.1.32. It has
the same Ext® as E}, so it is our D!, (]
Now we are ready to study the hypothetical comodule EZ 41 of (7.1.19) for
m > 0.
7.2.2. LEMMA. The Poincaré series for E2, ., is at least

xpl(l — ;)
(1—aP")(1 = zit1)

9m (t) Gm (t) Z

>0

(where g, (t) and Gy, (t) are as in Lemma 7.1.35), with equality holding for m =0
and p > 2. In dimensions less than p?|vy| it simplifies to

where z, y, x; and y; are as in 7.1.30.
We will see in Theorem 7.2.6 below that equality also holds in dimensions less
than p2|vy].

PROOF OF 7.2.2. The relevant Poincaré series (excluding the case m = 0 and
p=2) are

X
9Bn1) = G G5 B TL3
i>0 xi)
T Tit1
= gn(t)Gu(t ,
g ()G <><1_x+zl_$m>
>0
and  g(Ext’(E, ) = g(Bxt'(BP.))
i—1
fL'p
= gm(t)Zw by 7.1.31
i>0
0 [~ +ZL’i
9m 1_ 2 2 1_ .’Epi .

If there were a map E}, ., — D} ., to a weak injective inducing an isomorphism
in Ext® (which there is for 7 = 0 and p odd by 7.2.1), we would have

9(Dhi1) = Gu()g(Ext®(Ep.)) by 7.1.34
= Gu(t)g(Ext'(BP,))

i

= gm(t)Gm(t) (1 z —+ Z% 1 fpm,,i> :
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It follows that

T P
9(E21) = gm(H)Gm(t) (1 — + Z 1 p1> 9(Epi1)
i>0
- xpi Tit+1
= 9n(OGm(b) ; (1 —aP 11— xi+1>
gcpi(l — i)

= gm(t)Gm(t) Z

i>0 1 —2)(1 - @it1)

In our range of dimensions we can replace g (t)Gn(t) by gm+2(t), and only the
first term of the last sum is relevant. Hence we have

g(E72n+1) = gmta(t) <(1—xi‘(21)(_1y—)xp)) mod (thlﬁlI), 0

7.2.3. COROLLARY. For a locally finite bounded below subcomodule
E C E71n+1/(vfo)v

let D denote the induced (as in (7.1.20)) extension by E}, | shown in the following
commutative diagram with exact rows.

+1 UflE}n-H - }n+1/(vfo) —0

| |

0—=EL ., D E 0

Let K denote the kernel of the connecting homomorphism
6 : Ext’(E) — Ext'(E},,) = Ext*(BP,).

Then D is weak injective if and only if the Poincaré series g(E) is g(K)Gm(t)
plus the series specified in Lemma 7.2.2. In particular it is weak injective if 0 is a
monomorphism and g(E) is the specifed series.

PRrOOF. The specified series is Gy, (t)g(Ext(E},. 1)) — g(EL 1), and
9(Ext®(D)) = g(Bxt"(Ep, 1)) + g(K).
Hence our hypothesis implies
9(D) = g(Eps)+9(E)
= Q(Evlnﬂ) + Gm(t)g(ExtO(E#H)) - g(Erln+1) + 9(K)Gn(t)
= Gu(t)(g(Ext’ (B ) + 9(K))
which is equivalent to the weak injectivity of D by Theorem 7.1.34. O

Now we need to identify some elements in E}, | /(v§°).

7.2.4. LEMMA. The comodule E}, ., /(vi®) contains the sets
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1
{W:61>6020} form=0

@\1+80
1
———:¢eg,e1 >0 form >0
{lereOU%'ﬁ'el ’

5}\%—0—604-61
—=—————:ep,e1 > 0.
ortante

These generators will be discussed further in Theorem 7.2.6 below.

PROOF. (i) The clement in question is the image of v7 1 =1 ALFe0,
(ii) In DY, ,; we have

X2 = b6\

%\2 ’Ul/A\Il) pT p2 fOI' m = 0
- T )
12 form >0
p
Vg U1 1\ 0 form=20
= 24710 - ) ~
P p( P’ )1+{vf“’)\1 for m >0
SO
- ~ v
(7.2.5) 2=+ —p
p p
where

0 for m =0

— (1 —pP~ NP ~
n=0-p >)\1+{v‘1"_1)\1 for m > 0.

Hence in p_lvleP* we have

@\%+eo+el pel 51\2 1+eo+er
p1+eofu%+€1 ,U%-‘rel D

pel (:\\ o > 1+eo+er
= T (e
,U%"Fel P H

p° 1+eg+er\1t “kvF g
e Z( k Ay AT

1 k>0 p
B Z l+eg+e) por—* N+eotei—k b
- k 1+e1—k 2 /.l :
k>0 Uy

The image of this element in p~*BP,/(v$°) is
Z 1+ep+er p61ik X1+eo+elfk k
k ,UlJrelfk) 2 'LL :
0<k<e; 1

The coefficient of each term is an integer, so the expression lies in DY, /(v$°), and
its image in B}, | /(v3°) is the desired element.

O
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We will now construct a comodule EZ , C E} . /(v°) satisfying the condi-
tions of Corollary 7.2.3 with 6 monomorphic below dimension p?|v1 |.

7.2.6. THEOREM. Let B2 | C E} | /(v°) be the A(m + 2)-module generated
by the set
~l+eoter
Ua
———:ep,e1 > 0.
{p1+50v%+€1 0, €1 }

Below dimension p?|vy]| it has the Poincaré series specified in Lemma 7.2.2, it is a
comodule, it is 1-free, and its Ext group is

A(m+1)/I, ® E(h1.0) ® P(byo) ® {;Z ey > 1}.
1

In particular Ext® maps monomorphically to ExtQ(BP*) i that range.

PrROOF. Recall that the Poincaré series specified in Lemma 7.2.2 in this range
is
aP(1—y) xP
mt2(t) | ————— ) =g9(BP. /L) ——F+—.
g +2()((1—.’L‘2>(1—l’p)> g( / 2)(1—1'2)(1—5(510)

Each generator of EZ .| can be written as

~1 ~ ~\ e ~\ €
v2+€°+el Vo (02\° [T\ "
Tep o) = ———— = — | = =
O plteopyter pup \ p U

with eg,e; > 0. Since |p”721| = p|v1], the Poincaré series for this set of generators is

(1 —x2)(1 —aP)’

We can filter E2, 41 by defining F; to be the submodule generated by the x¢ e,
with eg + e; < 4. Then each subquotient is a direct sum of suspensions of BP,/Is,
so the Poincaré series is as claimed.

To see that E2,; is a comodule, we will use the I-adic valuation as defined in
the proof of Lemma 7.1.35. In our our range the set of elements with valuation at
least —1 is the A(m)-submodule M generated by

{0

i
{puwgwm:%ﬂ12@i+jzl+em+q}
1

while Ean is generated by a similar set with j > 1 4+ eg + e;. Thus it suffices to
show that the decreasing filtration on M defined by letting F*M be the submodule

generated by all such generators with j — ey — e; > k is a comodule filtration. For
this observe that modulo I'(m + 1) @ F*/=¢0~¢1 ) we have

. Y
nr(010y)  _ Ui (T2 +wnit] + pta)’ e
plregtte = T prregitaclmELeF M,

S0 Efn_H = F'M is a subcomodule.
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We use the same filtration for the Ext computation. Assuming that 7 > 1 +
eo +e1 > 1 we have

g g N o g
Nr(V103) — V10 - 01 (V2 + vty + pta)? — 0105
p1+e01}%+61 p1+60 U%+€1
B j vﬁiﬁ%*fio*el(vlﬁ +pt2)6’0+61
= 1+e +
eo + e1 plteoy, T4

(eo,e1,5 —eo — e1)
pu1

where the missing terms involve higher powers of 3. The multinomial coefficient
(eo, €1, —eog—e1) is always nonzero since j < p. This means no linear combination
of such elements is invariant, and the only invariant generators are the ones with
eg =e1 =0, so Ext is as claimed.

We will use this to show that EZ , is 1-free (as defined in 7.1.8), i.e., that
TP~ @pp, EZ . is weak injective in this range. For 0 < k < p — 1 we have

~iJ7k ~iJ7k ~i~j—eo—e1
Y(V103t7) — VivstY = (eg, €1, — €0 — el)%})el—kk%éo ® V105 n
plteoylte Y o pu1 o

This means that
Ext’(Th " @pp, Epy) = Bxt(E], ).

m

It follows that

9EX?) = gurr()(1—y) 1 fpm
, B 1
so  g(En) = g(EXto)m’
and  g(Th ' ®pp, EL,y) = Q(EXto)m
= g(EXtO)Gm (t)

This makes 2! @ pp, EZ ,; weak injective in this range by Theorem 7.1.34.

We can use the small descent spectral sequence of Theorem 7.1.13 to pass from
Ext(T2 ' ®pp, E2,1) to Ext(EZ ). It collapses from E; since the two comodules
have the same Ext’. This means that Ext(E2,,,) is as claimed.

To show that Ext’(E?,_ ;) maps monomorphically to Ext*(BP,), the chromatic
method tells us that Ext?(BP,) is a certain subquotient of Ext’(M?), namely the
kernel of the map to Ext’(M?) modulo the image of the map from Ext®(M'). We

Nt
know that the latter is the A(m)-module generated by the elements v—l,, and the
pi

04

elements in question, the A(m+1) multiples of —2_ are not in the image. The latter
pu1

map trivially to ExtO(M 3) because they involve no negative powers of vs. [
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7.2.7. COROLLARY. FEzcluding the case (p,m) = (2,0), below dimension p*|vy],

A(m) fors=0

=~
Eths“(mH) = A(m){;}: J > 0} fors=1
EXt?E?z-‘rl)(Ezn+1) for s > 2.

The Adams—Novikov spectral sequence collapses with no nontrivial extensions in
this range, so m.(T(m)) has a similar description below dimension p*|v1| — 3.

The group Extp (1) (E?

1) was described in Theorem 7.2.6.

We now specialize to the case m = 0 and p odd. Using Lemma 7.2.1 we get
the 4-term exact sequence

(7.2.8) 0 — BP, — DY — Dy — E} — 0,

for which the resolution spectral sequence (A1.3.2) collapses from Ej.

We could get at Extp(l)(E%) via the Cartan—FEilenberg spectral sequence for
the extension

(A1), G(1)) = (BP,,T(1)) = (BP.,T(2))

if we knew the value of Extr()(E7) as a G(1)-comodule. For this we need to
consider (7.2.8) as an exact sequence of I'(2)-comodules and study the resulting
resolution spectral sequence. By Lemma 7.1.33 we know that DY and D} are weak
injectives over I'(2). It follows that the resolution spectral sequence collapses from
F5 and that the connecting homomorphism

§ 1 Extp o) (E7) — Extyly (By) = Ext{(3)
is an isomorphism for s > 0. This implies that

Extp ) (£7) & Exty(5),
which is described in our range by Theorem 7.2.6.
For s = 0, the situation is only slightly more complicated. Recall that the

4-term exact sequence (7.2.8) is the splice of two short exact sequences,
0— BP, — DY = E{ -0

(where E} = DY/BP,) and
0— Ef - D} - E? -0,

Thus we have a short exact sequence

(7.2.9) 0 — Extp 9y (E}) = Extpg) (D7) = L — 0
and this L is the kernel of § for s = 0. Thus there is a short exact sequence
(7.2.10) 0= L — Extpy)(E7) = U =0,

where U = Ext%@), which is described in our range by Theorem 7.2.6.

7.2.11. THEOREM. The comodule L of (7.2.9) is the A(1)-submodule B C N>
generated by the set '
{ ,Uzi 1> O}.
ipv

We will denote the element Z;}% by [ si- Theorem 7.2.11 implies
1
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7.2.12. THEOREM. In the resolution spectral sequence for (7.2.8) we have

0,5 0,s o Z(p) fOT’ S = 0
=B = {0 for s >0,
Exti fors=20
Ls _ pls  _ r(1)
By = Bog { 0 for s >0,

and for
E}™ = Extrgy (E}).
In the Cartan—FEilenberg spectral sequence (A1.53.14) for this group we have
E5" = Extg) (Extpo (Ey)).
Fort >0,
Ext& ) (Bxtr ) (B3)) = Extg) (Bxti(;)

and for t = 0 there is long exact sequence

L’ Extgy1)(B) —— -+

associated with the short exact sequence (7.2.10).

We will also need to consider the tensor product of (7.2.8) with To(j ), and

we will denote the resulting resolution spectral sequence by {Eﬁ’t(Téj )) . Let

Ef’t (To(j) )} denote the Cartan-Eilenberg spectral sequence for Extr ;) (Téj) RE?).

For a I'(1)-comodule M, we have

Extp o) (Ty”) ®pp, M) = 7y ®a(1) Extpg) (M),

where Té? ) ¢ I'(1) and T(()j) C G(1), since Téj ) is isomorphic over I'(2) to a direct
sum of p? suspensions of BP,. It follows that we have a short exact sequence

0 = Exto, (11 @ E}) = Exto) (T @ DI = T @ B0
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and the long exact sequence of Theorem 7.2.12 generalizes to

0 — Extl (T ® B) — ES(TY)) — Extl ) (T @ U) )

(7.2.13) Q) Exts (T © B) — E2°(T) — Exth (T3 @ U) >

The following is helpful in proving Theorem 7.2.11.

7.2.14. LEMMA. Let M C Exth(z) (E1/(v$°)) be a G(1)-subcomodule with trivial
image (under the connecting homomorphism) in

EXt%(z) (E}) = EXt%(z);

equivalently let
M C E/(vi°).
where B = Exth(z)(Ell). Then it is a subcomodule of ExtOF(Q)(E%) if it has a preim-
age 3
M C Extp ) (v; 'E}) C vy ' B}

that is obtained from E by adjoining elements divisible by the ideal J = (:\\2, //\\3, cl).

PROOF. We have a diagram with exact rows

0 E M M 0
0 E v 'E E/v$° ——=0

We need to verify that the monomorphism

is an isomorphism. If an element x € M is invariant, then some vi-multiple of it
must lie in Exth(l)(E%), which has no elements divisible by J. Hence x has trivial
image in M and therefore lies in in F, and we have our isomorphism.

Now consider the diagram

0—>E M M 0
A N
0Bl D} P
S )
(Y VS 1Y) S p—
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m+1

We have shown that the map M — vy 'E}/D} is trivial in Ext°, so it is trivial. It
follows that M maps to Di, so M maps to E?. (]

7.2.15. LEMMA. Let L be as in (7.2.9). Then

1 pitt 1— o
o=y U
i>0 (1—aP™)(1—a3)

where x = /1! and x5 = tlv2l,

PROOF. Since DY is weak injective, applying the functor Extr(g) to the short
exact sequence

0— BP, = DY — FEf -0
yields a 4-term exact sequence
0 — A(1) — Extpg) (DY) — Extp o (E}) = Extpe) — 0
and hence a short exact sequence
0 — Extp o) (D9)/A(1) — Extp g (E}) = Extpg) — 0,
where
Ext} ) (DY) = A(1)[p™'vr].

A calculation similar to that of Lemma 7.1.35 shows that

o(Bxtly (D)/AW) = 7=

SO
pi
x x x

7.2.16 Extl o) (E]) = 2 _
( ) Xtp(g) (E1) 1—a 1_$+Zl—x’ﬂ

>0 2

Now consider the short exact sequence

(7.2.17) 0 — Extp o) (E]) — Ext iy (D}) — L — 0.

Since Dj is weak injective over I'(1), Lemma 7.1.33 tells us that Extp (D7) is
weak injective over G(1,0) with

EXt%(l,O) (EXt?‘(Q)(D%)) = EXt%(l)(D}) = EXt%‘(l)

SO

i

z x?
(7.2.18) 9(Bxtry) (D)) = > T
i>0
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Combining (7.2.16), (7.2.17), and (7.2.18) gives

g(L) = Q(EXtr(z)(Dl)) —Q(EX’U%(Q)(E%))
x ’i
T ol-z _21 _Zl,
>0 >0
Sy (
i+1 03
l—w & L—aP™ 1 gp
i+1 g
_ =z Z P (1—af) N
-z o (L—ar™)(1 - z5)

O

7.2.19. LEMMA. Let B be as in Theorem 7.2.11. Its Poincaré series is the same
as the one for L, as given in Lemma 7.2.15.

PROOF. Let F,B C B denote the submodule of exponent p*, with By = ¢.
Then we find that

FiB =F 1B+ A(1){ﬂ,-p“/ipk1,k: P> 0}
SO
FyB/Fy 1B = A(l)/Il{Bipkl/ipkl,k: P> 0}7
and

FyB = F,_1B+g(FB/F,_1B)

pk,fl

VY A) Pt i

1—2x

X .k
- 1—,7;2(‘%”)‘ 7x;p 1)

k k—1
x aP zh
- ko k—
L—a \1—ar® 12"

x a?" (1 —a?" )
k—1, "

I=z(1—a)1-af )

Summing this for k > 1 gives the desired Poincaré series of B. O

PROOF OF THEOREM 7.2.11. We first show that B is a G(1)-comodule by showing
that it is invariant over I'(2). In I'(2) we have

Nr(v2) = va2 + pta,

so for each ¢ > 0, the elements
vl vl
2 e Nt and hence _—QZ.EN2
ip 1pv}

are invariant.
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Next we show that B C Ei/(v§°). Note that

vilvy = poyha+ (1—pP N
= pvl_l()\g + \w)
(7.2.20) where w = (1 — p?~1)\}
o 3. = P2+ Mw)'  p (g + Mw)’
z/z - ip/l)i — ivi .
1 1

The coefficient p'~! /i in this expression is always a p-local integer, so
1
Biji € By /(v7°).
Let 4
~ vy "h — w?
Bz{/i == :
pi
Then we have

~ vl_i(p:\\g +viw)t — w'

5;‘/1' = ip
>0 J tp
S vl_lEll,

S0 B:/Z is a lifting of 3] ; to v 'E}l. Let B C Exth(z) (v ' E}) be the A(1)-submodule
obtained by ajoining the elements ﬂg/i to Ext(ll(g)(E}); it projects to B C E1/(v$°).
Since each B;/Z is divisible by Mg, it follows from Lemma 7.2.14 that B C E?.

B and L have the same Poincaré series by 7.2.15 and 7.2.19, so they are equal.
O

3. The homotopy of T(0)(2) and T'(0))
In this section we will determine the Adams—Novikov Fs-term
Extr(1) (BP(T'(0)(2)))

and 7, (T(0)(2)) in dimensions less than (p* + p)|v1| — 3. This is lower than the
range of the previous section for reasons that will be explained below in Lemma
7.3.5. All assertions about Ext groups and related objects will apply only in that
range.

We will then state a theorem (7.3.15) about differentials in the spectral sequence
of (7.2.13) for j = 1, which we will prove in the next section.

Our starting point is the determination in Corollary 7.2.7 of . (T(1)) and
its Adams-Novikov Es-term through a larger range, roughly p?|vs|. There is an
equivalence

(1) = T(O)p3+p2—17
so we could use the small descent spectral sequence of Theorem 7.1.13 and the
topological small descent spectral sequence 7.1.16 (which turn out to be the same
up to regrading) to get what we want. It turns out that we can finesse this by
standard algebra.
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Theorem 7.2.12 gives a Cartan—FEilenberg spectral sequence converging to
Extr(1) whose Ex-term is expressed in terms of Extg1)(B) and Extg(1)(Extp o))
for s > 2.

First we have the following partial result about Ext¢ (1) (B).

7.3.1. LEMMA. For each j > 0, the G(1)-comodule B of Theorem 7.2.11 is j-
free below dimension p|va|, and EXt%(1)<TO(j) ® B) is additively isomorphic in this
range to the A(1)-submodule of E}/(v$°) generated by the set

In particular it is 2-free in our range of dimensions.

PROOF. We will denote the indicated group by H°(B). Given a G(1)-comodule
M, let M’ = Téj) ®a(1) M. According to Theorem 7.1.34, M is j-free (i.e. M’ is
weak injective) if
g(Ext® (M’
S = SEC0D)

)

1—2x

where as before z = t1V11. We also know that

J

1—2aP
M =qg(M
9O1') = g (M) T,
so the condition for weak injectivity can be rewritten as
g(BExt®(M"))
M)=2"" V7
g(M) T
Now in B we have
; i—kpt~ .
_ ¢ Vg _(i=1Y,,
(7.3.2) i (Biyi) = <kpjl) W - (kpj1>6ikpjl/ikpj1
)
Tkep (/81/1) = <kpj_1)16ikp71/ikpjl.

For pP~1 < i < p? + p?~1, choose k so that 0 < i — kpi~t < p~!. Then the
coefficients of 3 and B’ above are units in every case except for 7y, (Bpi/pi). It
follows that for each element in B, applying ry,; for some k will yield an element
in H°(B). This means that in our range we have

_ g(H(B))

1— P

9(B) ;
so B is j-free if H(B) is additively isomorphic to Ext®(B’).

Each element in H°(B) is killed by r; for i > p?, so there is a corresponding
invariant element in To(j ) ® B’ by Lemma 7.1.9. On the other hand, (7.3.2) implies
that no element in B’ outside of To(j) ® HY(B) is invariant, so Ext’(B’) is as
desired. 0O

The groups Ext§(2) for s > 2 in our range were determined in Theorem 7.2.6.
Translated to the present context, it reads as follows.



3. THE HOMOTOPY OF T(0)(2y AND T(0)(y) 253

7.3.3. THEOREM. Below dimension p?|vs|, the group Extlgé*) is
E(h2o) @ P(beo) @ U
(where U = Ext%@)), or more explicitly
U%U% ) )
A(1)/1y ® E(ha,0) ® P(b2,0) ® § dob1 ol R 0,j>0p¢,
1
where §g and 01 are the connecting homomorphisms for the short exact sequences
0— BP,.—»M°— N'-0
and
0—N' - M- N?=0
respectively.
7.3.4. THEOREM. Fori,j >0, let

i i+ip
; v )
| 3 2 2
Uij =vy | 5 TTip e N
2:pu1 C; DUy

i+7+kp
Ci,j = H ( D )

1<k<i

where

Then u; j has the following properties.
(i) w;j lies in BT /(v°) and is invariant over I'(2), i.e., it lies in

Extp o) (E1/(v7°)).
(i) Its image in U is that of

i)
U

ilpvy

(iii) Fori >0
T'p2 (Uzg) = Uj—1,j+1,
where ug ; = 0.
(iv) For j >0,
Jj+1
rp(ur ) = ——=0; .
p( I,J) (. 7) Jj+p/p

We will denote uq_; by u;. The coefficients i!, ¢; ; and (p, j) are always nonzero
modulo p in our range except in the case

2 2
—p—1
WP TPy, WP
Uyp2 1= 2 — 2
ps—p—1 — o p+1°
pu1 Py

Proof of Theorem 7.3.4. (i) Recall (7.2.5) that
2ot (-,

p

while the definition of A3 implies that

% A3 mod (v1).
p
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Hence
vl pPHTINN
bur U1
1
€ El /(Ui)o )a

j+itip —1\\PH+1\j+iti
q v rigipo1 Qg+ (L= pPT AT
an Fip g T+ip
by U1

€ E{/(vf),

so u; ; € B}/ (v{°).
The invariance of w; ; over I'(2) follows from the fact (Proposition 7.1.24) that
vy is invariant modulo (p) and vs is invariant modulo I5.
(ii) We will show that the difference between the two elements maps trivially
to U. It is a scalar multiple of
vé”p

1+ip?
by,

e =

which is the image of
—1—ip_ i+ip
vy Uy

p

e M.

This is invariant over I'(2), so our element e € Exth(Q)(NQ) is in the image of
Exth@)(Ml), so it maps trivally to Ext%(z) =U.
(iii) Since

2
nr(vs) = wvs+vat] —ovbt; modly
and nr(v2) = wve+uith —olty  modly,
we have
. . . . 2
Vvl (v vy Y )
ilpvy N ilpvy ’
AR
SO Tp2 0 = 7'
ilpvy (i—1)lpn
For the second term we have
; U%'-i-i-i-ip (Uz 4 711#17 _ vftl)j"‘i"‘ip
R 35| = T+
cijpv P cijpvy
- 3 (J +i+ ip) v TEPTRER — o )
- I+ip—k
0<k<ip k cijpvy
. Z <] +174+ ip) Z (_1)5 (k) v%“ﬂp*kti)(k_e”é
= Tip—k—(p—1)¢"
0<k<ip k 0<e<k ¢ Ci,jPU; * b

We need to collect the terms in which the exponent of t; is p?, i.e. for which
(p — 1)¢ = p(k — p). Hence k — p must be divisible by p — 1, so we can write
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k=p+ (p— 1)k and ¢ = pk’. This gives

jtitip
T2 7’02 -
: (Cz‘,jpviﬂp )
S j+itip—p—(p—1)K’
DRI (AR | Lol o . e
0<k'<p p+(p—1k Pk cigpvy T
S j+itip—
<j+z+zp> vy TP

gyl FIP—P
p Ci,jPV1

v§+i+(i—l)p

1+(i—1p
Ci—1,j+1PVy

and the result follows.
(iv) Using the methods of (iii), we find that

J Jj+p+1
vivs v3
rp(ur ;) = r —r, | ——
plULj P (Zwl ) P <C1,jpvf+1>
B _(j+p+1> v%ﬂj
1 1, ;pvy

, j+
RS
(p, J) c1,pvy

O

In order to use the Cartan—Eilenberg spectral sequence of (7.2.13) we need to

know Exte (1) (7 éj )® U). We will compute it by downward induction on j using the
small descent spectral sequence of Theorem 7.1.13. Recall (Theorem 7.3.3) that U
in our range is generated as an A(1)-module by the elements

i,J
Y — V30
(50(51(’[1,,7]) (50(51 <pv > .

1

We start with the following.

7.3.5. LEMMA. LetU = Ext%@) as before. In dimensions less than (p +p)|v1],
there is a short exact sequence of G(1)-comodules

(7.3.6) 0=-U—=Uy—U; =0
where Uy C vy *U is the A(2)-submodule generated by

1—1,.4
{(50(51 (UQ US) Zi>0}.
by

Uy and Uy are each 2-free (7.1.8) as G(1)-comodules, and we have

EXt(c):u)(To(z) ® Uy) = A(l){5051(ul,j)5 Jjz 0}

and  Extd (T3P @ Uy) = A(l){606162 (“W) Li>2, 5> 0}
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(where do is the connecting homomorphism for 7.3.6) so

A(1)4 6001 (u1,5): j > 0} fors=0

s (2) —
EXtG(l)(TO ® U) - A(l) Vi 7 > 2} for s=1

0 fors>1,

where

Uy
Yi = 000102 < ’0> .
V2

Note that we have reduced our range of dimensions from (p® + p?)|v1| to
(p® + p)|v1|. A 2-free subcomodule of M? containing U must contain the element

vy Pl
A
p 1
and |z| = (p* + p)|v1|. v8 'z is in Ext%(Z), but is out of the range of Theorems

7.2.6 and 7.3.3.

Proor. We will construct the desired extension of Ext%@) by inducing from
one of Extp s (E?) as in the following diagram.

0 — Extp o) (E}) U} Uy 0
S
0 U Uy Uy 0

We can extend the defintion of u; ; to negative j and we have u; ;_; = v%flui,o for
1 < j <i. U} is the A(1)-submodule of v, * Ext%(Q)(E%) obtained by adjoining the
elements

{Ui,j—i: ©>0,1 S]S’L}

Theorem 7.3.4(v) implies that Uj and hence U; and Uy are comodules.

It follows that Uy C vy ! Ext%(z) is as claimed. The 2-freeness of Uy and U
follows from Theorem 7.3.4(iii).

For the computation of Extoc(l)(Tém ® Ug) for k = 0 and 1, the following
pictures for p = 3 may be helpful. We denote d¢01(u; ;) by u; ; and each diagonal
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arrow represents the action of ry2. For U (which is vs-torsion free) we have

!
Uy 0 U2.0 U3.0
! !
Ug 1 Uz
/
Uz —2

where the missing elements have higher second subscripts. For U; (which is all

/
Uy

vp-torsion) we denote 890102 (vg “u; ;) by

22 and the picture is

)

! ! !
U0 U0 U3.0
V2 V2 V2
! !
Uz 0 U3.0

2 2
V3 U3
A
Uus o
3
U3

In each case Ext® is generated by the elements not supporting an arrow, i.e., the
ones in the left column of the first picture and the top row of the second. O

Now consider the Cartan—Eilenberg spectral sequence of (7.2.13) for j = 2. For
~ 2—1
t> 2, Exttp(g) is a suspension of U = Ext%@)7 so ESY(TY ) =0 for s > 1. More
precisely for t = ¢ + 2t' with e =0 or 1,

Extifs) = h5 b U,
which we abbreviate by S U. Then we have

7.3.7. COROLLARY. In the resolution spectral sequence we have the following
short exact sequences for the groups Eg’t(TO(z)): fort=20

0 — Ext®(T\” ® B) —— E2(T{?) — Ext(T}* @ U) —0,
and fort >0
0 — Ext" (T @ £t-VU) —= E2N(T?) — Ext®(T{? @ sOU) — 0,

where YU is as above and the Ext groups are over G(1).
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The groups Ext%(l)(Téz) ® B) and Extg(l)(Té2) ® U) are described in Lemmas
7.3.1 and 7.3.5 respectively.

PROOF. The long exact sequence of (7.2.13) and Lemma 7.3.1 imply that
EyNTY) = Extg (T @ SOU) - for t > 0.

For ¢ = 0 there is a short exact sequence
0 — Extgy (15" @ B) —— BTy ) —— Extg oy (15" @ U) —0

and

E*s,o(szfl) _ Exté(l)(TéQ) ® XOU) for s =1
20 0 for s > 1.

SinceE‘;’t vanishes for s > 1, this spectral sequence collapses from FEs and re-
2—1
duces to the indicated collection of short exact sequences for the groups ES Ty )

in the resolution spectral sequence. (]

7.3.8. COROLLARY. The Adams—Novikov spectral sequence for m.(T(0)(2)) col-
lapses in our range of dimensions, i.e., below dimension (p?)|ve] — 3.

ProOOF. This will follow by a spareness argument if we can show that in this
range E5™ (for the Adams-Novikov spectral sequence) vanishes for s < 2p+1. We
can rull out differentials originating in filtrations 0 or 1 by the usual arguments,
and by sparesness the each nontrivial differential d, has = 1 mod 2p — 2. Thus
the shortest possible one is dg,—1, for which the filtration of the target would be
too high.

For the vanishing statement the first element in filtration 2p + 1 is uy b551h270,
and we have

[ur| = |ba,o| = plva| —2
= p(2p*—2)—2=2p>—2p—2
and lhao| = |vo| —1=2p* -3
S0 |u1b§51h2,0| = p(2p®—2p—2)+2p* -3
= 2p*—2p—3
> p?lug| — 3.

O

Now we will analyze the Cartan-Eilenberg spectral sequence of (7.2.13) for
j = 1. Tt has a rich pattern of differentials. This (in slightly different language)
was the subject of Ravenel [11]. In order to use this spectral sequence we need
to know Eth(l)(To(l) ® B) and ExtG(l)(TO(l) ® U). We will derive these from the

corresponding Ext groups for Té2) given in Lemmas 7.3.1 and 7.3.5 using the the
small descent spectral sequence of Theorem 7.1.13.
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The former collapses from F3 since Extg(q) (T0(2) ® B) is concentrated in degree
0. The action of , on Extog(l)(Té2) ® B) is given by

p (/Bz/'/el) = /Bi—l/el—l
and Tp (5;;1'/@1) = 0.
In order to understand this, the following picture for p = 3 may be helpful.

B1 Ba \ B3 B3 \

(7.3.9) B2/2 3;’3/2 B3/2 Baj2
Bs/s B33 Ba/3 Bs/3

Each arrow represents the action of r, up to unit scalar. Thought of as a graph,
this picture has 2p components, two of which have maximal size. FEach com-

ponent corresponds to an A(m)-summand of our Es-term, with the caveat that
!

pﬁ;/el = ﬁp/el and vlﬁ;/e = Pije—1"
In the summand containing (371, the subset of F;

{517 Ba/2; 5&/3} ® E(h1,1) ® P(b1,1)

reduces on passage to Fsy to simply {f1}. Similarly

{52, /8;/),/2} ® E(h11) ® P(b1,1)

reduces to
{52, ﬁé/ghm} ® P(b1,1),
where
Byohi = (b, has B2)
and hl,l(ﬂé/th,l) = hia(hi, b, B2)
= (hi1, hi, ha)Bo
= b11Pe.

The entire configuration is v4-periodic. This leads to the following.

7.3.10. PROPOSITION. In dimensions less than p*|va, Eth(l)(To(l) ® B) has
Z/(p) basis

{ﬁlﬂn'v Bp+pis 5p2/p2—p+1> cee sz/P+1 }

{/Béeria ) ;;eri; ﬁp+pi/p7 cee 7Bp+pi/2; 6])2/1)2’ cee aﬁpQ/p27p+2}
5%
P(bl 1) &
hia {/81,)+pi/p—1’ cos Bppis Bppifps -+ s Pap—14pi/p;

By s+ ’5p2+p*2/p2} )
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where 0 < i < p, subject to the caveat that v1B,/e = Byje—1 and pﬂ;/e = Bpje- In
particular Ext%(l)(TO(l) ® B) has basis

{ﬂi+pi7 L) ;:;eri; ﬁp+;m'/pa ceey Bp—&-pi/l; BpQ/p27 ce - 7ﬁp2/p+l}’
The action of r, on U is trivial, so £y = Ej in the small descent spectral
sequence for Exteg1) (T 0(1) ® U). In theory there could be a nontrivial differential
dy: Ey' — B30,

but this cannot happen since F; "1 is vo-torsion while E; 0'is vo-torsion free. Hence
the spectral sequence collapses and we have

(7.3.11) Exte )Ty ® U) = E(h11) ® P(b11) ® Exteay (T @ U),

where ExtG(l)(Téz) ® U) is as in Lemma 7.3.5.
We now have the ingredients needed to study the Cartan—Eilenberg spectral

sequence E;?’t(To(l)) of (7.2.13). We first need to analyze the connecting homo-

morphism ¢ in the long exact sequence for t = 0. Since the target groups of it are
vo-torsion free, d is trivial on the vs-torsion module

E(h1,1) ® P(b1,1) ® Extl (T3 @ U).
For its behavior on

E(h1,1) ® P(b1,1) © Ext% (17 @ U)
we have

7.3.12. LEMMA. In the long exact sequence of (7.2.18) for j = 1 we have (up
to unit scalar)

52k(b’f71ui) = (i+ 1)h1,1blf,1ﬁz’+p/p’
41
and §2F L (hy 1Y ;) = (Z ! 1) bllﬁilﬂi%/z
, p— ’

for all ik > 0.

This means that Ej ’O(Tél)) looks like the Ext group one would would have if
the picture of (7.3.9) were replaced by

(7.3.13)
B B2 b5 B3 \
Ba/2 B39 B3/2 Bay2
B33 B33 Bass Bs/3

NN

The graph now has 2p + 1 instead of 2p components, three of which are maximal.

us.
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Proof of Lemma 7.8.12. It suffices to show that r,(u;) is as indicated in the picture
above. We have (using Theorem 7.3.4)

1

W=y = vi | 22 v
Pi= UL =y | —— — —
pU1 pcl,ivf+

i+p ;
; Vg 1+1
rp(u;)) =—(E+p+1 =——=0; .
(i) ( )pcl,ivf (p, ) v

SO

O

7.3.14. COROLLARY. In the Cartan—Filenberg spectral sequence of (7.2.13),
Es (Tél)) has Z/(p)-basis

{ﬂleria ﬁp+pia Bp+pi/2§ sz/p27p+1a s 75p2/p+1}

{6é+pia ceey lethi; ﬂp+pi/pa v 7ﬂp+pi/2;
Upitp—15 Bp2/p2; - - >ﬁp2/p2—p+2}
P(b1,1) ® @
hl,l {/61/)+pi/p—1’ R I,H"pi; Upiy -+ -+ 5 Upi4+p—2;

B2 p2s - ’ﬁp2+p*2/p2}
E(h11) @ P(b1,1,b2,0) ® {h2ou;, baou;: j > 0}
S5

E(h11, hao) ® P(b1,1,b20) ® {y2,73,---},
where 0 < i < p, (omitting unnecessary subscripts)
u, v, B, € ES’O and WEEg’l,
and the operators h; j, b; ;, etc. behave as if they had the following bidegrees.
hoo € ES', hii€ Ey°,
bao € Ey®, and by, € E3°.

Now we need to study higher differentials.

7.3.15. THEOREM. The Cartan—Filenberg spectral sequence of (7.2.13) forj =1
has the following differentials and no others in dimensions less than (p> + p)|vy].

(i)

dQ(hQ,OUi) = b1,15£+2-
(i)
ds(hg b5 gui) = (k+i+1)hi1hgobiib5o'u;  fork>0ande =0 or 1.
(iii)
d2k+2(hl,th,ObS,oUpi’—2—k) = h1,1blfj{1 it 1 Jork <p-—1.

(iv)

d2k+1(h1,1b]2€7oupi’—2—k) = blfjlﬂpi//k_'_Q fOT k> 0.
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(v)
d3(h5.0b5 075) = khi,1h§ 0b1,1b5 5"
We will prove Theorem 7.3.15 in the next section. For a more explicit descrip-
tion of the resulting Ext group, see Theorem 7.5.1. An illustration of it for p = 5

can be found in Figure 7.3.17. There are no Adams—Novikov differentials in this
range. In the figure

e Ext’ and Ext! are not shown.

e Short vertical and horizontal lines indicate multiplication by p and v;.

e Diagonal lines indicate multiplication by A1 1, ko0 and the Massey product
operations 57 of 7.4.12.

Now that we have computed Extp(l)(Tél) ® E?), it is a simple matter to get to
Extp (T, él)) itself. We have the 4-term exact sequence

(7.3.16) 0TV 51V e D -1V e Dl - TV @ B2 >0

in which the two middle terms are weak injectives by Lemma 7.1.10 with

1 i ~ j . i
Extl ) (T3" ® Di) = z(p){t{: 0<j< p} ® ExtX (D))

= Z<p>{t{= 0<j< p} ® Bxtipy (BP.).

We will compute Ext® of the middle map of (7.3.16) using the description of the
groups given in 7.1.10. Recall that DY contains all powers of \; = p~'v;. Then

Exth(l)(To(l) ® DY) is the free Z,)-module on the set {z;: 0 < j < p} where

=y (—1)’“(‘2)#{@)\{_’“:t{®1+....
0<k<j

The image of

vy = X 0 (])de

0<k<j
N AT A
0<k<j
in Exth(l)(To(l) ® D1) is
AW U{_k _ joi—tf J j—1—t

0<k<j

0 ift>j.
From this we deduce that

Ext®(T3") = Z(P){pjzj: 0<j< p},
and Ext of the third map of (7.3.16) sends

tVoa+-- 10 8.
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Thus the map
Ext’(T{"Y @ E2) = Ext*(TY)

has a kernel, namely the Z,)-summand generated by 31, and for s > 2,

S 1 ~ S— 1
Exti oy (Ty") 2 Exti 3 (1) @ B},

which can be read off from Theorem 7.3.15.

4. The proof of Theorem 7.3.15

Recall that our range of dimensions is now (p® + p)|v|.

It is easy to see that all of the elements in Corollary 7.3.14 save those involving
u; or by g are permanent cycles. Establishing the indicated differentials will ulti-
mately be reduced to computing Ext groups for certain comodules over the Hopf
algebra

2

P(1)« = Z/(p)le(tr), c(t2)]/ (c(t] ), c(t2)")

with coproduct inherited from that of BP,(BP), i.e., with

Ale(tr)) = clt) ®1+1® c(t1)
and  A(c(t2)) = c(t2) @ 1+c(t1)? @ c(t1) + 1@ c(tz).
It is dual to the subalgebra P(1) of the Steenrod algebra generated by the re-
duced power operations P! and PP. For a P(1),-comodule M, we will abbreviate
Extp(1),(Z/(p), M) by Extp) (M), or, when M = Z/(p), by simply Extp(),

In principle one could get at Extr(l)(To(l) ® FE?) in our range of dimensions
(i.e., below dimension p®|v;]) by finding Extp s (Tél) ® E?) and using the Cartan—
Eilenberg spectral sequence for the extension

G(1,1) - T'(1) = T'(3).
(Recall that G(1,1) = A(2)[t1, t2].)
Consider our 4-term exact sequence

0— BP, - DY = D} - E? -0

The two middle terms are weak injective over I'(1) and hence over I'(3). For the
last term we have,

Ext‘}(?))(ElQ) = Extﬁ'g) for s > 0.

The first generator for s = 1 is ';th, which is out of our range. This means that
the fourth term is also weak injective over I'(3) in our range.

For a I'(1)-comodule M, we will denote the G(1,1)-comodule Ext%(:s) (M) by
M. Applying Ext%@)(-) to our 4-term exact sequence yields a 4-term exact (in our
range) sequence of G(1,1)-comodules

0— A(2) » DY - D} — E? - 0.

Let D2 be the A(2)-submodule of M? (where M? is the chromatic comodule)
obtained by adjoining the elements

—J,,k
{“f?':i,j>o,kzi+j}
by
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to E2, so we have a short exact sequence of G(1,1)-comodules
(7.4.1) 0— E? 5 D? - E} —0,
where E3 is the A(2)-submodule of N3 generated by

{ ,U§+61 +ea+ez

—0 - . €1,€2,€3 2 0p.
pvi+61vé+e

Its Poincaré series is
2
2P +p

(7.4.2) Q(Ef) = (1 — xPQ)(l _ xi‘z’)(l — ,7;3).

7.4.3. DEFINITION. Let P be the left G(1,1)-comodule
P = A(2){c(t§t;'); 0<i,pj< p2}

= A(z){ti(t2 — P 0 <, pj < p2} C G(1,1).
A G(1,1)-comodule M is P-free (in a range of dimensions) if P ® s(2) M is weak
injective (in the same range).
7.4.4. LEMMA. D% and E% are P-free in our range, i.e. below dimension p?|vs|.

PROOF. For E3 we can show this by direct calculation. Up to unit scalar we
have

vk v§+27“]
T(j—1)p2 A1 +(i—1)pAs el = Vk+2—i—j,
PV Uy pbu1v2

so these elements form a basis for Ext%(l’l)(Ef’) and for Ext%(lyl)(P ® E3). (Here

7a,p denotes the Quillen operation dual to t§t3.) The Poincaré series for this Ext’
is

72P%+p
1-— I3 '
Meanwhile we have
g(P@a@) EY) = g(P(1)g(E})
_ (=) -ah) G
(1—2)(1—=2) (1-2P*)(1—a5)(1~23)
22P°+p

(1-2)1- $2)(1~— x3)
= 92(t)9(EXtOG(1,1)(E§))

so E3 is P-free as claimed. )
For D? we will first show that P ® D? is weak injective over G(2). Then it will
suffice to show that

is weak injective over G(1), L.e. that Exté o) (D3?) is 2-free.
As a G(2)-comodule, P is isomorphic to a direct sum of certain suspensions of
Tl(l). We know by Theorem 7.2.6 that Tl(l) ® E3 is weak injective over I'(2) in our
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range. The same is true of Tl(l) ® E? since it has the same positively graded Ext
groups over I'(2). Thus the same goes for Tl(l) ® E? and P ® E? over G(2). Since
we already know that P @ E$ is weak injective over G(1,1) and hence over G(2),
this implies that P ® D? is weak injective over G(2).

This means that it suffices to show that Extg;(z) (lN)%) is 2-free. For this we have
the following diagram with exact rows and columns.

0 0

0——=B—— Extog(Q)(Elz) ——U——=0

0——B—— Ext%(z)(D%) —Uy——0

where B is as in Theorem 7.2.11 and the column on the right is as in Lemma 7.3.5.
Since B and Uy are both 2-free in our range, so is Ext%(Q)(Ef). O

We will show that Ext¢y, 1) (P ® D) and Ext¢ 1) (P ® E?) each admit filtra-
tions whose associated bigraded objects are comodules over P(1)., and analyzing
them will lead to a proof of Theorem 7.3.15.

As in the above lemma, E3 is easier to handle. We have

(7.4.5) Exte 1 (P ® EY) = Extg ) (EY) = Z/(P){’Yki k> 2}~
No filtration is necessary here since it is annihilated by I5, and we have
Bxtoy (BD) = 2/0){ s > 2} o Bxtp, (2/0).

The case of ﬁ% is more complicated.

7.4.6. LEMMA. Let
M = Extg 1) (P ® D).

In our range it is generated by the following set.
{@'/j,ki 1 <j,k<p,i>j+k—1}
U{Bi/j,min(p+1,i+2j)1 1<j<p,i> p}

U{Bi/p-i—l: i>p+ 1} U {5p2/p2—j1 0<y <p}
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Here
i = g0 (1= ()= 5,)7)
ik = ‘ _
/] pkv{ p 2p
where x = ppvflfpvg and y = vaglfpvg
0 forjk<p+1
Qe na for (j, k) = (p+1,1)
. — B — or s =
_ % p) pu , J P
phv vt B (z) vy Pug N ( i ) vy P2
pv{ﬂ”l p pv{Jrl 2p pv{+17p
fork=p+1.

It has a decreasing filtration defined by
1Bijjll =i+ [i/p] — § — k.

The above set is a Z/(p)-basis for the associated bigraded object, which is a P(1).-
comodule. Its structure as a P(1)-module is given by

7“1(Bi/j,kz) = jBi/jH,kq
2\ = .
(p> 3i—1/j—1,k—1 for pli
Tp(Bi/j,k) = iﬂ:i—l/j—l,k forj>1 '
iBi/j4p,1 for (j,k) = (1,p+1) forpti.
0 forj=1andk <p+1.

Note that Bi/p—i—l is a unit multiple of the element u;_,_; of Theorem 7.3.4.

PROOF. Recall that g(E?) was determined in Lemma 7.2.2, which implies that
in our range,

o 2 (1 — ;)
9D = )Y
_ 1 2P (1 —x) n 2P (1 = x)
(1—2)1—ax9) \ (1 —2P)(1 —22) (1 —aP*)(1—z3)

a?’ (1 — x3)
*(1_37173)(1—954))
T -m)? (-2 0—a)—n3) 1-a
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so we have

9(PO) (o po \ i
o) = L (9B +9(BD)

= (1—aP)(1—abh) <(1 —27)(1 — 22)2 + (1—2)(1 —2P*)(1 — a3)

. 22P%+p N zP°
1—a2r)1—-2b)(1—23) 1-x
_ aP(1— 27" ) (1 — aB) N P’ N z?’
(1 —2P)(1 —x2)? l—z 1-=z
R P +p—i 2P zP°
— Jjp 2 2 .
Zx (171'2)2—‘_ Z 1— a9 +17x2+1—x

1<j<p

The four indicated subsets correspond to these four terms.
In order to show that we have the right elements, we need to show that for
each indicated generator z, the invariant element

actually lies in P ® M. For dimensional reasons we need only consider the cases
where a < p* and b < p®. Thenif a > p? or b > p, 4 (2) vanishes if both 2 (z) and
r0,p(z) do. But for each of our generators, the correcting terms (i.e. Bimk — Bisjk)
are chosen to insure that 7,2 and ro, act trivially.

Our putative filtration is similar to the I-adic one, which is given by

||B¢/j,k|| =i—j—k.

Note that we are not assigning a filtration to each chromatic monomial, but to each
of the generators listed in Lemma 7.4.6.

Roughly speaking, it suffices to show that an operation r, ; raises this filtration
by the amount by which it lowers the value of [i/p]. Since 7,2 and 7o, act trivially,
it suffices to consider the action of r; and 7,. The actions of r; on vy and vz, and
the action of 7, on vs raise I-adic filtration by at least p — 1 and can therefore be
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ignored. It follows that modulo such terms, we have

q

- w -
T <6i/j,k> = —erijﬂ = JBi/j+1,k-1
1
_ { 0 for p|j
—jBijj+1,k—1 forptj
- ' .
> v —j vl
0 fork<p+1
+ ,Ui i Ui7p711}3
(i+1) J2+p1<)2j fork=p+1
pvy p pvy
i1 0 4 fork<p+1
=2 e i\
prol ™! T ———— fork=p+1
pvy b pvy
,[: 2 .
(p) Bi—1/j-1k-1 for pli
= iﬂ:i—l/j—l,k for ] >1
iB8i/j4p1 for (j,k) = (1,p+1) for p 1.
0 forj=1and k <p—+ 1.

Note that r; never changes the value of i or the I-adic filtration, while r, raises
the latter by 1 precisely when lowers the value of [i/p] by 1. It follows that the
indicated filtration is preserved by r; and 7.

The associated bigraded is killed by I because multiplication by it always raises
filtration. O

In what follows we will ignore the elements

{ﬂpz/pz_j: 0<y <p}.

They are clearly permanent cycles and will thus have no bearing on the proof
of Theorem 7.3.15. From now on, M will denote the quotient of M (as defined
previously) by the subspace spanned by these elements.

To explore the structure of FyM further, we need to introduce some auxiliary
P(1).-comodules. For 0 <4 < p let

ci=z/w{w:0<i<if,

and let C_; = 0. Let
H = P(1).0p0).Z/(p).

7.4.7. LEMMA. (i) Fori >0, letc(i)=p [i';p] —i—1. There is a 4-term
exact sequence

0 ——> 3°Cliy 1 S°H E) M —— sl 0y ——0

)
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where

o= |Bi+2| fori=—1mod (p)
|Bit1] = |wi| —|b11] otherwise.

When i is congruent to —1 modulo p, then c(i) = 0 so the first term is
trivial. The sequence splits in that case, i.e. for j >0

EéPJrl)j*lM = Slbvinl g @ nlwi-1lz ) (p).
The value of ||u;|| is never congruent to —2 modulo p + 1, and for j > 0
B -tag — s,

(ii) Fori not congruent to —1 modulo p, there is are maps of 4-term sequences

0 — 2°Cliy1 YeH BN —— sl o) ——0

T |

0——s EeC’c(i)_l e EeCp,1 M‘ Ee+|t’1)c(i)|cp71 e E‘ullcp(l)_l —0

T 7’zv(c(i)l)T T

00— 5/ (p) —> £°C, | — 2= 5 HIC, SI1Z/(p) —> 0

i which each vertical map is a monomorphism. The bottom sequence is a
Yoneda representative for the class by, € Ext?g(l)

PRrROOF. (i) Let 791 = rpr1 —r17p € P(1). It generates a truncated polynomial
algebra of height p which we denote by T'(r¢ 1). It follows from 7.4.6 that

TO,l(Bi/j,k) = iBi—l/j,k—L

k—1

The element on the right is nonzero modulo higher filtration when ¢/p is not a

plocal integer, i.e. when k is not too small. Thus up to unit scalar we get

b Bisp-1/ips1) = (Z r 1) Bisjz
p—1
_ { @/j for pti
Bisj2  for pli
rg,zl(ﬂpi+p—1/j7p) = Bpi/
This means that each element in the first two subsets in Lemma 7.4.6 is part of free
module over T'(rq,1).

In P(1), r, commmutes with 71, and H is free as a module over T'(rp, ro.1)
on its top element z. It is characterized as a cyclic P(1)-module by r1(z) = 0 and
Tp(p—1),p(2) # 0.

In Eép+1)j—2M, the top element is Bpj+2p_2/p)p+1- It is killed by 71, and up to
unit scalar, }

Tp(p—1).p(Bpj+2p—2/p.p+1) = B
SO Eép+1)j_2M has the indicated structure.

In Eépﬂ)j%M for j > 0, upj—1 is killed by both r; and 7, and generates a
P(1)-summand. It is not present for j = 0. For j > 0, the class Bpj+2p_1/p7p+1
generates a summand isomorphic to a suspension of H as claimed.
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In E(()p TDINS consider the sub-P(1)-module generated by the element z =
Bpj+2p—1/pp- Up to unit scalar we have

r1(z) 0
ro.p-1(2) Bpi+p/p
Tp-1pp—2(2) = Bpjt2
rpp—1(x) = 0.

Thus there is a homomorphism from the indicated suspension of H to E(()p DIy
sending the top element to = with kernel isomorphic to C),_>. Its cokernel is a copy
of C,—1 in which top element is the image of Bpj+2p_1/p_17p+1 and the bottom
element is the image of Bpj+p+1/p+1'

The remaining cases, Eép+1)j+kM for 1 < k < p— 2, are similar. The top
element in the image of H is Bijrka,l/p,pH, and the top and bottom elements in
the cokernel are the images of Bpj+k+2p_1 Jp—1,p+1 and Bpj+p+1+k /p+1 Tespectively.

(ii) The existence of the map of follows by inspection. Consider the case p = 3
and ¢ = 0. Then the diagram is

0 »i2cy N2 EOM »8C 0
0 2120, $20, — = Y0, = N80, =0

The following diagram may be helpful in understanding the vertical maps.

* T 53/3 34/4
B2 53/2,2 54/3,2

T !

53/1,3 ~——— 54/2,3 ~—— 55/3,3

! !

34/1,4 <~ 55/2,4

Here the short vertical arrows represent the action of 1, and the longer arrows
represent r3. The named elements form a basis of E§M and the asterisks are
elements in X12H which map trivially to E§M. H consists of all elements in the
first three rows except (3, /4- O

We will use Lemma 7.4.7 to determine Extp) (EoM) in the following way.
We regard the 4-term sequence of 7.4.7(i) as a resolution of 0, apply the functor
Extpq). (T(()l) ® -), and get a 4-column spectral sequence converging to 0. It turns
out to have a ds that is determined by 7.4.7(ii), and this information will determine

our Ext group.



272 7. COMPUTING STABLE HOMOTOPY GROUPS WITH THE ANSS

In order to proceed further we need to know

EXtP(l)* (T(()l) ® H) and EXtP(l)* (Tél) ® Cl>7

where v
' =Thepp. Z/(p)  with Ty =T, .
This is a comodule over P(1)..
We will abbreviate Extp ;) (T4 @ N) by F*(N).

Since T(()l) ® H = P(1),, we have

(ra8) peran = { 0 Bl O

Next we compute F*(Z/(p)). There is a Hopf algebra extension

2
(7.4.9) Z/(p)[t]/(7 ) = P(1) — Z/(p)[t2]/(t5)
and we have
Extz)(p)(t21/(2) = E(h2,0) @ P(b2,0)
where
2 2
ha o € Ext!2® —1 and by € Ext>?® -1
In particular Ty = Z/(p)[t1]/(# ), so
(2)
(7.4.10) EXtP(l)* (TO ) = EXtZ/(p)[tQ]/(tg) = E(hz’()) ® P(bg}o)

where hg o € Ext12P° =2 and bao € Ext22P°2p,
To compute F*(Z/(p)), we will use the long exact sequence

(74.11) 0 7 p——

sple T 2 st e T T

This leads to a resolution spectral sequence converging to Extpy), (Tgl)) with

E3t = E(hy1,hao) @ P(by1,bap),

where
1,0 0,1
h1’1 c Ell y h2,0 € El ’
biy€ EY°, and byoe EVZ

Alternatively, one could use the same resolution to show that

E (") = E(hi1) @ P(br,y)

xt
Z/(p)[t)/ ()
and then use the Cartan—FEilenberg spectral sequence for (7.4.9). It is isomorphic
to the resolution spectral sequence above.
Before describing this spectral sequence we need some notation for certain
Massey products.

7.4.12. DEFINITION. Let i be an integer with 0 < ¢ < p. Then ix denotes the
Massey product (when it is defined)

<h1,07 ey hl,Ov l’>
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with i factors h1 o, and piz denotes the Massey product (when it is defined)
<h1,17 ey hl,la l’>
with © factors hy 1.

Under suitable hypotheses we have by o € p —i - iz and by 12 € p(p — i) - piz.

7.4.13. THEOREM. The differentials in the above spectral sequence are as fol-
lows: _

(a) d3(hggb%0) = ih11hs gbuibsy's

(b) dap—1(h50h11bh 0 ") = h5 obF 1 by,
where ¢ = 0 or 1. These differentials commute with multiplication by hago, h11,

and by 1, and all other differentials are trivial. Consequently Extp(l)*(T(()l)) s a
free module over

P(bg,o) ® E(ha,0)
on the set
{53,11 0<i<p-— l}U{hlego; 0<i<p-2}.

There are Massey product relations

hiabhg €pli+ )by, and b7 €plp—i—1)hibh,
for 0 <i <p-—2. We will denote this object by R.

PROOF. In the Cartan—Eilenberg spectral sequence for (7.4.9) one has
da(hoo) = £hiohia

since the reduced diagonal on t5 is ¢t; ® t§. Now we use the theory of algebraic
Steenrod operations of A1.5 and the Kudo transgression theorem A1.5.7. Up to
sign we have BP%(ha) = ba,g, SO

d3(bao) = BP(h1oh11) = B(h11h12) = h11b1a

as claimed in (a). Then A1.5.7 implies that
dop—1(h1ab11b5 ") = Bha2b ) = bTEY,

S0 dgp,l(hmbg;)l) = b} | as claimed in (b). The stated Massey product relations
follow easily from (a) and (b). O

To compute F*(C;) for 0 < i < p, we use the spectral sequence associated with
the skeletal filtration of C;. In it we have

E}F = FR(sPMZ/(p)) for0<j<i and  d,:EPF — BITTRHL
We will denote the generator of E{"O by x,; and write zo as 1. Since

T(()l) ® Cp_y = T(()z)’

its Ext group is given by (7.4.10). There is a pattern of differentials implied by the
Massey product relations of Theorem 7.4.13.
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7.4.14. PROPOSITION. In the skeletal filtration spectral sequence for
we have the following differentials and no others.

dk+1(37pjh§,oblf,1)
= Zp-k-1h5oh1,1b5, for0<k<j<i
dp—1- k(xpjhg,ohl,lbg,o)
= Zyakit-phs bt forp—1—j<k<p-1-j+i
and 0 < j <1,
where e =0 or 1.

The following diagram illustrates this for p = 5.

/ / / 220
$5h1 1 $10h1 1 $15h1 1 $20h1 1
dy
51,1 $5bl,1 $1ob1,1 $15b1,1 1’20171,1
do ds do
h1,1b2,0 xshl,lbz,o Ilohl,lbz,o I15h1,1bz,0 $20h1,1b2,0
d3 dS
b2 x5b? Z10b? 1502 Zaob?
(7.4.15) 1,1 5911 10911 15011 2007 1
d3 dS
2 2 2 2 2
h1,1bz,o x5h171b270 x10h1,1b270 $15h1,1b270 $20h1,1b2,0
///
3 3 3 3 3
b1,1 $5b1,1 ='1710b1,1 55151’1,1 1'20171,1
dy
3 3 3 3 3
hi 1172 0 $5h1 152 0 $1oh1 152 0 3315h1 152 0 1720h1,1b2,0
4
$5b1 1 1‘10b1 1 £15b1 1 x20b171

Each row and column corresponds to a different value of k£ and j respectively. The
skeletal filtration spectral sequence for Cp_; is obtained by tensoring the pattern
indicated above with E(hgo) ® P(b5,). Note that the only element in the jth
column not on either end of a differential is xpjb{m which represents b;o.

The skeletal filtration spectral sequence for C; is obtained from that for Cj,_;
by looking only at the first 4 + 1 columns.
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Now we consider the resolution spectral sequence converging to 0 associated
the 4-term exact sequence of Lemma 7.4.7(i). In it we have

B = F*(SCeiyn)
By = F(°H)

EY = F(xE M)
By = F(EIC.);

each of these groups is graded by dimension. The last differential here is
dy : BY® — B3,

It is an isomorphism and hence has an inverse since the spectral sequence converges
to 0. The bottom dimension is e = |By(;)41]- By (7.4.8) we have

pls _ Z/(p) concentrated in dimension e for s =0
L7010 for s > 0.

The bottom class here is killed by a d; coming from the one in E11 5. Above the
bottom dimension, the only differentials in addition to the ds above are

dy: ES® - E2*' and  dy: EY® — EPC

It follows that above dimension e there is a short exact sequence
(7.4.16) 0 — cokerds ! By Fs(ZeEg(i)M) N ker ds! ——0,

where d; ! denotes the composite

d;
Fs (Zbl,l Cc(i)) Eg,s 3 Eg,s+2 Fs+2 (Cc(i)—l)

o

Here coker oZgl is a quotient of FS'*‘I(ZeC’C(l-)_l) and ker ng is a subgroup of
FS(E““‘C (i) Note that |u;| —e = |by1] in all cases. Lemma 7.4.7(ii) implies
that d3 , roughly speaking, multiplication by by ;.

We illustrate this for the case p =5 and ¢ = 0. The 4-term sequence is

0 $40C, YOH — = BIM —— ¥?0Cy) —— 0.

Referring to (7.4.15) we see that the product of by ; with any element in F*(Cy)
(except 37201?‘11717 which is out of our range) is killed by a differential originating in the

last column, which means that it is alive in F*(C3). Thus d3 ' is a monomorphism
in our range, so its kernel is trivial and the dy in (7.4.16) is an isomorphism. The
cokernel of dgl is the quotient of

40 2 2 3 3
EPE(hayp) ® {17 xsh1 1, 5011, 10011020, 1007 15 T5h1,103 5 T1507 1, h1,1b2,0}

obtained by killing the bottom class. The classes hs ¢ and z15h17 map to 2 and
B5/5- By inspection this leads to the desired value of F* (EQM).
For ¢« = 1, the 4-term sequence is

0 28802 288H e E(%M —_— 228803 — 0.
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Again Jg_ !'is a monomorphism in our range. The cokernel of dg is the quotient of

Y88 E(ha ) ® {1, z10h1,1, T5b1,1, T5h1,1b2.0, 1‘105%,1, hl,lbg,o}

obtained by killing the bottom class. The classes hs ¢ and xi0h11 map to 33 and
fB5/4- By inspection this leads to the desired value of F™* (EAM).

In order to see that this works in general it is useful to compare the comodules

T(()l) ® E{M with certain others with known Ext groups. Let

do dy
Iy

(7.4.17) 0 7' Fo

be a minimal free resolution of T(()l). Its structure is as follows.
7.4.18. PROPOSITION. The free P(1).-comodule F; above is
P(1). fori=20
il p(1), @ $0-Dlbol+tt1p(1),  fori=2 and 0 <i <p

yilb2ol 4101 p(1), @ Dbl (1), fori=2 +1 and

F;, =
0<i<p-—1
E\t2|+(P*1)|b1,1\P(1)* fori=2p—1
Ep‘bz,o|Fi72p fOT‘ i > 2p.

In P(1) let v = P, y = PP, 2 = yx — xy. Then there are relations
2P = 0, [JU, Z] =0, [yv Z] =0, and yp = xzp717

(corresponding to the four generators of ExtQP(l)*) which imply that 2P = 0. Then
d; is represented (via left multiplication) by a matriz M; over P(1) as follows.

Z ] fori=0
[ yp*i/ —gzP2 . . . .
y fori=2¢' —1 with0<i <p
< -y
Moi+1 ! p—2
My=4 | Y (wy + (' + 1)z)z fori =2 with0<i' <p—1
z —yP
[z —y ] fori=2p—2
[ yP 1Pl ] fori=2p—1
M;_2p for i > 2p.

Let K; denote the kernel of d;, and consider the following diagram with exact
rows and columns for 0 < i < p.
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0 0
0 X; EmP(l)* Ks; Y; 0
doi— doi—
0 Koi g —— > Fpy | —— > Ky 0
(7.4.19)
Y P(1), == X% P(1).
Y; 0
0

where a; = (i — 1)|bo,o| + [}, bi = (i — 1)|b1.1| + |t2|, and the middle column is
split. We will see that the top row (up to reindexing and suspension) is the 4-term

sequence of Lemma, 7.4.7(1) tensored with Tél). For this we need to identify X; and
Y;.
X is the kernel of the map represented by the first column of Ms;_1, namely

yr
]
This kernel is the ideal generated by y*2P~!, which is

ZaiTg(pfi)il _ Ei|bz,o\—|b1,1\Tél) ® Cpflfi-
Y; is the cokernel of the map to X% P(1), represented by the bottom row of

Ms;_o, namely
[ z ] fort=1
[z —yPt7i ] forl<i<p.
This cokernel is
Ay v R S L SO Y o
This enables us to prove the following analog of Lemma 7.4.7.

7.4.20. LEMMA. For 0 < i < p there are maps of J-term ezxact sequences

0— > NaTh — - 3 p(1), Ka; peitlbial e g

| | |

—k —(2) r
0> RuT)y — s e T

. Zi‘bl"lITéQ) s Eai+|b1,1|T’g >0

SoT
| N
STy

0—>xuT ) o xa® T watifIT? et g
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where k = p(p—1i) — 1, the top row is the same as that in (7.4.19), and each vertical
map is a monomorphism.

PROOF. The statement about the top row is a reformulation of our determina-
tion of X; and Y; above. Each vertical map is obvious except the one to Ko;. Ko;
is the kernel of the map do; from

Fy; = Zi|b1,1|p(1)* @ E(i—l)\b2,0|+|t§’t2\P(1)*
(note that i|by 1| = a; + |2P77)) to

Foipq = S0l HI8 p1), @ wilbralit=l p(1),
represented by the matrix

i+1 ; -2
- +(@+1 P
My — [ v e gyp_gz)z } |

The map X% P(1), is the restriction of dg;_1, under which we have
i 1
tzln(p ) sy [ 0 } ’

) in K5;. This means that

the top element in Zi““»l'f()z) must map to an element of the form

[ A ]

so this is the image of the bottom element in Z“bhﬂf(()z

€2

where &1 and €5 are each killed by y?~!. We also need this element to be in Ko;,
so it must satisfy

0 . _ tf(p71)+51
o) - om ],

[ PP 4yt (eg) — (zy + (i +1)2)2P~>(e2)
z(e1) — yP~"(e2)

for a certain unit scalar ¢. We can get this by setting e; = 0 and making €5 a linear
combination of tlf(pfzﬂ)tg_l and t1+p(p7171)t’2’_2 chosen to make the element in
the top row vanish. Such an 5 will be killed by y?~*, so the element in the bottom

row will vanish as well. O

This means that the Ext computation for the K; is essentially identical to that
T(()l) ® EyM described above. It follows from the way the K; were constructed that
for all 7 and s,

7.4.21) Bxtsy, (K:) = Exts, (Ko) = Exts, (T
(7.4. wtp(yy, (Ki) = Extp ) (Ko) = Extp 0 )
These groups are known by Theorem 7.4.13.
We need the following analog of Theorem 7.4.13 for these comodules, whose

proof we leave as an exercise for the reader.
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7.4.22. THEOREM. In the Cartan-Eilenberg spectral sequence converging to
Extp(1y, (K2i) based on the extension (7.4.9) for 0 < i < p, Ey is a subquotient
(determined by the dy indicated below) of

{bé,o} ® E(h2,07 hl,l) ® P(b270)
P(bl,l) ® ‘ fa | | |
{P1.aho.obis's (o = i) (1 sho.obs), B 1o pibd |-

Here we are using the isomorphism of (7.4.21) to name the generators in the two
indicated sets. Thus we have

by o, hihoobly, b, € Ep°
p(p — i)h11haobly, pibh, € Ey°
hi € Ey° by € E3°
hao € Ey* bro € E57,
and the differentials are (up to unit scalar)

dl(bé,o) = pl'bli,l

dz(hzobé,o) = bi1- h1,1h2,obé;)1
ds(h50bs,0 boo) = (i+k)haahsobiabls" Do
fork>0ande=0 or 1
dop—i—1(h11bh o ™" bh ) = BT obi,
d2p72i72(h1,1h270b12)’617i : bé,o) = b]ﬁi plp — i)h1,1h2,0b51)1~

The last four differentials listed above should be compared with the first four
listed in Theorem 7.3.15. The first differential of Theorem 7.4.13 corresponds to
the last one of 7.3.15, while the second differential of 7.4.13 would correspond to
one in 7.3.15 that is out of our range.

Thus Theorem 7.3.15 is a consequence of the relation between the Ks; and
EoM.

5. Computing 7. (S°) for p = 3

We begin by recalling the results of the previous sections. We are considering
groups Ext®" = 0 for ¢ < p®|v;| (where |v;| = 2p — 2) with p > 2. For each odd
prime p, we have the 4-term exact sequence (7.1.19) of comdules over BP,(BP)

0 BP, DY D! E2 0

in which DY and D} are weak injective (meaning that their higher Ext groups
vanish, see 7.1.5) and the maps

Ext®(D?) —— Ext®(D}) — Ext’(E?})
are trivial. This means that the resolution spectral sequence collapses from F; and
we have isomorphisms

Ext’ (DY) for s=0
Ext® = { Ext’(D}) fors=1
Ext*"?(E?) fors>2
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We have determined Ext(To(l) ® E?) in Theorem 7.3.15, which can be reformulated
as follows.

7.5.1. ABC THEOREM. Forp > 2 and t < (p® + p)|v1|
Ext(T\" ® E2) =A@ Ba C

where A is the Z/(p)-vector space spanned by

i
{ﬁi:;j:i>0 and1=0,1 mod (p)}u{ﬂpz/pzj: O§j<p},
1

B=R® {% € Ext!2Fe* D=2 +p-2) . > 2}

and
oSt — @R2+s+2i,t+i(p2—l)q.
i>0
Here R = Extp(l)*(Z/(p),T(()l)) as described in Theorem 7.4.13. O

This result is illustrated for p = 5 in Figure 7.3.17. Each dot represents a
basis element. Vertical lines represent multiplication by 5 and horizontal lines
represent the Massey product operation (—,5, ay), corresponding to multiplication
by vi. The diagonal lines correspond either to mulitplication by hg ¢ or to Massey
product operations (—, hi1, h11,...,h11).

The next step is to pass from this group to Ext(E?) using the small de-
scent spectral sequence of Theorem 7.1.13. Alternatively one could observe that
E? = DBP,(cokerJ) and that the AdamsNovikov spectral sequence for
7. (T'(0) (1) A coker J) collapses for dimensional reasons. We can then use the topo-
logical small descent spectral sequence of Theorem 7.1.16 to pass from this group
to 7. (coker J). We will do this using the input/output procedure of 7.1.18.

We give a basis for N. Recall the the input I in this case is N ® E(hq ).

7.5.2. PROPOSITION. For p =3, N as in 7.1.18 has basis elements in dimen-
stons indicated below.

10 34 72 b2,0f2 93 ha,ous

26 (o 74 Bs 96 h2,072

34 B3/3 = b11 78 ug 97 ha,086/3

38 ,83/2 81 2 97 h2,056/3

42 33, 83/1,2 82 Bey3 101 h11B6)1,2

49 . ob1 83 Bom = haob? 104 Bous

53 h1183/1,2 86 B2 105 ng = h11uz = 6063
57 m = hi1uo = 6833 89 m3 = hiyuz 106 Bz, Bo /9

58 4 90 Bs, Bs/1,2 107 y252 O

68 b7 92 hi172
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The notation nx for an integer n denotes a certain Massey product involving x
as in 7.4.12. 3z and 6z denote hiix and (hi1, hi1,x), respectively.

Now we turn to the list O of 7.1.18, shown in 7.5.3. Elements from N are
underlined. A differential is indicated by enclosing the target in square brackets
and indicating the source on the right. Hence such pairs are to be ommited from
the final output. The computation of the differentials will be described below.

7.5.3. THEOREM. With notation as above the list O of 7.1.18 for p = 3 is as

follows.

10 1 57 [267)B4 91 B2

13 a1/ 59 [ 53 Ba]arm 2185

20 57 60 [B7]a1 s 92 163

23 a1 57 62 5153 hi1vs

26 B2 65 o1 8133 [aruz + B1Be/3]h2,0uz

29 ay B2 68 B33 £ BaB1 = wes 93 2862

30 3} 71 [a176s)b2,05 o1 B

33 [alﬁf]@ 72 3232 94 a1 8172

36 (15 74 Bs B s

37 28¢ 75 2268 95 [a1372]h2,072

38 B3/2 o1 8333 a151086/3

39 15152 77 [0 Bs]uz 281 85] a1 ha,ous

40 B¢ 78 B3 = Pizes 96 [B186/2]h2,086/3

A1 [onB5/2]B5/1,2 81 72 99 2- 37y

42 B3 205 100 B2fs = 2 - 2862

45 2f33/2 82 Bo/3 [8186)h11B6/1,2
o133 183 53] B2 2063 Bs

46 (1B 84 a2 101 253235

47 2/3¢ B10s 102 57663 = i5§/3

48 [B1B3/2]h2,0b1,1 85 2033 36172

49 o 832 a1f6/3 103 |1 B2 5] Bouz

50 67 [a1 37 B3] a1 B [o1 81 B6]a1hi1Bs 1,2

52 (32 86 Be /2 104 ay 3279
[B163]h1153/1,2 88 8153103 (B3 B5]na

55 o133 89 [0186/2)86/1,2 105 [alﬁg’/g]@

[18183]a1hi1Ps)1,2
56 (B3 B2]m

90 fs

106 B7 £ Bo /o
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7.5.4. REMARK. In the calculations below we shall make use of Toda brackets
(first defined by Toda [6]) and their relation to Massey products. Suppose we have

spaces (or spectra) and maps W Lox %y B 7 with gf and hg null-homotopic.
Let f: CW — Y and g: CX — Z be null homotopies. Define a map k: YW — Z
by regarding XW as the union of two copies of CW, and letting the restrictions of
k be hf and g(Cf). k is not unique up to homotopy as it depends on the choice
of the null homotopies f and g. Two choices of f differ by a map YW — Y and
similarly for g. Hence we get a certain coset of [XW, Z] denoted in Toda [6] by
{f,g,h}, but here by (f, g, h). Alternatively, let C;, be the cofiber of g, h: C; — Z
an extension of h and f: XW — C, a lifting of £f. Then k is the composite hf.

Recall (A1.4.1) that for a differential algebra C' with a,b,c € H*C satisfying
ab = be = 0 the Massey product {(a, b, ¢) is defined in a similar way. The interested
reader can formulate the definition of higher matric Toda brackets, but any such
map can be given as the composite of two maps to and from a suitable auxiliary
spectrum (such as Cj). For example, given

Xo N x, & Iy x,

satisfying suitable conditions with each X; a sphere, the resulting n-fold Toda
bracket is a composite X" 72Xy — Y — X,,, where Y is a complex with (n — 1)
cells.

The relation between Toda brackets and Massey products and their behavior
in the Adams spectral sequence is studied by Kochman [2, 4, 5]. The basic idea
of Kochman [4] is to show that the Adams spectral sequence arises from a filtered
complex, so the spectral sequence results of A1.4 apply. Given Kochman’s work we
will use Toda brackets and Massey products interchangeably.

7.5.5. REMARK. In the following discussions we will not attempt to keep track
of nonzero scalars mod (p). For p = 3 this means that a £+ should appear in front
of every symbol in an equation. The reader does not have the right to sue for
improper coefficients.

Now we provide a running commentary on this list. The notation 22 denotes
the Massey product (o, a1, ). If d.(y) = ayx then ayy represents 2z. Also note
that o122 = +6;x.

In the 33-stem we have the Toda differential of 4.4.22. The element oy 332 is
vlvg
9U§

(7.5.6) (a1, 01, B7) (B2, 3, 1)

The differentials shown in the 41-, 48-, 52-, and 55-stems can be computed
algebraically; i.e., they correspond to relations in Ext. The elements a1 33,2, 81332,
and 183 are the coboundaries of

a permanent cycle giving 233. The coboundary of gives

2,343 3
ViUSt] U3l

3 342 3
vy vyt | U3la _

3 2
vy 3vg

9" 9un, 3v3

respectively. We also have 3(2833/2) = a1fs, ie., m45(5°) = Z/(9).

For the differential in the 56-stem we claim a1 = 43203/3, forcing ds () =
+33 B2 in the Adams—Novikov spectral sequence. The claim could be verified by
direct calculation, but the following indirect argument is easier. (23,3 must be

and
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nonzero and hence a multiple of a17; because oy B{’ (B2 # 0 in Ext and must be killed
by a differential.
However, we will need the direct calculation in the future, so we record it now

for general p. Consider the element

. . 2 2 S

Vi tog(ty — 61 TP) — i (s — t1th — tot? 4+ 47 PP Lol PR g 1)
by
—1)y o ) )
Z ( ) Pl with i > 0.

0<j<p J

21};+P

p*vy (i +p)

Straightforward calculation shows the coboundary is

. . . 2
(7.5.7) vt b n 2P 30y Phig vy (vath + vhts — vat] T —wsth)|ty

UL (i +p)vy pu1 ’
which gives the desired result since the third term represents 7;. The second term
is nonzero in our range only in the case i = p = 3, where we have *ain; =

6,3 5,6
Bab11 + Be3b1,0. This element is also the coboundary of gi)tfl + 1;)21)%1, so agng = 0.

For the differentials in the 57- and 60-stems we claim 83 = 4+3?34 + B§/3ﬂ1
in Ext. This must be a permanent cycle since [ is. It is straightforward that
d5(ﬂ§/3) = +24% in the Adams-Novikov spectral sequence, so we get ds(34) =
+23?. Then Y = ;287 = 0 in 7.(S°), so dg(a184) = 3.

To verify our claim that 85 = +£78, + 6165/3, it suffices to compute in

Ext(BP;/I2). The mod I reductions of 32, B4, and B3/3 are v2b1 o + ko, v3b1 0,
and by 1, respectively, where ko = (hio, h11, h11). A Massey product manipulation
shows k3 = b170b31 and the result follows.

Now we will show

(7.5.8) Tes = (@1, B3/2, Ba)-

We can do this calculation in Ext and work mod I, i.e., in Extp, and it suffices to
show that the indicate product is nonzero. We have

(h10, h1ohi2, (hi1, b1, hio)) = (Rio, hio, ha2(hat, hat, hio))
= (10, P10, (h12, hi1, hi1)hio)
= b1,0(h12, h11, h11)
= (b1,0h12, h11, h11) = (b1,1h11, hat, han)
= b%,1 # 0.

This element satisfies 51263 = g To show ayx¢s = 0, consider the coboundary
of

v%bzo + vausbi g n Ulvg’bLo
3v; 9v$
Next we show that there is a nontrivial extension in the 75-stem. We have
Bilar, a1, Bsj2) = (B, 1, 1) P32
= (B2,3,61)P3/2 by 7.5.6
= 3(B1, B/2, B2) = 3({au, a1, a1), B2, B2)
= 32(au, B3)2, B2) = 3276s.
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For the differential in the 77-stem note that oy 5 is the coboundary of uy =

6 2
Vg + V53 V3
Sv‘l1 3vy

This brings us to the 88-stem, where we need to show B?z¢s = 0. Since xgg =
(a1, a1, 87, 51) we can show SB3xgs = 0. There is no element in the 99-stem other
than B1n3 to kill it, so the differential follows.

The differential in the 89-stem is similar to that in the 41-stem. The one in the
92-stem follows from 7.5.7. )

In the 95-stem a;hi172 the coboundary of 323:52. The differential in the 105-
stem is a special case of 6.4.1. The others are straightforward. The resulting
homotopy groups are shown in Table A3.4.

6. Computations for p =5

We will apply the results and techniques of Section 9 to compute up to the
1000-stem for p = 5. Naturally the lists I and O are quite long. The length of O,
i.e., the number of additive generators in coker J through dimension k, appears to
be roughly a quadratic function of k£ in our range. The conventions of 7.5.4 and
7.5.5 are still in effect.

The highlight of the 5-primary calculation is the following result

7.6.1. THEOREM. For p=5, 317 #0 and there are Adams—Novikov differentials
dsz(v3)=pB1%. Consequently the Smith—Toda complex V (3) does not exist, and V (2)
is not a ring spectrum. (I

7.6.2. CONJECTURE. For p > 7, 6{'27’7 # 0 and ﬂfzfpﬂ = 0. Moreover

(V3,72 -y Y2) = 6£2p71)(p71)/2 where o appears in the bracket (p—5)/2 times. O

We will prove 7.6.1 modulo certain calculations to be carried out below. First
2
we give a classical argument due to Toda for 87 T = 0. We know oy 87 =0 from
Toda [2, 3]. It follows by bracket manipulations that w; = (a1, a1, ..., a1, 87") is
defined with (i 4 1) factors ey and 1 < ¢ < p—2. The corresponding ANSS element
is alﬁ;;/p. Now since 81 = (a1, ..., a1) with p factors we have [using A1.4.6(c)]
_ p>—2p _ pp°—2p+1
Oélwp_g = <051,...,Oél>51 —ﬂl .
Hence 5’1927” *1 s divisible by o147 and is therefore zero. The corresponding
Adams-Novikov differential is d, (a1 57,') = 87 7" with r = 2p° — 4p + 3.
We will give a more geometric translation of this argument for p = 5. Let

X; =T(1)" = 8°U,, ¢ U,, - -U,, €9 The Toda bracket definition of 3 means
there is a diagram

(7.6.3) R — et
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where the cofiber of the top map is X,. From o137 = 0 we get a diagram

2190)(1

S
,85
5190 1 SO,
We smash this with itself three times and use the fact that X3 is a retract of X3
to get

570 .,
|
G570 Bi° g0
Combining this with 7.6.3 we get
g601 5570,

Y4

§79% By 5608 A1 §570 B’ 50

so B2 =0.
The calculation below shows that a16§/5 is a linear combination of (373,
307 B14, and Sra761, where

z761 = {0133, Ba, y2) € BExt"708.

Each factor of z761 is a permanent cycle, so x7¢1 can fail to be one only if one of
the products a1 8384 and (472 is nonzero in homotopy. But these products lie in
stems 323 and 619 which are trivial, so x7¢1 is a permanent cycle, as is Qﬁi”ﬁu.
Since d33(a16§/5) = 8?1, we must have dzz(v3) = 31° as claimed.

The nonexistence of v3 as a homotopy element shows the Smith-Toda complex
V(3) [satistying BP,(V(3)) = BP,/I4] cannot exist for p = 5. If one computes the
Adams—Novikov spectral sequence for V(2) through dimension 248, one finds that
vs € Ext® is a permanent cycle; i.e., v is realized by a map S248 ER V(2). fV(2)
were a ring spectrum we could use the multiplication to extend f to a self-map
with cofiber V(3), giving a contradiction.

Now we proceed with the calculation for p = 5.

7.6.4. THEOREM. For p =5 N as in 7.1.18 has basis elements in dimensions
indicated below, with notation as in 7.5.2. 1; denotes hi1u;—1.

38 B, 222 85 277 m
86 B, 230 Bs 278 Be
134 B3 Bs/1,2 324 by 052
182 B4 245 hoob1 1 325 1y
198 B5/5 = b1 253 h2,085/4 326 B7
206 Bs/4 261 h2,005/3 372 by o33

214 Bs;3 269 h1185/1,2 373 n3
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374 By

306 32

404 B5/555 4

412 2,

420 b2,084

422 By

430 uyg

437 o

438 Broys

443 h2,0b%,1

446 B10/4

451 ha 0b1,185)4

454 B3

459 ha ob1,185/3

462 B1o/2

469 ns

470 B
Bro/1,2

47T ho s

476 h117y2

484 ha 072

485 h2,0B10/5

493 h2 0S10/4

501 ha,0810/3

509 h11B10/1,2

515 b2 om

516 ha o5

517 ng

518 P11

523 Baye

562 b2 o B

563 b2,0m2

564 b2 o7

565 1

566 B12

504 B2 5

002 52,52,
610 b2 B3

612 by o8

613 ng

614 P13

620 b ous

628 by 1w

635 b1,172

636 b1,1510/5
641 hoob? |
644 B5/4610/5
649 hoob3 1854
652 B10/505/3
659 ha 0b2,00s
660 b2 089

662 (14

667 ho.obo.ous
670 ug

675 ha ob1,1u4
678 Bi5/5

682 haob1,172
683 h2,0b1,1810/5
685 3

686 S15/4

691 h20b1,1810/4
694 B15/3

699 11 By

702 P12

706 h2,0b1,1b2’0u13

707 b270’l75
709 19
710 15

Bis/1,2
714 h11b2,072

T17 hooug
724 h117s3
725 h2,0B15/5
732 ha 073
733 ha,0B15/4
741 h2,0P15/3
749 h11B15/1,2
753 b%om
754 ha ob2,.0m5
755 b2 oM
756 h2 0m10
757 N1

758 Pie

761 ba oB272
771 Bays

792 B2 s

800 b3 032
802 b2 o3
803 b2,0m7
804 b2,0512
805 715

806 P17

810 b2 yus
818 by,1b2,0us
826 b2 us
833 b2 7
834 b7 1 B10/5
839 haobt |
842 b2 1 B0/
849 hy b 67
850 b2 s
852 b2,05313
873 M3

854 P1g

857 ha,ob3 Uz



860 by, ous

865 hg gb1,1b2,0us3
868 by 1ug

873 hg)ob%’l’UA
876 525

880 ha,ob? 17
881 ha,0b3 1 B10/5
884 B5/4815/5
889 ha,0b3 1 B10/4
892 824

896 hooha1b2 iz
897 hy1b3 us
899 hg ob2 0613
900 b2,0514

902 P19

907 haobaous
910 w14

915 hg,oby 1ug

6. COMPUTATIONS FOR p =5

918 B0/
923 ha,0b1,1515/5
926 S04
930 ha,0b1,173
931 h2,0b1,1815/4
933 4
934 Pag3
939 11 S14
942 B0/2
944 hy ohy1 b3 u
945 b%’0n5
946 hgohi11b2,0us
947 bz oo
949 115
950 B2

B20/1,2
952 hy1b3 072
957 ha 014

287

962 hi1b2,073
965 h2,08320/5
972 hi1va
980 h2,074
981 h2,0B20/3
989 h11B10/1,2
992 ha,0b2 s
993 b2 416
994 hg ob2 010
995 ba on11
996 ho 015
997 Mg
998 a1

Bas/25
999 b2 ;8o
1000 b2 gus 0

Now we will describe the list O, i.e., the analog of 7.5.3. The notation of that
result is still in force, and we assume the reader is familiar with techniques used
there. We will not comment on differentials with an obvious 3-primary analog,
in particular on those following from 7.5.7. Many differentials we encounter are

o P
periodic under vy or v;.

Since the list O is quite long, we will give it in six installments, pausing for
comments and proofs when appropriate.

7.6.5. THEOREM. Forp =5 the list O (7.1.18) is as follows. (First installment)

38 B

45 a1 1
76 57

83 0415%
86 By

93 a1 52
114 3
121 a, 83
124 1 B9

131 a1 3152
134 B3

141 ay B
152 ﬂ%

159 a1 31
162 3782
169 o1 575
172 B133
179 a1 8183

182 4

189 a1 54

190 87

197 01615
200 B33
205 Zﬁf

206 35,4

207 15385
210 5305
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213 a1f5/4
214 P53
217 1526
220 184
221 a1 f5/3
222 @
227 a1 5184
228 B9
229 [o185)2]B5)1,2
2308
237 2052
a5
238 B
243 239
244 [B1B5 /4] ha,0b1,1
245 a1 5152
248 b5
251 [a1 8185 4]arha b 1
252 [5155/3]h2,085 )4
255 a1 37 B3
258 B B4
259 [a181B5/3]c1h2,0B5)4
260 [5135/2]h2,085)3
265 15754
266 37
268 [8135)h11585/1,2
B2
275 a1 f1Bs]arhi1Bs 1,2

276 57 Ba]m

278 B

281 2]

283 a1 81 B2)arm

285 a1 g

286 5153

293 a131 83

296 5?54

303 a1 8354

304 3%

306 31824

313 1818284

316 5156

319 2%

323 [av1 51 B6]b2,052

324 (7 Bsn2

326 B;

331 [a1 37 Bs)arns
253186

333 oy B

334 B4

341 a1 81 B

342 37

344 37524

351 a1 823234

354 756

357 269

364 5187

369 25786

371 o B1B7]b2,083
372 [BY Balns
374 fg
379 [ B9 Balaans
28187
380 p1°
381 a1 s
382 B3 B204
389 a1 3 234
392 786
395 [281°)83 5
402 7 B
403 31°
404 Bs /5854
= (a1, B1, Bs)a)
= X404
407 253 Bs
411 o waos = B5/42067
412 3155
B1Bs + B34 = a1
417 283 7
418 Bt
419 [muu]%
a1 5108
420 B PB4
422 By
427 27412
13124
429 (o1 Bolus -

7.6.6. REMARK. The small descent spectral sequences of 7.1.13 and 7.1.16 have
some useful multiplicative structure even though 7°(0) (1) (the complex with p cells)
is not a ring spectrum and its BP-homology is not a comodule algebra. Recall
that 7'(0); is the ig-skeleton of T'(1). Then m.(7'(0)y)) is filtered by the images of
7+ (T(0);) for ¢ <p—1. One has maps T'(0); AT(0); — T(0);+; inducing pairings
F; @ F; — Fyyj for i +j < p— 1. spectral sequence differentials always lower this
filtration degree and respect this pairing. The filtration can be dualized as follows.
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A map S™ — T(0); is dual to a map ™ ~4T(0); — S° since DT(0); = L~4T(0);
for i <p—1. An element in 7, (7°(0),—1) is in F; iff the diagram

S T(0)

|

Lmeair0); - — — = S°

can be completed. The pairing T'(0); A T(0); — T(0);4+, dualizes to DT'(0);4; —
DT(0); ADT(0);. If @ € mp(T'(0)p—1) is in F; and B € m,(T(0)p—1) is in F; with
i+ j = p, then we get a map X" DT(0), — S°. If this map is trivial on the
bottom cell then it factors through X™+"DT(0),_; = Xm*t"=4=1D7(0),_;. This
factorization will often lead to a differential in our spectral sequence.

For the differentials in dimensions 323, 371, and 419 recall (4.3.22) that there

2

is an element be o € C(BP,/I2) with d(bao) = (b1o|t] ) — (t]|b1,1). Since by o and
t’fz are both cycles there is a y € C(BP,/I3) such that d(y) = (b1,0|t’1’2) - (tzl02 b1,0)-
Hence the coboundary of

p—1

vy Puibio+ vy —bao) vy Pbin for i >
UL (1+2—p)pv? t=p
is
U%t1|b170 2’Ué+2_p|b171
pU1 (i+2—pp}’
where the second term is nonzero only if i = —2 mod (p). This gives
0 fori>p,i % —2 mod (p)

(7.6.7) a1818; = {

a1B(i+2—p)/aBp/p—1 for i = —2.

Remember (7.5.5) we are not keeping track of nonzero scalar coefficients. The
differentials in question follow.

Next we show that there is a nontrivial group extension in the 427-stem, similar
to that for p = 3 in the 75-stem. We want to prove ;318281 = 52x412. Since
a1 8284 = 412852 we need to look at 5{’2,65/2. We have

515255/2 = 515<a1>041,,85/2> = 515<01a043,55/4> = <515,041,043>55/4
= 1853054 = c1{a1,5, Bs/4) P54 = a1 (a1, 5, 5?/4>
= a1{0q, 5, T412) = Tg12{0, 1, 5) = 52T412.
More generally one has
(7.6.8) 5{725;;/2 = PZ(ﬁp/45p/p—1 + 51B2p—2).
Since
ar{an,5,2412) = 72852 = o1 31 2P

we have

(1,5, 412) = B1B2fa
7.6.5 (Second installment)
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430 B1 6
437 2039
Y
438 Bio/s
440 384
442 [B12404]ha,0b3
444 oy
445 a1 B19/5
261 s
446 B0/
449 [ B g04]rhoobF
450 57 Bs
[515§/4]h2,051,155/4
453 a1810/4
454 B3
455 @7
456 B12
457 [a1 87 Bs|ar ha,obr,1 854
458 B3 B2B4]h2,0b1,1 853
460 159
461 a1819/3
462 B19/2
465 262 s
[a1 87 B2 Bt ha obr,1 Bs 3
468 57 Bs)ns
469 [ B10/2]B10/1,2
470 By
475 B1y2
20159
476 [oans + B1Bross|he,ous
B1B1o/s
572
477 2B10/2
a1 P10
478 b1

479 3412

482 a1 8172

483 161 B10/5
2687 Bs]ar ha,ous

483 [a1572]h2,072

484 [B1B10/4]h2,0B10/5

488 37 Bs

491 2 572
[181B10/4)a1ha,0B10/5

492 [B1B10/3)h2,085 4

493 2617

494 5113

498 37 By

499 [a1 1 Br0/3]1h2,085)4

500 [81B10/2]h2,0810/3

503 2 Bs

508 a1h2,0B10/3 = B2y
[B1B10]h11510/1,2

513 ﬁ%’yg
207 By

514 B3 Broys

515 [o1 B239]ha2,0m5
(838105 + B1572]b2,0m
[o1 1 Bro]arhi1Brojr,2

516 57 Brlne

517 3613

518 B1

520 a1 827

521 [on 87 B1o/5]onba,om

523 252039
P22

524 a1ne = P2P10/5

525 a1 P11

526 5%,@8

529 258172
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530 a1 f2y2 556 (1611
531 26787 = a1 825105 561 218239
532 B4 (18272 + 2515259]@
536 (7 B9 562 [B152510/5]b2,0m2
541 2681 Bs 563 [c1 81 811]b2,087
546 313239 564 (37 Bs]nz
551 5?’}/2 566 élg
253 Bo 567 256772
552 56172 568 a1 B1 Bay2] b3 o B
555 34314 569 [v18182510/5]1b2,0m2 0

558 a1 B30

For the differential in the 514-stem, note that in the corresponding spectral
sequence for Extp(Z/(p),Z/(p)) the image of by on; kills that of 51572, so the
target in our spectral sequence of by o7 is 815y2 plus some multiple of 5%510/5 On
the other hand, we have

o183 Bross = 1 B1BsBs )5
= a181(Bs, 1 B1, B1)

(18186, 1 B1, BT)
=0

and the result follows.

The relation in the 524-stem follows from 7.5.7. The differential in dimension
561 is hgo times that in the 514-stem. The one in dimension 562 comes from
a relation in Ext, i.e., ,81262610/5 = Bfﬁ7ﬂ5/5 = B1Bsa1m = 0 since oy 518 = 0.
Theorem 7.6.4 shows that there is no element in dimension 601 to give this relation,
so we must have 3132019/5 as indicated.

More generally, we have in Ext for 1 <i <pand j > 1

(769) ﬂ%ﬁlﬂpz/p = ﬂlﬂi+pﬂi+pj—2pﬂp/p
= B1B14piNitpj—1-2p by 7.5.7
-0 by 7.6.7.

In some cases this result along with inspection of I implies $13;3,;/, = 0.
7.6.5 (Third installment)

570 B1° 584 33 825
571 261511 589 Biv2

572 a1n7 = B3Pioys 20619

573 a1 B12 590 53772

574 B o 593 [361°162 5
579 26365 = a1B3B10/s 594 B3f1
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596 alﬁf’yg 617 xg17 = 011,83175,0
599 21529 a181B3B10/5
601 451 619 [281512]bs,0us
602 55/555/4 = (287, B1, B /1) = 602 620 a1ms = B1Bioss
604 1512 621 a1 B3
605 253772 622 (3752
608 51° 627 351512
609 a1 z602 B2

287811 + c1602]b3 o 33 [a1B4Br0/51b1,1ua
610 818381075 = (1,5, T602) 628 53172
611 [y B1B12]b2,008 632 3 B11
612 (37 Bolns 634 [a18772)b1,172
614 B1s 0

The differential in the 609-stem is an Ext relation derived as follows. Since xgg2
is divisible in Ext by 65/4 we have d(hQ,Obil) = ﬂlxﬁoz, SO d(alhg’ob?)l) = a161x602.
On the other hand, whenever a1z = ayy = 0, 22y = 0, e.g., 2(8186)% = 267611 = 0,
forcing the image of b%’oﬂ?, to contain a nonzero multiple of 2373;1. Similary

(7.6.10) 2638, =0 forall k>2p+1.

In many cases (such as k = 12) inspection of N (7.6.4) shows 26378 = 0. To get
the other term we compute modulo filtration 2 in our spectral sequence (7.1.16),
i.e., mod B19. Then we get (hi1,hi1,b7 1) is killed by b3 ; in Ext(BP,/I3), so 83b3 o

Kills (83, h11, h11)b3, and the coboundary of 2% shows (B3, hi1, hi) = Bsan.
) ’Ul

There is a nontrivial group extension in dimension 617 similar to the one in the

427-stem. We have
T
Te17 = <0¢1, (121 06), < 222>>

5617 = (5, a1, (1261 06)) (37;22)

= <57 CV1,OZ1>£U602 = \1X602

SO

= 042<O£175fa 33404)
= <OZ2, aq, ﬁ15>$404,
On the other hand

Phiensanza) = 3t (s oz (75

= (B}, a1, (a1 B2)) <x204>
7

= (ﬁ?7a1,az>$4o4
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293

so the result follows. We also have asxgos = «a1{(a1,5,Tg02) S0 (1,5, Teo2) =

B183B10/5-

In the 627-stem we have an Ext relation

1B4f10/5 = a1fB9Ps/5 = 0.

7.6.5 (Fourth installment)

635 28451075 = (Bo, 1,287)
636 S5/5510/5 = (67, 15t Bross) = Tese
637 237823
639 4316
640 [5155602]%
642 B7 12
643 258172 = Bs /472
Q17636
644 B5/4810/5
646 Bﬁ
647 (287 B11]arhaob? 4
648 [57B3B10/5)h2,0b3 1 B5/4
651 a185/4810/5
652 51513
Bs/3B10/5 + B1B13 = Tes2
655 o157 B3 B10/5] 01 h2 00 1 854
Brze17
658 [5164B10/5]h2,002,088
659 [a12652]b2,089
660 515209
662 B4
665 35712
B2
666 55772
[a1ha,0b2,088]h2,0b2,0u3
26772
667 2x4502
669 [a1B14]ug
670 5111
673 [2618410/5]1ha,0b2,0us3

674 [Brzese]he,0b1,1ua
675 2031 5230
677 2814
4p{"
678 Bis/5
680 8712
2672
681 [a181x636)1h2,0b1,1Us
[258772]h2,0b1,172
682 [8185/4810/5)P2,001,1P10/5
684 [B{%]73
a151513
685 a1815/5
686 B15/4
689 356{72
[o1 8185 /4 B10/5]c1ha,0b1,1 8105
690 ﬂ%ﬂlg
(8155 /3810/5]h2,001,1 8104
692 a1ys = (a, 57, B1%) = w602
693 181574
361611
694 é15/3
697 [a1B185/3810/5)1h2,0b1,1810/4
698 57 B2/30]m Bo
700 B1514
701 181573
702 B1s )
703 357 P12
Bl
704 587
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705 [287Bislh2,0h11baous
706 [04177159]%
708 (37 B11]m10
709 [a1B15/2]B15)1,2
710 Bis
713 367 b1
233 B2 B9 cv1b2,0 85

714 mye = (BY, B1B2: 72 + 2B9) = 714

715 3wg92
261814
716 B1B15/5
[0 + B1B15/5]he,0u9
717 2B15/2
a1 15
718 B 12
26772
721 ayx714
723 1818155
724 53 = (81,5, 81, 817) = T724
arhaoug = (B, B3 P11, a1, 1)
= X794
[81B15/4)h2,0P15/5
727 35577
728 B3B3
730 B1xeg2
731 3671
(o1 B1B15/4)a1ha0B15/5
[06110724]%
732 [B1B15)3]h2,0815/4
738 (7614
739 2x724
[181B15/3]a1ha, 0154
740 [B1B15/2]h2,0815/3
741 361 fr2
/8?72

742 58]

748 B2514
[B1B15]h11515/1,2

751 367 b1

752 [5133714]@

753 (263 Bralha,0b2,0m5
3B12692

754 5% B155)b2,076

755 [a182B14]h2,0m10
[a151515]041h11515/1,2

756 26772
185 Brzlmy

758 Big

759 [on Bra714]on b3 om

761 [0 57 B15/5] 01 b2,0m6
b2,00272 = (@11, Be, V2) = T761
367 b1

762 B1x724

763 232514
Bra%aq

764 cymi = B2Pis/5

765 o116
35877

766 SBiBi3

768 17761 = 722516
Bicon

769 oy B1ah9,

771 Bays = (B2, A7, B1°) = o

776 3} P14

777 2812724

778 ayx771

779 (772
2628155

780 55772

786 (3152314




789 361 f13

791 [34x692] 53 /5

796 B1516

799 36714
Brz761
[48F2692+7]b3 o B2

800 Baray
Biata,

801 [25152514]%

802 [5152515/5]52,0777

803 358772
[04151516]52,0512

804 [5%513]@

806 Bi7

6. COMPUTATIONS FOR p =5

(B 602 + o1 frzzer]an bl o o

a1 51%761

807 a B2ahs,
809 [35152514]@
794 26{72 Brarn
810 anbaonr =
(a1, 1, B1Pra, BY) = Bax7a4
811 28116
812 armiz = B3B15/5
813 a1 P17
814 B{B14
815 2821794
816 a1 S1w7m
817 A1y,
46152614
[28182B15/5]b1,1b2,0u3

For the relation in the 643-stem we have

ﬁp/p—l = <0415f71a517]9,041> and
2py2 = (a1, a1f1,p,72) SO
B 2py, =

<a1ﬁf71a al/glvp» 72>
a1<ﬂf715 al/Blapv 72>
aq <a16{)_17 Blap7 72>

)

= 041<0415f71»617p7041 72

= Bp/p—172-

This generalizes immediately to

295

7.6.11. PROPOSITION. Let x be an element satisfying pxr = 0, {a161,p,x) =0,
and ayx # 0. Then By, 1 = 6{’_12@3.

O

For the differentials in dimensions 666 and 673 it suffices to show 87204319 /5=0.

We have B4510/5 = BoBs5 = (Bo, a1, B7) s0 28451075 = (Bo, a1,257). Then
872845105 = (B1Bo, a1, 267)
= (01816, B, 287) = 0.

The differential on 3 is explained in 7.6.1. Recall that the key point was that
a15§/5 in Ext is a linear combination of the three elements 387k14, 17761 and 3773.

In our setting this relation is given by the differential on b3 8, whose target is some

linear combination of the four elements (including a 5§ /5) in question. This target
is difficult to compute precisely, but it suffices to show that it includes a nontrivial



296 7. COMPUTING STABLE HOMOTOPY GROUPS WITH THE ANSS

multiple of oy 33 /5- Knowing then that 363 B14 and B1a761 are permanent cycles and
aq Bg /5 is not, we can conclude that the linear combination also includes 8§73 and

that the latter is not a permanent cycle in the Adams—Novikov spectral sequence.
To make this calculation we map to the spectral sequence going from

Extp(1)(Z/(p), P(0))
(this is the R of 7.5.1 and 7.4.13) to Extp(1)(Z/(p), Z/(p)). The elements 36 P14,
~v3 and x7g1 all have trivial images, while b%oﬂg and aq Bg /5 do not, and it suffices
to show that alﬁ§/5 = hlob‘il vanishes in Extp(y). hi1b11 is killed by b2, so
(b3 1, ha1, hay, hay) is killed by b3  so we have
0= <bi1a hi1, hi, h11><h11, h117h10>

= b} 1 (h11, h11, hat, (hat, hat, hao))

= bi’,1<h11, h11, hit, h11, h11>h10

= b} 1 h1o-

Given this situation the target of the differential from 35 /s, 453 is the same
as 3(7xg92, and ay ﬁg /5 is 4372692 which accounts for the indicated differentials in
dimensions 791 and 799.

The differential in the 752-stem can be recovered from the corresponding spec-

tral sequence for Extp. The images of 1y and v are the Massey products (hj1, h, b)
and (hi2, h,b) where h and b denote the matrices

(hn h12) and (Zl’l) R

1,0

respectively. Then we have B11172 = (hi2b1,0m1,h,b) = (h11b1,1m1, h, b) = O since
hiim = 0.
7.6.5 (Fifth installment)

818 1°B10/5 841 12834

824 1 B2514 381%810/5

842 b7 1 Broja = (287, B1, Brosa) = Tsaz
826 bilw = (o, 87, @184, Broys) = w826 844 a1fiare

825 a1b1,1b 0uz = 2B2779,

827 2855155 B1B17

832 [261%72]b7 172 845 [a1 7 aa4]ar ha obT 4
833 ay 2326 - 847 Bixrm

834 31 f16 848 [B1a810]h2,0b3 O

b 1Bross = (81,2687, Broys) = xasa 849 (267 B1s + 1 saa]b3 o s

837 3531514
B 761
838 ﬁ%.’b724

[519’33/724%2,0["11,1

840 3310,

23 B1e
850 S183015/3
851 [a1 31 B17)b2,0613
852 [} Bralms
853 25%33724
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854 fis 859 [281817]b2,0us

o fixrn 860 a1m13 = BafPrss
855 B1'7e 861 a1

45338214 862 S B2P14
856 [4 2510 ha,0b3 gu2 853 [2B17810]1ha,0b3 gus
856 A1 105 864 [B12826]h2,0b1,1b2,0u3
857 a1b3 s = 857 865 2/3182315,5

867 31517 U

For the differential in the 838-stem we use the method of 7.6.6. We have
maps f: 2°7(0); — S° and g: X5997(0); — S° where f is 37 on the bottom
cell, and g is ajxgo2 on the bottom cell and xg17 on the second cell. The smash
product vanishes on the bottom cell so we have a map %8°7T'(0); — S° which is
Bixe17 + 287602 on the bottom cell. The second term vanishes because S7xgo2 €

m792 = 0. We have
Te17 = <041, (261 B11011), ( A >>
Z602

A routine calculation gives B17617 = 367611 and Bixe17 = a12he,. Our map gives
0 = 487w617 = B32hs,, hence the desired differential.
We use a similar argument in the 848-stem. We start with the maps

w307 0); - S° and  ¥3'T(0), — S°

carrying 136, and «i1f2819/5 on the bottom cells. The resulting relation is
B2rg10 = 0. From 7.6.4 we see that N is vacuous in dimensions 887 and 856,
so the indicated differential is the only one which can give this relation.

The argument in dimension 849 is similar to that in dimension 609.

In dimension 864 we use 7.6.6 again starting with the extensions of 5} and
254610/5 to T(O)l and T(O)4

7.6.5 (Sixth installment)

868 b1,1u9 = Ts6s 879 [a161x834]011h2,0b%71u41
871 [a1B1xs26]1ha 0b1,1b2 0us 381" B1o/5)h2,00% 172
872 33 b6 880 [B11842]ha,0bT 172
[B1834]h2,0bT U4 882 a1 83 x761)b1,173
875 a1xs6s Bibrr
2B4P15/5 883 167, 5
Bixr61 = Bio/se 884 B5,4815/5 = Bro/aB1oss
876 52,5 885 Flurm
Biwroa 887 451" Bro5
878 38117, 253 B16]a1ha,obi 172

888 (3783 15,/51h2,0h31 P10/4
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890 a1b11vs = (a1, a1, B1°, B1?)2B8 w761

891 2ﬁf$724
15 /4P15/5
892 f1 s
o e
ﬂfg/4 + B181s = Ts92
893 B1*72
45338214
894 B1%B10/5
895 [51%57]%11’%,0“2
896 [425133015/5]h11b3 gus
898 [B18415/5]h2,0b1,0813
899 [0411’892]%
a1 51518
900 5162514
902 fro
903 433 16
281 B3B15)5)a1hi1b3 gus
905 3433 B17
906 [c1hoob2,0613]h2,0b2 0us
P1zses
907 2x892
909 [a Big]ura
910 31816
913 a1 817368
5%55761
(2618415 /5]a1haoba ous
914 Y704
[515%0/5%2,051,1“9
916 35{%72
917 2819
918 M
920 53617
921 [a1 185, 5)exn ha,obi,1ug

922 [B185/48B15/5]h2,001,1 8155

923 Bizrn
925 a1B20/5
45812 Bross
926 B20,4
928 261761
929 [287 2724 h2,0b1,173

(181854 P15 /5|1 ha,0b1,1 815 /5

930 oy Btz
BiBis
[B12892]h2,0b1,1 8154
931 B{*72
45318214
932 Bi°B1o/57
933 47
a1ﬁ20/4
934 Ba9/3
937 3652724
[041515%0/4]&1h2,ob1,1/315/4
938 [} B2514]m Bra
940 a1y4
B1B19
941 182073
4531 P16
042 Bao s
943 353 B17]h2,0h11b3 gus
944 [Bws6s]b3 o115
045 [262 s ohusbros
946 [B24515/5]b2,0m0
948 [5%516]@
949 [a1 B20/2]B20/1,2
950 B0
951 Biz7e1
453 b7

(a1 B ges] 01 b3 o5
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952 ,3?$724

b2,0m2 = (B1, B1Bi0/5 + 5Y2,72)

= T952
953 3% B1s
954 38137,
3408162514 +
(a1, 01, 13214, BT) = Tosa
955 231519
956 51 820/5
[armis + B1B20/5]h2,0u14
957 2830/2
a1 20
958 ﬂf,@n
959 a1 w952
961 [BYz771]h11b2,073
963 a1 51820/5
4813 B1o5
964 a1ho gura = 3461 P16 = Tosa
[81B20/4]P2,0820/5
966 237761
968 ﬂf’ﬁls
[ B x771] a1 ha1be,oys
969 B1*72
27954
970 81 B1o/57
971 B174?
[o1 8182041 h2,0 8205

972 57
[81B20/3]h2,0820/4
975 36%1’724
978 18174
BiBro
979 2w964
[1574]h2, 074
(o1 81B20/3] a1 h2,0 820 /4
980 [B1520/2]h2,0820/3
987 2 - 5v4
988 219
[B1B20]P11B20/1,2
989 Bw761
451 b7
990 51755724

B1rgs2 = 52/5
991 [387 Brslha,0b5 o115
992 351"y

[Brz054]b3 0716
993 [2% B9 h2,0b2,0m10
994 [5%520/5]%
995 [av1B2319)h2,0m15

[

[

181820l hi1Bao/1,2

996 [} Brr]me

997 [a1 B17952] B2s /25

998 o1

999 b3 B2z = (B1B2,71,72) = Tog9
[45%518]%

1000 [alﬁ%ﬁ20/5]alb2,0n11 ]

The element zggg is constracted as follows. There is a commutative diagram

5860

5438

Bioys
_—

2837T(0)2

g

SO



300 7. COMPUTING STABLE HOMOTOPY GROUPS WITH THE ANSS

where the cofiber of f is ¥837T(0)3 and g is an extension of 33} 314. Both f and
Bg extend to X86°T(0);. The difference of the composite extensions of B10/589 and
gf gives xggs on the top cell. In other words xggg iis the Toda bracket for

5867 % S86() - 5438 Vi 2837T(0)2 N SO.

We will see below that 87g = 0 and B1B10/589 = 0 so it follows that Birses is
divisible by a; and hence trivial.
For the relation in dimension 875 we have z761 = (151, B6,72) and B1B10/5 =

(B, 011, Bs) so Biazer = Y21 B10/5-
For dimension 879 we have, using 7.6.11,

Yoxa01 = Y2(Bs /4, B1, a1 BT) = (v2B54, B1, a1 B1)

= (2- 57261, b1, a1 By) = 3- 58172 = 361" B1oss
SO
381" Bros5 = Y2B12404 = 0.
In dimension 888 we have

B3 B35 5 = B BsBross = BsPrby2 = B2B7572 = 0.
For the 896 stem we have

B1428183P15/5 = 182 42B2515/5 = 0,
which (by inspection 7.6.4) implies 4231 33015/5 = 0.

We are not sure about 4. A possible approach to it is this. Extrapolating
7.6.4 slightly we see that Ext”1%1% has two generators, 8274 and (vs, 71, 83). The
latter supports a differential hitting 51°810/5 = (81%,71, 2). The same Ext group
contains (y2,72, 83), which is a permanent cycle. Hence if it is nonzero it is neither
B%74, in which case 74 is a permanent cycle, or 3%v4 + (3,71, 83), in which case
das(7a) = B1*Bross-

In the 992-stem we have (127954 = Bazg10 S0 B2w954 = [1847810 = 0. Ex-
trapolating the pattern in 7.6.4 we find that the only element in the appropriate
dimension is b} ;v2, which kills 351%v,.



APPENDIX Al

Hopf Algebras and Hopf Algebroids

Commutative, noncocommutative Hopf algebras, such as the dual of the Steen-
rod algebra A (3.1.1), are familiar objects in algebraic topology and the importance
of studying them is obvious. Computations with the Adams spectral sequence
require the extensive use of homological algebra in the category of A-modules
or, equivalently, in the category of A,-comodules. In particular there are sev-
eral change-of-rings theorems (A1.1.18, A1.1.20, and A1.3.13) which are major
labor-saving devices. These results are well known, but detailed proofs (which are
provided here) are hard to find.

The use of generalized homology theories such as MU- and B P-theory requires
a generalization of the definition of a Hopf algebra to that of a Hopf algebroid.
This term is due to Haynes Miller and its rationale will be explained below. The
dual Steenrod algebra A, is defined over Z/(p) and has a coproduct A: A, —
Ay ®z/(p) A« dual to the product on A. The BP-theoretic analog BP.(BP) has
a coproduct A: BP,(BP) — BP.(BP) ®,_gp)y BP.(BP), but the tensor product
is defined with respect to a m.(BP)-bimodule structure on BP,(BP); i.e., m.(BP)
acts differently on the two factors. These actions are defined by two different Z,)-
algebra maps 7y, ng: m«(BP) — BP.(BP), known as the left and right units. In
the case of the Steenrod algebra one just has a single unit n: Z/(p) — A.. Hence
BP,(BP) is not a Hopf algebra, but a more general sort of object of which a Hopf
algebra is a special case.

The definition of a Hopf algebroid A1.1.1 would seem rather awkward and un-
natural were it not for the following category theoretic observation, due to Miller. A
Hopf algebra such as A, is a cogroup object in the category of graded Z/(p)-algebras.
In other words, given any such algebra R, the coproduct A: A, — A, ® A, induces
a set map Hom(A,, R) x Hom(A,, R) — Hom(A,, R) which makes Hom(A,, R) into
a group. Now the generalization of Hopf algebras to Hopf algebroids corresponds
precisely to that from groups to groupoids. Recall that a group can be thought of
as a category with a single object in which every morphism is invertible; the ele-
ments in the group are identified with the morphisms in the category. A groupoid
is a small category in which every morphism is invertible and a Hopf algebroid is
a cogroupoid object in the category of commutative algebras over a commutative
ground ring K [Z) in the case of BP,(BP)]. The relation between the axioms of
a groupoid and the structure of a Hopf algebroid is explained in A1.1.1.

The purpose of this appendix is to generalize the standard tools used in homo-
logical computations over a Hopf algebra to the category of comodules over a Hopf
algebroid. It also serves as a self-contained (except for Sections 4 and 5) account of
the Hopf algebra theory itself. These standard tools include basic definitions (Sec-
tion 1), some of which are far from obvious; resolutions and homological functors
such as Ext and Cotor (Section 2); spectral sequences of various sorts (Section 3),

301
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including that of Cartan and Eilenberg [1, p. 349]; Massey products (Section 4);
and algebraic Steenrod operations (Section 5). We will now describe these five
sections in more detail.

In Section 1 we start by defining Hopf algebroids (A1.1.1), comodules and prim-
itives (A1.1.2), cotensor products (A1.1.4), and maps of Hopf algebroids (A1.1.7).
The category of comodules is shown to be abelian (A1.1.3), so we can do homo-
logical algebra over it in Section 2. Three special types of groupoid give three
corresponding types of Hopf algebroid. If the groupoid has a single object (or if
all morphisms have the same source and target) we get an ordinary Hopf algebra,
as remarked above. The opposite extreme is a groupoid with many objects but at
most a single morphism between any pair of them. From such groupoids we get
unicursal Hopf algebroids (A1.1.11). A third type of groupoid can be constructed
from a group action on a set, and a corresponding Hopf algebroid is said to be split
(A1.1.22).

The most difficult definition of Section 1 (which took us quite a while to for-
mulate) is that of an extension of Hopf algebroids (A1.1.15). An extension of Hopf
algebras corresponds to an extension of groups, for which one needs to know what
a normal subgroup is. We are indebted to Higgins [1] for the definition of a normal
subgroupoid. A groupoid Cj is normal in Cy if

(i) the objects of Cy are the same as those of Cy,

(ii) the morphisms in Cy form a subset of those in C4, and

(iii) if g: X — Y and h: Y — Y are morphisms in C; and Cy, respectively,
then g~thg: X — X is a morphism in Cp.

This translates to the definition of a normal map of Hopf algebroids (A1.1.10).
The quotient groupoid C' = C1/Cy is the one

(i) whose objects are equivalence classes of objects in C7, where two objects
are equivalent if there is a morphism between them in Cy, and

(ii) whose morphisms are equivalence classes of morphisms in Cj, where two
morphisms ¢g and ¢’ are equivalent if ¢’ = higho where hy and ho are morphisms
in C().

The other major result of Section 1 is the comodule algebra structure theorem
(A1.1.17) and its corollaries, which says that a comodule algebra (i.e., a comodule
with a multiplication) which maps surjectively to the Hopf algebroid 3 over which
it is defined is isomorphic to the tensor product of its primitives with Y. This
applies in particular to a Hopf algebroid I' mapping onto ¥ (A1.1.19). The special
case when ¥ is a Hopf algebra over a field was first proved by Milnor and Moore [3].

In Section 2 we begin our study of homological algebra in the category of
comodules over a Hopf algebroid. We show (A1.2.2) that there are enough injectives
and define Ext and Cotor (A1.2.3). For our purposes Ext can be regarded as a
special case of Cotor (A1.1.6). We find it more convenient here to state and prove
our results in terms of Cotor, although no use of it is made in the text. In most
cases the translation from Cotor to Ext is obvious and is omitted. After defining
these functors we discuss resolutions (A1.2.4, A1.2.10) that can be used to compute
them, especially the cobar resolution (A1.2.11). We also define the cup product in
Cotor (A1.2.14).

In Section 3 we construct some spectral sequences for computing the Cotor
and Ext groups we are interested in. First we have the spectral sequence associated
with an LES of comodules (A1.3.2); the example we have in mind is the chromatic
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spectral sequence of Chapter 5. Next we have the spectral sequence associated
with a (decreasing or increasing) filtration of a Hopf algebroid (A1.3.9); examples
include the classical May spectral sequence (3.2.9), the spectral sequence of 3.5.2,
and the so-called algebraic Novikov spectral sequence (4.4.4).

In A1.3.11 we have a spectral sequence associated with a map of Hopf alge-
broids which computes Cotor over the target in terms of Cotor over the source.
When the map is surjective the spectral sequence collapses and we get a change-
of-rings isomorphism (A1.3.12). We also use this spectral sequence to construct a
Cartan—Eilenberg spectral sequence (A1.3.14 and A1.3.15) for an extension of Hopf
algebroids.

In Section 4 we discuss Massey products, an essential tool in some of the more
intricate calculations in the text. The definitive reference is May [3] and this section
is little more than an introduction to that paper. We refer to it for all the proofs and
we describe several examples designed to motivate the more complicated statements
therein. The basic definitions of Massey products are given as Al.4.1, A1.4.2
and A1.4.3. The rules for manipulating them are the juggling theorems A1.4.6,
A1.4.8, and A1.4.9. Then we discuss the behavior of Massey products in spectral
sequences. Theorem A1.4.10 addresses the problem of convergence; A1.4.11 is a
Leibnitz formula for differentials on Massey products; and A1.4.12 describes the
relation between differentials and extensions.

Section 5 treats algebraic Steenrod operations in suitable Cotor groups. These
are defined in the cohomology of any cochain complex having certain additional
structure and a general account of them is given by May [5]. Our main result
(A1.5.1) here (which is also obtained by Bruner et al. [1]) is that the cobar com-
plex (A1.2.11) has the required structure. Then the theory of May [5] gives the
operations described in A1.5.2. Our grading of these operations differs from that of
other authors including May [5] and Bruner et al. [1]; our P* raises cohomological
(as opposed to topological) degree by 2i(p — 1).

1. Basic Definitions

Al1.1.1. DEFINITION. A Hopf algebroid over a commutative ring K is a co-
groupoid object in the category of (graded or bigraded) commutative K -algebras,
i.e., a pair (A,T) of commutative K -algebras with structure maps such that for
any other commutative K-algebra B, the sets Hom(A, B) and Hom(T', B) are the
objects and morphisms of a groupoid (a small category in which every morphism is
an equivalence). The structure maps are

np: A—T left unit or source,

ng: A—=>T right unit or target,
A:T=>T®sT coproduct or composition,
e:T'— A, counit or identity,

c:I' =T conjugation or inverse.

Here T is a left A-module via np and a right A-module via ng, I ®4 ' is the
usual tensor product of bimodules, and A and ¢ are A-bimodule maps. The defining
properties of a groupoid correspond to the following relations among the structure
maps:
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(a) enr, = enr = la, the identity map on A. (The source and target of an
identity morphism are the object on which it is defined.)

(b) (IT'®e)A = (e®')A = 1. (Composition with the identity leaves a morphism
unchanged.)

(c) (T ®A)A =(ART)A. (Composition of morphisms is associative.)

(d) eng = nr and e, = nr. (Inverting a morphism interchanges source and
target.)

(e) cc = 1r. (The inverse of the inverse is the original morphism.)

(f) Maps exist which make the following commute

<" regl-toT

~ 7
N Ve
N Ve
N Ve
N Ve

R I'eoal nL

!

A<= T —° A

where ¢ - T'(y1 @ v2) = c(mn)y2 and T' - ¢(y1 ® v2) = me(ye). (Composition of a
morphism with its inverse on either side gives an identity morphism.)

If our algebras are graded the usual sign conventions are assumed; i.e., commu-
tativity means zy = (—1)1*1¥lyz, where |z| and |y| are the degrees or dimensions
of z and y, respectively.

A graded Hopf algebroid is connected if the right and left sub-A-modules gen-
erated by I'g are both isomorphic to A.

In most cases the algebra A will be understood and the Hopf algebroid will be
denoted simply by T'.

Note that if ng = 01, then I" is a commutative Hopf algebra over A, which is to
say a cogroup object in the category of commutative A-algebras. This is the origin
of the term Hopf algebroid. More generally if D C A is the subalgebra on which
Nr = 1L, then T' is also a Hopf algebroid over D.

The motivating example of a Hopf algebroid is (m.(E), E«(FE)) for a suitable
spectrum F (see Section 2.2).

A1.1.2. DEFINITION. A left I'-comodule M is a left A-module M together with
a left A-linear map ¢¥: M — T'®4 M which is counitary and coassociative, i.e., such
that (e @ M)y = M (i.e., the identity on M) and (A @ M)y = (I ® ¥). A right
I-comodule is similarly defined. An element m € M is primitive if ¢)(m) =1 Q@ m.

A comodule algebra M is a comodule which is also a commutative associative
A-algebra such that the structure map ¥ is an algebra map. If M and N are left
I'-comodules, their comodule tensor product is M ® 4 N with structure map being
the composite

MoN Y P M@TON s T@IoMoN 5T ®Me N,
where the second map interchanges the second and third factors and the third map is
the multiplication on T'. All tensor products are over A using only the left A-module
structure on A. A differential comodule C* is a cochain complex in which each C*
is a comodule and the coboundary operator is a comodule map.
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A1.1.3. THEOREM. If T' is flat as an A-module then the category of left T'-
comodules is abelian (see Hilton and Stammbach [1]).

Proor. If 0 - M’ — M — M" — 0 is a short exact sequence of A-modules,
then since I is flat over A,

0=T@OsM TR M—-T®s M =0

is also exact. If M is a left I'-comodule then a comodule structure on either M’
or M" will determine such a structure on the other one. From this fact it follows
easily that the kernel or cokemel (as an A-module) of a map of comodules has a
unique comodule structure, i.e., that the category has kernels and cokernels. The
other defining properties of an abelian category are easily verified. (I

In view of the above, we assume from now on that I" is flat over A.
Al.1.4. DEFINITION. Let M and N be right and left T'-comodules, respectively.
Their cotensor product over I' is the K-module defined by the exact sequence

0 MOrN - Mos N 2EVME Ao ToaN,

where 1 denotes the comodule structure maps for both M and N.

Note that M Op N is not a comodule or even an A-module but merely a K-
module.
A left comodule M can be given the structure of a right comodule by the
composition
MY reME Mer M2 yer,

where T interchanges the two factors and c is the conjugation map (see A1.1.1). A
right comodule can be converted to a left comodule by a similar device. With this
in mind we have

Al1.1.5. PROPOSITION. M Or N =N Op M.
The following relates the cotensor product to Hom.

A1.1.6. LEMMA. Let M and N be left T'-comodules with M projective over A.
Then

(a) Homa (M, A) is a right T'-comodule and

(b) Homrp (M, N) = Homyu (M, A) Or N, e.g., Hompr(A, N) = AOr N.

Proor. Let ¥pr: M — I'®4 M and ¢yy: N — I' ®4 N be the comodule
structure maps. Define

YN Homa(M,N) — Homs (M, T ®4 N)
by
Uy (f) =T @ flppr and Py (f) = Unf

for f € Homu (M, N). Since M is projective we have a canonical isomorphism,
Homa(M,A) @4 N =~ Homu (M, N).
Hence for N = A we have

Yy Homa (M, A) - Homa (M, A) @4 T.
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To show that this is a right I'-comodule structure we need to show that the following
diagram commutes

Hom (M, A) e Hom 4 (M,T)
wj*wi iHom(M,A)
Homa (M, T) —2% Homa(M,T ®T),

i.e., that 97}, is coassociative.
We have a straightforward calculation

Vi (f) = (T @3 ()M
=T e (e f)Ym)vu
=lrele NI @Yvm)Ym
=TelefA® M)y
=A@ AT flYm
= (A® Ay f

so the diagram commutes and (a) follows.
For (b) note that by definition

Hom(M, N) = ker(¢3; — yy) C Homa (M, N)

while
Homy (M, A) Op N =ker(¢y; ® N — Homa (M, A) ® Yn)

C Homa (M, A) @4 N
and the following diagram commutes
Hom(M, A) ® N ——=—— Hom (M, N) O
bl ®Nil Hom(M,A)Qv¢x i uw?v
Hom(M,A) @ T ® N —= Hom(M,T ®4 N)

The next few definitions and lemmas lead up to that of an extension of Hopf
algebroids given in A1.1.15. In A1.3.14 we will derive a corresponding Cartan—
Eilenberg spectral sequence.

A1.1.7. DEFINITION. A map of Hopf algebroids f: (A,T) — (B,X) is a pair of
K-algebra maps f1: A — B, fo: T' = X such that
he=cefa, fonr=nrf1, fenr =nLf1,
fac=cfa, and Afy=(f2® fa)A.
A1.1.8. LEMMA. Let f: (A,T) — (B,X) be a map of Hopf algebroids. Then

I'®4 B is a right ¥-comodule and for any left ¥-comodule N, (I' ® 4 B) Oy N is a
sub-left T'-comodule of T' ® 4 N, where the structure map for the latter is A ® N.

PrROOF. The map (T ® fo)A: T 2T ®4 %X = (I'®4 B) ®p X extends uniquely
to I'®4 B, making it a right 3-comodule. By definition (I'® 4 B) Ox N is the kernel
in the exact sequence

0> T®s4B)Oy N 5 T4 N ->T®1X N
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where the right-hand arrow is the difference between (I' ® f2)A @ N and I' ® .
Since '@ 4 N and I'® 4 X ®p N are left I'-comodules it suffices to show that the two
maps respect the comodule structure. This is clear for '® ), and for (I'® f)AQ N
we need the commutativity of the following diagram, tensored over B with N.

IF®f2)AQB
F®ABM>F®AE

A®Bl lA@z
reTef)A®B

FroaT@aB————————=T@a'®a X%
It follows from the fact that f is a Hopf algebroid map. O

A1.1.9. DEFINITION. If (A,T') is a Hopf algebroid the associated Hopf algebra
(A, TV) is defined by I" =T/(nr(a) — nr(a) | a € A). (The easy verification that a
Hopf algebra structure is induced on T' is left to the reader.)

Note that T" may not be flat over A even though T is.

A1.1.10. DEFINITION. A map of Hopf algebroids f: (A,T) — (A,X) is normal
if fo: I' = X is surjective, f1: A — A is the identity, and T Oy A= AOx/ T inT.

A1.1.11. DEFINITION. A Hopf algebroid (A,U) is unicursal if it is generated as
an algebra by the images of ny, and ng, i.e., if U =A®p A where D = A0y A is
a subalgebra of A. (The reader can verify that the Hopf algebroid structure of U is
unique.) O

This term was taken from page 9 of Higgins [1].

A1.1.12. LEMMA. Let M be a right comodule over a unicursal Hopf algebroid
(A,U). Then

(a) M is isomorphic as a comodule to M ® 4 A with structure map M @ngr and

(b) M = (M Oy A)®@p A as A-modules.

PrROOF. For m € M let ¢p(m) =m’ ® m”. Since U is unicursal we can assume
that each m’ is in the image of ng. It follows that

(WY@ U)p(m) = (M@ A)p(m) =m' @1 m"

so each m’ is primitive. Let m = m/e(m”). Then ¢(m) = m’ @ m” = ¥(m), so
m = m since 1 is a monomorphism; Hence M is generated as an A-module by
primitive elements and (a) follows. For (b) we have, using (a),

MOy A)@p A=M®, (AOy A)@p A=M®s D®p A= M. O

A1.1.13. LEMMA. Let (A,X) be a Hopf algebroid, (A,%') the associated Hopf
algebra (A1.1.7) D = AOyx A, and (A,U) the unicursal Hopf algebroid (A1.1.9)
with U = A®p A. Then

(a) U=X0x A and

(b) for a left ¥-comodule M, A Qs M is a left U-comodule and A Oy M =
AOy (AQy M).

PROOF. By definition, ¥’ = A ®y X, where the U-module structure on A is
given by €: U — A, so we have

YRAY =YR4A4AQ0p L =S ®u 2.
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By A1.1.3, there is a short exact sequence
O%EDZ/A—)E@)UZ

where the last map is induced by A — ¥ ®nr. An element 0 € ¥ has A(o) =o®1
inYeyXiff c € U, so (a) follows.
For (b) we have
AOx M = A0y (UOg M)
and
UDEM:(ADE/E)DEM:ADE/M. d

The following example may be helpful. Let (A,T') = (m.(BP),BP.(BP))
(4.1.19), ie., A = Z,)[v1,v2,...] and T' = Afty,ta,...] where dimv; = dimt; =
2(p" —1). Let ¥ = Altni1,tnt2,...] for some n > 0. The Hopf algebroid structure
on X is that of the quotient I'/(¢1,...,t,). The evident map (A4,T) — (A, X) is nor-
mal (AlllO) D= ADEA is Z(p) [’Ul, ey ’Un] and ® = ADEFDEA is D[th e 7tn]~
(D, ®) is a sub-Hopf algebroid of (A,T") and (D, ®) — (A,T") — (4, X) is an exten-
sion (A1.1.15 below).

A1.1.14. THEOREM. Let f: (A, T) — (A, X) be a normal map of Hopf algebroids
and let D = AOx A and ® = AOx T Ox A. Then (D, ®) is a sub-Hopf algebroid
of (A,T).

(Note that by A1.1.8, AOx T and T' Oy A are right and left T'-comodules,
respectively, so the expressions (A Oy T') Oy A and A Oy, (T' Oy, A) make sense. It
is easy to check, without using the normality of f, that they are equal, so ® is well
defined.)

PROOF. By definition an element a € A is in D iff fan(a) = fang(a) and is
in @ iff (7 ® f2)A%(y) =1®~y® 1. To see that nz sends D to ®, we have for
deD

(f20T @ f2)A°nr(d) =1®1® fonr(d)
=1®1® fonr(d) = 1 ®@nr(d) @ 1.

The argument for 7y, is similar. It is clear that ® is invariant under the conjuga-
tion ¢. To show that € sends ® to D we need to show fongre(¢) = fonre(¢) for
¢ € ®. But fanre(¢) = nref2(p) and since A?fo(d) = 1@ fa(¢) @ 1 we have
Afa(6) = 1@ fo(9) = fo() @ 1 50 fo(9) € D, and (g — 1) f2(6) = 0.

To define a coproduct on ® we first show that the natural map from ® ®p &
to I' ®4 I' is monomorphic. This amounts to showing that a¢ € ® iff a € D. Now
by definition a¢ € @ iff

f2(ag") @ ¢" @ fo(¢") =1®adp @1 = fonr(a) @ 9@ 1.
Since ¢ € ® we have
f(¢)®d"® fr(¢") =1®¢®1,
so the criterion is

f2(a) @1® 1 = fonr(a) @1 @1,
ie,a€eD.
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Now consider the commutative diagram

(D,®) — (A, &) —L> (A,U)

L,

(D,®) —= (A,T) —L = (4,%)
oo
(A4,%) =—— (A4, %)

where ¥’ is the Hopf algebra associated to ¥ (A1.1.9), f’ is the induced map, U is
the unicursal Hopf algebroid (A1.1.11) A®p A, ® = ADOys, T Oy A, and g will be
constructed below. We will see that ® and ® are both Hopf algebroids.

Now the map f’ is normal since f is and AOsy A = A, so the statement that ®
is a Hopf algebroid is a special case of the theorem. Hence we have already shown
that it has all of the required structure but the coproduct. Since 'Oy A = AOx/ T’
we have & = A Osw 'Oy A= AOy AOx I' = AOyx I'. One easily verifies that
the i image of A:T' =T ®4 T is contained in I' Op I" and hence in T Osy I'. There
A sends & = AOxT'Ox Ato AQOsy T'Osy T'Os A = (I)DZAI) - <I>®A<I> so ®is a
Hopf algebroid.

Since ® = 'Oy A and U = X Oy A [A1.1.13(a)] we can define g to be fo O A.
It follows from A1.1.13(b) that

q):ADEFDEA:ADU(ADEIFDE/A>DUA
:ADU(’I;DUA.
ByAlll?(b)wehave@ A®D<I>®DA so(D@A(D A®D‘1>®DA®D<I>®DA
The coproductAbendb@to(DDU<I>C‘I>®A<I>and we have
POy P=d®4 (A0y A)®@a® by Al.1.12(a)
=ApP®p (AOy A)®@p dep A
=ARp®Rp DRpPRp A
=A®D‘1)D®(I)®DA.

Since A is A-bilinear it sends ® to ® ® p ® and @ is a Hopf algebroid. O
A1.1.15. DEFINITION. An extension of Hopf algebroids is a diagram
(D,®) 5 (A1) 5 (4,%)

where f is normal (A1.1.10) and (D, ®) is as in A1.1.14.
The extension is cocentral if the diagram

rex

(F@W

I t

(fz®k

Xl
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(where t interchanges factors) commutes up to the usual sign. In particular ¥ must
be cocommutative.

A nice theory of Hopf algebra extensions is developed by Singer [5] and in
Section II 3 of Singer [6].

Note that (as shown in the proof of A1.1.14) if ¥ is a Hopf algebra then ® =
AOxI'=T0g A. More generally we have

Al1.1.16. LEMMA. With notation as above, A Ox T' = ® ®p A as right I'-
comodules.

ProoF. Using A1.1.12 and A1.1.13 we have
dPRp A=A0sT 05 A®p A
=AD0xT0Ox A0, A®p A
=AO0xT'Ox A
— AOg AOg T
= A0y AOsx AOs T
=AOy AOx T
= AOxT. O

A1.1.17. COMODULE ALGEBRA STRUCTURE THEOREM. Let (B,X) be a graded
connected Hopf algebroid, M a graded connected right Y-comodule algebra, and
C = M Oy, B. Suppose

(i) there is a surjective comodule algebra map f: M — ¥ and

(ii) C is a B-module and as such it is a direct summand of M.

Then M is isomorphic to C @p % simultaneously as a left C-module and a right
Y -comodule. (|

We will prove this after listing some corollaries. If ¥ is a Hopf algebra over a
field K then the second hypothesis is trivial so we have the following result, first
proved as Theorem 4.7 of Milnor and Moore [3].

A1.1.18. COROLLARY. Let (K,X) be a commutative graded connected Hopf
algebra over a field K. Let M be a K-algebra and a right 3-comodule and let
C = M Oy, K. If there is a surjection f: M — % which is a homomorphism of
algebras and X-comodules, then M is isomorphic to C' @ 3 simultaneously as a left
C-module and as a right X-comodule. O

A1.1.19. COROLLARY. Let f: (A,T) — (B,X) be a map of graded connected
Hopf algebroids (A1.1.7) and let T =T ®4 B and C =1’ Oy B. Suppose

(i) f5: TV —= X is onto and

(ii) C is a B-module and there is a B-linear map g: I' — C split by the
inclusion of C in TV.

Then there is a map §: ' — C®@p % defined by g(v) = g(v') @ f5(v") which is
an isomorphism of C'-modules and ¥-comodules. O

A1.1.20. COROLLARY. Let K be a field and f: (K,T') — (K,X) a map of
graded connected commutative Hopf algebras and let C =T Ox K. If f is surjective
then T is isomorphic to C' ® ¥ simultaneously as a left C-module and as a right

Y -comodule. O
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In A1.3.12 and A1.3.13 we will give some change-of-rings isomorphisms of Ext
groups relevant to the maps in the previous two corollaries.

Proor oF A1.1.17. Leti: C'— M be the natural inclusion and let g: M — C
be a B-linear map such that gi is the identity. Define §: M — C®p3 to be (¢X);
it is a map of ¥-comodules but not necessarily of C-modules and we will show below
that it is an isomorphism.

Next observe that fOB: C — B is onto. In dimension zero it is simply f, which
is onto by assumption, and it is B-linear and therefore surjective. Let j: B — C be
a B-linear splitting of fOB. Then h = g~ }(j ®X): ¥ — M is a comodule splitting
of f.

Define h: C®p¥ — M by h(c®0) = i(c)h(c) for ¢ € C and o € X. Tt is clearly
a C-linear comodule map and we will show that it is the desired isomorphism. We
have ~

gh(c® o) = §(i(c)h(0)) = gli(c)h(d')) ® 0" = c@ 0
where the second equality holds because i(c) is primitive in M and the congruence is
modulo elements of lower degree with respect to the following increasing filtration
(A1.2.7) on C ®p . Define F,,(C ®p ¥) C C ®p X to be the sub-K-module
generated by elements of the form ¢ ® ¢ with dimo < n. It follows that giz and
hence h are isomorphisms.

We still need to show that g is an isomorphism. To show that it is 1-1, let m®o
be the leading term (with respect to the above filtration of M ® X) of ¢(m). It
follows from coassociativity that m is primitive, so g(m) # 0 if m # 0 and ker g = 0.
To show that g is onto, note that for any c® o € C ®p Y we can choose m € f~1(0)
and we have

3lie)m) = glim’) @ m" = gi() ® 0 = c@ o
so coker g = 0 by standard arguments. O

A1.1.21. DEFINITION. An ideal I C A is invariant if it is a sub-I'-comodule, or
equivalently if ng(I) C IT.

The following definition is intended to mimic that of a split groupoid, which is
derived from the action of a group G acting on a set X. Here the set of objects is
X and the set of morphism is G x X, where (g, ) is a morphism from the object
x € X to the object g(x).

A1.1.22. DEFINITION. A Hopf algebroid (A,T') is split if there is a Hopf alge-
broid map i: (K,X) — (A,T) (A1.1.19) such that i: X® A — T is an isomorphism
of K-algebras.

Note that composing nr: A — T with the inverse of i}, defines a left ¥-comodule
structure on A.

2. Homological Algebra

Recall (A1.1.3) that the category of comodules over a Hopf algebroid (A4,T") is
abelian provided I is flat over A, which means that we can do homological algebra
in it. We want to study the derived functors of Hom and cotensor product (A1.1.4).
Derived functors are discussed in most books on homological algebra, e.g., Cartan
and Eilenberg [1], Hilton and Stammbach [1], and Mac Lane [1]. In order to define
them we must be sure that our category has enough injectives, i.e., that each I'-
comodule can be embedded in an injective one. This can be seen as follows.
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A1.2.1. DEFINITION. Given an A-module N, define a comodule structure on
I'®a N by =A®N. Then for any comodule M,

0: Homy (M, N) — Homp (M, T ®4 N)

is the isomorphism given by O(f) = (T ® f)var for f € Homyu(M,N). For
g € Homp (M, T ®4 N), 071(g) is given by 6~*(g) = (¢ ®@ N)g.

A1.2.2. LEMMA. If I is an injective A-module then T' ®4 I is an injective I'-
comodule. Hence the category of I'-comodules has enough injectives.

PROOF. To show that I' ®4 I is injective we must show that if M is a sub-
comodule of N, then a comodule map from M to I' ®4 I extends to N. But
Homp(M,T' ®4 I) = Homyu(M,I) which is a subgroup of Homa(N,I) =
Homp(N,I' ® 4 I) since I is injective as an A-module. Hence the existence of
enough injectives in the category of A-modules implies the same in the category of
I'-comodules. O

This result allows us to make

A1.2.3. DEFINITION. For left T-comodules M and N, Exte(M,N) is the ith
right derived functor of Homp (M, N), regarded as a functor of N. For M a right
I'-comodule, Cotoris(M, N), is the ith right derived functor of M Op N (A1.1.4),
also regarded as a functor of N. The corresponding graded groups will be denoted
simply by Extr(M, N) and Cotorp (M, N), respectively.

In practice we shall only be concerned with computing these functors when the
first variable is projective over A. In that case the two functors are essentially the
same by A1.1.6. We shall therefore make most of our arguments in terms of Cotor
and list the corresponding statements about Ext as corollaries without proof.

Recall that the zeroth right derived functor is naturally equivalent to the functor
itself if the latter is left exact. The cotensor product is left exact in the second
variable if the first variable is flat as an A-comodule.

One knows that right derived functors can be computed using an injective
resolution of the second variable. In fact the resolution need only satisfy a weaker
condition.

Al1.2.4. LEMMA. Let
0—+N-—-R"—R'— ...

be a long ezact sequence of left T'-comodules such that Cotorf:(M, RY) = 0 forn > 0.
Then Cotorr (M, N) is the cohomology of the complex

(A1.2.5) Cotor{: (M, R°) Lo, Cotor{: (M, R') LI

PROOF. Define comodules N inductively by N° = N and N is the quotient
in the short exact sequence

0— N'— R — Nt 0.
These give long exact sequences of Cotor groups which, because of the behavior of
Cotorr (M, R"), reduce to four-term sequences
0 — Cotor:(M, N') — Cotori:(M, R?)
— Cotorp (M, N“*1) — Cotorp. (M, N%) — 0
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and isomorphisms
(A1.2.6) Cotorpt (M, N*™) ~ Cotorp ' (M.N?) for n > 0.

Hence in A1.2.5, kerd; = Cotor(M,N?) while imd; is the image of
Cotorl (M, R?) in Cotorl:(M, N*t1) so

ker §;/ im &;_, = Cotorp(M, N*~1) = Cotor(M, N)
by repeated use of A1.2.6. This quotient by definition is H* of A1.2.5. ]

For another proof see A1.3.2.
We now introduce a class of comodules which satisfy the Ext condition of A1.2.4
when M is projective over A.

A1.2.7. DEFINITION. An extended I'-comodule is one of the form T'® 4 N where
N is an A-module. A relatively injective I'-comodule is a direct summand of an
extended one.

This terminology comes from relative homological algebra, for which the stan-
dard references are Eilenberg and Moore [1] and Chapter IX of Mac Lane [1]. Our
situation is dual to theirs in the following sense. We have the category T' of left (or
right) I'-comodules, the category A of A-modules, the forgetful functor G from I'
to A, and a functor F: A — T given by F(M) =T ®4 M (A1.2.1). Mac Lane [1]
then defines a resolvent pair to be the above data along with a natural transforma-
tion from GF to the identity on A, i.e., natural maps M — I' ® 4 M with a certain
universal property. We have instead maps e @ M : I'®4 M — M such that for any
A-homomorphism p: C — M where C is a I'-comodule there is a unique comodule
map a: C — I' ®4 M such that 4 = (¢ ® M)a. Thus we have what Mac Lane
might call a coresolvent pair. Our F' produces relative injectives while his produces
relative projectives. This duality is to be expected because the example he had in
mind was the category of modules over an algebra, while our category I' is more
like that of comodules over a coalgebra. The following lemma is comparable to
Theorem IX.6.1 of Mac Lane [1].

A1.2.8. LEMMA.

(a) If i: M — N is a monomorphism of comodules which is split over A, then
any map f from M to a relatively injective comodule S extends to N. (If i is not
assumed to be split, then this property would make S injective.)

(b) If M is projective as an A-module and S is a relatively injective comodule,
then Cotor(M, S) = 0 fori > 0 and if S = T®4 N then Cotor™(M,S) = M®4 N.

PROOF. (a) Let j: N — M be a splitting of &. Then (IT'® /)T ®j)p =gisa
comodule map from N toI'®4 S such that gi = ¢ f: M - T'®4.S. It suffices then
to show that S is a direct summand of I'® 4 .S, for then g followed by the projection
of ' ®4 S onto S will be the desired extension of f. By definition S is a direct
summand of T® 4T for some A-module T. Let k: S = T®@ T and k= !: T@sT — S
be the splitting maps. Then k~1(I' ® e ® T)(I' ® k) is the projection of I' @4 S
onto S.

(b) One has an isomorphism ¢: M®4 N — MOp(I'®4 N) given by ¢p(m®n) =
Y(m) ®n. Since S is a direct summand of I' ® 4 N, it suffices to replace the former
by the latter. Let

0N—=I°=T1" - ...
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be a resolution of N by injective A-modules. Tensoring over A with I" gives a reso-
lution of I' ® 4 N by injective I'-comodules. Cotorp(M,I’®4 N) is the cohomology
of the resolution cotensored with M, which is isomorphic to

M@saI" 5> M@aI" — -
This complex is acyclic since M is projective over A. ([l
Compare the following with Theorem 1X.4.3 of Mac Lane [1].

A1.2.9. LEMMA. (a) Let
d_
0— M =4 po oy pr iy
and
d_
0— N =4 RO %, gt 4y
be long exact sequences of T'-comodules in which each P and R' is relatively in-
jective and the image of each map is a direct summand over A. Then a comodule
map f: M — N extends to a map of long exact sequences.
(b) Applying L Or (-) (where L is a right T-comodule projective over A) to

the two sequences and taking cohomology gives Cotorr(L, M) and Cotorp(L, N),
respectively. The induced map from the former to the latter depends only on f.

PRrROOF. That the cohomology indicated in (b) is Cotor follows from A1.2.4
and A1.2.8(b). The proof of the other assertions is similar to that of the analogous
statements about injective resolutions. Define comodules M* and N*? inductively
by M% = M, N° = N, and M*t! and N**! are the quotients in the short exact
sequences

0> M - P - M™ 50
and

0— N'— R — Nt 0.
These sequences are split over A. Assume inductively that we have a suitable map
from M*® to N*. Then A1.2.8(a) gives us f;: P — R’, and this induces a map from
M1 to N+ thereby proving (a).

For (b) it suffices to show that the map of long exact sequences is unique up to
chain homotopy, i.e., given two sets of maps f;, f/: P* — R’ we need to construct
h;: P* — R'=! (with hg = 0) such that h; 1d; + d;_1h; = f; — f/. Consider the

commutative diagram

o di . ) _
0 M2l pi B i 0
0—— Nidi,1 dez Ni+1 0

where g; = fi—f/: P* — R’ and we use the same notation for the map induced from
the quotient M+, Assume inductively that h;: P — R'~! has been constructed.
Projecting it to N* we get h;: P* — N with h;d;—1 = ¢;—1. Now we want a map
hath;,1: M1 — R such that hath;,1d; = g;—d;_1h;. By the exactness of the top
row, hathi“ exists iff (gi — di—lhi)di—l = 0. But we have gidi—l — di—l(hidi—l) =
gid;_1 — d;gi_1 = 0, so whath; exists. By A1.2.8(a) it extends from M**! to P+t
giving the desired h;y1. ([
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Resolution of the above type serve as a substitute for injective resolutions.
Hence we have

A1.2.10. DEFINITION. A resolution by relative injectives of a comodule M is a
long exact sequence

0—-M—> R >R — ...

in which each R' is a relatively injective and the image of each map is a direct
summand over A. We now give an important example of such a resolution.

A1.2.11. DEFINITION. Let M be a left I'-comodule. The cobar resolution D} (M)
is defined by Di(M) =T ®4 T® @4 M, where T is the unit coideal (the cokernel
of nr.), with coboundary dy: Di(M) — DitFY(M) given by

(@M @7, 8m) =D (-0 & %i1 @A) @Y%t ®---m
i=0
+ (=)o ® -y @ (m)

for v0 € T, y1,...,7s € T, and m € M. For a right T-comodule L which is
projective over A, the cobar complex C}(L, M) is L Op Di(M), so CE(L, M) =
L®AF®S®A M, where I'®* denotes the s-fold tensor product of I' over A. Whenever
possible the subscript I will be omitted, and CE(A, M) will be abbreviated to C:(M).
The element a @y & -+ @ v, @ m € Cr(L, M), where a € L, will be denoted by
avi|ve| - |ynm. If a =1 or m =1, they will be omitted from this notation.

A1.2.12. CorOLLARY. H(C{(L, M)) = Cotorp (L, M) if L is projective over A,
and H(CE(M)) = Extr (A, M).

ProoF. It suffices by A1.2.9 to show that Dp(M) = Cp(I', M) is a resolution
of M by relative injectives. It is clear that D (M) is a relative injective and that d°
is a comodule map. To show that Dr(M) is acyclic we use a contacting homotopy
S: Di(M) — Di (M) defined by S(yyi| -« |[vsm) = e(y)1y2] - - - |ysm for s > 0
and S(ym) = 0. Then Sd + dS is the identity on Di(M) for s > 0, and 1 — ¢ on
DY(M), where ¢(ym) = e(y)m'm”. Hence

0 for s > 0,
imp=M for s=0.

H*(Dr(M)) ={ U

Our next job is to define the external cup product in Cotor, which is a map
(301301‘1"(]\417 Nl) X COtOI“F(MQ, Ng) — COtOI‘F(Ml ®a Mo, Ny ®4g Ng) (see A1.1.2 for
the definition of the comodule tensor product). If My = My = M and Ny = No = N
are comodule algebras (A1.1.2) then composing the above with the map in Cotor
induced by M®4 M — M and N®4 N — N gives a product on Cotorp (M, N). Let
P and P35 denote relative injective resolutions of N1 and Na, respectively. Then
Pf ®4 Pj is a resolution of N; ®4 Na. We have canonical maps

COtOI‘F(Ml, Nl) ® COtOI‘F(MQ, NQ) — H(M1 Op Pl* & M2 Op PQ*)
(with tensor products over K) and

M; Op Pf ® My Op Py — (M, ®4 M) Op (P} ®4 Py).
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A1.2.13. DEFINITION. The external cup product
Cotorp (M7, N1) ® Cotorp(Ma, No) — Cotorp(M; ®4 Mo, N1 ® 4 No)

and the internal cup product on Cotorr (M, N) for comodule algebras M and N are
induced by the maps described above.

Note that A1.2.9(b) implies that these products are independent of the choices
made. Since the internal product is the composition of the external product with
the products on M and N and since the latter are commutative and associative we
have

A1.2.14. COROLLARY. If M and N are comodule algebras then Cotorr(M, N)
is a commutative (in the graded sense) associative algebra. O

It is useful to have an explicit pairing on cobar complexes
Cr(My, N1) ® Cr(Ma, N3) — Cr(M; ® Mz, N1 ® Na).

This can be derived from the definitions by tedious straightforward calculation. To
express the result we need some notation. For my € My ( a right T'-comodule) and
ny € N (a left I-comodule) let

m¥ @ @mS) € My @, T,
with m(zo) € My and mgi) elfor1<i<s,and
n(ll) R ® ngtJrl) c ot ®a N1,

for ngj) el forl1 <j<tand ngH_t) € Ni, denote the iterated coproducts. Each
of these expressions is shorthand for a certain sum of monomials in the indicated
tensor product. Then the pairing is given by

(A1.2.15)  (mami|---|vsn1) @ (Mmavsqi| - - |[Ysten2)
= (=1)7 (ml @ méo)) (’Ylmél)> |"'|’Ysm§s)|n§1)’>’s+1| o (ngt)%ﬁ) (ngHt) ® ”2)

where

T:degmgdegn1+2degm;i) (s—i+ Z deg’yj>

i=0 j=it1
t+1 ‘ i—1
+ ) deg n{? (z —1+ ) deg 7]-+S> .
i=1 j=1

Note that this is natural in all variables in sight.
Finally, we have two easy miscellaneous results.

A1.2.16. PROPOSITION. (a) If I C A is invariant (A1.2.12) then (A/I,T'/IT)
is a Hopf algebroid.
(b) If M is a left T'-comodule annihilated by I as above, then

EXtF(A,M) = EXtF/IF(A/I,M).

PROOF. Part (a) is straightforward. For (b) observe that the complexes Cr (M)
and Cp,rp(M) are identical. O
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A1.2.17. ProprosITION. If (A,T) is split (A1.1.22) then Extr(4,M) =
Exty (K, M) where the left ¥-comodule structure on the left T'-comodule M comes
from the isomorphism I' @4 M =X @ M.

PRrROOF. OF(M) = Cz(M) O

3. Some Spectral Sequences

In this section we describe several spectral sequences useful for computing Ext
over a Hopf algebroid. The reader is assumed to be familiar with the notion of a
spectral sequence; the subject is treated in each of the standard references for ho-
mological algebra (Cartan and Eilenberg [1], Mac Lane [1] and Hilton and Stamm-
bach [1]) and in Spanier [1]. The reader is warned that most spectral sequences
can be indexed in more than one way. With luck the indexing used in this section
will be consistent with that used in the text, but it may differ from that appearing
elsewhere in the literature and from that used in the next two sections.

Suppose we have a long exact sequence of I'-comodules

0 1
(A1.3.1) 0-M—R SRV R2 .
Let S =imd’ and SY = M so we have short exact sequences

a

085 SR 5+ 50
for all 7 > 0. Each of these gives us a connecting homomorphism
6% Cotori' (L, S%) — Cotorp™ (L, §771).

Let d(;y: Cotory (L, S?) — Cotori"*(L, %) be the composition §'62 - - - §%. Define
a decreasing filtration on Cotory™ (L, M) by F* = im d(s) for i < s, where §(q) is the
identity and F* = 0 for ¢ < 0.

A1.3.2. THEOREM. Given a long exact sequence of I'-comodules A1.3.1 there is
a natural trigraded spectral sequence (EX**) (the resolution spectral sequence) such
that

(a) B> = Cotory* (L, R™);

(b) d,.: Emst — Entrs=r+Lt and dy is the map induced by d* in A1.3.1 and

(c) E%*t is the subquotient F™/F"+1 of Cotorf ™" (L, M) defined above.

Proor. We will give two constructions of this spectral sequence. For the first
define an exact couple (2.1.6) by

E}" = Cotorp"* (L, R?),

D}t = Cotorp " (L, S*%),
i1 = 6%, j1 = a*, and k; = b*. Then the associated spectral sequence is the one we
want.

The second construction applies when L is projective over A and is more explicit
and helpful in practice; we get the spectral sequence from a double complex as
described in Cartan and Eilenberg [1], Section XV.6 or Mac Lane [1], Section XI.6.
We will use the terminology of the former. Let

B™** = Cp(L,R™) (A1.2.11),
ail,s,* — (_1)nCI.§(dn) BS* Bn+1,s,*
* )
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and
Oy =d*: B™S* — Bmsthx,

(Our 91,9 correspond to the di,ds in Cartan and Eilenberg [1], IV.4].) Then
uTLsxgms® o giosthxgis* — () since d® commutes with C£(d"). The associated
complex (BP*,0) is defined by

(A1.3.3) B = P B = P CRLRY)
n+s=p n+s=p
with & = 9y + Oy: BP* — BPFL*,
This complex can be filtered in two ways, i.e.,

F'B=H P B,

r>p g

FiB=pp B

s>q p

and each of these filtrations leads to a spectral sequence. In our case the functor
Ci(L,-) is exact since I' is flat over A, so H**(F;B) = C&(L,M). Hence in the
second spectral sequence

s _ Ci(L,M) ifn=0
! o otherwise

and
Cotor™ (L, M) ifn=0

ETS* — Epresx —
2 .
* 0 otherwise.

The two spectral sequences converge to the same thing, so the first one, which
is the one we want, has the desired properties. ([

A1.3.4. COROLLARY. The cohomology of the compler B** of A1.3.3 is
Cotory (L, M). O

Note that A1.2.4 is a special case of A1.3.3 in which the spectral sequence
collapses.

Next we discuss spectral sequences arising from increasing and decreasing fil-
tration of I

A1.3.5. DEFINITION. An increasing filtration on a Hopf algebroid (A,T') is an
increasing sequaence of sub-K-modules

K=FlckhlCcFEKlI'c---

with T = |J FsT' such that
(a) F,T - ;0 C Fy, L,
(b) ¢(FsI') C F,T', and

(c) AFFC P FI®aFTI.
pt+q=s
A decreasing filtration on (A,T') is a decreasing sequaence of sub-K-modules

Ir=FI'>FT>FT>---
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with 0 = (| F*T such that conditions similar to (a), (b), and (c) above (with the in-
clusion signs reversed) are satisfied. A filtered Hopf algebroid (A, T") is one equipped
with a filtration. Note that a filtration on I' induces one on A, e.g.,

ESA = nL(A) N FSF = UR(A) N FSF = E(FSF)

A1.3.6. DEFINITION. Let (A,T') be filtered as above. The associated graded
object E°T (or Eol') is defined by

ET = F,T/F, T
or

ET = F°T/Fs'T.

The graded object EXA (or EiA) is defined similarly.

A1.3.7. DEFINITION. Let M be a I'-comodule. An increasing filtration on M is
an increasing sequence of sub-K-modules

O0=FMCF,MC---
such that M = |JFsM, FsA- FyM C Fs4+M, and
W(FM)C @ FI' @ F,M.
p+g=s

A decreasing filtration on M is similarly defined, as is the associated graded object
EOM or ExM. A filtered comodule M is a comodule equipped with a filtration.

A1.3.8. PROPOSITION. (EYA, E°T) or (EgA, Eol') is a graded Hopf algebroid
and E°M or EgM is a comodule over it. [l

Note that if (A,T) and M are themselves graded than (E°A, E°T) and E°M
are bigraded.
We assume from now on that E°T or FyT is flat over E°A or EyA.

A1.3.9. THEOREM. Let L and M be right and left filtered comodules, respec-
tively, over a filtered Hopf algebroid (A,T"). Then there is a natural spectral sequence
converging to Cotorp(L, M) such that

(a) in the increasing case

E}* = Cotoryor(E°L, E° M)
where the second grading comes from the filtration and
d,: ESt 5 pstit-r
(b) in the decreasing case
E}" = Cotory, r(EoL, EgM)

and
. st s+1,t+r
dr: B} — B2 .

Note that our indexing differs from that of Cartan and Eilenberg [1] and
Mac Lane [1].
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PRrROOF. The filtrations on I" and M induce one on the cobar complex (A1.2.11)
CrM and we have EoCr(L,M) = Cg,r(EoL,E¢M) or E°Cr(L,M) =
Crop(E°L, E°M). The associated spectral sequence is the one we want.

O

The following is an important example of an increasing filtration.

A1.3.10. EXAMPLE. Let (K,T') be a Hopf algebra. Let T’ be the unit coideal,
i.e., the quotient in the short exact sequence

0K5T 5T —0,

The coproduct map A can be iterated by coassociativity to a map As: I' — I'®s+1,
Let F,I" be the kernel of the composition

D A5 pestl |y Tost,
This is the filtration of I' by powers of the unit coideal.
Next we treat the spectral sequence associated with a map of Hopf algebroids.

A1.3.11. THEOREM. Let f: (A,T') — (B,X) be a map of Hopf algebroids (A1.1.18),
M a right T'-comodule and N a left ¥-comodule.

(a) Cx(T' ®4 B, N) is a complex of left T'-comodules, so Cotors(I'®4 B, N) is
a left T'-comodule.

(b) If M is flat over A, there is a natural spectral sequence converging to
Cotory (M ®4 B, N) with

E;t = Cotor}(M, Cotor (T ®4 B, N))

and d,.: E$t — Estrt=rtl
(¢) If N is a comodule algebra then so is Cotors(I' ®4 B, N). If M is also a
comodule algebra, then the spectral sequence is one of algebras.

PRrOOF. For (a) we have C5(I'®4 B,N) =T ®4 X% ®p N with the cobound-
ary ds as given in A1.2.11. We must show that ds; commutes with the coproduct
on I'. For all terms other than the first in the formula for ds this commutativity is
clear. For the first term consider the diagram

r—2 ro,1— _re,x

Al A®Fi A®Ei
ToAT A To, To T 2T, To,x

The left-hand square commutes by coassociativity and other square commutes triv-
ially. The top composition when tensored over B with ©®° @ N is the first term
in ds. Hence the commutativity of the diagram shows that ds is a map of left
I'-comodules.

For (b) consider the double complex

Cr(M, C5(T' ®4 B, N)),

which is well defined because of (a). We compare the spectral sequences obtained
by filtering by the two degrees. Filtering by the first gives

E, = Cr(M, Cotorg(I'®4 B, N))
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SO

E5 = Cotorp (M, Cotors (' ®4 B, N))
which is the desired spectral sequence. Filtering by the second degree gives a
spectral sequence with
E?" = Cotorf (M, CL(T' @4 B, N))
= Cotorp(M, T ®4 % @5 N)
=M®aX®% @ N by A1.2.8(b)
=CL(M ®4 B,N)
s0 Fy = Eo = Cotorg(M ®4 B, N).

For (c) note that '® 4 B as well as N is a X-comodule algebra. The I'-coaction
on Cx(I'®4 B, N) is induced by the map
O(A@B,N): OE(F(X)AB,N) — OE(F(X)AF@A B,N)
=T'®4Cx(I'®4 B,N).
Since the algebra structure on Cx( , ) is functorial, C(A® B, N) induces an algebra
map in cohomology and Cotorsg(I' ® 4 B, N) is a I'-comodule algebra.

To show that we have a spectral sequence of algebras we must define an algebra
structure on the double complex used in the proof of (b), which is M Op Dp(I’' ® 4
B Oy Ds(N)). Let N =T ®4 B Ox Dx(N). We have just seen that it is a T'-
comodule algebra. Then this algebra structure extends to one on Dr(N) by A1.2.9

since Dp(N) @4 Dr(N) is a relatively injective resolution of N ® 4 N. Hence we
have maps

M O Dp(N) ® M Op Dp(N) = M ©4 M Op Dp(N) ® 4 Dp(N)
— M Op Dp(N) ®4 Dr(N) — M Op Dp(N),
which is the desired algebra structure. O

Our first application of this spectral sequence is a change-of-rings isomorphism
that occurs when it collapses.

A1.3.12. CHANGE-OF-RINGS ISOMORPHISM THEOREM. Let f: (A,T') — (B,X)
be a map of graded connected Hopf algebroids (A1.1.7) satisfying the hypotheses of
A1.1.19; let M be a right I'-comodule and let N be a left X-comodule which is flat
over B. Then

Cotorp(M, (T ®4 B) Oy N) = Cotorg(M ®4 B, N).
In particular
Extr(A,(I'®4 B) Ox N) = Exts (B, N),
PrROOF. By A1.1.19 and A1.2.8(b) we have
Cotory;,(I'®4 B,N) =0 for s > 0.
A1.3.11(b) gives
Cotorp (M, Cotor(I' @4 B, N)) = Cotors;(M @4 B, N).
Since N is flat over B,
Cotory(I'®4 B,N) = (T ®4 B)Og N
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and the result follows. O

A1.3.13. COROLLARY. Let K be a field and f: (K,T') — (K,X) be a surjective
map of Hopf algebras. If N is a left 3-comodule then

Extp(K,T Oy N) = Exts (K, N). O

Next we will construct a change-of-rings spectral sequence for an extension of
Hopf algebroids (A1.1.15) similar to that of Cartan and Eilenberg [1, XVI 6.1],
which we will refer to as the Cartan—Eilenberg spectral sequence.

A1.3.14. CARTAN-EILENBERG SPECTRAL SEQUENCE THEOREM. Let
(D,®) 5 (A1) L (4,%)

be an extension of graded connected Hopf algebroids (A1.1.15). Let M be a right
®-comodule and N a left I'-comodule.

(a) Cotorg (A, N) is a left D-comodule. If N is a comodule algebra, then so is
this Cotor .

(b) There is a natural spectral sequence converging to Cotorr(M ®@p A, N) with

Ej* = Cotorsy (M, Cotork (A, N))
and
dr: Es,t - Es-i—r,t—r-&-l.

(¢) If M and N are comodule algebras, then the spectral sequence is one of
algebras.

Proor. Applying A1.3.11 to the map i shows that Cotorpr(®®p A, N) is a left
®-comodule algebra and there is a spectral sequence converging to Cotorr (M ®p
A, N) with

E5 = Cotorg (M, Cotorr (® ® 4 D, N)).
Hence the theorem will follow if we can show that Cotorp(® ®p A,N) =
Cotory(A,N). Now ® ®p A = AOx T by Al.1.16. We can apply A1.3.12 to f

and get Cotorp(P Oy I', R) = Cotorg (P, R) for a right X-comodule P and left
I'-comodule R. Setting P = A and R = N gives the desired isomorphism

Cotorp(® ®@p A, N) = Cotorp(A Ox T', N) = Cotors (A, N). O
The case M = D gives

A1.3.15. COROLLARY. With notation as above, there is a spectral sequence of
algebras converging to Extr(A, N) with Fy = Exte (D, Exts (4, N)). O

Now we will give an alternative formulation of the Cartan—FEilenberg spectral
sequence (A1.3.14) suggested by Adams [12], 2.3.1 which will be needed to apply the
results of the next sections on Massey products and Steenrod operations. A similar
formulation was given by Hochschild-Serre [1] in the context of group cohomology.
Using the notation of Al1.2.14, we define a decreasing filtration on Cr(M ®p A, N)
by saying that m~yy|...|ysn € F* if i of the 4’s are in ker fs.

A1.3.16. THEOREM. The spectral sequence associated with the above filtration of
Cr(M ®p A, N) coincides with the Cartan—Eilenberg spectral sequence of Al1.3.14.
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Proor. The Cartan—Eilenberg spectral sequence is obtained by filtering the
double complex Cj(M,Cfi (P ®@p A, N)) by the first degree. We define a filtration-
preserving map 6 from this complex to Cr(M ®p A, N) by

M@ P1 @ P ®P Y541 @+ Vst O M)
=m®iz(P1) @ - i2(¢s)i16(P) @ Voq1 @ - Yspt @M.
Let B} (M, N) = C4(M, Cotori(® ®p A, N)) = C5 (M, Cotork (A, N)) be the E-

term of the Cartan—Eilenberg spectral sequence and F1(M, N) the Fi-term of the
spectral sequence in question. It suffices to show that

0,: E{(M,N) — E{(M,N)

is an isomorphism.
First consider the case s = 0. We have

Fy/F' = Cs;(M ®p A,N) =M ®@p Cx(A,N)
so this is the target of 6 for s = 0. The source is M ®p Cr(¢ @p A, N). The
argument in the proof of Theorem A1.3.14 showing that
Cotorp(® ®p A, N) = Cotorg (A, N)

shows that our two complexes are equivalent so we have the desired isomorphism
for s = 0.
For s > 0 we use the following argument due to E. Ossa.
The differential
do: EYY(M,N) — ES"H (M, N)
depends only on the X-comodule structures of M and N. In fact we may define a
complex Dy (N) formally by
DEY(N) = ES'(S, N).
Then we have
Eg*(M,n) = M Ox D3'(N).
Observe that N
DE'(N) = C4(3,N).
Now let G = ker f and
CTl' =G0y G=G0xy G0y ---05 G
with s + 1 factors.

Note that -
G=X®® and hence
G* =Y ® %"
as left ¥-comodules, where the tensor products are over D.
Define

Bs: G By D' (N) = D' (N)
by
Bs((g1®...95)®01® - @0, @n)
=Yf(g)g Rgr DG RoI DD 7y D .
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Then S5 is a map of differential ¥-comodules and the diagram

Ey' (M, N) =——= E)"(M ® ®%*,N)
\Les,t ieo,t
E3'(M,N) EY'(M @ %5 N)

M Ox, DE'(N )TMDZ G* Oy, D'(N)

commutes.

We know that 6% is a chain equivalence so it suffices to show that 8 is one
by induction on s. To start this induction note that §y is the identity map by
definition.

Let

Fs’t(F7N) = FSCS+t(F, N)
and

FSYT,N) = FS'(G,N) + FsTH1=1T, N)
= YT, N).
Then F**(T', N) is a 3-comodule subcomplex of Cr(T', N) which is invariant under
the contraction
S(Y®@m...vs®n)=e(7) @1 ...7 O n.
Since Ho(F**(I', N)) = 0, the complex F**(T", N) is acyclic.
Now look at the short exact sequence of complexes

0 Fst1(T, N) Fs(T,N) Fs(T,N) 0
Fs+Y(T, N) Fs+(T, N) P, N)
¢J/u ¢ig
DgFH(N) G Oy, D3 (N)

The connecting homomorphism in cohomology is an isomorphism.
We use this for the inductive step. By the inductive hypothesis, the composite

G DOy, (G° Ox N) — G Oy, (G* Ox, DX(N)) — G Oy, D5(N)

is an equivalence. If we follow it by ¢ 0¢ we get B541. This completes the inductive
step and the proof. O

A1.3.17. THEOREM. Let ® — T' — X be a cocentral extension (A1.1.15) of
Hopf algebras over a field K; M a left ®-comodule and N a trivial left I'-comodule.
Then Exts (K, N) is trivial as a left ®-comodule, so the Cartan—Eilenberg spectral
sequence (A1.3.14) Ea-term is Exte (M, K) ® Exty (K, K) ® N.

PrOOF. We show first that the coaction of ® on Exty (K, N) is essentially
unique and then give an alternative description of it which is clearly trivial when
the extension is cocentral. The coaction is defined for any (not necessarily trivial)
left I-comodule N. It is natural and determined by its effect when N = T since
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we can use an injective resolution of N to reduce to this case. Hence any natural
®-coaction on Exty (K, N) giving the standard coaction on Exts(K,T") = ® must
be identical to the one defined above.

Now we need some results of Singer [5]. Our Hopf algebra extension is a
special case of the type he studies. In Proposition 2.3 he defines a ®-coaction
on X, py: X — P ® X via a sort of coconjugation. Its analog for a group extension
N — G — H is the action of H on N by conjugation. This action is trivial when
the extension is central, as is Singer’s coaction in the cocentral case.

The following argument is due to Singer.

Since ¥ is a ®-comodule it is a I'-comodule so for any N as above X @ N is a
I'-comodule. It follows that the cobar resolution Dsx N is a differential I'-comodule
and that Homy (K, Dy N) is a differential comodule over Homy, (K, T") = ®. Hence
we have a natural ®-coaction on Exty (K, N) which is clearly trivial when N has
the trivial I'-comodule structure and the extension is cocentral.

It remains only to show that this ®-coaction is identical to the standard one by
evaluating it when N =T'. In that case we can replace Dy N by N, since N is an
extended Y-comodule. Hence we have the standard I'-coaction on I' inducing the
standard ®-coaction on Homy (K, T") = . O

4. Massey Products

In this section we give an informal account of Massey products, a useful struc-
ture in the Ext over a Hopf algebroid which will figure in various computations
in the text. A parallel structure in the ASS is discussed in Kochman [4] and
Kochman [2, Section 12]. These products were first introduced by Massey [3], but
the best account of them is May [3]. We will give little more than an introduction to
May’s paper, referring to it for all the proofs and illustrating the more complicated
statements with simple examples.

The setting for defining Massey products is a differential graded algebra (DGA)
C over a commutative ring K. The relevant example is the cobar complex Cr (L, M)
of A1.2.11, where L and M are I'-comodule algebras and I' is a Hopf algebroid
(A1.1.1) over K. The product in this complex is given by A1.2.15.

We use the following notation to keep track of signs. For = € C, let T denote
(—1)i*+dee®y where deg x is the total degree of x; i.e., if C' is a complex of graded
objects, deg x is the sum of the internal and cohomological degrees of x. Hence we
have d(z) = —d(x), (Ty) = —2y, and d(zy) = d(z)y — zd(y).

Now let «; € H*(C) be represented by cocycles a; € C for ¢ = 1,2,3. If
;i1 = 0 then there are cochains w; such that d(u;) = @;a;41, and @1as + ajug is
a cocycle. The corresponding class in H*(C) is the Massey product {aq, s, ag). If
a; € H% the this (a1, a9, a3) € H*~! where s = 3 s;. Unfortunately, this triple
product is not well defined because the choices made in its construction are not
unique. The choices of a; do not matter but the u; could each be altered by adding a
cocycle, which means (aq, s, ag) could be altered by any element of the form zas+
ayy with o € H51t52=1 and y € H®2+*3~1, The group o H%31*2~1 @ azH51 521
is called the indeterminacy, denoted by In{a, ag, as). It may be trivial, in which
case {a, as,a3) is well defined.
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A1.4.1. DEFINITION. With notation as above, (aq,ag,as) C H*(C) is the coset
of In{a, o, ag) represented by ajus + tras. Note that (aq, s, as) is only defined
when apas = asas = 0.

This construction can be generalized in two ways. First the relations a;a;41 =0
can be replaced by

Z )jk=0 for1<k<n
=1

.

and
n
Zozg]kagk—O for1 <j<m.
k=1

Hence the «o; become matrices with entries in H*(C'). We will denote the set of
matrices with entries in a ring R by MR. For x € MC or MH*(C), define = by
(T)jk = Tj k-

As before, let a; € MC represent a; € M H*(C) and let u; € MC be such that
d(u;) = @;a;+1. Then uy and ug are (1 X n)- and (m x 1)-matrices, respectively, and
G1uz+ujag is a cocycle (not a matrix thereof) that represents the coset {1, ag, as).

Note that the matrices a; need not be homogeneous (i.e., their entries need not
all have the same degree) in order to yield a homogeneous triple product. In order
to multiply two such matrices we require that, in addition to having compatible
sizes, the degrees of their entries be such that the entries of the product are all
homogeneous. These conditions are easy to work out and are given in 1.1 of May [3].
They hold in all of the applications we will consider and will be tacitly assumed in
subsequent definitions.

A1.4.2. DEFINITION. With notation as above, the matric Massey product
(a1, g, au3) is the coset of In{a, aa, a3) represented the cocycle ayus + tyasz, where
In{ay, g, a3) is the group generated by elements of the form xas + ayy where
x,y € MH*(C) have the appropriate form.

The second generalization is to higher (than triple) order products. The Massey
product {ay,aq,...,ay) for a; € MH*(C) is defined when all of the lower products
(i, iy1,...,a5) for 1 < i < j<mnandj—1i<n—1 are defined and contain
zero. Here the double product (a;a;41) is understood to be the ordinary product
o;oi41. Let a;—1; be a matrix of cocycles representing a;. Since o 11 = 0
there are cochains Aj—1,i4+1 with d(ai_l,i_;_l) = Ei_lviaiﬂ_l. Then the triple product
(Qij, iy1, aiqo) is represented by bi_1i12 = Gi—1,i+10it1,i42 + Gi—1,iGii+2. Since
this triple product is assumed to contain zero, the above choices can be made so
that there is a matrix of cochains a;_1 ;12 whose coboundary is b;_1 ;42.

Then the fourfold product (a1, a2, a3, ) is represented by the cocycle ag 3as 4+
G0,202,4+0p,101,4. More generally, we can choose elements a; ; and b; ; by induction
on j — i satisfying b; ; = Zi<k<j a; pag,; and d(a; ;) =b; j for i —j <n —1.

A1.4.3. DEFINITION. The n-fold Massey product (a1, as,...,ap) is defined
when all of the lowerproducts (c, . . ., o) contain zero fori < j and j—i <n—1. It
is strictly defined when these lower products also have trivial indeterminacy, e.g.,
all triple products are strictly defined. In either case the matrices a; ; chosen above
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for0<i<j<nandj—i<n constitute a defining system for the product in ques-
tion, which is, modulo indeterminacy (to be described below), the class represented

by the cocycle
Z Qag,; Qi p-
0<i<n

Note that if a; € H%(C), then (ay,...,ap,) C HST27"(C) where s = s;.

In 1.5 of May [3] it is shown that this product is natural with respect to DGA
maps f in the sense that (f.(aq),. .., f«(a)) is defined and contains f,({aq, ..., ap)).

The indeterminacy for n > 4 is problematic in that without additional technical
assumptions it need not even be a subgroup. Upper bounds on it are given by the
following result, which is part of 2.3, 2.4, and 2.7 of May [3]. It expresses the
indeterminacy of n-fold products in terms of (n — 1)-fold products, which is to be
expected since that of a triple product is a certain matric double product.

A1.4.4. INDETERMINACY THEOREM. Let (a1, ..., an) be defined. For 1 <k <
n — 1 let the degree of xi be one less than that of axg41.
(a) Define matrices Wy by

Wy = (oq x1),
Wk(ak x’“) for 2<k<mn—2
0 g1

and

anl = ($2_1> .

Then In{aq,...,an) C JWr,...,W,,) where the union is over all x) for which
(Wi,...,Wy) is defined.

(b) Let {av1,...,an) be strictly defined. Then for 1 <k <n-—1 {ag,...,ap_1,
Tk, Aty - - - Q) 18 strictly defined and

n—1
In{as,...,an) C U Z(al, e g1, T, Oy 2, Otpy)
k=1

where the union is over all possible xy. Equality holds when n = 4.
(c) If o, = o, + o and {a1,...,q),...,a) is strictly defined, then

(1, yn) Clan, ey Qyee oy ) (@, oyl ). O

There is a more general formula for the sum of two products, which generalizes

the equation
a1+ azfs = <(041042)7 (g;)>

and is part of 2.9 of May [3].

A1.4.5. ADDITION THEOREM. Let {a1,...,ap) and {(B1,...,0n) be defined.
Then 50 s {(y1,...,Yn) where

7= (0[1,51)7 Ve = (Oé)k 5Ok> fOT’ 1<k< n, and Tn = (g:) .

Moreover (a1, ..., an) + (B1,--,Bn) T V15, Vn)-



328 Al. HOPF ALGEBRAS AND HOPF ALGEBROIDS

In Section 3 of May [3] certain associativity formulas are proved, the most
useful of which (3.2 and 3.4) relate Massey products and ordinary products and
are listed below. The manipulations allowed by this result are commonly known as

Juggling.

A1.4.6. FIRST JUGGLING THEOREM. (a) If (ag,...,an) is defined, then so is
(g, as,. .., an) and
ar{ag,...,an) C —(Qr1ag, as, ..., Q).
(b) If (@1, ..., n_1) is defined, then so is (a1, ..., Qn_2,0n_105) and
(a1, yap—1), C{an,. .., Qp_2, Qp_10y).

(c) If (aq,...,an—1) and {Qa,...,ay) are strictly defined, then

ar(az, ..., an) = (A1, .., Qp_1)n.
(d) If (cyava, s,y . .., ) 38 defined, then so is (a1, Gaas, oy, ..., ap) and
(1o, g, ... ap) C —(ar, Goas, g, ..., Q).
(e) If (a1, ..., ap—g, Gp_10u,) 1 defined, then so is (aq, ..., Qn—3, Qp_1, Q) and
(@1, 0n_2,Qn_10p) C —(Q1,...,0n_3,Qn_ 205 _1,0p).

() If (a1, 01, 0kQpp1, Qpya, -, Q) and (@, ..., Ok, Qg1 ey 2,5 gy 3,
. .,ap) are strictly defined, then the intersection of the former with minus the
latter is nonempty. O

Now we come to some commutativity formulas. For these the DGA C must
satisfy certain conditions (e.g., the cup product must be commutative) which always
hold in the cobar complex. We must assume (if 2 # 0 in K) that in each matrix o
the degrees of the entries all have the same parity €;; i.e., €; is 0 if the degrees are
all even and 1 if they are all odd. Then we define

(A1.4.7) s(i,g)=j—i+ ., (l+e)l+em)

i<k<m<j

and

k
t(k) = (1 +51)Z(1 +¢5).

The transpose of a matrix « will be denoted by «’. The following result is 3.7 of
May [3].

A1.4.8. SECOND JUGGLING THEOREM. Let (a1, ..., ay) be defined and assume
that either 2 =0 in K or the degrees of all of the entries of each a; have the same
parity €;. Then (o, ..., o) is also defined and

(ar,.coyan) = (=10l o ah).
(For the sign see A1.4.7) O

The next result involves more complicated permutations of the factors. In order
to ensure that the permuted products make sense we must assume that we have
ordinary, as opposed to matric, Massey products. The following result is 3.8 and
3.9 of May [3].
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A1.4.9. THIRD JUGGLING THEOREM. Let {(a1,...,q,) be defined as an ordi-
nary Massey product.
(@) If (Qkg1y.- oy, a1, ..., ) is strictly defined for 1 <k < n, then

n—1
(—1)*E a, o) © Y (1) ORI (o a, L a).
k=1
(b) If {@ay ..., Qg Aty - - - p) 18 strictly defined for 1 < k < n then
<OZ1, teey an> (G Z(_]‘)t(k)<a2a sy O, A1, Qg 1y - e e 7an>‘
k=2
(For the signs see A1.4.7)

Now we consider the behavior of Massey products in spectral sequences. In
the previous section we considered essentially three types: the one associated with
a resolution (A1.3.2), the one associated with a filitration (decreasing or increas-
ing) of the Hopf algebroid I" (A1.3.9), and the Cartan—Eilenberg spectral sequence
associated with an extension (A1.3.14). In each case the spectral sequence arises
from a filtration of a suitable complex. In the latter two cases this complex is the
cobar complex of A1.2.11 (in the case of the Cartan—Eilenberg spectral sequence
this result is A1.3.16), which is known to be a DGA (A1.2.14) that satisfies the
additional hypotheses (not specified here) needed for the commutativity formulas
A1.4.8 and A1.4.9. Hence all of the machinery of this section is applicable to those
two spectral sequences; its applicability to the resolution spectral sequence of A1.3.2
will be discussed as needed in specific cases.

To fix notation, suppose that our DGA C' is equipped with a decreasing fil-
tration {FPC'} which respects the differential and the product. We do not require
FOC = C, but only that lim,, o FPC = C and lim,_o FPC = 0. Hence we
can have an increasing filtration {F,C} by defining F,,C' = F~PC. Then we get a
spectral sequence with

E(z)),q — chvp-&-q/Fm-lCp-s-q7
Ef’q — Hp+q(Fp/Fp+1),

. ) ,q—r+1
dp: BP9 — prima-rtl
and
EP49 — FpHp+q/Fp+1Hp+q
o .

We let EZ C EP? denote the permanent cycles and i: EI'Z — ER? and
m: FPCPHe — Ef? the natural surjections. If x € EXZ and y € FPHP*? projects
to i(x) € ERY we say that x converges to y. If the entries of a matrix B € MC
are all known to survive to E,, we indicate this by writing 7(B) € ME,. In the
following discussions «a; will denote an element in M E,. represented by a; € MC.
If o; € ME, o, B;i € MH*(C) will denote an element to which it converges.

Each E,. is a DGA in whose cohomology, F, 1, Massey products can be defined.
Suppose {aq, ..., q,) is defined in E, 11 and that the total bidegree of the «; is (s, t),
i.e., that the ordinary product ajas ..., (which is of course zero if n > 3) lies

in EﬁL Then the indexing of d, implies that the Massey product is a subset of

s—r(n—2),t+(r—1 —2
BT D1 (n-2)
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May’s first spectral sequence result concerns convergence of Massey products.
Suppose that the ordinary triple product (51, 82, 83) C H*(C) is defined and that
(a1, a9, as) is defined in F,41. Then one can ask if an element in the latter product
is a permanent cycle converging to an element of the former product. Unfortunately,
the answer is not always yes. To see how counterexamples can occur, let 4; € F,
be such that d,.(4;) = a;a;11. Let (p,q) be the bidegree of one of the ;. Since
(81, B2, PB3) is defined we have as before u; € C such that d(u;) = a;a;41. The
difficulty is that @;a;+1 need not be a coboundary in FPC’ i.e., it may not be possible
to find a u; € FPC. Equivalently, the best possible representative @; € FPC of 4,
may have coboundary a@;a; 11 — e; with 0 # w(e;) € Etpﬂ’q_t+1 for some ¢t > r.
Then we have d(u; — ;) = e;. and 7(u; — ;) = 7(u;) € EL P for some m > 0,
S0 dytt(m(w;)) = w(e;). In other words, the failure of the Massey product in E, 41
to converge as desired is reflected in the presence of a certain higher differential.
Thus we can ensure convergence by hypothesizing that all elements in Ef;;”;”ffr m
for m > 0 are permanent cycles.

The case m = 0 is included for the following reason (we had m > 0 in the
discussion above). We may be able to find a u; € FPC with d(u;) = a;a;41 but
with m(u;) # u;, so de(m(u—1a;)) = 7(e;) # 0. In this case we can find a convergent
element in the Massey product in E, 1, but it would not be the one we started
with.

The general convergence result, which is 4.1 and 4.2 of May [3], is

A1.4.10. CONVERGENCE THEOREM. (a) With notation as above let (o1, . .., o)
be defined in E. 1. Assume that a; € ME, 1 and o; converges to B;, where
(B, ..., Bn) is strictly defined in H*(C). Assume further that if (p,q) is the bide-
gree of an entry of some a; ; (for1 < j—1 < n) in a defining system for (a1, ..., ay)
then each element in EP %™ for allm > 0 is a permanent cycle. Then each ele-
ment of (a1,...,ay) is a permanent cycle converging to an element of (81, ..., 0Bn)-

(b) Suppose all of the above conditions are met except that (a1, ..., ay) is not
known to be defined in Eyi1. If for (p,q) as above every element of EL /"™ for
m > 1 is a permanent cycle then {aq,...,ay) is strictly defined so the conclusion
above is valid. (]

The above result does not prevent the product in question from being hit by a
higher differential. In this case (01, ..., B,) projects to a higher filtration.

May’s next result is a generalized Leibnitz formula which computes the differ-
ential on a Massey product in terms of differentials on its factors. The statement
is complicated so we first describe the simplest nontrivial situation to which it
applies. For this discussion we assume that we are in characteristic 2 so we can
ignore signs. Suppose (aq, a9, ag) is defined in F,1; but that the factors are not
necessarily permanent cycles. We wish to compute d,.y; of this product. Let
a; have bidegree (p;,q;). Then we have u; € FPitPit1=2C with d(u;) = a;ai41
mod FPitPi+1T1C. The product is represented by ujasz + ajus. Now let d(a;) = a,
and d(u;) = a;a;+1 +u;. Then we have d(uyas +ajuz) = ujas+uias + ajug + axul.
This expression projects to a permanent cycle which we want to describe as a
Massey product in FE,.;. Consider

<(dr+1(a1) o), <dr+01[?a2) ()?g) ’ (dr+fé€a3)~>>'
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Since d(u;) = a;aq1 + uj is a cycle, we have d(u;) = d(a;ai11) = ajaip1 + azaj
so dr(m(u})) = dry1(i)ait1 + aidrgpi(ouyr). It follows that the above product
contains mw(ujas + ujah + ajus + asub) € Erqg.

Hence we have shown that

dyi1 ({1, oz, 03)) C <(dr+1(a1) 1), <d7,:1y?a2) 0(4)2> ’ (d7-+??043)>>'

We would like to show more generally that for s > r with di(o;) = 0 for r <
t < s, the product is a di-cycle and ds on it is given by a similar formula. As
in A1.4.10, there are potential obstacles which must be excluded by appropriate
technical hypotheses which are vacuous when s = r + 1. Let (p, q) be the bidegree
of some u;. By assumption v, € FPY"C and d(u}) = ala;11 + a;al,,. Hence
m(aa;,, + ajair1) € EPTrEsaTr=s+2 ig Yilled by a drys—y for v < t < s. If the
new product is to be defined this class must in fact be hit by a d,. and we can
ensure this by requiring EXT2% " = 0 for r < t < 5. We also need to know
that the original product is a di-cycle for 7 < t < s. This may not be the case
if m(u}) # 0 e EPTH for p < t < s, because then we could not get rid of
7(u}) by adding to u; an element in FP*1C with coboundary in FP*"+1C (such a
modification of u; would not alter the original Massey product) and the expression
for the Massey product’s coboundary could have lower filtration than needed. Hence
we also require EP TP — 0 for r < t < s.

We are now ready to state the general result, which is 4.3 and 4.4 of May [3].

A1.4.11. THEOREM (LEIBNITZ FORMULA). (a) With notation as above let
(a1,09,...,a,) be defined in E.yq1 and let s > r be given with di(a;) = 0 for
allt < s and 1 <1i < n. Assume further that for (p,q) as in A1.4.10 and for each
t withr <t <s,

Ef+t’q7t+1 =0 and Efi;il;t+1 =0
(for each t one of these implies the other). Then each element o of the product is a
dg-cycle for r < t < s and there are permanent cycles o, € M E, 11, which survive
to ds(cv;) such that (y1,...,vn) s defined in E, 11 and contains an element v which
survives to —ds(«r), where

a; 0 .
N = (eha1), vi= (az al) for 1 <i<n,
and
a
(b) Suppose further that each o is unique, that each (Ga,...,&i—1, ¥, Qit1,

.oy ) is strictly defined, and that all products in sight have zero indeterminacy.
Then

n

ds(<a1, SRS ,Oés>) = — Z<6¢1, ey, a;, (07 NS P 7Oén>. ([l
i=1
The last result of May [3] concerns the case when {(ag,...,a,) is defined in

E,;1, the a; are all permanent cycles, but the corresponding product in H*(C) is
not defined, so the product in F,,; supports some nontrivial higher differential.
One could ask for a more general result; one could assume di(a;) = 0 for t < s and,
without the vanishing hypotheses of the previous theorem, show that the product
supports a nontrivial d;. In many specific cases it may be possible to derive such
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a result from the one below by passing from the DGA C' to a suitable quotient in
which the «; are permanent cycles.

As usual we begin by discussing the situation for ordinary triple products,
ignoring signs, and using the notation of the previous discussion. If (a1, s, ag) is
defined in E, ;1 and the a; are cocycles in C but the corresponding product in H*(C')
is not defined, it is because the a;a;+1 are not both coboundaries; i.e., at least one
of the u} = d(u;)+a;a;41 is nonzero. Suppose m(u}) is nontrivial in EZF 97", As
before, the product is represented by uja3+ajus and its coboundary is v} as+aqub,
80 dpi1({a1, a2, a3)) = m(ujas + ayuh). Here ul represents the product ;5,11 €
H*(C), where ; € H*(C) is the class represented by a;. The product 5;8;+1
has filtration greater than the sum of those of 8; and f;11, and the target of the
differential represents the associator (5102)8s + B1(8233).

Next we generalize by replacing r + 1 by some s > r; i.e., we assume that the
filtration of B;5;+1 exceeds the sum of those of §;, and 5;11 by s —r. As in the
previous result we need to assume

EPTHaHl — 0 for r <t < s;

this condition ensures that the triple product is a d;-cycle.

The general theorem has some hypotheses which are vacuous for triple products,
so in order to illustrate them we must discuss quadruple products, again ignoring
signs. Recall the notation used in definition A1.4.3. The elements in the defining
system for the product in E,.;; have cochain representatives corresponding to the
defining system the product would have if it were defined in H*(C). As above,
we denote a;—1,; by a;,a;—1,;4+1 by u;, and also a;_1,;42 by v;. Hence we have
d(a;) = 0, d(u;) = aa;41 + u}, di) = a;ui+1 + ua;42 + v, and the product
contains an element « represented by m = ajvs + ujug + viaq, so d(m) = ajvh +
uhuz + uyuy +viay. We also have d(uj) = 0 and d(v)) = uwjai12 + a;uj ;.

We are assuming that (81, 52, 83, 84) is not defined. There are two possible
reasons for this. First, the double products §;5;+1 may not all vanish. Second,
the double products all vanish, in which case u} = 0, but the two triple products
(Bi, Bit+1, Bit2) must not both contain zero, so v, # 0. More generally there are
n — 2 reasons why an n-fold product may fail to be defined. The theorem will
express the differential of the n-fold product in E,.;; in terms of the highest order
subproducts which are defined in H*(C'). We will treat these two cases separately.

Let (pi,q;) be the bidegree of ;. Then the filtrations of w;,v;, and m are,
respectively, p; + piy1 — 7, pi + pit1 + pit2 — 2r, and p1 +p2 +p3 +ps — 2.

Suppose the double products do not all vanish. Let s > r be the largest integer
such that each w} has filtration > s — 7 + p; + p;+1. We want to give conditions
which will ensure that (aq, ag, as, ) is a di-cycle for r < t < s and that the triple

product
COMYEANEH)

is defined in E,;; and contains an element which survives to ds(«); note that if
all goes well this triple product contains an element represented by d(m). These
conditions will be similar to those of the Leibnitz formula A1.4.11. Let (p, ¢) be the
bidegree of some v;. As before, we ensure that d¢(«) = 0 by requiring Ef”’qf’%l,

and that the triple product is defined in E,..; by requiring Efizf;tﬂ = 0. The
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former condition is the same one we made above while discussing the theorem for
triple products, but the latter condition is new.

Now we treat the case when the double products vanish but the triple products
do not. First consider what would happen if the above discussion were applied
here. We would have s = co and a would be a permanent cycle provided that
Ef+t’q_t+1 =0 for all £ > r. However, this condition implies that v can be chosen
so that v’ = 0, i.e., that the triple products vanish. Hence the above discussion is
not relevant here.

Since u; = 0, the coboundary of the Massey product m is ajvj + vjas. Since
d(v;) = auip1+uai42+0], v is a cocycle representing an element of (3;, Bi+1, Bita)-
Hence if all goes well we will have ds(a) = aym(vh) + 7(v])ay, where s > r is the
largest integer such that each v] has filtration at least p; + piy1 + pit2 + s — 2r.
To ensure that dy(a) = 0 for t < s, we require EPT"97"* — 0 for r < t < s as
before, where (p, ¢) is the degree of v;. We also need to know that {(a;, i1, @iy2)
converges to (f3;, Bi+1, Bit+2); since the former contains zero, this means that the
latter has filtration greater than p; + p;+1 + pi+2 — 7. We get this convergence from
A1.4.10, so we must require that if (p, ¢) is the bidegree of 7(u;), then each element
of EP Mot ™+ for all m > 0 is a permanent cycle.

Now we state the general result, which is 4.5 and 4.6 of May [3].

A1.4.12. DIFFERENTIAL AND EXTENSION THEOREM. (a) With notation as
above, let {a1,...,ay) be defined in E,.q1 where each o is a permanent cycle con-
verging to B; € H*(C). Let k with 1 < k < n — 2 be such that each (B, ..., Bi+k)
is strictly defined in H*(C) and such that if (p,q) is the bidegree of an entry of
some a;; for 1 < j—1i < k in a defining system for (ai,...,on) then each ele-
ment of EX U™ for all m > 0 is a permanent cycle. Furthermore, let s > 1 be
such that for each (p,q) as above with k < j —1i < n and each t with r < t < s,
EPTR — 0 and, if j—i > k+ 1, EPEDTT = 0.

Then for each a € {aq,...,qn), di(a) = 0 for r < t < s, and there are
permanent cycles 0; € ME,1 o for 1 <i < n —k which converge to elements of
(Biy- -y Bivk) C H*(C) such that (y1,...,Yn—k) is defined in E,. 1 and contains an
element v which survives to —ds(c), where
n=01m), Y= (agk (g) fori<mn—k,

%

— Qn
Tn—k = 5n—k ’

(b) Suppose in addition to the above that each ¢; is unique, that each

and

(A1, ey @1, 04, Qi ki1, - - -, Q) 1S Strictly defined in E,11 and that oll Massey
products in sight (except possibly (B, ..., Bitk)) have zero indeterminacy. Then
n—=k
d5(<a1, ey Oén>) = Z(dl, N @i_l,éi,ai+k+1, ceey Oén>. |:|
i=1
Note that in (b) the uniqueness of §; does not make (G;, ..., Bi+r) have zero

indeterminacy, but merely indeterminacy in a higher filtration. The theorem does

not prevent d; from being killed by a higher differential. The requirement that

EPTMAF™ C Brimiteo 18 vacuous for k = 1, eg., if n = 3. The condition
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EPTLOY = 0 is vacuous when k = n — 2; both it and EFYTN = 0 are
vacuous when s = + 1.

A1.4.13. REMARK. The above result relates differentials to nontrivial exten-
sions in the multiplicative structure (where this is understood to include Massey
product structure) since d; represents (5;, ..., Bitr) but has filtration greater than
that of (e, ...,a;+x). The theorem can be used not only to compute differentials
given knowledge of multiplicative extensions, but also vice versa. If ds(«) is known,
the hypotheses are met, and there are unique d; which fit into the expression for +,
then these ¢; necessarily converge to (6, ..., Bitk)-

5. Algebraic Steenrod Operations

In this section we describe operations defined in Cotorp(M, N), where I' is a
Hopf algebroid over Z/(p) for p prime and M and N are right and left comodule
algebras (A1.1.2) over I'. These operations were first introduced by Liulevicius [2],
although some of the ideas were implicit in Adams [12]. The most thorough account
is in May [5], to which we will refer for most of the proofs. Much of the material
presented here will also be found in Bruner et al. [1]; we are grateful to its authors
for sending us the relevant portion of their manuscript. The construction of these
operations is a generalization of Steenrod’s original construction (see Steenrod [1])
of his operations in the mod (p) cohomology of a topological space X. We recall
his method briefly. Let G = Z/(p) and let E be a contractible space on which
G acts freely with orbit space B. XP denotes the p-fold Cartesian product of X
and XP x ¢ F denotes the orbit space of X? x E where G acts canonically on E and
on XP by cyclic permutation of coordinates. Choosing a base point in F gives maps
X - X x Band XP - XP xg F. Let A: X — XP be the diagonal embedding.
Then there is a commutative diagram

X A xp

L

XxB——=XPxgFE

Given x € H*(X) [all H* groups are understood to have coefficients in Z/(p)
it can be shown that t ® ¢ ® ---a& € H*(XP) pulls back canonically to a class
Px € H*(X? xg E). We have H'(B) = Z/(p) generated by e; for each i > 0.
Hence the image of Pz in H*(X x B) has the form ) .., x; ® e; with z; € H*(X)
and xg = xP. These x; are certain scalar multiples of various Steenrod operations
on x.

If C is a suitable DGA whose cohomology is H*(X) and W is a free R-resolution
(where R =Z/(p)[G]) of Z/(p), then we get a diagram

C c,

|

C®RW%CI,®RW

where C), is the p-fold tensor power of C, R acts trivially on C' and by cyclic
permutation on Cp, and the top map is the iterated product in C. It is this
diagram (with suitable properties) that is essential to defining the operations. The



5. ALGEBRAIC STEENROD OPERATIONS 335

fact that C is associated with a space X is not essential. Any DGA C which
admits such a diagram has Steenrod operations in its cohomology. The existence of
such a diagram is a strong condition on C} it requires the product to be homotopy
commutative in a very strong sense. If the product is strictly commutative the
diagram exists but gives trivial operations.

In 11.3 of May [5] it is shown that the cobar complex (A1.2.11) Cr(M, N), for
M, N as above and I' a Hopf algebra, has the requisite properties. The generaliza-
tion to Hopf algebroids is not obvious so we give a partial proof of it here, referring
to Bruner et al. [1] for certain details.

We need some notation to state the result. Let C = Cr(M, N) for T a Hopf al-
gebroid over K (which need not have characteristic p) and M, N comodule algebras.
Let C, denote the r-fold tensor product of C over K. Let m be a subgroup of the
r-fold symmetric group X, and let W be a negatively graded K{m]-free resolution
of K. Let m act on C,. by permuting the factors. We will define a map of complexes

0: W®K[7‘r] C.—C

with certain properties.

We define 6 by reducing to the case M = T", which is easier to handle because
the complex d = Cp(T', N) is a I'-comodule with a contracting homotopy. We have
C = M Op D and an obvious map

J: W ®kin) C,. — M, Op (W QK1n] D,),
where the comodule structure on W ® K[x] D, is defined by
Y(wRd - @d) =didy...d.@wed] @ --d

for w e W, d; € D, and C(d;) = d; ® df, and the comodule structure on M, is
defined similarly. Given a suitable map

0: W ®@kx) Dr — D,

we define 6 to be the composite (O 6)j, where u: M, — M is the product.

A1.5.1. THEOREM. With notation as above assume Wy = K[rr| with generator

eo. Then there are maps 0, 6 as above with the following properties.

(i) The restriction of 6 to eq ® C,. is the iterated product (A1.2.15) C,. — C.
(ii) 0 is natural in M, N, and T up to chain homotopy.
(iii) The analogs of (i) and (i) for 6 characterize it up to chain homotopy.
(iv) Let A: W — W @ W be a coassociative differential coproduct on W which
is a K[r]-map (where Kr| acts diagonally on W @ W, i.e., given o € w, and
wy,wy €W, a € (w1 @ wy) = a(wy) ® a(ws)); such coproducts are known to exist.
Let i: CRC — C be the product of A1.2.15. Then the following diagram commutes
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up to natural chain homotopy.

W @k (C @ C)y — 2t

W @k Cr
AR(CRC),
W oW @k (C®C),
weT 0

W @fm) Cr @ W @k O
026

Cel

- C

where T is the evident shuffle map.

(v) Let 1 =v =17/(p), 0 = X2 and let T be the split extensions of VP by m in
which m permutes the factors of vP. Let W, V', and Y be resolutions of K over K|m|,
Klv], and K|o|, respectively. Let j: 7 — o (7 is a p-Sylow subgroup of K) induce
amap j: WV, =Y (WYV, is a free K[1] resolution of K). Then there is a
map w: Y Qo] Cp2 — C such that the following diagram commutes up to natural
homotopy

2

e
(W@ V) @kir) Op2 ;Y(@K[a] Cp2

N

U C

/
W®0,

w ®K[7T] (V ®K[U] CP) — w ®K[7"] C
where U is the evident shuffie.

PROOF. The map @ satisfying (i), (ii), and (iii) is constructed in Lemma 2.3
of Bruner’s chapter in Bruner et al. [1]. In his notation let M = N and K = L =
C(A, N), which is our D. Thus his map @ is our 6. Since 0 extends the product
on N it satisfies (i). For (ii), naturality in M is obvious since cotensor products are
natural and everything in sight is natural in I". For naturality in IV consider the
(not necessarily commutative) diagram

w ®k[ﬂ'] CF(F7 N)r —W ®K[7r] CF(F; N/)r

: :

Cr(T, N) Cr(T, N).

Bruner’s result gives a map
W@K CF(F N) —)C[‘(F,N,)

extending the map N, — N’. Both the composites in the diagram have the appro-
priate properties so they are chain homotopic and 6 is natural in N up to the chain
homotopy.
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For (iv) note that 7 acts on (C®C), = Cy, by permutation, so 7 is a subgroup
of ¥a,. The two composites in the diagram satisfy (i) and (ii) as maps from W@k
Cy,- to C, so they are naturally homotopic by (iii).

To prove (v), construct w for the group o in the same way we constructed 6
for the group 7. Then the compositions w(j ® Cp2) and (W ® 0,,)U both satisfy (i)
and (ii) for the group 7, so they are naturally homotopic by (iii). O

With the above result in hand the machinery of May [5] applies to Cr(M, N)
and we get Steenrod operations in Cotorp(M, N) when K = Z/(p). Parts (i), (ii),
and (iii) guarantee the existence, naturality, and uniqueness of the operations, while
(iv) and (v) give the Cartan formula and Adem relations. These operations have
properties similar to those of the topological Steenrod operations with the following
three exceptions. First, there is in general no Bockstein operation 3. There are
operations BP?, but they need not be decomposable. Recall that in the classical
case 8 was the connecting homomorphism for the short exact sequence

05C—>C®Z/(P?) = C—0,

where C is a DGA which is free over Z, whose cohomology is the integral co-
homology of X and which is such that C ® Z/(p) = C. If C is a cobar com-

plex as above then such a C may not exist. For example, it does not exist
it C = Ca,(Z/(p),Z/(p)) where A, is the dual Steenrod algebra, but if C' =
CBP*(BP)/(p)(BP*/(p)) we have C = CBP*(BP)(BP*)-

Second, when dealing with bigraded complexes there are at least two possible
ways to index the operations; these two coincide in the classical singly graded case.
In May [5] one has Pi: Cotor® — Cotor®*Z=DP=D:Pt which means that P* =0
if either 2i < t or 2i > s + t. (Classically one would always have t = 0.) We prefer
to index our P so that they raise cohomological degree by 2i(p — 1) and are trivial
if i <0or2 > s (in May [5] such operations are denoted by P?). This means
that we must allow i to be a half-integer with P? nontrivial only if 2i =t mod (2).
(This is not a serious inconvenience because in most of our applications for p > 2
the complex C** will be trivial for odd ¢.) The Cartan formula and Adem relations
below must be read with this in mind.

Finally, P?: Cotor®?" — Cotor®?"! is not the identity as in the classical case.
The following is a reindexed form of 11.8 of May [5].

A1.5.2. STEENROD OPERATIONS THEOREM. Let I' be a Hopf algebroid over
Z/(p) and M and N right and left T'-comodule algebras. Denote Cotor?’t(M, N) by
H*'. Then there exist natural homomorphisms

Sqt: Ho' — H5TH20 for p =2,
Pi/2: HSt - Hqi/2+s,pt
and
BPY?: g5t — HO/2HsHLPt g1 0> 2 and ¢ = 2p — 2,
all with i > 0, having the following properties.

(a) Forp =2, S¢'(x) =0 if i > s. Forp > 2, P/%(x) =0 and BP"/?(z) =0
ifi>sor2i#£t mod (2).

(b) For p =2, Sq'(x) = 22 ifi = s. Forp > 2 and s +t even, P'(x) = aP if
21 = s.
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(¢) If there exists a Hopf algebrozd T and I-comodule algebms M and N all flat
over L,y with I' = IT®Z/(p), M=M®Z/(p), and N = N Q@ Z/(p), then BSq" =
(i + 1)Sq“‘1 for p = 2 and for p > 2 BP" is the composition of B and P!, where
B: Hvt — HstL s the connecting homomorphism for the short exact sequence
0N—=>N®Z/(p?) = N — 0.

(d)

= Y S (x)Sq(y) forp=2.

0<j<i
Forp>2
Py = 3 PIA@)PEI(y)
0<j<i
and

BP(zy) = Y AP (x)PUD2(y) + PP (2) 8P (y).

0<5<e

Similar external Cartan formulas hold.
(e) The following Adem relations hold. For p =2 and a < 2b,

b—i—1 o
a b __ a-+b—1 7
Sq*Sq _Z(a—Qi)Sq Sq'.
i>0
Forp > 2, a < pb, and € = 0 or 1 (and, by abuse of notation, B°P* = P* and
B'P" = pP’),
§ePo/2pb/2 = 3 (— 1)t/ <(p - (U(b —i/2- 1) e plato=i)/2 pif2

i>0 a—pi)/2
and
; -b-19)/2-1 i ;
cpa/2gph/2 _ (] _ ¢ 1) (ati)/2 ((P . platb—i)/2 pi/2
B P/?p ( >;( ) @-piyi2 )P
S ECEIE < ( 12(1")_/‘2)/_ o 1) ge platb=i)/2 pif2,
i>0 a—p

where, in view of (a), one only considers terms in which a,b, and i all have the
same parity (so the signs and binomial coefficients all make sense). O

To compute Sq° or P we have the following, which is 11.10 of May [5].

A1.5.3. PROPOSITION. With notation as above, let x € HS*, where t is even
if p > 2, be represented by a cochain which is a sum of elements of the form
mry1| - |ysn. Then Sq°(x) or P°(x) is represented by a similar sum of elements of
the form mP+¥| .- |yPnP. O

The operations also satisfy a certain suspension axiom. Consider the category
C of triples (M,T', N) with M,T', N as above. A morphism in C consists of maps
M — M', T —TI’, and N — N’ which respect all the structure in sight. Let C;,
i = 1,2,3, be the cobar complexes for three objects in C and suppose there are
morphisms which induce maps
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such that the composite gf is trivial in positive cohomological degree. Let H**,
i = 1,2,3, denote the corresponding Cotor groups. Define a homomorphism o
(the suspension) from ker f* ¢ H; ™" to HS'/im g* as follows. Given x € ker f*,
choose a cocycle a € C representing z and a cochain b € Cy such that d(b) = f(a).
Then g(b) is a cocycle representing o(z). It is routine to verify that o(x) is well
defined.

A1.5.4. SUSPENSION LEMMA. Let o be as above. Then for p > 2, o(P(x)) =
Pi(o(x)) and o(BP(z) = BP!(o(x)) and similarly for p = 2.

PROOF. We show how this statement can be derived from ones proved in
May [5]. Let C; C Cj be the subcomplex of elements of positive cohomologi-
cal degree. It has the structure necessary for defining Steenrod operations in its
cohomology since C; does. Then May’s theorem 3.3 applies to

(el iEAY e NN oH
and shows that suspension commutes with the operations in ker f*c H*(Cy). We
have H*(Cy) = H*(C4) for s > 1 and a four-term exact sequence
0 — M; Op, Ny — My @4, My — H'(Cy) — H'(Cy) - 0
so the result follows. O

A1.5.5. COROLLARY. Let § be the connecting homomorphism associated with
an short exact sequence of commutative associative I'-comodule algebras. Then
Pi§ = 5P and BP'6 = —0BP for p > 2 and similarly for p = 2. (In this situation
the subcomodule algebra must fail to have a unit.)

Proor. Let 0 — My — Ms — M3 — 0 be such a short exact sequence. Then
set N; = N and I'; = I in the previous lemma. Then ¢ is the inverse of ¢ so the
result follows. O

We need a transgression theorem.

A1.5.6. COROLLARY. Let (D,®) & (A,T) ER (A,X) be an extension of Hopf
algebroids over Z/(p) (A1.1.15); let M be a right ®-comodule algebra and N a left
I'-comodule algebra, both commutative and associative. Then there is a suspension
map o from keri* C Cotoryyt " (M, ADOx, N) to Cotory (M @p A, N)/im f* which
commutes with Steenrod operations as in Al.5.4.

PrROOF. A Oy N is a left ®-comodule algebra by Al1.3.14(a). We claim the
composite & — T' Iisis zero; since ® = AOx 'Oy A, fi(®) = ADxX0Ox A = AOyx
A= D, SO f?,(@) = 0. Hence C@(M, ADEN) — CF(M®DA, N) — Cz(M®DA, N)
is zero in positive cohomological degree. Hence the result follows from A1.5.4. O

The following is a reformulation of theorem 3.4 of May[5].

A1.5.7. KuDO TRANSGRESSION THEOREM. Let ® = I' = X be a cocentral ex-
tension (A1.1.15) of Hopf algebras over a field K of characteristic p. In the Cartan—
FEilenberg spectral sequence (A1.3.14) for Extr (K, K) we have Ey* = Ext} (K, K)®
Exth(K, K) with d,: E3* — ESTHt="1 Then the transgression d.: EO"~! —
E™Y commutes with Steenrod operations up to sign as in A1.5.4; e.g., if d.(z) =y
then dyiosp1)(P*(x)) = P*(y). Moreover for p > 2 and r — 1 even we have

dip—1)(r—1y41 (2P~ 1y) = =BPT=D/2(y). 0






APPENDIX A2

Formal Group Laws

In this appendix we will give a self-contained account of the relevant aspects
of the theory of commutative one-dimensional formal group laws. This theory was
developed by various algebraists for reasons having nothing to do with algebraic
topology. The bridge between the two subjects is the famous result of Quillen [2]
(4.1.6) which asserts that the Lazard ring L (A2.1.8) over which the universal
formal group law is defined is naturally isomorphic to the complex cobordism ring.
A most thorough and helpful treatment of this subject is given in Hazewinkel [1].
An account of the Lazard ring is also given in Adams [5], while the classification
in characteristic p can also be found in Frohlich [1].

We now outline the main results of Section 1. We define formal group laws
(A2.1.1) and homomorphisms between them (A2.1.5) and show that over a field of
characteristic 0 every formal group law is isomorphic to the additive one (A2.1.6).
The universal formal group law is constructed (A2.1.8) and the structure of the
ring L over which it is defined is determined (A2.1.10). This result is originally
due to Lazard [1]. Its proof depends on a difficult lemma (A2.1.12) whose proof is
postponed to the end of the section.

Then we define p-typical formal group laws (A2.1.17 and A2.1.22) and deter-
mine the structure of the p-typical analog of the Lazard ring, V' (A2.1.24). This
result is due to Carrier [1]; Quillen [2] showed that V is naturally isomorphic to
7*(BP) (4.1.12). Using a point of view due to Landweber [1], we determine the
structure of algebraic objects LB (A2.1.16) and VT (A2.1.26), which turn out to
be isomorphic to MU,(MU) (4.1.11) and BP,(BP) (4.1.19), respectively.

All of the results of this section can be found in Adams [5], although our
treatment of it differs from his.

In Section 2 we give the explicit generators of V [i.e., of m,(BP)] given by
Hazewinkel [2] (A2.2.1) and Araki [1] (A2.2.2) and determine the behavior of the
right unit nr on Araki’s generators (A2.2.6).

For the Morava theory of Chapter 6 we will need the classification of formal
group laws over separably closed fields of characteristic p > 0 (A2.2.12) originally
due to Lazard [2], and a description of the relevant endomorphism rings (A2.2.18
and A2.2.19) originally due to Dieudonné [1] and Lubin [1].

For a scheme theoretic approach to this subject, see Strickland [1].

1. Universal Formal Group Laws and Strict Isomorphisms

A2.1.1. DEFINITION. Let R be a commutative ring with unit. A formal group
law over R is a power series F(x,y) € R|[x,y]] satisfying

(i) F(z,0) = F(0,2) = z,

(ii) F(z,y) = F(y,z), and

(iii) F(z, F(y,2)) = F(F(z,y)z).

341
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Strictly speaking, such an object should be called a commutative one-dimensi-
onal formal group law; we omit the first two adjectives as this is the only type of
formal group law we will consider. It is known (Lazard [3]) that (ii) is redundant
if R has no nilpotent elements.

The reason for this terminology is as follows. Suppose G is a one-dimensional
commutative Lie group and g: R — U C G is a homomorphism to a neighbor-
hood U of the identity which sends 0 to the identity. Then the group operation
G x G — G can be described locally by a real-valued function of two real variables.
If the group is analytic then this function has a power series expansion about the
origin that satisfies (i)—(iii). These three conditions correspond, respectively, to
the identity, commutativity, and associativity axioms of the group. In terms of the
power series, the existence of an inverse is automatic, i.e.,

A2.1.2. PROPOSITION. If F' is a formal group law over R then there is a power
series i(z) € R[[z]] (called the formal inverse) such that F(z,i(z)) = 0.

In the Lie group case this power series must of course converge, but in the
formal theory convergence does not concern us. Formal group laws arise in more
algebraic situations; e.g., one can extract a formal group law from an elliptic curve
defined over R; see Chapter 7 of Silverman [1]. One can also reverse the procedure
and get a group out of a formal group law; if R is a complete local ring then F'(z,y)
will converge whenever x and y are in the maximal ideal, so a group structure is
defined on the latter which may differ from the usual additive one.

Before proceeding further note that A2.1.1(i) implies

A2.1.3. PROPOSITION. If F' is a formal group law then
F(z,y) =z +y mod (z,y)°. O

A2.1.4. EXAMPLES OF FORMAL GROUP Lows. (a) F,(z,y) = = + y, the ad-
ditive formal group law.

(b) F(x,y) = = + y + uxy (where u is a unit in R), the multiplicative formal
group law, so named because 1+ wF = (1 4+ ux)(1 4 uy).

(©) Ple,y) = (2 +1)/(1+ 2y).

(d) F(x,y) = (x/1—y* +yv1—2%)/(1 + 2%y?), a formal group law over
Z[1/2].

The last example is due to Euler and is the addition formula for the elliptic
integral
/ Toodt
o V1—tt
(see Siegel [1, pp. 1-9]). These examples will be studied further below (A2.2.10).
The astute reader will recognize (c) as the addition formula for the hyperbolic
tangent function; i.e., if # = tanh(u) and y = tanh(v) then F(z,y) = tanh(u + v).
Hence we have
tanh™' (F(x,y)) = tanh™*(z) + tanh ™" (y)
or
F(z,y) = tanh(tanh™*(z) 4+ tanh™*(y)),
where tanh ™' (z) = Y2, 2271 /(2i + 1) € R® Q[[z]].
We have a similar situation in (b), i.e.,

log(1 + uF") = log(1 4+ ux) + log(1 + uy),
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where log(l 4+ ux) = >, (1) (uz)" /i € R® Q[[z]].
This means that the formal group laws of (b) and (c) are isomorphic over Q to
the additive formal group law (a) in the following sense.

A2.1.5. DEFINITION. Let F and G be formal group laws. A homomorphism
from F to G is a power series f(x) € R[[z]] with constant term 0 such that
f(F(x,y)) = G(f(z), f(y)). It is an isomorphism if it is invertible, i.e., if f'(0)
(the coefficient of x) is a unit in R, and a strict isomorphism if f'(0) = 1. A strict
isomorphism from F to the addition formal group law x + y is a logarithm for F,
denoted by logp(x).

Hence the logarithms for A2.1.4(b) and (c) are
i—1,.
Z M% and tanh ™! (z)
i>0
respectively.

On the other hand, these formal group laws are not isomorphic to the addi-
tive one over Z. To see this for (b), set u = 1. Then F(z,z) = 2z + 22 = 2?
mod 2, while Fy(z,2) = 2z = 0 mod 2, so the two formal group laws are not
isomorphic over Z/(2). The formal group law of (c) is isomorphic to Fi, over Z s,
since its logarithm tanh™' z has coefficients in Z (), but we have F(F(z,x),x) =
(Bz+23)/(1432?) = 2 mod (3) while F,(F,(z,z),2) = 3z =0 mod 3. Similarly,
it can be shown that F' and F), are distinct at every odd prime (see A2.2.10).

A2.1.6. THEOREM. Let F be a formal group law and let f(z) € R ® Q|[z]] be

given by
roodt
1@ = | w50

where Fy(x,y) = OF/0y. Then [ is a logarithm for F, i.e., F(x,y) =
FYf(x) + f(y)), and F is isomorphic over R ® Q to the additive formal group
law.

PRrROOF. Let w = f(F(z,y)) — f(z) — f(y). We wish to show w = 0. We have
F(F(x,y),z) = F(x,F(y, z)). Differentiating with respect to z and setting z = 0
we get

(A2.1.7) Fy(F(2,y),0) = Fa(z,y)F2(y, 0).
On the other hand, we have dw/0y = f'(F(x,y))F2(y,0) — f'(y), which by the
definition of f becomes
ow  Fy(z,y) 1
oy F(F(r,y),0)  Fa(y,0)

By symmetry we also have dw/dx = 0, so w is a constant. But f and F both have
trivial constant terms, so w = 0. (]

=0 by A2.1.7.

Now we wish to consider the universal formal group law. Its construction is
easy.

A2.1.8. THEOREM. There is a ring L (called the Lazard ring) and a formal
group law

F(z,y) = Zai,jxiyj
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defined over it such that for any formal group law G over any commutative Ting
with unit R there is a unique ring homomorphism 0: L — R such that G(z,y) =

> 0(ai )iy’

PRrROOF. Simply set L = Z[a; ;]/I, where I is the ideal generated by the rela-
tions among the a; ; required by the definition A2.1.1, i.e., by a1 — 1, ag1 — 1,
a; 0, and ag; for (i), a; ; — aj; for (ii), and by for (iii), where

F(F(z,y),2) = F(z, F(y,2)) = Y _ bigra'y’ 2",
Then 6 can be defined by the equation it is supposed to satisfy. ([

Determining the structure of L explicitly is more difficult. At this point it is
convenient to introduce a grading on L by setting |a; ;| = 2(i + j — 1). Note that
if we have |z| = |y| = —2 then F(z,y) is a homogeneous expression of degree —2.

A2.1.9. LEMMA. (a) L ® Q = Q[my,ma,...| with |m;| = 2i and F(x,y) =

Y f(x) + f(y)) where f(z) =z + S0 mez L,
(b) Let M C L ® Q be Z[my, ma,...]. ThenimL C M.

PrOOF. (a) By A2.1.6 every formal group law G over a Q-algebra R has a
logarithm g(z) so there is a unique ¢: Q[myime,...] — R such that ¢(f(z)) =
g(x). In particular we have ¢: Q[mi,ma,...] > L® Q as well as 6: L ® Q —
Q[mq,ma,...] with ¢ and ¢ being identity maps, so 6 and ¢ are isomorphisms.

(b) F(z,y) is a power series with coefficients in M, so the map from L to L& Q
factors through M. O

Now recall that if R is a graded connected ring (e.g., L ® Q) the group of
indecomposables QR is I/I? where I C R is the ideal of elements of positive
degree.

A2.1.10. THEOREM (Lazard [1]). (a) L = Z[z1, z2,...]| with |x;| = 2i fori > 0.
(b) z; can be chosen so that its image in QL @ Q is

{pmi if i = p* — 1 for some prime p

m;  otherwise.
(c) L is a subring of M [A2.1.9(b)].

The proof of this is not easy and we will postpone the hardest part of it
(A2.1.12) to the end of this section. The difficulty is in effect showing that L
is torsion-free. Without proving A2.1.12 we can determine L /torsion with relative
ease. We will not give F' in terms of the x;, nor will the latter be given explic-
itly. Such formulas can be found, however, in Hazewinkel [3] and in Section 5 of
Hazewinkel [1].

Before stating the hard lemma we need the following exercise in binomial co-
efficients.

A2.1.11. PROPOSITION. Let u,, be the greatest common divisor of the numbers
(M) for 0 <i <n. Then

p if n = p* for some prime p
Up = .
1 otherwise.
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Now we are ready for the hard lemma. Define homogeneous symmetric poly-
nomials By, (z,y) and C,(z,y) of degree n for all n > 0 by

Bn(-r7y) :(.’B + y)n —a" = yn

Cn(z,9) :{

B, /p if n = p* for some prime p
B, otherwise.

It follows from A2.1.11 that C,(z,y) is integral and that it is not divisible by any
integer greater than one.

A2.1.12. CoMPARISON LEMMA (Lazard [1]). Let F and G be two formal group
laws over R such that F = G mod (z,y)". Then F = G +aC,, mod (z,y)" for
some a € R. ([l

The proof for general R will be given at the end of this section. For now we
give a proof for torsion-free R.

In this case we lose no information by passing to R® Q, where we know (A2.1.6)
that both formal group laws have logarithms, say f(z) and g(x), respectively. Com-
puting mod (z,y)" ! we have

f(z) = g(x) +bz" forsomebc R®Q so f'(z)=g '(z)—ba"

and
F—G=f""f(z)+ f(y) - g’l(g(x) +9(y))
=g '(g(x) + g(y) +b(x" +y™) —blz +y)" — g~ (g(z) + 9(»))
=g '(9(x) + 9(y)) +b(z" +y") — bz +y)" — g~ (g(x) + 9(»))
= —bB,(z,y).

Since this must lie in R it must have the form aC,,(z,y), completing the proof for
torsion-free R.

A2.1.13. LEMMA. (a) In QL ® Q, a;; = —(i';j)miﬂ-,l.
(b) QL is torsion-free.

PROOF. (a) Over L ® Q we have > m,_1(>_ a; jz'y))" = > mp_1(z™ + y").
Using A2.1.3 to pass to QL ® Q we get

Zaz,nyJJern 1:C+y Zmn 135 +y)

n>1 n>0

which gives the desired formula.

(b) Let Q2,L denote the component of QL in degree 2n, and let R be the
graded ring Z & @2, L. Let F be the formal group law over R induced by the
obvious map 6: L — R, and let G be the additive formal group law over R. Then
by A2.1.12, F(z,y) = ¢+ y + aCpry1(z,y) for a € Q2,L. It follows that QoL is
a cyclic group generated by a. By (a) Q2,L ® Q = Q, so Q2,L = Z and QL is
torsion-free. O

It follows from the above that L is generated by elements x; whose images in
QL ® Q are u;m;, where u; is as in A2.1.11, i.e., that L is a quotient of Z[x;]. By
A2.1.9 it is the quotient by the trivial ideal, so A2.1.10 is proved.

Note that having A2.1.12 for torsion-free R implies that L/torsion is as claimed.
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The reader familiar with Quillen’s theorem (4.1.6) will recognize L as 7. (MU) =
MU,. We will now define an object which is canonically isomorphic to m, (MU A
MU) = MU,(MU). This description of the latter is due to Landweber [1].

A2.1.14. DEFINITION. Let R be a commutative ring with unit. Then FGL(R)
is the set of formal group laws over R (A2.1.1) and SI(R) is the set of triples
(F, f,G) where F,G € FGL(R) and f: F — G is a strict isomorphism (A2.1.5),
i.e., f(z) € R[[z]] with f(0) =0, f'(0) =1, and f(F(z,y)) = G(f(z), f(y)). We

call such a triple a matched pair

A2.1.15. PROPOSITION. FGL(—) and SI(—) are covariant functors on the cat-
egory of commutative rings with unit. FGL(—) is represented by the Lazard ring
L and SI(—) is represented by the ring LB = L ® Z[by,ba,...]. In the grading
introduced above, |b;| = 2i.

PRrROOF. All but the last statement are obvious. Note that a matched pair
(F, f,G) is determined by F and f and that f can be any power series of the form
f(x) =+ 3,00 fix'™'. Hence such objects are in 1-1 correspondence with ring
homomorphisms 6: LB — R with 6(b;) = f;. O

Now LB has some additional structure which we wish to describe. Note that
FGL(R) and SI(R) are the sets of objects and morphisms, respectively, of a
groupoid, i.e., a small category in which every morphism is an equivalence. Hence
these functors come equipped with certain natural transformations reflecting this
structure. The most complicated is the one corresponding to composition of mor-
phisms, which gives a natural (in R) map from a certain subset of SI(R) x SI(R) to
SI(R). This structure also endows (L, LB) with the structure of a Hopf algebroid
(A1.1.1). Indeed that term was invented by Haynes Miller with this example in
mind. We now describe this structure.

A2.1.16. THEOREM. In the Hopf algebroid (L,LB) defined above ¢: LB — L
is defined by €(b;) = 0; nr,: L — LB is the standard inclusion while np: L ® Q —
LB ® Q is given by

> nr(m) =Y m (Z C(%‘)) iH,

i>0 >0 7>0
where mo = by = 1; 32,50 A(bi) = 3502 is0 b))t ®bj; and ¢: LB — LB is
B B Wy i+l
determined by c(m;) = nr(m;) and 3,4 c(bi) (ijo bj> =1.

These are the structure formulas for MU, (MU) (4.1.11).

PROOF. € and 77, are obvious. For ¢, if f(z) = > ba*t! then f~1(z) =

S e(by)z . Expanding f~1(f(1)) = 1 gives the formula for c(b;). For ng, let
logr = > m;z**! and mogx = > nr(m;)z**t! be the logarithms for F and G,
respectively. Then we have

FHG(,y) = F(f (@), /7 ()
s0

log(f~(G(,y))) = log(f " («)) +log(f ™" (¥))-

We also have

mog(G(z,y)) = mog(z) + mog(y)
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for which we deduce

mog(x) = log f~(z).
Setting # = 1 gives the formula for ng. For A let fi(z) = biai™t, fo(z) =
SToYat and f(x) = f2(fi(x)). Then expanding and setting x = 1 gives > b; =
L3S B;). Since fp follows fi this gives the formula for A. O

Note that (L, LB) is split (Al.1.22) since A defines a Hopf algebra structure on
B =Z[by].

Next we will show how the theory simplifies when we localize at a prime p, and
this will lead us to BP, and BP,(BP).

A2.1.17. DEFINITION. A formal group law over a torsion-free Zy,)-algebra is
p-typical if its logarithm has the form Y, L;xP" with £y = 1.

Later (A2.1.22) we will give a form of this definition which works even when
the Z,-algebra R has torsion. Assuming this can be done, we have

A2.1.18. THEOREM (Cartier [1]). Ewvery formal group law over a Z,)-algebra
is canonically strictly isomorphic to a p-typical one.

Actually A2.1.17 is adequate for proving the theorem because it suffices to show
that the universal formal group law is isomorphic over L ® Z,) to a p-typical one.
The following notation will be used repeatedly.

A2.1.19. DEFINITION. Let F be a formal group law over R. If x and y are
elements in an R-algebra A which also contains the power series F(x,y), let

z+ry=F(z,y).
This notation may be iterated, e.g., t+py+rpz = F(F(x,y), z). Similarly, x—py =
F(x,i(y)) (A2.1.2). For nonnegative integers n, [n]p(z) = F(x,[n — 1]p(x)) with

[0]F(x) = 0. (The subscript F will be omitted whenever possible.) ZF( ) will denote
the formal sum of the indicated elements.

A2.1.20. PROPOSITION. If the formal group law F above is defined over a K-
algebra R where K is a subring of Q, then for each v € K there is a unique power
series [r]|p(z) such that

(a) if r is a nonnegative integer, [r|p(z) is the power series defined above,

(b) [r1 +ro]r(x) = F([r]p(2), [ro]p(2)),

(c) [rre]r(z) = [r]r([re]r(x)).

PROOF. Let [—1]p(x) = i(x) (A2.1.2), so [r]p(x) is defined by (b) for all r € Z.
We have [r]p(z) = re mod (z?), so if d € Z is invertible in K, the power series
[d]#(z) is invertible and we can define [d~!]r(2) = [d] 5" (z). O

Now we suppose ¢ is a natural number which is invertible in R. Let

(A2.1.21) fulw) = [1/4 (ZF cix)
=1

where ( is a primitive gth root of unity. A priori this is a power series over R[(],
but since it is symmetric in the {* it is actually defined over R.
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If R is torsion-free and log(z) = 3,5 miz't, we have

log(f,(x)) = ézlogw‘x)
=1

i=1 j>0
1 q
i+1 (41
— ijx]+ Zc(ﬁ- )
775>0 i=1

The expression 7, ¢*U+1) vanishes unless (j + 1) is divisible by ¢, in which case
its value is q. Hence, we have
log(fq(2)) =Y mg; 1.
5>0

If F is p-typical for p # ¢, this expression vanishes, so we make

A2.1.22. DEFINITION. A formal group law F over a Z,)-algebra is p-typical if
fq(z) =0 for all primes q # p.

Clearly this is equivalent to our earlier definition A2.1.17 for torsion-free R.

To prove Cartier’s theorem (A2.1.18) we claim that it suffices to construct a
strict isomorphism f(z) = Y fiz" € L® Z,)[[x]] from the image of F over L® Z )
to a p-typical formal group law F’. Then if G is a formal group law over a Z,)-
algebra R induced by a homomorphism : L& Z(,) — R, g(z) = > 0(f;)z" € R[]
is a strict isomorphism from G to a p-typical formal group law G'.

Recall that if mog(x) is the logarithm for F’ then

mog(z) = log(f~"(x)).
We want to use the f,(x) for various primes q # p to concoct an f~!(x) such that
log(f (@) = > mpe_1a?"
i>0
It would not do to set -
fHa)=z—r ) fol)
q7#p

because if n is a product of two or more primes # p then a negative multiple of
M,,_12™ would appear in log f~!(z). What we need is the Mébius function u(n)
defined on natural numbers n by

(n) 0 if n is divisible by a square

n)=

H (=1)" if n is the product of r distinct primes.
Note that (1) =1 and p(g) = —1 if ¢ is prime. Then we define f(z) by
F

(A2.1.23) @) =) @] r(fo())-

riq

[Note also that fi(x) = x.] The sum is over all natural numbers ¢ not divisible
by p. This infinite formal sum is well defined because f;(z) =0 mod (z?).
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Now

log(fM (@) =Y _mla) Y mgj—12¥ =" | > ula) | mp-rz™
pla J>0 n>0 \ ptq
qln

It is elementary to verify that

> ulg) = {1 o =p
plq

k

0 otherwise.
qln
It follows that F” has logarithm

(A2.1.24) mog(z) = Z mpi_lxpi,
i>0
so I is p-typical. This completes the proof of A2.1.18.
Now we will construct the universal p-typical formal group law.

A2.1.25. THEOREM. Let V = Z,)[v1,v2,...] with |v,| = 2(p™ —1). Then there
is a universal p-typical formal group law F defined over V; i.e., for any p-typical
formal group law G' over a commutative Zy)-algebra R, there is a unique ring homo-
morphism 0: V — R such that G(z,y) = 0(F(z,y)). Moreover the homomorphism
from L ® Z,)y to V' corresponding (A2.1.8) to this formal group law is surjective,
i.e., V' is isomorphic to a direct summand L @ Z,). ([l

We will give an explicit formula for the v,’s in terms of the log coeflicients m,»_1
below (A2.2.2). In 4.1.12 it is shown that V is canonically isomorphic to m.(BP).

PROOF. Recall that the canonical isomorphism f above corresponds to an en-
domorphism ¢ of L ® Z,) given by

o if i = pF —
¢(mi):{ml ifi=p 1

0 otherwise.

This ¢ is idempotent, i.e., $?> = ¢ and its image is a subring V C L ® Z,) over
which the universal p-typical formal group law is defined. An argument similar to
the proof of Lazard’s theorem A2.1.9 shows that V" has the indicated structure. [

Now we will construct a ring VT canonically isomorphic to BP,(BP) and
representing the set of p-typical matched pairs (F, f,G) (A2.1.14), i.e., matched
pairs with F' and G p-typical. The power series f must be chosen carefully to
ensure that G is p-typical, and this choice depends on F'. There is no such thing
as a “p-typical power series,” i.e., one that sends any p-typical F' to a p-typical G.
To characterize the appropriate f we have

A2.1.26. LEMMA. Let F be a p-typical formal group law over a Z,)-algebra R.
Let f(x) be an isomorphism (A2.1.5) from F to a formal group law G. Then G is

p-typical if
F i
fHa) =) tia?
i>0

fort; € R with ty a unit in R.
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PROOF. For a prime number # p let

(56

where  is a primitive pth root of unity. By A2.1.22 we need to show that hy(z) =0
for all ¢ # p iff f is as specified. From the relation

G(.Z‘,y) = f(F(f_l(l‘),f_l(y)))

we deduce
q
F .
(@) = [aF (Z f_l(C’$)> :
j=1
Now for isomorphism f(z) there are unique ¢; € R such that

) = ZFcimi

>0

with ¢; a unit in R. Hence we have

[ (hy()) = [q-wF(ZF <x>

,J
F «F . . F ,
01 ( 2 X et ) el (X Tletegen))
ati J i
— Z foleix®) +r Z cqix? = Zcqix’”.
ati i i>0
This expression vanishes for all ¢ # p iff ¢g; = 0 for all ¢ > 0 and ¢ # p, i.e., iff fis
as specified. ([
It follows immediately that VT = V ® Z)[t1,t2,...] as a ring since for a

strict isomorphism ty = 1. The rings V and VT represent the sets of objects and
morphisms in the groupoid of strict isomorphisms of p-typical formal group laws
over a Zy)-algebra. Hence (V,VT), like (L, LB), is a Hopf algebroid (Al.1.1) and
it is isomorphic to (BP., BP.(BP)). Its structure is as follows.

A2.1.27. THEOREM. In the Hopf algebroid (V,VT) (see A1.1.1)

(a) V =Zy[v1,v2,...] with [v,| = 2(p" — 1),

(b) VT =V @ Zy[t1, ta, ... ] with |t,| = 2(p" — 1), and

(¢) np: V. — VT is the standard inclusion and ¢: VT — V is defined by
E(ti) = O, E(’Ui) = V;.

Let £; € V ® Q denote the image of myi_1 € L ® Q (see A2.1.9). Then

(d) nr: V = VT is determined by nr(€n) = > g<i<p &tf:_i where Ly = tg =1,

(e) A is determined by >, .~ &A(tj)pi =2 ikj>0 éitfi ®t£i+j, and

(f) c is determined by 3, ; <o &t?ic(tk)piﬂ = is0bi-
(g) The forgetful functor from p-typical formal group laws to formal group laws
induces a surjection of Hopf algebroids (A1.1.19) (L®Z,), LB®Z) — (V,VT).
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Note that (e) and (f) are equivalent to
F F ; F ;
SUAMG) =Y tiot! and Y tie(t;)? =1,
120 4,j>0 4,j>0

respectively.
It can be shown that unlike (L, LB) (A2.1.16), (V,VT) is not split (A1.1.22).

PRrROOF. Part (a) was proved in A2.1.23, (b) follows from A2.1.23, and (c) is
obvious, as is (g).

For (d) let f be a strict isomorphism between p-typical formal group law F and
G with logarithms log(z) and mog(x), respectively. If f(x) satisfies

F i
fHx) = Z t;x?
i>0
and ‘
log(x) = Z&x”l
>0
then by definition of nr
mog(z) = 2773(&)37”1.
i>0
We have (see the proof of A2.1.16)

mo(z) = log(f 4 (a)) =g 3" tia”)

i>0
=Y log(tia?) = Y bt o
i>0 i,j>0
and (d) follows.
For (e) let F ELN G 2, I be strict isomorphisms of p-typical formal group laws
with
-1 Fo op —1 Gy
fi(z) = Z tia?  and  f; (x) = Z izl
i>0 §>0
If we set f = fo 0 f1, with
F i
ffl(:r) = Z t;xP
i>0
then a formula for ¢; in terms of ¢ and ¢! will translate to a formula for A(t;).
We have

FN @) = M ) = (Zatng’)

320

F i F i

=0 ) = )
i i

This gives
F F i
> a0 =Y we
i 2]

as claimed.
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For (f) let f: FF — G be as above. Then

o= 1) = £ (X etaer’)
=3 ety = X ety
setting x = 1 gives (f). ’ ’ O

Our only remaining task is to prove Lazard’s comparison lemma A2.1.12. The
proof below is due to Frohlich [1]. The lemma states that if F and G are formal
group laws with F = G mod (z,y)™ then

F=G+aCy(z,y) mod (z,y)"*,
where
(x—l—y)" g _yn

Cn(z,y) = p
(x+y)" —az"™ —y™ otherwise.

if n = p* for some prime p

Let I'(z,y) be the degree n component of F' — G.

A2.1.28. LEMMA. T'(z,y) above is a homogeneous polynomial satisfying
(i) D(z,y) =T(y, ),

(ii) I'(z,0) =T(0,z) = 0,

(iii) I'(z,y) + D(z +y,2) = D2,y + 2) + L(y, 2).

PRrROOF. Parts (i) and (ii) follow immediately A2.1.1(ii) and (i), respectively.
For (iii) let G(z,y) = 2 +y + G'(z,y). Then mod (z,y, 2)"*! we have
F(F(z,y),2) = G(F(z,y),2) + T(F(x,y), 2)
F(x,y)+ 2+ G (F(x,y),2) + T(z + vy, 2)
G(x,y) +D(z,y) + 2 + G (G(x,y),2) + T(z + y, 2)
G(G(z,y),2) + T(z,y) + T'(z + v, 2).

Similarly,
F(x,F(y,2)) = G(x,G(y,2)) + T2,y + 2) + Ty, 2)
from which (iii) follows. O

It suffices to show that any such I' must be a multiple of C,.

A2.1.29. LEMMA. Let R be a field of characteristic p > 0. Then any I'(x,y)
over R as above is a multiple of Cy,(x,y).

PROOF. It is easy to verify that C), satisfies the conditions of A2.1.28, so it
suffices to show that the set of all such I' is one-dimensional vector space. Let
[(z,y) = a;z'y" % Then from A2.1.28 we have

ap = an = 03 a; = Qn—q,

and

(A2.1.30) a; (nfl> Sy (“ij) for 0 <i,i+j<n.
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The case n = 1 is trivial so we write n = sp* with either s = p or s > 1 and
s # 0 mod p. We will prove the lemma by showing a; = 0 if i # 0 mod (p*) and
that a.,x is a fixed multiple of a.

If i 20 mod (p*) we can assume by symmetry that i < (s — 1)p* and write
i=cp* —jwith0<c<sand0<j<pF. Then A2.1.30 gives

_ k . k
a; <(5 C)p + ]) == acpk (Cp ) )
J J

» is determined by a,x for ¢ < slet i = p* and j = (c—1)p*. Then

ie., a; =0.
To show a
A2.1.30 gives

cp

i.e.,

s—1
Apk c—1 = Qcpk C.

This determines a,= provided ¢ # 0 mod (p). Since ¢ < s we are done for the case
s = p. Otherwise a.px = a(s_c)pr by symmetry and since s #Z 0 mod (p) either ¢
or s —cis #0 mod (p). O

Note that A2.1.29 is also true for fields of characteristic 0; this can be deduced
immediately from A2.1.30. Alternatively, we have already proved A2.1.12, which is
equivalent to A2.1.29, for torsion-free rings.

The proof of A2.1.29 is the last hard computation we have to do. Now we will
prove the analogous statement for R = Z/(p™) by induction on m. We have

L(z,y) = aCy(z,y) +p" T (2,y),
where I' satisfies A2.1.28 mod p. Hence by A2.1.29 IV (z,y) = bC,(x,y) so
L(z,y) = (a+bp"™ ")Cn(z,y)

as claimed.

To prove A2.1.29 (and hence A2.1.12) for general R note that the key ingredient
A2.1.30 involves only the additive structure of R; i.e., we only have to compute in a
finitely generated abelian group A containing the coefficient of I". We have to show
that symmetry and A2.1.30 imply that the coefficients a; are fixed in relation to
each other as are the coefficients of C,,. We have shown that this is true for A = Z
(from the case R = Q) and A =Z/(p™). It is clear that if it is true for groups A;
and Ay then it is true for A; @& As, so it is true for all finitely generated abelian
groups A. This completes the proof of A2.1.12.

2. Classification and Endomorphism Rings

In order to proceed further we need an explicit choice of the generators v,,.
The first such choice was given by Hazewinkel [2], which was circulating in preprint
form six years before it was published. The same generators for p = 2 were defined
earlier still by Liulevicius [3]. A second choice, which we will use, was given by
Araki [1].

Hazewinkel’s generators are defined by

(A2.2.1) pla =Y Ll
(

I<i<n
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which gives, for example,

1
v Uy v1+p
b =—, by = —+ —5—,
p p p
2 Tt pbp?
vy vvh fvgut o PP

0y =

p P’ P’
Of course, it is nontrivial to prove that these v, are contained in and generate V.
Araki’s formula is nearly identical,

(A2.2.2) pla=Y Lk,
0<i<n

where vg = p. These v,, can be shown to agree with Hazewinkel’s mod (p). They
give messier formulas for £, e.g.,

U1 ) ot

gl_p_ppv (p_pp )62:U2+p_pp,

? 2

(p_pp3)€3 =v3 + vt + v2vy U}+p+p

p=p’ p—p”  (p—p")p—p")
but a nicer formula (A2.2.6) for np.
A2.2.3. THEOREM (Hazewinkel [2], Araki [1]). The sets of elements defined

by A2.2.1 and A2.2.2 are contained in and generate V as a ring, and they are
congruent mod (p).

ProoF. We first show that Araki’s elements generate V. Equation A2.2.2

yields
Zp&xp = Z &v;) P

i>0 i,7>0

Applying exp (the inverse of log) to both sides gives

(A2.2.4) () = 3 via?',

i>0

which proves the integrality of the v,, i.e., that v, € V. To show that they
generate V it suffices by A2.1.10 to show v, = pu,f, in QV ® Q, where u,, is
a unit in Z(,). Reducing A2.2.2 modulo decomposables gives

pen =vn + Enppn

so the result follows.
We now denote Hazewinkel’s generators of (A2.2.1) by w;. Then A2.2.1 gives

plogx — px = Z log wixpi
i>0
or

px =plogx — Zlog wix”i.
i>0
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Exponentiating both sides gives
F i
exppr = [pl(x) —p Y wia?
>0
F i F i
=pr+p Z va? —p Z w;xP by A2.2.4.
>0 i>0
If we can show that (exp pz)/p is integral then the above equation will give
Z vir? = Z w;z? mod (p)
i>0 i>0

and hence v; = w; mod (p) as desired.
To show that (exppz)/p is integral simply note that its formal inverse is
(logpx)/p =3 £;pP ~'aP", which is integral since p'¢; is. O

A2.2.5. LEMMA. Let F' by a p-typical formal group law over a torsion-free Z,)-
algebra. Then for p > 2, [-1]p(z) = —x, and for p =2 it is

[-1]p(z) = —2z—F Z wir® =x —p Z VT
>0 i>0

where w; is the Hazewinkel generator of (A2.2.1) and v; is the Araki generator of
(A2.2.2).

PROOF. The series [—1]r(x) is characterized by
log([-1]r(z)) = —logx.

For p > 2, the p-typical logarithm is an odd function, so log(—x) — log(z). For
p = 2 we need to compute the logarithm of the indicated series, first the one given
in terms of the Hazewinkel generators. We have

log (—x —F ZF wix2i> = log(—z) — Zlog(wjx2j)

i>0 >0
_ 2° 29\2°
—E li(—x) —E Li(w;z™)
i>0 i>0
J>0
i it
= —z+ E iz — E &w? 22
i>0 i>0
>0
_ 2° 27 2°
=—x+ E bz — g g biw_ ;| @
i>0 i>0 \0<j<i
= —x+ E iz — E 20, 2>
i>0 i>0
= —log(x).

The result follows.
For the formula in terms of the Araki generators, note that by (A2.2.4), the
expression is the same as [1|pz — [2]p(z) = [-1]r(2). O
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From now on v, will denote the Araki generator defined by A2.2.2 or equiva-
lently by A2.2.4. The following formula for ng(v,) first appeared in Ravenel [1],
where it was stated mod (p) in terms of the Hazewinkel generators; see also Mor-
eira [2].

A2.2.6. THEOREM. The behavior of ng on v, is defined by
F i F k3
5 Ftomtuy’ = Y- ot
4,520 i,j>0

PROOF. Applying nr to A2.2.2 and reindexing we get by A2.1.27(d)
i % it+j
D optith = 4it? ne(vp)”

Substituting A2.2.2 on the left-hand side and reindexing gives

N ] i i+j
Z&v? th = Z&t? nr(vi)? .
Applying the inverse of log to this gives the desired formula. O

This formula will be used to prove the classification theorem A2.2.12 below.
Computational corollaries of it are given in Section 4.3.

We now turn to the classification in characteristic p. We will see that formal
group laws over a field are characterized up to isomorphism over the separable
algebraic closure by an invariant called the height (A2.2.8). In order to define it we
need

A2.2.7. LEMMA. Let F be a formal group law over a commutative F,-algebra R
and let f(x) be a nontrivial endomorphism of F (A2.1.5). Then for some n,
f(x) = g(xP") with ¢'(0) # 0. In particular f has leading term az®" .

When R is a perfect field K, we can replace g(zP") by h(z)P" with h'(0) # 0.

For our immediate purpose we only need the statement about the leading term,
which is easier to prove. The additional strength of the lemma will be needed below

(A2.2.19). The argument we use can be adapted to prove a similar statement about
a homomorphism to another formal group law G.

PROOF. Suppose inductively we have shown that f(x) = fi(ga‘pi)7 this being
trivial for i = 0, and suppose f/(0) = 0, as otherwise we are done. Define F(*)(z,v)
Fla,y)l = FO@" y).

It is straightforward to show that F( is also a formal group law. Then we have
F(FEO @ 7)) = fi(F(z,9)") = f(F(z,y))
= F(f(x), f() = F(fi="), fi("))

S0 ‘

[i(FO(z,y)) = F(fi(x), fi(y))-
Differentiating with respect to y and setting y = 0 we get

JHED @, 0)F5" (@,0) = Fa(fi(), £:(0) £/(0).

Since f/(0) =0, FQ(i)(x,O) #0, and F®(z,0) = 2, this gives us

filz) =0 so fi(z) = fiz1(a").
We repeat this process until we get an f,(z) with f/(0) # 0 and set g = f,,.
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The statement about the perfect field case follwos from the fact taht each
coeffcient of g has a p™th root. ([

A2.2.8. DEFINITION. A formal group law F' over a commutative F,-algebra R
has height n if [p]r(z) has leading term ax?". If [p|rp(x) = 0 then F has height oco.

A2.2.9. LEMMA. The height of a formal group law is an isomorphism invariant.

PROOF. Let f be an isomorphism from F' to G. Then

f(lplr(2) = [pla(f(2));

since f(x) has leading term uz for v a unit in R and the result follows. g

A2.2.10. ExaMPLES. Just for fun we will compute the heights of the mod (p)
reductions of the formal group laws in A2.1.4.
(a) [p]r(z) =0 for all p so F has height co.
(b) [plr(z) = up—12P so F has height 1.
(c) As remarked earlier, F is isomorphic over Z5) to the additive formal group
law, so its height at p = 2 is co. Its logarithm is
22i+1

o 21 +1

so for each odd prime p we have ¢; = m,_1; = 1/p, so v1 # 0 mod p by A2.2.2, so
the height is 1 by A2.2.4 and A2.2.8.

(d) Since F' is not defined over Z) (as can be seen by expanding it through
degree 5) it does not have a mod 2 reduction. To compute its logarithm we have

Fy(x,0) = 1 — a2

dt
1—t4

z 4z+1
) i +1

(
( (2i - 1) /2> zitl
1

so by A2.1.6

4i4+1
(27, 1) 4i+1
212'(41 +1)
(2 )] 4i+1
221( N2(4i+1)

Now if p=1 mod (4), we ﬁnd that {1 = myp_1 is a unit (in Z,)) multiple of 1/p,

so as in (c) the height is 1. However, if p = —1 mod (4), v; = ¢; = 0 so so the
height is at least 2. We have

27)!

., (20

=Mmp2_1 = where i =

4(i)2p? 4

Since )
rol_pp-1)  p-l
2 2 2’
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(2i)! is a unit multiple of p»~1/2; since

pPP-1_  (p—3 +3p—1
1 P\Tg A

(1) is a unit multiple of p®®=3)/4_ Tt follows that ¢, is a unit multiple of 1/p, so
vo Z0 mod p and the height is 2.

It is known that the formal group law attached to a nonsingular elliptic curve
always has height 1 or 2. (See Corollary 7.5 of Silverman [1]).
Now we will specify a formal group law of height n for each n.

A2.2.11. DEFINITION. Fo(z,y) =z +y. For a natural number h let F,, be the
p-typical formal group law (of height n) induced by the homomorphism 6: V — R

(A2.1.25) defined by O(v,) =1 and 0(v;) =0 for i # n.

A2.2.12. THEOREM (Lazard [2]). Let K be a separably closed field of charac-
teristic p > 0. A formal group law G over K of height n is isomorphic to F,,.

PrOOF. By Cartier’s theorem (A2.1.18) we can assume G is p-typical (A2.1.22)
and hence induced by a homomorphism 6: V — K (A2.1.24). If n = oo then by
A2.2.4 0(v,) = 0 for all n and G = Fy. For n finite we have 6(v;) = 0 for i < n
and 0(v,,) # 0. Let F' = F,,. We want to construct an isomorphism f: F' — G with
fYx)= Ef;o t;zP". It follows from A2.2.6 that these ¢; must satisfy

(A2.2.13) ZFtiG(Uj)plxplﬂ = Zthnxpnﬂ
0,J J

since the homomorphism from V' inducing F' is given in A2.2.11, and the ng(v;) in
A2.2.6 correspond to 6(v;). Here we are not assuming ¢ty = 1; the proof of A2.2.6
is still valid if ¢t # 1.

Equating the coefficient of 27" in A2.2.13, we get tof(v,) = tgn, which we can
solve for tg since K is separably closed. Now assume inductively that we have
solved A2.2.13 for tg,t1,...,t;—1. Then equating coefficients of aP " gives

t:0(vn)P +c=t"
for some ¢ € K. This can also be solved for t;, completing the proof. O

Our last objective in this section is to describe the endomorphism rings of the
formal group laws F,, of A2.2.11.

A2.2.14. LEMMA. Let F be a formal group law over a field K of characteristic
p >0 and let E be the set of endomorphisms of F.

(a) E is a ring under composition and formal sum, i.e., the sum of two endo-
morphisms f(x) and g(z) is f(x) +F g(x).

(b) E is a domain.

(c) E is a Zy-algebra (where Z,, denotes the p-adic integers) which is a free
Z,-module if F' has finite height, and an F,-vector space if F' has infinite height.

PROOF.
(a) We need to verify the distributive law for these two operations. Let f(z),
g(z), and h(x) be endomorphisms. Then

fg(@) +r [(2) = [(9(x)) +F f(h(2))
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S0
flg+h)=(fg)+ (fh) inE.
Similarly,
(9+r h)(f(z)) = g(f(x)) +r h(f(2))

(g+h)f=(9f)+ (hf) inE.

(b) Suppose f(z) and g(x) having leading terms az?” and bx?", respectively,
with a,b # 0 (A2.2.6). Then f(g(x)) has leading term ab?” 22" so fg#0in E.

(c) We need to show that [a]p(z) is defined for a € Z,,. We can writea = a;p’
with a; € Z. Then we can define

F ,
lalp(z) = [ai]lp([p']F(x))
because the infinite formal sum on the right is in K[[z]] since [p]z(z) = 0 modulo

a?'. If h < oo then [a]p(z) # 0 for all 0 # a € Z,, so E is torsion-free by (b). If
h = oo then [p|r(z) = 0 so E is an Fy,-vector space. O

Before describing our endomorphism rings we need to recall some algebra.

A2.2.15. LEMMA. Let p be a prime and q = p* for some i > 0.

(a) There is a unique field F,, with q elements.

(b) Each x € F, satisfies x?7 —x = 0.

(c¢) Fpm is a subfield of Fpn iff m | n. The extension is Galois with Galois
group Z/(m/n) generated by the Frobenius automorphism x — xP" .

(d) F, the algebraic closure of F,, and of each ¥, is the union of all the F,,.
Its Galois group is Z = lim Z/(m), the profinite integers, generated topologically by
the Frobenius automorp%m x +— xP. The subgroup mZ of index m is generated
topologically by x — xP" and fizes the field Fpm. O

A proof can be found, for example, in Lang [1, Section VIL.5]

Now we need to consider the Witt rings W (F,), which can be obtained as
follows. Over F, the polynomial ¢ — x is the product of irreducible factors of
degrees at most n (where ¢ = p™) since it splits over F,, which is a degree n
extension of F,. Let h(z) € Z,[z] be a lifting of an irreducible factor of degree n
of 7 — x. Then let W(F,) = Z,[z]/(h(z)). It is known to be independent of the
choices made and to have the following properties.

A2.2.16. LEMMA. (a) W(F,) is a Z,-algebra and a free Z,-module of rank n,
where ¢ =p" [e.g., W(Fp) = Z,].

(b) W(F,) is a complete local ring with mazimal ideal (p) and residue field F,.

(¢) Eachw € W(Fy) can be written uniquely as w =Y.~ o wip" with wi—w; =0
for each i. B

(d) The Frobenius automorphism of F, lifts to an automorphism o of W(Fy)

defined by
w? = Z wl'p".
i>0
o generates the Galois group Z/(n) of W(Fy) over Zj,.
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(e) W(F,) = ]'ng(Fq)/(pi), so it is a compact topological ring.
(f) The group of units W(Fy)* is isomorphic to W(F,) @ F, where Fy =
Z/(q—1), forp>2, and to W(F,) @ F @ Z/(2) for p =2, the extra summand
being generated by —1.

(g) W(F,) ® Q = Qplz]/(h(z)), the unramified degree n extension of Q,, the

field of p-adic numbers.

A proof can be found in Mumford [1, Lecture 26] and in Serre [1, Section 11.5.6].
We will sketch the proof of (f). For p > 2 there is a short exact sequence

1= W(F,) 5 W(EF) LFS 1

where j is mod (p) reduction and i(w) = exppw = Y, (pw)’/i! [this power series
converges in W (F,)]. To get a splitting F\ — W (F,)* ‘we need to produce (¢—1)th
roots of unity in W (F,), i.e., roots of the equation 7 —z = 0. [This construction
is also relevant to (c).]

These roots can be produced by a device known as the Teichmiiller construc-
tion. Choose a lifting u of a given element in F,, and consider the sequence
{u,ul, uqz, ... }. It can be shown that it converges to a root of ¢ —z = 0 which is
independent of the choice of u.

For p = 2 the power series exp 2w need not converge, so we consider instead
the short exact sequence

15 W(E,) S WE) L WE,)/(A)* > 1,

where j is reduction mod (4) and i(w) = exp 4w, which always converges. This
sequence does not split. We have W(F,;)/(4)* =2 F, @ Fy. Since W(F,) ® Q is a
field, W(F,)* can have no elements of order 2 other than %1, so the other elements
of order 2 in W (F,)/(4)* lift to elements in W (F,)* with nontrivial squares.

Next we describe the noncommutative Z,-algebra E,,, which we will show to
be isomorphic to the endomorphism ring of F,,, for finite n.

A22.17. LEMMA. Let E,, be the algebra obtained from W(F,) by adjoining an
indeterminate S and setting S™ = p and Sw = wS for w € W(Fy). Then

(a) E, is a free Z,, module of rank n>.

(b) Each element e € E, can be expressed uniquely as
Y iso €St with €l —e; = 0.

() E, is generated as a Zy-algebra by S and a primitive (¢ — 1)th root of
unity w with relations S™ —p =0, Sw = wPS =0, and h(w) = 0, where h(x) is an
irreducible degree n factor of x9 — x over Z,.

(d) E,, is the mazimal order in D,, = E,, ® Q which is a division algebra with
center Q, and invariant 1/n.

The proofs of (a), (b), and (c) are elementary. To see that D,, is a division
algebra, note that any element in D,, can be multiplied by some power of .S to give
an element in F,, which is nonzero mod (.5). It is elementary to show that such an
element is invertible.

The invariant referred to in (d) is an element in Q/Z which classifies division
algebras over Q,. Accounts of this theory are given in Serre [1, Chapters XII
and XIII] Cassels and Frohlich [1, pp. 137-139], Hazewinkel [1, Sections 20.2.16
and 23.1.4]. We remark that for 0 < 7 < n and i prime to n a division algebra with
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invariant i/n has a description similar to that of D,, except that S™ is p® instead
of p.
Our main results on endomorphism rings are as follows.

A2.2.18. THEOREM (Dieudonné [1] and Lubin [1]). Let K be a field of charac-
teristic p containing Fy, with ¢ = p". Then the endomorphism ring of the formal
group law F,, (A2.2.11) over K is isomorphic to E,. The generators w and S

[A2.2.17(c)] correspond to endomorphisms wx and zP, respectively.

A2.2.19. THEOREM. Let R be a commutative Fp-algebra. Then the endomor-
phism Ting of the additive formal group law Fy over R is the noncommutative
power series ring R{S)) in which Sa = aPS for a € R. The elements a and S
correspond to the endomorphisms ax and xP, respectively.

PROOF OF A2.2.19. An endomorphism f(z) of F, must satisfy f(z +y) =
f(x) + f(y). This is equivalent to f(z) = Y ;5 a;z?" for a; € R. The relation
Sa = aPS corresponds to (ax)P = aPaP. O

There is an amusing connection between this endomorphism ring and the Steen-
rod algebra. Theorem A2.2.19 implies that the functor which assigns to each com-
mutative Fy-algebra R the strict automorphism group of the additive formal group
law is represented by the ring

P = Fp[ahah .. ]
since ag = 1 in this case. The group operation is represented by a coproduct
A:P - P®P. To compute Aay, let fi(z) = Za;.:cpk, fa(z) = Za%mpk, and
f(@) = f2(fi(2)) = Y asa?" with af) = afj = agp = 1. Then we have

@) = Rk (L) = Hai(eyar

It follows that v
Aa,, = Z af’;_i ®a; with ag =1,
0<i<n
i.e., P is isomorphic to the dual of the algebra of Steenrod reduced powers.
Before proving A2.2.18 we need an improvement of A2.2.7. I am grateful to
Gerd Laures for finding an error in an earlier version of the following.

A2.2.20. LEMMA. Let F be a p-typical formal group law over a perfect field K
of characteristic p > 0, and let f(x) be an endomorphism of F. Then

flx) = ZFaixpi

i>0
for some a; € K.

PRrROOF. As in the proof of A2.2.7, we define for each integer n a power series
F(™ ¢ K[[x,y]] by replacing each coefficient by its p"th power. It is easily seen
that it is a p-typical formal group law when F is.

Then we have

n

f(F(z,y)) = h(F(z,y))”
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These two expressions are equal because f is an endomorphism, so
h(F(z,y)) = FC™(h(x), h(y))

and h (and hence A1) is an isomorphism between two p-typical formal group laws.
The result then follows from A2.1.26. (]

A2.2.18 will follow easily from the following.

A2.2.21. LEMMA. Let E(F,,) be the endomorphism ring of F, (A2.2.11) over a
perfect field K containing ¥, where ¢ = p™. Then

(a) if f(x) = 2T aa® is in E(F,), then each a; € Fy;

(b) fora € ¥y, ax € E(F,);

(c) zP € E(F,); and

(d) E(F.)/(p) = En/(p) = Fy(S)/(S") with Sa = a”5.

PRroOOF. (a) By the definition of F;, (A2.2.11) and A2.2.15 we have

n

(A2.2.22) [p](z) = 2P .
Any endomorphism f commutes with [p] so by A2.2.20 we have

P = (X ') = 30 ) = 30

This must equal

P = X @)y = 3 ™

Hence a?” = a; for all i and q; € F,.
(b) It suffices to prove this for K = F,. F,, can be lifted to a formal group
law F,, over W(F,) (A2.2.16) by the obvious lifting of §: V' — F,, to W(F,). It

suffices to show that wzx is an endomorphism of Fn ifw! —w=0. By A222 F,
has a logarithm of the form ‘
log(z) = Z a;z?

so log(wz) = wlog(z) and wx is an endomorphism.

(c) This follows from the fact that F), is defined over F,, so F,(zP,y?) =
F,(x,y)P.

(d) By A2.2.22, (b) and (c), f(x) € pE(F,) iff a; = 0 for i < n. It follows that
for f(x),g(x) € E(F,), f =¢ mod (p)E(F,) iff f(z) = g(z) mod (z?). Now our
lifting F,, of F,, above has logz = 2 mod (27), so F,(z,y) = 2 +y mod (z,y)?.
It follows that E(F,)/(p) is isomorphic to the corresponding quotient of E(F)
over F, which is as claimed by A2.2.18. |

PRrROOF OF A2.2.18. . By A2.2.17(c) E, is generated by w and S. The cor-
responding elements are in E(F,,) by A2.2.21(b) and (c). The relation Sw = wPS
corresponds as before to the fact that (wx)? = wWPzP, where @ is mod (p) reduction
of w. Hence we have a homomorphism X\: E,, — E(F,) which is onto by A2.2.20.
We know [A2.2.14(c)] that E(F,) is a free Z,-module. It has rank n? by A2.2.21(d),
so Ais 1-1 by A2.2.17(a). O



APPENDIX A3

Tables of Homotopy Groups of Spheres

In this appendix we collect most of the known values of the stable homotopy
groups of spheres for the primes 2, 3, and 5. Online graphic displays of these
are given by Hatcher [1]. The results of Toda [6] on unstable homotopy groups
are shown in Table A3.6. A table of unstable 3-primary homotopy groups up to
dimension 80 can be found in Toda [8].

Extensive online charts of various Ext groups over the Steenrod algebra have
been provided by Nassau [1] and Bruner [3].

In F1gs. A3.1a—c we display the classical Adams Fs-term for p = 2,

Ext5'(Z/(2),Z/(2))

for t — s < 61, along the differentials and group extensions. The main reference for
the calculation of Ext is Tangora [1], which includes a table showing the answer for
t —s < 70. We use his notation for the many generators shown in Ext. His table is
preceded by a dictionary (not included here) relating this notation to that of the
May spectral sequence, which is his main computational tool.

In our table each basis element is indicated by a small circle. Multiplication
by the elements hg, h1, and ho is indicated, respectively, by vertical lines and lines
with slopes 1 and % Most multiplicative generators are labeled, but there are a
few unlabeled generators due to limitations of space. In each case the unlabeled
generator is in the image of the periodicity operator P (denoted by IT in Section 3.4),
which sends an element 2 € Ext®" to the Massey product (Section A1.4)

(2, b, hs) € Ext* o412,

Differentials are indicated by lines with negative slope. For ¢t —s < 20 these can
be derived by combining the calculation of Ext in this range due to May [1] with the
calculation of the corresponding homotopy groups by Toda [6]. For 21 < t—s < 45
the results can be found in various papers by Barratt, Mahowald, Milgram, and
Tangora and most recently in Bruner [2], where precise references to the earlier
work can be found.

Differentials in the range 46 < t — s < 61 have been computed (tentatively
in some cases) by Mahowald (unpublished) and are included here with his kind
permission.

Exotic group extensions and some exotic multiplications by h; and ho are
indicated by broken lines with nonnegative slope.

In FiGc. A3.2 we display the Adams—Novikov Fo-term for p = 2 in the range
t—s < 39. The method used is that of Section 4.4, where the calculation is described
in detail through dimension 25. The small circles in the chart indicate summands of
order 2. Larger cyclic summands are indicated by squares. All such summands in
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P3ho

P3h

g \
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t—s————>

t—s<29.

F1GURE A3.la. The Adams spectral sequence for p = 2,
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da(eodo + hihs) = P2dg hag = had1 @ = 004 hiz = hgu = c? hax = h3go
p04 = h2hsdo
mis = Z/(16) @ (Z/(2))*

F1GURE A3.1b. The Adams spectral sequence for p =2, 28 <t — s < 45
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28 —

T8

1 —

]
TN
"‘ _\

2.2
P<eg

‘ P2

14 —

12 —

10 e

1
hsg
h5 f() /
Dse

92 ,’ hsdo hszco hscy
]’L3
4

| | | | | | | | | |
44 46 48 50 52 54 56 58 60 62

t—s5——

F1GURE A3.1c. The Adams spectral sequence for p = 2, 44 < t — s < 61. Differen-
tials are tentative, see Isaksen [2] for a better chart.
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this range have order 4 except the one in Ext®?®, which has order 8. The solid and
broken lines in this figure means the same thing as in Figs. A3.1a—c as described
above. This figure does not include the vi-periodic elements described in 5.3.7, i.e.,
the elements in the image of the J-homomorphism and the elements constructed in
Adams [1].

In TABLE A3.3 we list the values of the 2-component of the stable stems 7} for
k < 45, showing the name of each element given by Toda [7] (where applicable),
by Tangora [1] in the Adams spectral sequence, and by us in the Adams—Novikov
spectral sequence. Again we omit the vi-periodic elements described in 5.3.7. These
omitted summands are as follows.

Z for k =0,

Z/(2) for k=1 or 2,

Z/(4) for k = 3,

Z/(2™**)  for k = 8t — 1, where t is an odd multiple of 2™,
Z/(2) fork=0or2 mod (8) and k > 7,

(Z/(2))> fork=1 mod (8) and k > 7, and,

Z/(8) for k=3 mod (8) and k > 7.

In TABLES A3.4 and A3.5 we do the same for the primes 3 and 5, recapit-
ulating the results obtained in Sections 7.4 and 7.5, respectively. Again we omit
the vi-periodic elements described in 5.3.7, which in these cases are (in positive
dimensions) precisely im J, i.e.,

Z for £k =0 and
Z/(p™h) for k= (2p—2)t—1,

where t = sp™ and s is prime to p.
In F1c. A3.6 we reproduce the table of unstable homotopy groups of spheres
through the 19-stem, given in Toda [6].

TABLE A3.3. 2 at p =22

Stem Toda’s name Tangora’s name Adams—Novikov name
6 v? h3 Ba/2
8 e= (% 2n) co B
9 V3 h% hg (651 62
14 O'2 h% 54/4
K do B3
15 nK hidg a183 = 1844
16 n*(o,20,n) hihy 54/3
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TABLE A3.3 (continued)

369

Stem Group Tangora’s name Adams—Novikov name
17 '’ hiha a1f4/3
VK hadg /203 = Q728474
18 v* <0’, 20’, V> h2h4,h0h2h4 54/2’2
hi3hohy = hihy 4B/ = aifays
19 o= {0%+k,mn,v) ¢ 2
20 R g B4
2k hog 204 = 220 = (2,03, Bay3)
4K h%g 2299 = Oég/Qﬁg,
21 o’ h3h Q27284722
nK hig 14
22 va hocy Qig/27)2
772,‘76 Pdy 04%54
23 Z/2®Z/8 h4C() ’173/2
hag x93 = (2,03, Bass)
hohag 2123
Phldo 41’23
24 Z/2 h1h400 a1773/2
26 Z/2 h3g Q223
28 Z/2 Pg = dj T9s = (B2, a3, Bass)
30 Z/2 h3 Bs/s
31 (2/2)2 h%h4 04158/8
n Y3
32 (Z2/2) hihs Bs/7
dy w32 = (a1, Baa + B3,
at, Bays + Bs)
q Bs
33 (z/2)° hihs 1B/
p N5/6
hiq a133
34 Z/4® (Z/2) hohahs Bs/6,2
h3hahs = hihs oF Bs )7
€ Q2/273
C3 234 = (83,03, Bass) = PP
35 (Z/Q)2 hady Q2/2T32
hleg a1 T34
36 Z/2 t 36 = 7
37 (Z/2)2 h§h5 042/2,38/6,2
T Y4/2,2
38 (Z/4)®Z)2 h3hshs, hihshs Bs/4,2
hix 174/2,2
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TABLE A3.3 (continued)

Stem Group Tangora’s name Adams—Novikov name
39 (Z/2)° hihshs Q487
hsco Ya/2
hicy r39 = (a1, f2/2,73)
c1g o = (N2, 03, Bays) = P
u xé’g = <58/6,111,042/2>
40 Z/4+ (Z)2)* hihshs 10487
i 7407
hihsco B2Bs7 = Y201
Phyhs Bs/3
g ?
hin a1l
41 (2/2)° h1 f1 1740
Ph%h5 Q140
z ?
42 Z/80Z)2 Phahs, Phohahs Boz,2
PhZhohs = Phihs 48322 = 03 B33
Pe% ?
44 Z/8 92 Bs?
hoga
h%92
45 (Z/16) @ (Z/2)3 h3 Y4?
hohi
hg a7
hsdy
hohsdy
h2hsdo
w

@ All element have order 2 unless otherwise indicated. (im J and pgk+1, pgk+2
omitted.)
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TABLE A3.4. 3-Primary Stable Homotopy Excluding im J¢

Stem Element Stem Element
10 ﬁ1 81 Y2
13 oqf rg1 = (1, a1, PBs)
20 pi 82 fBss3
23 Oélﬁ% 84 Q172
26 o B1Bs = a1ws1
29 Ozlﬂg 85 <04170[1,5S> :ﬁl,u
30 B =(B2,3,01) a16/3
36 B1/2 86  fBs/2
37 {aq,00,B7) = (61,3, 52) 90 B
38 63/2 = <(X1,ﬁ%,3,0¢1> 91 /81'72
39 a1Bife B1rs1
40 Bt 92 B1Bs/3
42 B3 r92 = (B1,3,72)
45 Za5 = {1, a1, 53/2> with 93 Tg3 = <a1, a1,66/2> with
3145 = 183 3we3 = 136
46 ,B%ﬁQ 94 (11,81V2
47 <a1,041,5il> ﬂf%
49 1B 95 a1P1Bs3
50 ﬁ? 99 <0417 g, 1‘92>
52 3 = (o, a1, Ta5) 100 B20s
55 o133 101 S
62 B3 Bas:
65 181/ 102 BiBs/3
68  xes = (a1, B3/2, F2) B1w92
72 ﬁ%ﬁg = <a1, 3, -'1768> 104 a1,6’1272
4 Bs 106 w106 = B7 £ Boye
75 w5 = (a1, a1, T68) = (B, B3/2,8,) 107 y2fe
with 3z75 = a1 8753 Baws1
78 3 = PiTes 108 Bafsss = (ou, ou, Bias)

» (See 7.5.3 and subsequent discussion.) All elements have order 3 unless other-
wise indicated.
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TABLE A3.5. 5-Primary Stable Homotopy Excluding im J

Stem Element Stem Element
38 ,81 255 alﬁ%ﬁg
45 Ozl,Bl 258 ﬂ%ﬂ4
6 57 265 a1f7bs
83 32 266 A7
86 52 268 ﬂ254 with 6165 =0
93 aif 275 a1B284
14 B3 278 e
121 o f3} 281 287
124 B132 285  a1f3
131 a18:162 286 103
134 ,83 293 041,811ﬁ3
141 Oé1,63 296 B?ﬂ4
152 511 303 alﬂ?@;
159 a1} 304 p3
162 (752 306 B18284
169  a15%82 313 a1 B1B25s
172 B1Bs 316 B10s
179 a16163 319 26?

182 34 326 By

189  ai1fs=m 331 2015
190 ﬁi’ 333 a1p7

200 7, 334 Bifa

205 2ﬁ% = <Oél, aq, ﬁ?> 341 Ollﬁil54
206 P54 = (a1, 57,5, 1) 342 B

207 o 3B 344 BiB2pa
210 fifs 351 17825
213 a1B5/4 354 10

214 By3 357 289

217 o fiBs 364 3157

220 B1fa 369 26786
221 011,85/3 374 68

222 P50 379 B1Br

227 a1f1Ba 380 B°

228 516 381 a1fs

230 Bs 382 (76204
237 2B5/2 with 5(285/2) = a1f5 389 1828
238 B2 392 3B

243 289 402 Bipq

245 al,é’fﬁg 403 §6}0

248 33833 404 w404 = (0181, B1, B5/4)
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TABLE A3.5 (continued)
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Stem Element Stem Element
407 283366 491 2572 = (Brag, 72)
411 anza0s = B5a267 = (11, 1,5,72)
412 B Ps 493 2B1B7

x412 = B1Ps + 5§/4 494 B°
417 2B83B; 498 B70y
418 Bt 503 283385
419 alﬂlﬂg with A1X412 = 0 508 ﬂgﬂg with 61510 =0
420 B{B2fs = (1,5, T412) 513 Bive
422 By 251 By
427 2410 with 514 B2B105

5(2x412) = a1 31 B2Ba 517 3673

430 BiBs 518 fBu
437 259 520 Ozlﬁ%’h

V2 523 28209
438 Bioys B1y2
440  B367 524 B2Bi0/5
441 §ﬁ%1 525 011511
444 aqys 526 ﬁf,@g
445 ai1Bioss 529 258172

261 Bs 530 a7
446 Bioy4 531 (3727 = a1 B2B105
450 (Bs with 5182, =0 532 Bl
453 11074 536 S8
454 PBioyss 541 2061Bs
455 28367 546 (15239
456 %2 551 ﬂf’yz
460 (15 263 By
461 CY1/310/3 952 5%572
462 Proja 555 3P}
465  2/32/3s 556  B1B11
470 510 558 alﬂ?’)ﬁ
475 Pivye 561 (128289 with 18272 =78126259
476 B1Bross = (a1, B1Bs, B1) 566  Si2

572 = (B1,5,72) 567 572572
477 2B10y2 With 5(2819/2) = a1fo | 570 B°
478 BifBr 571 26161
479 3p}2 572 BaBioys
482 a1 B172 573 a1f12
483 a1B1B10s5 574 Bifo
488  B7fs 579 (9287 = a1PBsPioys
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TABLE A3.5 (continued)
Stem Element Stem Element
583 37620 659 151513
589 B%’}/g With QA1XeE2 — 0
2531 Bo 660 516209
590 5%572 662  Pig
594 S761 665 357512
596 1172 B2
599 720200 666 5757
601 46115 667 233652
602 o2 = (267,51, Bs5/4) 670  f16n
604 31812 675 281250
605 57257 677 2814
s ol e
609  oyweo2 with 267811 =?arweoz | 678  Pisss
610 B1B3B10/5 = (@1,5, Teo2) 680 7612
614  fi3 26957,
617 g7 = (a1, (@126203), (xgg2)> 685 18155
with 686 ﬂ15/4
5617 = a16183810/5 689 357572
620  BafPiross 690  Bipis
621 Oélﬂlg, 692 92 — <O(1,ﬁi), 113>
622 375209 693 1154
627 361512 381 A11
B2 694  Bis/3
628 3157 700 1S
632 fB7fn 701 1153
635 2B4B10/5 702 Bis)2
636 wess = (87,167, Bioys) 703 3833 bi2
= <55/47ﬂ97a1> 5;72
637 2670200 704 BP5y
639  46,° 710 Bis
642 ﬂ%ﬂlg 713 é%ﬂlg
26772 714 w7a = (81, B1B2, 72 + 260)
643 258172 = B5/472 715 261814
a1T636 392
644 Bs/4810/5 716 B1P15/5
646 317 717 2B15/0 with
651  a185/4P10/5 5(2615/2) = a1pis
652 B1P13 718 (P12
Bs/3B10/5 + B1B13 = Tes2 28772
655 zﬁifﬂn 721 A1X714
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TABLE A3.5 (continued)

Stem Element Stem Element
723 a181B15)5 786 B1P2514
724 w724 = ($1,5,51,51") 789 361613
279y = (8%, BT P11, 1n1) 794 26772
with 81 815/4 =0 796 B1P16
727 3857 799 36751
728 ﬁ?ﬂls B1a761 With
730 Biw692 4BF w92 =7
731 011$/724 With 800 B%x724
o174 =0 By,
738 1P 803 34757,
739 23;‘724 806 517
741 3fB1b2 a1 P1z761 = BiTeor
ﬁ?% 807 041/3%$/724
742 S5, 809  fizrm
748 ﬁ2514 with 810 ﬁ2$/724
B1B15 =0 811 21516
751 36763 812 B3fP15/5
753 3B1x692 813 a1Bir
756 2857, 814 Bipua
with 7812 = 0 815 283374
758 B 816  aiBizrry
761 x761 = (B3, 71,72) 817 A1,
381814 43182814 with
762 Brx724 2B2615/5 = 0
B12%94 818 B1°B10/5
763 2328314 824 BiB1f14
764 B2fiss5 825 23217y,
765 aifie 826 wsas = (o, 57, a1B4, Bross)
387572 827  2B3B15/5
766 5%513 833 1826
768  ai1zre1r = 12281086 834  B%b16
BT w692 xg34 = (81,265, Broys)
769 a1f1279 837  381Pu
771 e = (Ba, BT, B1P) Biwrer
776 ﬁ§514 838 ﬁ%x724 with
T 2817704 Biaty, =0
778 a1T771 840 36%0’}/2
779 B2 841  aqxg3a
2B2815,5 361°B10/5
780  fY57y2 842 wgaz = (267, B1, Bio/4)
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TABLE A3.5 (continued)
Stem Element Stem Element
844 o fiar6 894 B1*Bioyo
B1B17 899  a13181s with
847 Bz 192 =0
849  ayzsae = 2B7P1s 900  S1B2614
850  B1P3B1s5/5 902 Big
853 2Biw7oa 903 467 B16
854  [is 905 367617
o 77 906  [1rses
855 %1’)/2 907 21'892
856 B! B10/5 with 910  S1P6
422810 =0 913 «a1B17s68
453361514 Biare with
857  wssr = (a1 (@126156), (5°)) 2B1B4P15/5 =0
860 Bafiss 914 BPraq with
861 ai1fis 51ﬁf0/5 =0
862 7620614 916 B1%72
865  20183515)5 917 2B19
867 351517 918  Baoys
868  xgps (see 7.6.5) 920  B3B17
872 B%/B]G With 6137334 =0 923 ﬁ%l‘771
875 1 T868 925 ()(1,820/5
2B4P15/5 461 B1o/s
Bixr61 = Bioss2 926 Ba0/4
876 By 928  2Btx761
Biar24 930  ifirrn
878 3611y 3% 515 with
882  fifi7 with Bizg92 =0
o Biwrer =0 931 e
883 a1/} 4p1B2p14
884 Bs/4B15/5 932 B13B1057
885 ﬁ?$771 933 ’74?
887 481" Bioss a120/4
890  2B3w761 934 Pags3
891  2Btwra4 937 3872794 with
105745153 041515%/4 =0
892 Bi1f1s 940  o1va
o Biwrm B1P19
Tgga = 5%0/4 + 81618 941 18203
893 1%y 4531 P16
453382514 942 Pag/2
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TABLE A3.5 (continued)

Stem Element Stem Element
950 ﬁgo 969 %4’}/2
951 Blzre 27954
4537 17 with 970 Bi*Bioss?
01,61217868 = O 971 ﬂl’y4? Wlth
952 [Ya724 a161B20/2 =0
T952 = (B1, B1P10/5 + 572, 72) 972 574 with
953 3% P1s B1B20/3 =0
954 361372 975  3P{w724
Tosa = (o, a1, B1B2Pra, BT) 978 18174
955 201019 119
956 ﬂ1ﬁ20/5 979 2=T964 with
957 2f5/2 with a15y4 =0 and
5(2820/2) = @120 a1/B1B23 =0
958  Bibi7 987 2574
959  a1w952 988 P19 with B120 =0
963 181820/ 989 Birre
4813 B1oys 990 Biwros
964  w96s = 345116 B1Tos2
with 8182074 = 0 992 3B{*y, with Biaes4 =0
966 287761 998 oy
968  f3ifis 999 2999 = (B152,72,72)

with Oélﬂlsl‘771 =0

with 4587615 =0
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Gn,i, 164
Abelian category, 302
Adams conjecture, 5, 168
Adams filtration, 53, 161
Adams periodicity, 87, 89-92, 99, 361, see
also Periodicity, v1-
Adams resolution, 42, 47
canonical, 51
definition, 42
generalized, 49
Adams spectral sequence, 7-10, 41-58
computations, 59-101
connecting homomorphism, see
Connecting homomorphism,
generalized
convergence, 50, 52
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differentials, 7, 9, 11, 44, 93, 100, 146,
362-364
for bo, 65—67, 71
for bu, 63
for MO, 63
for MU, 60
modified, 100
naturality, 50, 52-53
odd primary, 9-11, 130-131
periodicity, see Adams periodicity
resolution, see Adams resolution
unstable, 78
vanishing line, 83, 87, 99, 133
Adams vanishing line, see Adams spectral
sequence, vanishing line
Adams—Novikov spectral sequence, 10,
15-24, 130-146
names for 2-primary elements, 366
algebraic, 131
differentials, 130, 137, 167, 171, 176, 365
group extensions, 146, 365
sparseness, 130
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unstable, 117
Admissible monomials, see Lambda algebra

A(m), 227
Approximation lemma, 89
Araki generators, 118, 352
Arf invariant, see Kervaire
Artin local ring, 189
Associated bigraded group, 44
at, 16, 32-38, 149, 182
Automorphism group of formal group law,
187, see also X(n)

cohomology, 198-212

eigenspace decomposition, 195

group ring, 193

matrix representation, 195

invariant

B (comodule), 244
j-freeness of, 250
Poincaré series for, 248
B(n), 115
B(n), 115
b;, 5, 69, 123, 125, 133, 223
b; (in H«(BU)), 15, 61, 106, 221, 344
b; (in Ext), 9, 86, 213
Behrens-Pemmaraju theorem, 180
Bernoulli numbers, 170
Bt, 17, 135, 137, 146, 153, 178-183
products, 185
betaf1, 282
Bsyts 18, 135, 137, 146, 180-181, 185
Bimodule, 50, 299
Birth, 28
bo, 50, 64-66
Bockstein operations, see Steenrod
operations
Bockstein spectral sequence, 132, 151-152
Bordism group, 10, 111
Bott periodicity, 4, 66, 220
BP, 19-20, 108-110
BP,(BP), 110-111, 117-129
coproduct, 122-123
filtration, 125-129
right unit, 123-125, 353
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BP(n), 113

Browder’s theorem, 38, 87, 173
Brown—Gitler spectra, 98
Brown—Peterson spectrum, see BP
Brown—Peterson theorem, 108
B3, see Symmetric group

bu, 50, 64

cij, 124, 125
ci, 73, 86
Cartan—Eilenberg spectral sequence, 64, 66,
67, 90, 96, 131, 228, 271, 277, 320-323
Cartier’s theorem, 345
Change-of-rings theorem, 22, 151, 187-192
Miller—Ravenel’s proof, 190-192
Milnor—-Moore, 319
Morava’s proof, 188—-190
Chromatic filtration, 147
Chromatic notation, 23, 153
Chromatic spectral sequence, 22—24, 100,
147-186
differentials, 156, 161
Ci, 267
Ext groups, 271
skeletal filtration SS, 271
Cobar complex, 60, 313, 314, 317, 323, 326,
327, 333
chromatic, 150
Cobar resolution, 313
Cobordant, 10, 104
Cogroup object, 20, 299
Cogroupoid object, 21, 299, 301
Cohen—Moore—Neisendorfer exponent
theorem, 4
coker J, 5, see also Homotopy groups of
spheres
Comodule, 302
i-free, 229
weak injective, 227, 229
algebra, 302
extended, 311
filtered, 317
injective, 310
relatively injective, 311
tensor product, 302
Comodule algebra structure theorem, 308
Comodules
weak injective, 237-238
Completion, 46, 49, 51
I-adic, 188
Connecting homomorphism, generalized,
53-58
Conner—Floyd conjecture, 114
Conner—Floyd isomorphism, 116
Corbordism ring
complex, 10, 104
Cotensor product, 303
Cotor, 310

INDEX

CP™, 7, 14, 105-111
Cup product, 54, 313
Curtis algorithm, see Lambda algebra

D}, 238
D2, 261, 263
filtration of, 264
Davis—Mahowald elements, 180, 181
Death, 28
An, 123
Derived functors, 309
Descent, see Method of infinite descent
Detection theorem, 214
Differentials, see specific spectral sequence
Division algebra, 197, 212, 358
Di 4,226
Double complex, 315, 318

E(n), 114, 116, 188
E2, 261
E3, 261
filtration of, 264
E'r2n+1
Ext in low dimensions, 242
Poincaré series for, 239
Edge theorem, 156
EHP sequence, 24-39
EHP spectral sequence, 25—-39
algebraic, 78
differentials, 80, 82
stable, 28
superstable, 38
vanishing line, 26, 78
Eilenberg—Mac Lane space, 6, 114, 117, see
also K(Z,3)
Eilenberg—Mac Lane spectrum, 33, 42, 48,
63, 104, 109, 112
Einhdngung, see Suspension
Elliptic integral, 340
Equivalence of functors, 189
n, see Hopf map
1, 283
nj, 34, 37
nNr, see BP,(BP), right unit
Exact couple, 43-44
Exponent theorem, 4
Exponential series, 169
Ext
definition, 310
over A, see Adams spectral sequence
over BP,(BP), see Adams—Novikov
spectral sequence
Ext!, 86, 158-165
Extf,, 1), 236
Ext?, 86, 172-183
Extension of Hopf algebras, 64, 96, 308
cocentral, 90, 322
Extension of Hopf algebroids, 307
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cocentral, 307

Filtration, 44, 316, see Adams filtration
Finite field, 357
Finiteness theorem, 3
Formal group law, 12, 121-122, 339-360,
see also Automorphism, Exponential
series, Logarithm
additive, 14, 340, 341
classification theorem, 21, 355
definition, 344
endomorphism ring, 193, 356, 358—-360
examples, 340, 354
height, 21, 354
Hopf algebroid, 344, 348
inverse, 340
multiplicative, 14, 340
p-typical, 345
strict isomorphism, 341
universal, 15, 341, 347
Formal sum, 345
4-term exact sequence of P(1)«-comodules,
267
4-term exact sequence of chromatic
comodules, 226, 233
Freudenthal suspension theorem, 2

G (power series group), 15-16, 20
cohomology of, 15-17
gi, 70, 86
T'(m+ 1), 226, 227
v, 17, 183, 254, 282
Generalized homology theory, 49
Geometric cycles, 10
Gm+1,k—1), 227
Greek letter construction, 16-19, 23, 39,
149
Groupoid, 20, 299
normal sub-, 300

H(p, q) system, 56
H, see Hopf invariant
hi,j, 65, 68, 69, 201, 223
h;, 8-10, 161, 163, 361
Hat notation, 234
Hazewinkel generators, 118, 351
Height, see Formal group law
Hom dim, 114
Homotopy groups, 2
of bo, 66
of BP, 108
of bu, 64
of J, 32, 34
of MU, 64
of Eilenberg—Mac Lane space, 6
of orthogonal group, 4
of spheres, 1-39, 74, 277-298, 361-376
Hopf algebroid, 21, 51, 299, 309
associated Hopf algebra, 305
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definition, 301
equivalent, 189
extension, 307
filtration, 316
map, 304
normal map, 305
split, 309, 314
unicursal, 305
Hopf algrebra, 299
Hopf invariant, 25, 26
one, 8, 9, 161
Hopf map, 3, 28
Hopf ring, 117
Hurewicz theorem, 2, 6

I, 17, 114, 123, 124, 126

i-free, see Comodule, i-free

Input list, 278, 283

Input/output procedure, 233, 278
Invariant ideal, 309, 314

Inverse limit of spectra, 44
#-isomorphism, 190

J (spectrum), 32-33

J-homomorphism, 4-5, 16, 29, 88

James periodicity, 29, 31, 83
Johnson—Miller—Wilson—Zahler theorem, 53
Johnson-Wilson spectrum, 113
Johnson—Yosimura theorem, 116

K (n), see Morava K-theory

K-theory, 7, 14, 29, 31, 92, 113

K(Z,3), 7, see Eilenberg-Mac Lane space

K(n)«(K(n)), 115

ki, 86

Kahn—Priddy theorem, 32, 39, 101

Kervaire invariant (6;), 33, 34, 38, 39
odd primary, 212-220

Koszul resolution, 95, 201

Krull dimension, 196-198

Kudo transgression theorem, 90, 271, 337

L, see Lazard ring
Lambda algebra, 77-86

admissible monomial, 77

Curtis algorithm, 78-83

generalized, 97-99
Landweber exact functor theorem, 116
Landweber filtration theorem, 115
Landweber—Novikov theorem, 108
Lannes’ T-functor, 101
Lazard comparison lemma, 343, 350-360
Lazard ring, 15, 341
Lazard’s theorem, 342
LB, 107, 358
Lie algebra

restricted, 68, 199
Lie group

p-adic, 193
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lifts functor, 189
Lightning flash, 84
Lin’s theorem, 38
Liulevicius’ theorem, 9
Localization, 51
Logarithm, 105, 341

M™ 149
mg, 105, 342
Mobius function, 346
Mahowald (root) invariant, 39
Mahowald elements, 37, 87, 177
Mahowald’s theorem (on EHP sequence),
34, 37
Mahowald—Tangora theorem, 86, 176
Manifold, stably complex, 10, 104
Massey products, 70, 87, 90, 100, 133, 141,
271, 278, 279, 323-332
convergence, 328
defining system, 324
differentials and extensions, 331
indeterminacy, 325
juggling, 326-327
Leibnitz formula, 329
matric, 324
strictly defined, 324
May spectral sequence, 67-77, 361
differentials, 71, 74
for 3(n), 200
for A(1), 71
for A(2), 74-77
nonassociativity in, 70
Mayspectral sequence, 8
Method of infinite descent, 227-233
Miller-Ravenel-Wilson theorem, 173
Miller—Wilson theorem, 158
Milnor—Novikov theorem, 10, 61
Mischenko’s theorem, 105
MO, 63, 112
MO(8), 95
Moore spectrum, 18, 46, 171-172, 177
Morava K-theory, 114-115, 117, 151
Morava stabilizer algebra, see X(n)

Morava stabilizer group, see Automorphism

group of formal group law
Morava vanishing theorem, 23, 151
Morava’s point of view, 21-22
Morava—Landweber theorem, 17, 118, 234
Moreira’s formula, 165, 203
MSO, 63, 95, 112
MSp, 63, 95, 97, 112
M Spin, 95
MSU, 50, 63, 95, 112
MU, 10, 60, 103-112
Q-spectrum, 15, 116
Adams spectral sequence based on, see
Adams—Novikov spectral sequence
Adams spectral sequence for, 61-63

INDEX

MU, (MU), 108
Hi, 167

N™, 149

Newton’s formula, 169

Nishida’s theorem, 4

Novikov SS, see Adams—Novikov spectral
sequence

v, see Hopf map

O, see Orthogonal group

Oka—Shimomura theorem, 185

Oka—Smith—Zahler elements, 180

Oka—Toda theorem, 181

Open subgroup theorem, 201

Orientation, complex, 104
degree m, 220

Orthogonal group, 4, 29

Orthogonal SS, 30

P(n), 114, 115

P, see Adams periodicity, Whitehead
product

P, see Steenrod operations

P(1)«, 261

P(1)+-resolution, 274

Palmieri theorem, 101

p-cell complex, 226

Periodicity operators in Adams spectral
sequence, see Adams periodicity

Periodicity, vi-, 88, 147, 165-172, see
Adams periodicity

Periodicity, vn-, 24, 100

Periodicity, Bott, see Bott periodicity

Periodicity, James, see James periodicity

Periodicity,vn-, 147

P-free, 263

I1,,, see Adams periodicity

Poincaré series, 206, 207, 210-212

Prime ideal, invariant, 118, see also I

Product of spectra, 45

Quillen operation, 228
Quillen’s Theorem, 103, 105
Quillen’s theorem, 15

QX, 28

Regular ideal, invariant, 18, 113

Resolution by relative injectives, 313

Resolution SS, 150, 227, 244, 245, 270, 273,
315

Restriction, 68, 199

pn, 159, 163, 165, 202

Right unit, see BPx(BP)

Ring spectrum, finite, 178, 180, 184

Root invariant, see Mahowald (root)
invariant

RP™, 15, 28-30, 34-39

S3, 84-86
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Schemes, 339
Segal conjecture, 100, 101
Serial number, 26, 79
Serre finiteness theorem, 3
Serre spectral sequence, 6
Serre’s method, 6-7
Shimada—Yamanoshita theorem, 7
Shimomura’s theorem, 18, 174
o, see Hopf map
3(n), 22, 151, 188, 190-212
H', 202
H?, 203
cohomology, 198-212
filtration, 198
May SS, 200
3(n), see Automorphism group of formal
group law
Singularity, 113
Skeletal filtration SS, 271
Slope 1, 84, 88, 99
Small descent SS, 230
topological, 232, 278
Smash product pairing, 53-58
Smith’s theorem, 17, 180
Sparseness, see Adams—Novikov spectral
sequence
Special unitary group, 117, 220
Spectral sequence, 315-323, see specific SS
for filtered complex, 317, 320
for Hopf algebrooids map, 318
Sq*, see Steenrod operations
Stable zone, see EHP SS
Steenrod algebra, 59, 131, 358
filtration, 69
Steenrod operations, algebraic, 332337,
see Steenrod algebra
PO, 336
SqY, 336
Adem relations, 336
Bockstein, 335
Cartan formula, 336
in Ext, 72, 89, 214
in May SS, 74, 95
suspension axiom, 337
Stem, 3
Stong’s theorem, 64
Strict isomorphism, see Formal group law
SU, see Special unitary group
Sullivan conjecture, 101
Sullivan—Baas construction, 112
Suspension, 2, 25, 78
double, 97
Symmetric group, 28, 29, 33, 333

T(m), 220-223
ti,j, 126
ti, 110, 123, 347, 348, see also BP.(BP)

INDEX

397

T(0)(2), homotopy of, 256

Tangora’s names for 2-primary elements,
366

Tiy D9

0;, see Kervaire invariant

Thom reduction (®), 161, 172, 175

Thom space, 31, 103

Thom spectrum, 112

Thom’s theorem, 10, 104

T(m), 225

T(m)n, 229

T(m) (), 225, 229

Toda bracket, 280

Toda differential, 130, 137, 227

Toda’s names for 2-primary elements, 366

Toda’s table, 376

Toda’s theorem, 137

Topological small descent spectral
sequence, see Small descent SS,
topological

Torsion, vn-, 147, 164

Transgression, see Kudo transgression
theorem

U (comodule)
short exact sequence for, 254
U (comodule), 244
;i j, 251
Unit coideal, 318

V(4), 185

V(n), 18-19, 178, 184, 282, 283

V, 110, 347, 348

vn, 17, 110, 347, 348, see also BP,(BP),
Periodicity, vn-, and Torsion, vy~

V(3), 282

Vanishing theorem, see Morava vanishing
theorem

Vector field problem, 30

Vector field problem, odd primary, 31

VT, 110, 347, 348, see also BPy(BP)

wr, 121

Weak injective, see Comodule, weak
injective

‘Whitehead conjecture, 101

Whitehead product, 25, 78

Witt lemma, 120

Witt ring, 357

X (k), 220
Tn.i, 163
i j, 68
&y 59

Yoneda product, 54, 218

Cn, 139, 163, 165, 202
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