
Dieudonné modules for abelian Hopf algebras

Notas de matematica y simposia ; iv. 1.

We loan for free. Members of East, RRLC, and IDS.
Con este volumen, la Sociedad Matemática Mexicana inicia su nueva serie

NOTAS DE MATEMÁTICAS Y SIMPOSIA

El propósito de esta serie es publicar, rápida e informalmente, notas de cursos y memorias de congresos y simposia sobre las diferentes áreas de la matemática.

Toda correspondencia debe enviarse a:
"NOTAS DE MATEMÁTICAS Y SIMPOSIA"
COMITE EDITORIAL
Apartado Postal 14-740
México 14, D.F., México

Publicación de la Sociedad Matemática Mexicana con el patrocínio del Programa Nacional de Formación de Profesores de la A.N.U.I.E.S. y del Centro de Investigación del I.F.N.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BROWN, E.H., Jr. and PETERSON, F.P.: $H^*(MO)$ as an algebra over the Steenrod algebra</td>
<td>11</td>
</tr>
<tr>
<td>DAVIS, D.M.: The immersion conjecture for K-theory</td>
<td>21</td>
</tr>
<tr>
<td>GLOVER, H.H. and MISLIN, G.: Vector fields on 2-equivalent manifolds</td>
<td>29</td>
</tr>
<tr>
<td>JOHNSON, D.C., MILLER, H.R., WILSON, W.S. and ZAHLE, R.S.: Boundary homomorphisms in the generalized Adams spectral sequence and the nontriviality of infinitely many γ, in stable homotopy</td>
<td>47</td>
</tr>
<tr>
<td>KAHN, D.S.: Homology of the Barratt-Eccles decomposition</td>
<td>60</td>
</tr>
<tr>
<td>LIULEVICIUS, A.: On the birth and death of elements in complex cobordism</td>
<td>78</td>
</tr>
<tr>
<td>MAY, J.P.: Problems in infinite loop space theory</td>
<td>106</td>
</tr>
<tr>
<td>MILGRAM, R.J.: The Steenrod algebra and its dual for connective K-theory</td>
<td>127</td>
</tr>
<tr>
<td>MILLER, H.R. and WILSON, W.S.: On Novikov's Ext^1 modulo an invariant prime ideal</td>
<td>159</td>
</tr>
<tr>
<td>MOORE, J.C.: An algebraic version of the incompressibility theorem of S. Weingram</td>
<td>167</td>
</tr>
<tr>
<td>RAVENEL, D.C.: Dieudonne modules for abelian Hopf algebras</td>
<td>177</td>
</tr>
</tbody>
</table>
By Abelian Hopf algebra we mean graded connected biassociative strictly bi-commutative Hopf algebra of finite type over a perfect field \(k \) of characteristic \(p \). Let \(\mathcal{A} \) denote the category of such objects. \(\mathcal{A} \) is known to be abelian ([12]) and our purpose here is to show that it is isomorphic to a certain category of modules. An analogous theorem for the nongraded case was proved long ago by Dieudonné, and the modules that he used have been studied extensively (see [1], Chapter V, and [4]). I am grateful to Bill Singer for first bringing this work to my attention and suggesting the problem of carrying it over to the graded case.

The ring \(D \) in question is a noncommutative power series over \(W(k) \) (the Witt ring of \(k \)) in two variables \(F \) and \(V \) subject to the relations

\[
FV = VF = p
\]

\[
F^p = V^p, \quad V^p = W
\]

(*) Research partially supported by N.S.F.
for \(w \in W(\mathbb{k}) \), where \(\mathbf{w} \) denotes the action of the Frobenius automorphism of \(\mathbb{k} \) lifted to \(W(\mathbb{k}) \).

In our case we will obtain modules over a commutative graded ring \(E = W(\mathbb{k})[[F,V]]/(FV-p) \) where \(\dim F = 1, \dim V = -1 \). \(F \) will be seen to correspond to the Frobenius endomorphism of a Hopf algebra \(A \) which sends \(x \in A \) to \(x^p \), while \(V \) corresponds to the dual of \(F \), commonly known as the Verschiebung.

The relation between abelian Hopf algebras and \(E \)-modules will be described in Theorem 3 below, which is our main result.

Our first result is a decomposition theorem.

Definition. Let \(n \) be an integer prime to \(p \). An Abelian Hopf algebra is of type \(n \) if each of its primitives and generators has dimension \(np^i \) for some \(i \). Let \(T_A \) denote the full subcategory of type \(n \) Abelian Hopf algebras.

Theorem 1. There is a canonical categorical splitting \(A \cong \bigotimes_{(n,p)=1} T_A \), i.e.

- a) Every Abelian Hopf algebra is canonically a direct product of type \(n \) Abelian Hopf algebras.
- b) There are no nontrivial maps between a type \(n \) Hopf algebra and a type \(m \) Hopf algebra for \(m \neq n \).
- c) Moreover, \(T_A \cong T_n \bigvee T_m \)

Such a decomposition is well-known for the Hopf algebra \(H_b(\mathbb{B}U;\mathbb{k}) \) (see [3] for example). The general decomposition is established by showing that the endomorphism ring of \(H_b(\mathbb{B}U;\mathbb{k}) \) acts canonically on any abelian Hopf algebra. Part (b) follows from the fact that a Hopf algebra map sends primitives to primitives. Part (c) is trivial.

We now construct a set of projective generators for \(T_A \).

Let \(B_n \in A \) be \(k[b_1, b_2, \ldots, b_n] \) with \(\dim b_i = 1 \) and coproduct \(b_1 = \sum_{s+t=n} b_s \otimes b_t \) where \(b_0 = 1 \). Let \(W_n \) be the type 1 factor of \(B_n^p \). It is a polynomial algebra \(k[w_0, w_1, \ldots, w_n] \) with \(\dim w_i = p^i \). The coproduct is obtained lifting to \(W(k) \) and defining the Witt polynomials \(\mathbf{w}(w) = \sum_{i=0}^{p^i-1} p^{i-1} w_i \), \(0 \leq n \leq n \), to be primitive.

Theorem 2. \(W_n \) is a projective object in \(A \), and its dual \(W_n^* \) is therefore injective.

Proof. Let \(S \) be the simple object \(k[x]/x^p \), \(\dim x = r \). Any Abelian Hopf algebra can be built up out of these simple objects by multiple extensions, so it suffices to show \(\text{Ext}^1_A(W_n, S) = 0 \forall r \), which is a simple calculation.

Now let \(\mathcal{H} \subset T_A \) denote the full subcategory whose objects are the \(W_n \). Let \(\text{FM} \) denote the category of contravariant functors from \(\mathcal{H} \) to the category of finite \(W(k) \) modules. This category is abelian. We define a functor

\[
\mathcal{R} : T_A \to \text{FM}
\]
by
\[\mathcal{D}(A)(W_n) = \text{Hom}_S(W_n, A). \]

Now we can state our main result:

Theorem 3. The functor \(\mathcal{D} \) defined above is an equivalence of abelian categories.

The proof is analogous to that of Theorem V, §1.4.3 of [1]. Theorem 3 can be described in a more useful way by analyzing the structure of \(W \). Let \(\mathcal{V}_n : W_n \rightarrow W_{n-1} \) be the inclusion and let \(\mathcal{F}_n : W_{n+1} \rightarrow W_n \) be defined by \(\mathcal{F}_n(w) = w^{-1}_{n+2} \). Note that \(\mathcal{V}_n \mathcal{F}_{n-1} = \mathcal{F}_n \mathcal{V}_{n-1} = p \). Then we have

Lemma 4. The endomorphism ring of \(W_n \) is \(\mathbb{W}(k)/p^{n+1} \) and these endomorphisms along with the \(\mathcal{F}_n \) and \(\mathcal{V}_n \) generate all of the morphisms of \(W \).

Hence Theorem 3 can be paraphrased as

Theorem 3'. A type 1 Abelian Hopf algebra is characterized by a sequence of \(\mathbb{W}(k) \) modules \(W_n(A) = \text{Hom}(W_n, A) \) and maps \(\mathcal{F}_n : W_n(A) \rightarrow W_{n+1}(A) \) and \(\mathcal{V}_n : W_n(A) \rightarrow W_{n-1}(A) \) where \(\mathcal{V}_n \mathcal{F}_{n-1} = \mathcal{F}_n \mathcal{V}_{n-1} = p \).

If we identify \(f \in W_n(A) \) with the element \(f(w) \in A \), we have \((\mathcal{F}_n f)(w) = f(w)^{-1}_{n+2} \in A \), i.e. \(\mathcal{F}_n \) corresponds to the Frobenius endomorphism of \(A \), while \(\mathcal{V}_n \) corresponds similarly to the dual endomorphism, i.e. the Verschiebung.

To make this more concise let \(E^d_A \) denote the where \(A_0 \) is projective and \(A_1 \) is polynomial. (If \(A \) is not finitely generated, one can still construct and \(A_0 \) and \(A_1 \) but they need not be of finite type).

This is a consequence of

Theorem 6. \(\text{Ext}^2_A(B, A) = 0 \) for all \(A \) iff \(B \) is polynomial.

We will conclude by identifying some well-known Hopf algebra functors with standard functors from homological algebra. It is convenient at this point to embed \(E^d_A \) into \(E \), the full category of graded \(E \)-modules and maps of all degrees. Hence for \(M, N \in E \), \(\text{Hom}_E(M, N) \) is also an \(E \)-module. Moreover, if \(N \) is nonnegative and \(M \) does not have any generators in positive dimensions then \(\text{Hom}_E(M, N) \) will also be nonnegatively graded.

Define modules \(P = E/VE, R = E/FE \).

Theorem 7. Let \(A \in E \). Then \(\text{Hom}_E(P, C(A)) \) is isomorphic to the abelian restricted Lie algebra of primitives of \(A \) (where \(F \) corresponds to the restriction), and \(\text{Ext}^1_E(P, C(A)) \) is isomorphic to the abelian restrict Lie coalgebra (with \(V \) corresponding to the corestriction) of decomposable elements of \(A \).

The functors \(\text{Ext}^1_E(P, C(A)) \) and \(\text{Hom}_E(R, C(A)) \) are the functors \(\mathcal{D} \) and \(\mathcal{D} \) respectively defined in [6] and also in [5].
§3. Hence an extension in \mathcal{T} induces six term exact sequences relating these functors as was shown in [6]. (Note
that $\text{Ext}^2_E(\mathcal{F}, -) = \text{Ext}^2_E(\mathcal{R}, -) = 0$). It is evident that the con-
necting homomorphisms of these sequences must be E-module maps,
i.e. they must preserve the restriction and corestriction res-
pectively. Hence the argument of 4.10 of [6] (which leads to
contradictions of Theorems 2 and 4) is incorrect.

COLUMBIA UNIVERSITY

N.B. These results were also obtained by C. Schoeller, "Etude
de la Categorie des Algebres de Hopf Commutatives Connexes sur

References

Holland, 1970.

[2] V.K.A.M. Gugenheim, "Extensions of algebras, coalgebras,
Hopf algebras", I and II, Amer. J. Math., 84(1962), 349-
382.

[4] Y.I. Manin, "The theory of commutative formal groups over
fields of finite characteristic", Russian Math. Surveys,