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In [38] Thom defined the unoriented and oriented cobordism rings, soon 
generalized to complex cobordism by Milnor [19] and Novikov [22]. These 
geometric constructions were later shown to give rise to generalized homology and 
cohomology theories [39] by Atiyah [3]. These theories have received a great deal 
of attention in recent years. 

In this paper we offer three new things. First, we obtain unstable homotopy 
theoretic information from formal group laws. Second, we make essential use of the 
concept of Hopf rings both in the description of our results and in the proofs. Third, 
we give a detailed analysis of the homology structure of the (unstable) classifying 
spaces for complex cobordism, including a completely algebraic construction which 
contains total information about the unstable complex cobordism operations. Some 
of our results were announced in [29]. 

O. Introduction 

Since the introduction of formal groups into cobordism theory they have been 
applied to obtain many useful stable homotopy results. Quillen's results [23, 24, 1] 
are among them, in particular, his direct computation of the complex cobordism 
ring [23] and his description of the operation algebra for Brown-Peterson 
cohomology [24]. Later came Hazewinkel's construction of canonical generators 
for the Brown-Peterson coefficient ring [7, 8]. The results of Quillen and 
Hazewinkel have made it possible to compute effectively. More recently, the 
construction of the Morava stabilizers [20, 25] has led [21, 26, 16, 18] to a great deal 
of new information about the stable homotopy of spheres [9, 17, 27]. However, 
although formal group laws for homology theories are defined unstably, this fact 

* Both authors were partially supported by the National Science Foundation. 
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has never really been exploited to obtain unstable information. We rectify that 

matter. 
If E * ( - )  is a multiplicative cohomology theory with E * C P  ®= E*[[x]] (the 

power series), x ~ E2Cp ®, we define a~s E E -2('÷j-" = E20,j-x) by use of the unstable 

H-space product 

C p  ® × Cp®---~ Cp®; 

x ~ ~ a,jx' ®x j E E*(CP®× CP®). 
i, j ~ 0  

The formal group law is given by 

F ( y , z ) =  y +vz = ~ a,jy'z i. 
i , j ~ O  

Dual to x" is fl. E E 2 . C P  ® with coproduct /3.---,E~'=013~_,®/3,. Let G * ( - ) b e  
another such cohomology theory and let G ,  = {G~}k~z be an O-spectrum repre- 
senting it. Then x ~ is a map CP®---~ G2. We let (xO),( f l . )  = b~ E E2~G2. The loop 
and multiplicative structures on G ,  induce two products * and o respectively on 
E , G , .  Elements  v E G* give rise to elements [v] E EoG, .  Let b(s) = E,,ob,s' 
and y +t~l z = *,.s~o [ai~] ° y°' ° z °i. Our  main unstable relation is: 

Theorem 3.8. In E ,  t7,, [[s, t]] 

b(s +F~t) = b(s)+tFl~b(t ). 

This follows from our relation" 

Theorem 3.4. In E ,  CP®[[s, t]] 

~(s)#( . t )= ~(s +~t). 

If we specialize to E = BP where B P ,  = Z0,)[vl, v2, . . .  ], Theorem 3.4 gives up 
very explicit information. 

Theorem 3.12. In OBP,CP®mod(p) ,  

pn-i 

i = l  

Theorem 3.8 is particularly useful when applied to G = M U  or BP. In fact, it 
allows one to describe E , M U , .  E , M U ,  has a coproduct and the two products * 
and o turn it into a ring object in the category of coalgebras, i.e. a Hopf ring. We 
only consider the  even spaces for MU, so x m '  : CP®---~ MUx. Let the Hopf ring 
E ~ M U ,  be constructed completely algebraically from the elements Iv], v ~ MU*,  
bi, the relations from Theorem 3.8 and the general properties of Hopf rings. We 
then have: 
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Corollary 4.7. There is an isomorphism of Hopf rings" ER, M U ,  ~- E , M U , .  

Specializing to the case E = MU, this result gives a completely algebraic 
construction for M U , M U ,  which includes both products, the coproduct and the 
M U ,  module structure. The dual of this, M U * M U , ,  is the algebra of unstable 
complex cobordism operations. 

Specializing to H , ( M U ,  ; Z )  wesee there is no torsion because there are no odd 
degree elements in H~,(MU,;Fp). For H , ( M U ,  ;F~) we can even compute the 
coaction of the dual of the Steenrod algebra because it is known on the [v]'s and the 
b's [37]. 

As we see from Theorem 4.7, the spaces MU,  have a very rich structure. A study 
of their homotopy type [41] has led to useful applications [10, 34]. In [34], use is 
made of Theorem 5.3 below as well as the results of [41]. 

There are similar results to those above for BP, and, specializing to H ,  (BP,  ; [:,,) 
(where again BP~ is the 2k space in the O-spectrum for BP) we can do better than 
produce abstract constructions and isomorphisms. Here we can given explicit 
formulas. First, as another corollary of Theorem 3.8, we have: 

Theorem 3.14. In Q H , ( B P ,  ;Fp)/I2QH,(BP, ;Fp) 

2 to, lob::_,:o 

where I = ([v,],[v2],. . .) .  

We can now give a detailed description of the Hopf ring H , ( B P ,  ; Fp). Denote b e, 
by b(,) and define 

rib J i, is. : [ V l V  2 " - ] o h ' / o o h  " l O .  • • 
--(0) -- (1) 

Let BP,  be the zero components of B P , .  

Theorem 5.3. 
(a) H , ( B P ~  ;F~) is a (bi)-polynoraial Hopf algebra. 
(b) A basis for Q H , ( B P ,  ; [=p) is given by all vfb ~ (J~  O) such that if 

J = pAk, + p2Ak~ + " " " + p"Ak. + J' 

where kl <~ k2 <<- ""  <~ kn and J' is another sequence of non-negative numbers, then 
i . = 0 .  

(c) A basis for P H , B P ,  is given by all v'b J o bl where v'b ~ (J possibly zero) 
satisfies the condition in (b). 

We would like to thank Dave Johnson and Haynes Miller for useful comments on 
preliminary versions of this paper. 

Section 1 is a detailed account of graded ring objects over a category. Here we 
completely describe what we mean by a Hopf ring. Some of the properties are 
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unnecessary for this paper but we will need them in a future paper where we hope 
to compute the Morava K-theories [11] of Eilenberg-MacLane spaces [30]. We 
also discuss graded spaces and E ,  G ,  as a Hopf ring. At the end of the section we 
construct certain Hopf rings we need later. 

Section 2 deals with the special graded spaces associated with MU, in particular 
we develop the geometry necessary for our main geometrical corollary (4.12). 

In Section 3 we prove Theorems 3.8, 3.4, 3.14 and 3.12, give other applications of 
3.8 and some examples of how to compute with it. In Section 4 we state and prove 
our main isomorphisms 4.7 and in Section 5 we do Theorem 5.3. Section 6 states 
what is known about homology operations and relates a geometric problem of 
interest. 

Each section has its own introduction. 

1. Hopf rings 

In this section we define a graded ring object over a general category. 
Specializing to the category of coalgebras we call such an object a Hopf ring and in 
Lemma 1.12 we write down an explicit description of all of the defining formulas. 
We then show how the generalized homology of the spaces in an n-spectrum often 
give rise to Hopf rings and we give the basic properties of a Hopf ring which comes 
about in this way. Later on in the paper we will construct Hopf rings purely 
algebraically. In order to do this we need the notion of a free Hopf ring which we 
develope at the end of this section. The main purpose of this section is to establish 
the necessary permanent reference for the precise details of a Hopf ring. 

We would like to thank J.C. Moore, K. Sinkinson and R.W. Thomason for 
helpful discussions about the material in this section. We are particularly grateful to 
H.R. Miller for completely changing our perspective by showing us the categorical 
possibilities when he informed us that the algebraic monstrosity we were dealing 
with was just a ring in the category of coalgebras. 

Let cg be a category with finite products (H). We assume our products are chosen 
in such a way as to be functorial (and associative). We let ~(X, Y) denote the 
morphisms (maps) from X to Y in ~. We let lx E ~ ( X , X )  be the identity 
morphism. A terminal object N is an object N of ~ such that cg(X, N) contains 
exactly one morphism, ex - e, for all X E c~. We will assume our category cg has a 
terminal object. 

An abelian group object of ~ is an object X E r¢ and maps ~ E ~g(N, X) (abelian 
group unit, i.e. zero), * E rg(XIIX, X )  (addition) and X E rg(X, X)  (inverse) such 
that the following diagrams commute: 

1.1 

N H X  P" ~ X 

X I I X  ~ X 
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1.2 

1.3 

1.4 

X I I X  

XIIXIIX 

*Illx 1 

XIIX 

Ix.* 
) XHX 

- X  

X 

E 

N 

(Ix, x) 
> XIIX 

) X 

The diagrams give the standard abelian group properties: 1.1, addition by zero; 1.2, 
commutativity: 1.3, associativity; 1.4, inverses. 

The category of graded objects of ~, G~, has as objects X .  = {X.}.~z where 
X. ~ ~ and morphisms, Gc~(X., Y.) ,  all f .  = {f.},ez, f. ~ ~(X., Y.). We also 
have the category of nonnegatively graded objects of cg, G÷~, and the category of 
evenly graded objects of ~, G2C¢. 

A commutative graded ring object with unit over c~ (henceforth (graded) ring 
object) is an abelian group object X .  E G~, i.e. each X. is an abelian group object 
of ~ with inverse X, = X, addition *. = * and zero rl. = r/. Furthermore, we have 
maps e 6 ~ (N, Xo) (multiplicative unit) and o,~ =o 6 ~ (X, HXj, X,÷s) (multiplication) 
such that the following diagrams commute: 

~/,x = (lx, lx) • ~ (X, XlIX) 

1.5 

X, IIXjlIX~ ''"" ) X, IIXj÷~ 

°rlz"~ 1 . I ° 
X~+jIIXk ' X~+j+k 

1.6 

XJIXj ° ) X,+j 

(P~,p,) [ Ix" 
5 

XJ/X, • X +j 

1.7 

x, nx, nx, 

l x f / *  1 
x, 

" ' x, nx, nx, nx, 

o 

Xi +j < 

(I'1. Pa' P2, P4) 
) X, HX~nX, HX, 

I, .° 
* X~+tlX~+s 
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1.8 

1.9 

P2 
NIIX, . > X, 

eHlx, 1,,, 
o 

XoFIX, > X, 

NFIXi ' N 

~n l"J I ° 1  n 

X, IIXj , X,+j 

The diagrams give the standard graded ring properties: 1.5, associative multiplica- 
tion; 1.6, commutativity; 1.7, distributivity; 1.8, multiplication by the unit; 1.9, 
multiplication by zero. 

For G+C~ and G2~ we have the concepts of nonnegatively graded and evenly 
graded ring objects respectively. Moreover, if X ,  is a ring object then X ,  = {X. }.~.0 
and X2, = {X2.}.ez are ring objects in G+~ and G2~ respectively. The concepts of 
maps of graded ring objects and the category of graded ring objects over ~ are the 
obvious ones. 

Let ~ be a category with finite products and a terminal object N~. Let ~r be a 
product preserving functor from c¢ to ~, i.e. ~(N,e)= N~ and there is a natural 
equivalence of functors of ~ x ~ to ~, 

1.10 ~ : ( -  ) / / 4 ( -  ) =  ~ : ( -  n -  ). 

~: induces an obvious functor ~ "  G~-->G~ by ~:(X,)={~;(X.)} .ez  and 

 ff,) = 

Lemma 1.11. Let ~, ~ and ~: be as above. If  X ,  E G~ is a graded ring object over 
~, then ~ ( X , ) ~  G~ is a graded ring object over ~. 

Proof. Just apply ~ and 1.10 to all of the defining diagrams. 

Let R be a graded (associative, commutative) ring (with unit). We let ~ = 
CoAlga be the category of graded cocommutative coassociative coalgebras with 
counit over R, henceforth coalgebras. For each object C we have a coproduct 
Oc : C---* C ®R C and a unit ec : C--* R. Morphisms are maps of coalgebras with 
unit. R is in the category in a natural way and is a terminal object. The unique map 
from C to R is ec. The product in the category, CFID, is given by C ®~ D = C ® D, 
where l c ® e o : C ® D - - ~ C  and ec®ID:C®D-- -~D are the projections. If 
f :B---~C and g :B--*D are given, then the map ( f , g ) : B - - ~ C ® D  is (f®g)0B, 
i.e. ( f ,g)(b)= ~,f(b')®g(b") where 0 ( b ) =  ~,b'®b".  We will call a ring object 
over CoAlgR a (graded) Hopfring. The term, "Hopf ring" was first used in [15]. In 
this context a Hopf algebra should be called a Hopf group. Since the name Hopf  
algebra is here to stay it presents problems in the naming of a ring object in the 
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category of coalgebras. "Hopf bialgebra" is a name used by some [14]. However, a 
bialgebra means something distinctly different to algebraists. An appropriate name 
would be "coalgebraic ring" but we have decided to stick with "Hopf ring" because 
of its aesthetic value. 

We collect the basic facts about Hopf rings in the following lemma. Observe that 
there are Hopf rings with similar properties for G2CoAlgR and G÷CoAlg~. In 
G2CoAlgR the signs which involve X go away. If R is concentrated in degree zero 
(or even degrees) the signs involving it disappear as well. In this paper we will work 
in G2CoAlgR and it turns out that for our objects H(*)E G2CoAIgR, H , ( n )  is 
evenly graded for all n so the signs never enter into our consideration. However, 
we will need the signs in a planned sequel to this paper [30]. 

Lemma 1.12. Let H(*) = {H , (n ) } ,~z  ~ GCoAlgR be a Hopf ring. Let a E Hi(n), 
b E ~ (k), c E Hq (k). Define deg x by x E Hoegx (m). 
(a) Each H , ( n )  E CoAlgR. 

(i) There is a coassociative cocommutative coproduct for all n. 

~b : H,(n)--> H , ( n ) ® H , ( n )  

~b(a) = ~ a ' ® a " =  ~'~ ( -  1)d"° '°"° 'a"®a'  

(ii) There is a counit, e :H, (n) - -*  R such that 

¢, 

H , ( n )  , H , ( n ) ® H , ( n )  

is the identity, i.e. a = ~ a'e (a"). 

1H.(.)@e 
, H , ( n ) ® R  R = H , ( n )  

(b) Each H , ( k )  is an abelian group object of CoAlgR, i.e. 
biassociative Hopf algebra with unit, counit and conjugation: 

(i) There is a product 

• : H , ( k ) ® H , ( k ) - - ~  H , ( k )  

which is associative and commutative, 

b *c = ( -  1)~c * b E I-tj+q(k). 

(ii) The map * is in CoAlgR 

~b(b * c ) =  $(b)*~b(c) = ~ (b '®b")*(c '@c")  

a bicommutative 

= ( -  

(iii) The abelian group object unit, zero, 

n(1)#o, 

[Ok ] * b = b. 

(iv) The conjugation X : H , (k  )---~ H ,(k ) 

X b ' * x ( b " ) .  

is 77" R ~ H , ( k ) .  

has XX = identity 

We define [0k] = 

and ~ e ( b ) =  
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(c) There are associative maps 

o" H , ( n ) ® H , ( k  )---* H , ( n  + k) 

such that" 
(i) The map o is in CoAlgR 

O(aob)= ~O(a)o~b(b) = ~, (a '®a")o(b '®b")  

and 

= ~, ( -  1)~°,"a',~'(a'ob')®(a"ob"). 

(ii) Multiplication by zero 

[O.]ob = he(b). 

(iii) There is a unitmap e" R --~ H,(O).  Define e(1) = [1] E Ho(O), then [1] o b = b. 
(iv) Define X([1]) = [ -  1] E Ho(0). Then 

x ( a ) = [ - 1 ] o a  

x ( a o b ) = x ( a ) o b = a o x ( b ) .  

(v) Commutativity 

a °  b = ( -  1)°[ - 1] ""a' 

(vi) Distributivity 

o b o a = ( - 1)'JX~'(b o a)  E/-L+~(n + k). 

a o ( b * c )  = ~, ( -  1)d°'°"~'b(a'ob)*(a"oc). 

(vii) Let In] = [1]*" = [1 + 1 + - - - +  1], then 

[n ]ob  = ~ b ' * b " * ' " * b  <"). 

Proof. Everything follows directly from the definition of a ring object except (c) 
(iv). This actually holds for a ring object but we will give a direct proof here. 

[ -  l ] o a  = ( [ -  1]* [Oo])Oa (b)(iii) 

= ~ ( [ -  1]oa')*([Oo]oa ") (c)(vi) 

= ~ ( [ -  l l oa ' ) , r t e (a  ") (c)(ii) 

~] ( [ -  1]oa ' )*a"*x(a")  (b)(iv) 

and coassociativity 
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= ~ ( [ -  1]oa')*([1]oa")*x(a") (c)(iii) 

249 

= ~ ( ( [ -  1]*[1])oa')*x(a") 

= ~ ([0o] ° a ') * X (a") 

(c)(vi) 
and coassociativity 

(b)(iv) 

= ~ rle(a')*x(a") (c)(ii) 

= X ( ~  rle(a')*(a")) X restricted to image of r/ 

is the identity 

= x(a). (a) (ii) 

Let c¢ be some full subcategory (with appropriate products) of the homotopy 
category of topological spaces, H Top. The objects of H Top are topological spaces 
and the morphisms are homotopy classes of continuous functions [X, Y]. Cartesian 
product is a product in H Top and the one point space is a terminal object. A 
graded ring object over ~ will be called a (graded) ring space. 

Let c¢o be the homotopy category of topological spaces having the same 
homotopy type as countable CW complexes. Let E , ( - )  be an associative 
commutative multiplicative unreduced generalized homology theory with unit and 
let G * ( - )  be a similar cohomology theory, both defined on ~0. Let E ,  and G* 
denote the two coefficient rings. Let G * ( - )  have a representing O-spectrum [4] 
G ,  = {Gn}.~zE GC¢ °, i.e. G"(X)"-[X,  G.] naturally and 12G~+, "-G.. In general 
we let [X, G ,] -~ {[X, Gn ]}.Ez = G *(X). For X ,  ~ G~ ° we let E , X ,  = {E ,X.  }~z 
is the graded category of E ,  modules. We collect some basic facts in the following 
lemmas. 

Lemma 1.13. Let c¢ C ego be some full subcategory with appropriate product such 
that exterior multiplication 

E , (X)  ®~. E ,(Y)--~ E , (XI IY)  

induces a Kiinneth isomorphism for all X, Y ~ ~, then for G ,  E G~ as above, 
(a) G,  is a ring space. 
(b) E ,  G,  is a Hopf ring over E , .  

Proof. (a) The very definition of a multiplicative/2-spectrum G ,  is that OG.+, -- Gn 
and G ,  be a ring space. We are given that E , ( - )  satisfies the Kiinneth 
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isomorphism so the diagonal induces a coproduct and E , ( X ) E  CoAlgE for all 
X E cC Lemma 1.11 applies. 

Let x ~ G" in the coefficient ring, then x E G" = [point, G. ] and so we have a 
map E ,  ----> E ,  G.. We define [x ] E EoG. to be the image of 1 E E ,  under the map 
induced by x. In general note G * =  [point, G,] .  

Lemma 1.14. Let z E G", x, y ~ G k, then 
(a) for the zero element O, E G", [0,] corresponds to the [0.] of Lemma 1.12 

(b)(iii). 
(b) [zlo[x]  = [ z x ] -  [ ( -  1)" xz] = [ - 11" o[xlo[z].  
(c) [ x ] * [ y ] = [ x + y ] = [ y + x ] = [ y ] * [ x ]  ( # [ x ] + [ y ] ) .  

(d) 4,([zl)=[zl®[z].  
(e) The sub-Hopf algebra of H ,G.  generated by all [x] with x ~ G" is the group 

ring of G" over E , ,  i.e. E , [ G " ]  (using (c)). 
(f) The sub-Hopf ring of E , G ,  generated by all [x] where x E G* is the 

"ring-ring" of G* over E , ,  i.e. E , [ G * ]  (using (b) and (c)). 

The proofs are straightforward. 

The Kiinneth isomorphism always holds for singular homology with coefficients 
in a field k ; H , ( -  ; k). The Kiinneth isomorphism holds for singular homology 
with integer coefficients, H , ( -  ; Z), complex bordism, M U , ( -  ), and 
Brown-Peterson homology, B P , ( - ) ,  on the full subcategory of spaces with no 
torsion in H , ( -  ;Z),  torsion free spaces [13]. So we have: 

Corollary 1.15. (a) For G,  as above, H , ( G ,  ; k) is a Hopf ring over k. 
(b) For G,  as above with each G. in the category of torsion free spaces, then 

H , ( G , ; Z ) ,  H , ( G ,  ;Zc,)), M U , G , ,  and B P , G ,  are Hopf rings over Z, Z~ ,  
M U  , and BP , respectively. 

Remark 1.16. Not all ring spaces are O-spectra. An example along the lines of our 
interests is Xo = integers, X, = n"MSO(n) ,  n >0,  the nth loops on the Thorn 
complex for SO(n). The * product comes from the loops and the o product can be 
obtained from the maps MSO(n) ^ MSO(k)--> MSO(n + k) which are induced by 
the Whitney sum. We leave the details to the interested reader. 

Let R and S be graded rings with R [S] the "ring-ring" as in Lemma 1.14(0. 
R[S] is a Hopf ring over R. We say a Hopf ring H over R is an R[S]-Hopfring if 
there is a given map of Hopf rings R [S] ---> H. We let Supp CoAIgR be the category 
of supplemented coalgebras over R, i.e. each coalgebra C is equipped with a map 
r/:  R ~ C such that er /=  identity on R. We define [0] = ~ (1). 

We now construct the free R[S] Hopf ring on C(*)E G SuppCoAlga. Identify 
the [0,] E Co(n) with the [0,] E R [S] and take all possible * and o products of C(*) 
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with itself and R [S] (a sub-Hopf ring) subject to the restraints of Lemma 1.12. This 
gives a functor 

1.17 FHR : G SuppCoAlgR ---> R [S]-Hopf rings 

with the following universal property. There is a canonical map C(*)---~ FHRC(*) 
in SuppCoalgR such that if H is an R[S]-Hopf ring and we are given a 
map C(*)--->H in SuppCoAlgR, then there is a unique map of R[S]-Hopf rings 
FHRC(*)--> H making the following diagram commute: 

1.18 

c(,) 

FHRC( , )  . . . .  ---> H 

1.19. The only free Hopf ring we will be concerned with is FHRC(*) when C(2) is 
the R free coalgebra on bi E C2,(2), i i>0, with ~b(b,) = ~,'~ob~ ®b,,_, and b0 = [02]. 
C(k) = the R free coalgebra on [Ok], k~  2. 

2. The space MU, 

In this section we give some basic facts about MU and BP. Readers with some 
familiarity with MU and BP may wish to skip it entirely. All they will need to know 
is that M U .  and BP. are the evenly graded spaces made up from the even spaces in 
the O-spectra for MU and BP respectively, i.e. MU. is the 2n space in the 
O-spectrum for MU. We will also use the elementary Proposition 2.4. 

Most of the next section where we prove the main relations is independent of any 
awareness of MU or BP as well. It is only when we specialize to these cases to get 
explicit formulas are they important. The purpose of most of this section is to set up 

the geometry necessary to obtain our geometric corollaries of our main theorem, a 
computation of the complex bordism of the spaces in the O-spectrum for MU. 

Let MU. denote the Thom space of the unitary group U.. Note that MU. is 
(2n - 1)-connected. The inclusion map U. ---> U.+I induces a map S2MU. ---> MU,,.I. 
The nonnegatively evenly graded space {MU,,} together with these maps give the 
spectrum MU. (For a general cobordism reference see [36].) We are interested in 
the O-spectrum representing MU. The adjoint of the above map is a map 
MU,, --> 02MU.÷~. Applying the iterated loop functor gives a map 
OkMU.----> Ok+2MU.+I which allows us to define 

MU. = lim 02iMU.+i. ~...> 

MU. (called M2. in [40]) is an infinite loop space (by construction) and is defined 
for every integer n. MU. is (2n - 1)-connected for n > 0 and MU,, = 02MU.÷~. The 
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spaces {MU., OMU,,} together with the appropriate maps constitute the /2- 
spectrum associated with MU. We will restrict our attention to the even spaces MU. 
although in the course of our study the spaces OMU. will also be described. 

We define M U ,  to be the evenly graded space X2. = MU,. M U  is a ring 
spectrum, the multiplication being induced by Whitney sums, so M U ,  is a ring 
space by 1.13(a) and the comments after 1.9. We let M U , (  - ) and MU*(  - ) denote 
the generalized homology and cohomology theories respectively (complex bordism 
and complex cobordism) arising from MU. We have MU2*(X) --- [X, MU,].  In 
particular, the coefficient rings are given by 

Z[x2, x , , . . .  ] =  zrS(MU)= M U ,  = M U - * =  [point, MU_,] 

where Z[x2, x4,. . .  ] is a polynomial algebra over Z on positive even dimensional 
generators. 

After localizing at a prime p, the study of M U  reduces to the study of the 
Brown-Peterson spectrum [5] which is also a ring spectrum [1, 24]. We can then 
define the analogous graded ring space for BP. Let BP, be the 2n space in the 
D-spectrum for BP (BP2. in [40, 41]), then we let B P ,  be the evenly graded space 
X2. = BP,. Let B P , ( - )  and B P * ( - )  denote the homology and cohomology 
theories associated with BP. Then [1, 24] 

Zo,)[vl, v2, . . .  ] = ~ S,(Be) = Be-* ~- [point, BP_,] 

where Z0,) is the integers localized at p and the degree of the polynomial generator 
v. is 2(p" - 1). 

Quillen has constructed a multiplicative idempotent MUtp)---> BP--.~ MU~,~. He 
obtains: 

Theorem 2.1 (Quillen [24]). 

M U  , (X)o,) = M U  ,o,> ®ae.BP , (X)  

BP , ( X )  ~- B e ,  ® ~ v . M V , ( X ) .  

We now turn to a geometric interpretation of the space M U , .  Our only need for 
this is to derive our geometric corollaries from our main theorem later on. 
However, this description may help clarify the products * and o. We do need 

Proposition 2.4 in later sections but it is elementary and can be derived directly if 
desired. 

Let M'7, N7 (i = 1,2) be almost complex manifolds of dimensions m and n 
respectively, and let ~ • MT---~ N7 be a map which induces a complex linear map on 
the stable tangent bundles. We say that fl and f2 are cobordant if there exists a 
similar map f :  U=*t--~ V "÷1 of manifolds with boundary such that ~gU =÷1= 
M'~-  MT, OV "÷~ = N ~ -  N~ and f l M7 = ~. Define the codimension of ~ to be 
t l - - m .  

This cobordism of complex maps is an equivalence relation and the set of 
equivalence classes is a group under disjoint union. By arguments similar to those 
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made by Stong [35] for the orientable case, one sees that  the cobordism group of 

complex maps of codimension 2n is the complex bordism group M U , M U , ,  and 
M U , M U ,  is the cobordism group of all maps with even codimension. 

The additive and multiplicative products in M U ,  induce products in M U , M U ,  
which can be described geometrically. First observe that the additive product is the 

H-space structure on M U ,  which arises from the fact that it is a loop space; the 

multiplicative product is induced by the Whitney sum maps 

MUm ^ MU,,---> MU,,,÷~. Then we have 

Proposition 2.2. Let ~ : M~ --> Ni, i = 1, 2 represent two elements of M U , M U , ,  then 

their multiplicative and additive products are represented by fl x f2:M~ x M2--> 

N~ x N2 and f~ x 1 II 1 x f2 : M I x  N2 kI N~ x M2-* N I x  N2 respectively. 

Proof. In order  to get a map to a bordism element we lift to an embedding 

f ; :  Mi '--> S 2k' x/V~ which determines a map S ~, x Ni ---> MUq,, which in turn deter- 

mines Ni ---> O2E'MUq, ---> MUq_k, which represents the bordism element correspond- 

ing to f,. For  the multiplicative product we have 

M~ x M2 /i×f~> S 2k' x N1 x S 2k2 x N2 > MUq,  x MUq~ > MU~+q.  

In the last map the inverse image of the zero section in MU~,+e is precisely the 
product of the zero sections of MUq, and MUe, so its inverse image in S 2k, x N~ x 

S2h x N2 is precisely M1 x M2, and the statement about  the multiplicative product 
follows. 

For the s tatement about additive products, assume for simplicity that k~ = k2 = k. 

Thus since ql - k~ = q2 - k2 we have ql = q2 = q as well. Let w : S 2k --> S 2k x S 2k be 

the composition S 2k ---> S 2~ v S 2k ~ S 2k x S 2k. Then the additive product of fl and f2 
is represented by the adjoint of 

S x IV, x N :  > S 2~ x S 2~' x N i x  N2 

II 
(s x N,) x (s x 

1 
MUq x MUq 

and the inverse image under w of M I x M 2 C ( S  2a'xN1) x ( S  2~'xN2) is 

M1 x M2 II N1 x M2. 

We have the following easy facts whose proof we leave to the reader. 

Proposition 2.3. Let V represent v E ~r , M U  ~- M U - *  = M U  , 
x E M U , M U ,  be represented by f :  M-->N, then 

and let 
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(a) The map  V---> point represents 

[v ]~  H o M U  , " M U o M U  , ; 

(b) the map 1 : V---> V represents 

v[1] ~ M U , M U o ;  

(c) the map 1 x  f : V × M--> V x N represents vx in M U , M U , .  

Let us consider the special maps b.:CP~-*' - ->CP" and equivalently 
T. : CP ~ '---> C P  ® "- MU,---> MU~. Let fin E H2n(CPn ; Fp) be the fundamental class. 
We define (T~),(/3.) = b~ ~ H2~MU1. 

Proposition 2.4. Iterating the homology suspension homomorphism twice is the same 

as o multiplication by bl in H , ( M U ,  ;l=p). 

Proot. Using the fact that CP ~ -~ S 2 and our description of the multiplication in the 
proof of 2.2 we see that the bl o multiplication map 

S2 x MUn --'-> MU~ x M U .  -'-> MU,,+I 

gives precisely the defining map for the spectrum, S2MU.  ----> MUn+I and the result 
follows. 

3. The main relations 

The formal group for E ,  comes from the unstable H-space map (:P®x 
CP®--->CP ®. Previous workers have applied this formal group to obtain rich 
information in stable homotopy theory. However, since the formal group law 
comes from unstable homotopy information, it should produce unstable informa- 
tion, and it does. 

For the first part of this section we study E , C P  ® and produce a very general 
form of our main relations in E ,  G ,  needing no knowledge of M U  or BP. We then 
specialize to B P , C P  ® and H , B P ,  where we obtain useful explicit relations from 
the general theorem. In particular we rely heavily on 3.14 in the next 2 sections. The 
last part of this section is devoted to demonstrating how to compute with the main 
relations. The main results of this section are Theorems 3.4, 3.8, 3.12 and 3.14. 

We do our best to follow the notation of Adams [1]. Let E , ( -  ) and E * ( -  ) be 
the unreduced homology and cohomology theories associated to a ring spectrum E 
with coefficient rings E , - - E - *  and/]-spectrum E , .  All of the theories we will 
consider will be equipped with a complex orientation. 

Definition 3.1. A complex orientation is an element x B E E2 (CP  ") which restricts 
to an E* generator of E * ( C P  1) and to zero in E*(point). 
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Remark 3.2. It not really necessary that x ~ E E2(CP®), however, it can always be 
so arranged and we will insist on it for the minor convenience it gives. 

We have several examples of E . ( - )  in mind, in particular M U . ( - ) ,  B P . ( - ) ,  
H ,  ( -  ; R ) (R is a ring), and K ( n ) .  ( - ) ,  the Morava extraordinary K-theories [11]. 

We collect the following elementary basic facts which we need. 

Lemma 3.3. (See [1].) 
(a) E*(CP®)= E*[[x'~]] the power series on x B over E* 
(b) E*(CP®× C P ® ) -  ~ E*  ® ^ ( C P ) ® E .  E*(CP®). 
(c) E , C P  ® is E ,  free on fl, EE2, CP ®, i >10, dual to x', i.e. (x',/3j) = 6,j. 
(d) E,(CP®× ~.P®)~- E , C P ® ® E . E , C P  ®. 
(e) The diagonal CP®--~CP®x CP ® induces a coproduct ~O on E , C P  ® with 

q,(13.) = ET.o/3, ®/3._,. 
(f) The H-space product m"  CP®x CP®--->CP ® induces a coproduct m* on 

E * C P  ® with m *(x E) = ~,i.s~.o aisx' ® x  j, and a~s ~ E -2t'+j-1) = Ezo+j-1). 
(g) F(y, z ) =  y +FEZ = y +FZ = E,a;.0 a~y~z j is a commutative associative formal 

group law over E*,  i.e. 

F(y, z ) = F(z,  y), F(y,  0) = y 
and 

F(y ,F(z ,  w ) ) =  F(F(y , z ) ,  w). 

We have now set things up so we can prove our main relations in their general 
form. 

Theorem 3.4. In the power series ring E,CP®[[s, t]] 

f l ( s ) f l ( t )=  fl(s +Ft) 

where/3(r) = ~,~.o [3,r' and the product is that induced by the H-space structure of  
C p  ®. 

Proof. Let a ] E E ,  be defined by 

n n i a,~x'®x ~ = ( m * ( x ) ) " = m * ( x  ) =  a,jx ® x  j. 
i, j ;~,o i, j ~O 

We know ¢1,¢1 i = ~,,~.o c,,¢1,, for some c. ~ E . .  By duality 

= ( k . ~ 0  a~xk  ®xq'13'®fll)  = a~" 

So [3,s'[3jP = E.~.o a~fl.s't ~ and 
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f l (s ) f l ( t )= ~ fl, s'[3jt'= ~ ~ a~[3.s't' 
i,j~O n~O i,j~O 

= ,~-'~o 8. ( ~ o  airs't') "= .~"~o fl.(s +Ft)" = fl(s +Ft). 

Remark  3.5. For E , ( - ) =  H , ( -  ;Z) ,  s +pt  = s + t and [3(s)13(t)= fl(s + t) just 
describes a divided power algebra without showing the binomial  coefficients. 

Corollary 3.6. Define [1]F(s)= s and inductively [n]F(s)=[n-1]F(s)+~s, then 

/3(s)" = / 3 ( [ n l ~ ( s ) ) .  

Proof. Just iterate 3.4. 

Let E and G both be ring spectra with complex orientations x E and x ° 
respectively. Let G ,  be the /2-spectrum for G. The orientation x 6 can be 
considered as a map x6  E[CP®;G2]--  G2CP ®. This induces a map 

( x ° ) ,  "E,CP®-->E,G, and we define b, = (x°),([3,). As with g(s) we have 

( x ~ ) , / 3 ( s )  = b(s) = ~, b.s" ~ E , a , [ t s l l .  
n ~ 0  

Although E ,  G ,  is not necessarily a Hopf ring because it is not always a coalgebra, 
it does still have both products, • and o. 

Definition 3.7. In E,G,[[s,t]] 

b(s)+tFlb(t)= b(s)+tFlob(t) = , 
~j~O 

We now prove our main general relation. 

Theorem 3.8. In E, G, [[s, t]] 
(i) b(s +r~t)= b(s)+tFlb(t), 

(ii) b([p]r(s))= [p]tF](b(s)). 

[a°]ob(s)" ob(t)°( 

Note. The F on the left is Fn with a~j = a '~ ~j and the [F] on the right is [F]o with 
[a,,] = [a ij ]. The adornments  E and G can safely be left out because they are the 
only ones which make any sense. 

Proof. (ii) is just an iteration of (i). For (i), 

b(s +Ft)= (x°) . (~(s  +Ft)) 

= (x°).(13(s)t3(t)) 

= (x ° ) , ( m  , ) ( f l ( s )  ® g(t)) 

definition of b 's  

3.4 

definition of 
multiplication 
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= ( m * x G ) , ( g ( s ) ®  #( t ) )  

( ~  6 ~), ~) ' )  ( /3(s)®/3(t))  = a , ~ ( x  ® ( x  . 
i,j 2 0  

naturality 

3.3(0 

= , [ a , j ] o b ( s ) " o b ( t ) ' J = b ( s ) + t v l b ( t ) .  
i , j~O 

The last step follows from the definition of the b 's  and the facts, from Section 1, 
that addition in G * ( - )  and G ,  translates into * in E , G ,  and multiplication in 
G * ( - )  and G ,  gives o multiplication in E , G , .  

We are interested in several different combinations of E and G. For those which 
we use somewhat in this paper  we make explicit here. We have displayed the 
[p ]-sequence versions so blatantly because most calculations can be done using it 
and it is easier to handle. 

Corollary 3.9. 
(a) Let E = G = M U  (or B P )  with the canonical orientation CP *~ "- MU1 ~ MUI. 

(i) b(s +vt)  = b(s )+tv lb ( t  ). 
(ii) b(La]P(s))= [p]tv~(b(s)). 

(b) Let E , ( - ) =  H , ( -  ; R )  for a ring R and G = M U  (or BP).  
(i) b(s + t ) =  b(s )+tv jb ( t  ). 

(ii) b(ps )= [p]tvj(b(s)) 
(ii)' if R = Z / p Z  = Fp, b(ps )=  bo. 

(c) Let E = BP (or M U )  and G .  = K ( Z / p Z ,  * ) the mod p Ei lenberg-MacLane 
spectrum. 

(i) b(s + v t ) =  b(s )*  b(t).  
(ii) b([p]v(s))= b(s)  *p = bo. 

Proof. The bo in (c)(ii) follows because K ( Z / p Z ,  n ) -Z~K(Z/pZ ,  n) is null 

homotopic. Everything else follows directly from 3.8 using the singular homology 
formal group law s +vt  = s + t. 

To anyone who works with formal groups, the above rather general formulas 
probably do not appear very useful. The a~ are very difficult to handle from what is 
generally known about E ,  and G*. However, for BP we can extract some very 
explicit formulas which are useful in computing. Later we give some detailed 
examples of computations with 3.8. 

We let x m" be the orientation inherited from the map MU--.~ BP. We collect 
some basic facts for BP. 

Theorem 3.10. (See [1].) 
(a) In M U * [ [ x ] ] ® O  we define 
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C p  n-1 

log x ~___ ~ X ft.  

n > 0  n 

Define exp x by exp(log x)  = x. Then F(z,  w) = exp(log z + log w). 

(b) In BP*[[x]]®O we define 

IogBPx ,,~0 CPp"-~ -~0 = ~ X "~ = m n x P " .  p" 

Define exp BP x by exp BP (log BP x)  = x. Then Fsp (z, w) = exp Be (log m" z + log BP w). 

Part (b) of the next t heo rem wilt be most impor tant  to us. It follows from 

Hazewinke l ' s  construction of generators  for BP*. 

Theorem 3.11. Let p be the prime associated with BP. 

(a) (Hazewinkel  [7, 8].) 
The generators for 

BP* = Z ( p ) [ V l ,  v 2 , . . .  ] C BP* ® 0  

are given inductively by 

n--1 
pm.  v,,+ Z "' C Pl"--""~l = ~=~ m , v , , _ ~ ,  m~ = p~ ~ B P * ® O .  

2 
F~p 

(b) [p ]v(x)  = v.x p" mod (p). 
n >0 

Proot ot (b). F rom (a) we obtain  

v.x'" + Z m,vP."--,x'" = P Z m .x" .  
n > 0  0 < i < n  n>0  

Rewri t ten  this becomes 

log 8P v , x  p' = p log x - p x  
i>0 

= p log x - log(exp(px)). 

Switch - l o g ( e x p ( p x ) )  to the o ther  side and apply exp to both sides to obtain 

F 

exp(px) +F v,x" = [p ]F (x). 
i >0 

So, if exp(px)  = 0 rood(p) we are done. (a,0 = ao, = 0, i > 1.) 

BP* C Z ~ [ m ,  m2, . . . ] C BP* ®O (mo= 1). 

We  have log x = E.~.0 m.x p" (3.10(b)) for BP and exp(log x)  = x defines exp y. We 
see by construction that exp x = ~,i~.oe,x '÷1 with eo = 1 and ei in degree - 2 i  of 
Z~,[ml, m 2 , . . .  ]. An  easy induct ion with 3.11 (a) shows pnmn E BP*. Thus it is easy 
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to prove that for every monomial y in rn's of degree - 2i, p~y E BP*,  so p~e~ E BP*  
and exp(px) = E,~o eip'+lx '÷' is in pBe*[[x]] .  

Let Q B P , C P  ® denote the module of indecomposables for the ring B P , C P  ®. 
Always p denotes the prime associated with BP. 

Theorem 3.12. In Q B P  , C P® mod(p  ), 

v ,""- ' /3 , , - - ,  = O. 
i = l  

Proof. 

¢3(s) p = /3 ( [p iP(s ) )  

= fl(.>~o v.s p") mod(p) 

3.6 

3.11 (b) 

= I - I  fl(v.sP") • 3.4 
n > 0  

In Q B P , C P  ® mod(p) this reduces to 

0 = ~ [3(v,s p') in positive degrees. 
n > 0  

The formula we wish to prove is precisely the coefficient of s p'. 

Remark 3.13. In [33] Schochet proved VPl"[3p. = (flp.)P modulo tip,, i < n. This 
motivated our conjecture for 3.12 which led to 3.4 which in turn allowed us to prove 
the general 3.8 which previously we could only do for E , ( - ) =  H , ( -  ;R) .  

The next formula will be crucial to us in the next two sections. Let Fp = Z / p Z ,  Q 
be the module of indecomposables, and I = ([p], [vl], [v2], . . . ) .  

Theorem 3.14. In Q H  ,(BP~: Fp ) / I  "2 o Q H  ,(BP~; [:p ) 

2 " [ v, ] o vps ",.'_, = o.  
i l l  

Proof. From 3.11 (b) and the fact that a,j E(p, vl, v2, . . . )  if ao~ alo = aol = 1 we 

have 

3.15 [p]F(s) = ps + ~,  v.s p" mod(pl vl, v2,...)2. 
n > 0  

So, bo=[p]m(b ( s ) )  3.9 (b)(ii) and (ii)' 

= [ p l o b ( s )  • ( [v , ]ob(s ) 'P ' )mod I ". by3.15 
n > 0  
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By 1.12 (c)(vii), [ p ] o b ( s ) =  b0mod*  and (p), so rood* in positive degrees we 

obtain 

0 =  Y~ [vn]ob(s)'~" 
n > 0  

and the coefficient of s p" gives the desired result. 

Remark.  Computations indicate that this relation is probably true in QH,(BP1;  Fr, ) 
but a proof has eluded us. 

Remark.  The shortand of Theorem 3.8, however elegant, is not in its readily 
computable form. Unwinding the definitions of F, [F] and b(r) we have 

b(s + e t ) =  b(s )+tr lb ( t )  
becomes 

b ( ~ o  a"s't') = *,.,~.o [a"]° b(s)" ° b(t)'J 

that is, 

) b, a,js't ~ = * [ a,i ] o bks k o b, tq . 
n ~'O i 0 i, j ; ,O k ; ,O q ; 'O  

The coefficients of the s"t ~ in the equation now give relations. Keep in mind that 
b0 = [02], alo = aol = 1 and obey the rules of Lemma 1.12 and you will find that 

computations are finite. 

Because of the unfamiliarity of the formula in 3.8 we give the following for sake 

of clarity. 

Sample computation 3.16. We restrict our attention to the p = 2 case of 3.9 (a)(ii) 
for BP. Using Hazewinkel 's  generators, 3.11(a), and the definition of [p]r(x) ,  3.6, 

as exp(p log x), 3.10 (b), we have for p = 2, 

[ p ] F ( x )  = [ 2 k ( x )  = 2 x  - v~x  2 + 2 v ~ x  3 

- (7v: + 8v ~)x '+  (30 v2 v l + 26v ~)x 5_ (111 v2v ~ + 84v~)x " + . . . .  

Writing down 3.9 (a)(ii) for BP, p = 2, mod s 5 we have 

b(2s - v~s 2 + 2v~s 3 -  (7v: + 8v~)s') 

= ([2]0 b(s ) ) ,  ( [ -  vd o b(s) "~) , ([2oi]o b(s) "~) 

* ( [ - 7 0 2 - 8 v ~ ] o b ( s ) ' 4 ) .  

The reason we can ignore the rest of the terms on the right is because bo * bi = 0, 
i > 0  as b0 = [02] and for s', boo[a] = [02-2,], a E B P  -2" (all from Lemma 1.12). 
Expanding both sides further mod s 3 we have 
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bo + ba(2s - vas 2) + b 2 ( 2 s )  2 = 

= ([2] o(bo + b~s + b2s2))* ( [ -  v~] o(bo + bas)'2). 

The  coefficient of s o gives bo = bo. For  s ~ we get 2b, = [2] o b~. However ,  that  is not  

n e w  a s  

[21 o b, = ( [1] ,  [ l ] )ob :  = ([1] o b , ) ,  ([11 o bo)+ ([1] o bo) ,  ([1] o bl) 

= bl * bo + b0* bl = bl + bl = 2bl. 

F r o m  the  coefficient of s 2 we have - v~b~ + 4b2 = [2] o b2 + [ - v~] o b: 2. As above and  

in 1.12(c)(vii), [2]° b2 = 2b2 + b .2 and our  re la t ion b e c o m e s  

b .2= 2b2 -  v , b ~ - [ -  vl]ob]  2. 

To  clean things up a bit, observe that  b: 2 is primitive, q~(b:2)= qJ(bx) °2= 

(b~®bo+bo®b,) '2  b]2®[O4]+2(boob,®boob,)(=O)+[O4]®b] 2. So x ( b ~ ) =  

- b ]  2 by 1.12 (b)(iv). Thus  

- [ - ' v , ]  ° b:  ~ = - [v , ]  0 [ -  110 b:  ~ = - [ v , ] .  x(b'?) = - [v , ]  o ( -  b ;  ~) = [ v , ] .  b:  ~. 
I 

The  final result of our  labor  is the formula  in BP4BPI (t9 = 2), 

b *z = 2b2-  vlbl + [vl]ob] z. 

If we reduce to H4(BP~; Z(2))  w e  just set vl = 0 (but not  [vl]). The  e lement  

[va]° b:  2 is the 4th suspension of [va] (2.4) and  so is the image of the Hurewicz 

h o m o m o r p h i s m  of the genera tor  of zr4BPa; explicitly, [vl] o b] 2 = b . 2 -  262. 

The  coefficients of s 3 give 

b ,2v~-  bz4vl + b38 = [2] ob3 + [ -  vl]o2blob2 

+ [2v~] o b]3 + ([21 o b,) * ( [ -  v~] o b ? )  

which cleans up to 

2v~bl - 4rib2 + 6 b 3  = 6bl * b2 

- 2[v,] 

_ 2b , 3 _  2vlb .2 

° b, o b~ + 2[o:1  ° b;  3. 

As we shall see later, the group is Z(2) free so we can divide by 2 to get a relat ion.  If 

we fu r the r  divide by the unit  3 we can express b3 in o ther  terms. For  our  final 

example  the coefficient of s 4 rood(2) gives 

v2bl + v~b2 = b*2 + b*4+ vlb .31 

+ [ v , ] o b : 2 +  [Ve]Ob?.  

Remark 3.17. Recently D.C. Johnson and the second author have shown that 
homdimMv.MU,K(Z/p"Z, k) = oo for n > 0, k > 1 ([12]). The first counterexam- 
pie to the old conjecture that hom dimMu.MU,K(Z/pZ, n)= n was obtained by 
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K. Sinkinson and the second author as follows. We use 3.9 (c)(ii). From the 
Atiyah-Hirzebruch spectral sequence H ,  (K(Z/pZ,  2); BP,)  ~ BP , K (Z/pZ, 2) 
it is easy to see pbl=O and b*P~0 for 0 ~  blEBP2K(Z/pZ,2) .  From 3.11 (b) 
[p]v(x) = v.x"" mod x p"÷~ and (p, v l , . . . ,  v,-0. From this and b([p]F(s)) = bo the 
coefficient of s p" tells us that v.bl = 0 rood (p, v l , . . . ,  v,-1). By induction we have 
v.b*" = 0  (v~b~=0 is quite easy to check). Since we know that b*P~0, the 
annihilator ideal test of Conner and Smith [6] or the ideal annihilator test of 
Johnson and Wilson [10] shows that horn dimsp. BP,  K(Z/pZ,  2)>  p and the result 
follows. 

4. The main theorem 

Most of this section (the latter part) is dedicated to the computation of 
H ,  (MU,  ; F~,) and giving a completely algebraic description and construction for it. 
The first part of the section is spent deriving corollaries of this result. These include 
the fact that H , ( M U ,  ; Z )  has no torsion. Moreover we can compute E , M U ,  and 
give an algebraic construction for it. Of particular importance is the algebraic 
construction for M U , M U ,  (and B P , B P , )  because this contains all of the 
information for unstable complex cobordism operations. 

We wish to construct Hopf rings in a purely algebraic way which give E , M U ,  
and E , B P , .  We begin as at the end of Section 1 with the free Hopf ring 
constructed in 1.19 with R [S] = E , [G*] .  We then impose the relations implied by 
3.8. We denote this Hopf ring by E ~ G , .  

Lemma 4.1. I r E ,  G ,  is a Hopf ring then there is a canonical map of Hopf rings 

iR'ERG -->E G * * * * "  

Proof. (x o) ,  : E ,  CP ® ~ E ,  G ,  gives us the necessary map from the supplemented 
coalgebra of 1.19 to induce a map on the free E , [ G * ]  Hopf ring ring as in 1.18 
( E , G ,  is an E , [ G * ]  Hopf ring). E~G, , is a quotient of the free Hopf ring and the 
defining relations also hold in E ,  G ,  by 3.8 so the map from the free Hopf ring to 
E ,  G ,  factors through E R t7 ,  , 

The proof of part (a) of the following result will occupy the last half of this 
section. We state it now and derive its corollaries which include a computation of 
E , M U , .  Recall that p denotes a prime and when BP is present it is the prime 
associated with BP. 

Theorem 4.2. The following are isomorphisms of Hopf rings. 

(a) i~ " HR, (MU , ; [=p )--> H ,(MU , ; Fp ). 

(b) iR " HS,(BP,;I=p)---> H,(BP,;F~,). 
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Proof of (b). The tensor products below are in the category of Hopf rings. By 
construction H~(BP, ;Fp) [:p [BP*] R --- ®F~tMt,.1H,(MU, ;Fp). The Hopf ring map 
O:p[MU*]----> Fp[BP*] is induced by Quillen's MU*---> BP*. A similar isomorphism 
holds without the R by Quillen's Theorem 2.1. Thus (a) implies (b). 

Corollary 4.3 [40]. H,(MU, ; Z) and H,(BP,  ; Z(p)) have no torsion. 

Proof. From the construction of H~(MU,;Fp) and the isomorphism 4.2 (a) we 
have H,(MU,;F~) is concentrated in even degrees. (The only positive degree 
elements used in the construction were b, E H~(MU,;~:p).) By the Bockstein 
spectral sequence there can be no p torsion. Similarly for H,(BP,  ; Z(p)). 

Remark 4.4. Since BP, is a (p )-localized space, H,(BP;Fq), for q~p, is just 
Fq[BP*], concentrated in degree zero. 

Now that MU, and BP, are torsion free spaces we know that H,(MU, ;Z) ,  
H,(BP,;Z(p)), MU,MU,  and BP,BP,  are all Hopf rings by 1.15 (b). 

Corollary 4.5. The following are isomorphisms of Hopf rings. 

(a) iR" H~,(MU, ; Z)--> H,(MU,  ;Z). 

(b) iR" HR,(BP, ; Z(p))--> H,(IIP, ; Z(p)). 

Proof. Both H~(MU, ;Z)  and H~(MU, ;Fp) are constructed from the b's and 
[x]'s, x ~ MU*. The defining relations for H~(MU,;I=p) are just the rood(p) 
versions of those for H~(MU,;Z)  so there is a map 

HR,(MU, ; Z)--> H R (MU, ;F~ ) 

which induces an isomorphism 

HR,(MU,;Z)®Fp ~ , HR(MU,;[:p). 

Thus because H,(MU,  ; Z) has no torsion by 4.3, the map 
H ~ ( M U ,  ; Z)--> H,(MU,  ; Z) induces isomorphisms when tensored with Fp for all 
primes. This proves (a). (b) is similar. 

We consider the next corollary our most interesting. The dual of this result, an 
algebraic construction for MU*MU,, is a complete description of the unstable 
complex cobordism operations (and unstable BP operations). 

Corollary 4.6. The following are isomorphisms of Hopf rings. 

(a) iR " MUR, MU,---> MU,  MU,. 

(b) iR : BP~BP,--> BP ,BP, .  
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ProoL The Atiyah-Hirzebruch spectral sequence 

H , ( M U , ; M U , )  ~ M U , M U ,  

is even dimensional and so collapses giving us that M U , M U ,  is M U ,  free. As in 
the proof of 4.5 we can show there is a map 

MUa, M U ,  --> H'~(MU, ; Z )  

which induces an isomorphism 

MUR, MU,®Mu.Z  ~ > H '~ (MU, ;Z) .  

Now since the map M U ~ M U , - - - ~ M U , M U ,  induces an isomorphism when 
tensored with Z (i.e. ®My. Z)  and M U , M U ,  is M U ,  free, we have our result. (b) is 
similar. 

This leads us to the general computation. 

Corollary 4.7. E , MU , and E , BP , are Hopf rings and 

(a) iR "E~MU,--> E , M U ,  

(b) iR • E R, BP , ---> E , BP , 

give isomorphisms of Hopf rings for any multiplicative homology theory E , ( -  ) with 
a complex orientation. 

Proof. Let x Mr, be the canonical complex orientation for MU. Let x n be the given" 
orientation for E. There is a unique map of ring spectra M U  ~ E which takes x Mu 
to x E (see [1] p. 52). The map therefore takes b~ v to b~ and it induces a ring map 

M U  E MU,--->E, taking a,j to a,~. Thus by construction it induces a map 
M U ~ M U , - - ,  ERMU** . It also induces a map on the Atiyah-Hirzebruch spectral 
sequence H , ( M U ,  ; MU,)----> H , ( M U ,  ; E, ) .  H , ( M U ,  ; M U , )  collapses (see 
proof of 4.6) and the image of the above map includes an E ,  basis of the E 2 term. 
By naturality of the differentials H , ( M U , ; E , )  ~ E ,  M U ,  also collapses. The 
map of spectral sequences induces an isomorphism 

E ,  ®Mv H , ( M U ,  ; M U  ,)--> H ,(MU , ; E ,). 

Because the spectral sequence collapses we have an induced isomorphism on the 
associated graded objects for E ,  ®Mo M U ,  M U ,  and E , M U , .  Both are E ,  free 
and we have an isomorphism E ,  ®Mu M U  ,MU , --->- E , M U  , . The construction of 
E a, M U ,  only uses the formal group coefficients in the relations so we automatically 
have E ,  ®My MUR, M U ,  "" E ~ M U , .  The result follows from these two isomorph- 
isms and 4.6 (a). For (b) we first compute M U , B P ,  and proceed in a similar 
manner. 
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Remark 4.8. It is not always true that E •, G , - E ,  G , for other G , .  Examples are 
easy to find, for instance H,(K(Z /pZ ,  2*); Fp). However, for H,(K(Z/pZ ,  *); Fe) 
there is a very nice algebraic construction which we will give in [30]. For quite some 
time computations led the second author to conjecture an isomorphism 
M U ~ K ( Z , 2 * ) = M U , K ( Z , 2 * ) .  It is true for K(Z,2) and in the stable range. 
However, an element of order 2 in MU~7K(Z,4) terminated this project. This is 
quite far out of the stable range. 

Remark 4.9. In the proof of 4.2 (a) we show that the mod p homology of a 
connected component of MU, is a polynomial algebra for all p. This implies the 
same for integer homology and because the Atiyah-Hirzebruch spectral sequence 
collapses, the same is true for E homology. Similarly, E ,  OMU, is an exterior 
algebra over E ,  on the E homology suspension of the generators for E ,  MU,_I. 
Similar remarks hold for BP,.  In the next section we give a basis for 
QH,(BP ,  ; F,) and we therefore have a similar basis for Q E ,  BP, .  The same holds 

for Q E ,  OBP,.  

Remark 4.10. We can easily construct a Hopf ring which includes E ,  OMU,.  All 
that is necessary is to add an element e with the property e o e = bl. An algebraic 
construction for E ,  OMU, will follow. 

If we consider M U , M U ,  as the cobordism group of all maps with even 
codimension, as in Section 2, we have the following geometric corollary. 

Corollary 4.11. Using both products, M U , M U ,  is generated by maps to a point, 
identity maps and linear embeddings, b, : C P n-1 ~ CP". 

Proof. M U ,  MU,  is generated by the [v], v ~ MU*, which by 2.3 (a) are just maps 
to a point, by v ~ M U , ,  which by 2.3 (b) are just the identity maps, and (from the 
proof of 4.6) any elements which cover b's in homology. The b, do this. 

We can now produce, from our algebraic madness, a nontrivial geometric 
statement which has an analogue in the unoriented case [35]. 

Corollary 4.12. Any map of compact stable almost complex manifolds is cobordant 
to one of the form f:lI~F~ x U~---> M where f lF~ x U~ is the composition of the 
projection F~ x U~--> U~ and an embedding, U~ ~ M. 

Proof. The description of the product (2.2) and the generators (4.11) suffices for the 
even codimensional result. To do the odd codimension part we need Remarks 4.9 
and 4.10 and the fact that M U , ( - )  homology suspension is just a o multiplication 
by pt.--* S 1. 
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We now begin our proof of 4.2 (a). It will occupy most of the rest of the section. 
We give an outline of the proof here. Fix a prime p and let HR, M U ,  and H ,  MU,  
be HR,(MU,;Fp) and H,(MU,;Fp)  respectively. First we study the size of 

, " n R H ~ M U ,  obtaining an upper bound on the dlmFp Q , M U ,  by use of the relations 
computed in Section 3. When this is done we begin computing H ,  M U ,  using the 
bar spectral sequence. We work by induction on degree. Assuming we know 
H2,MU, for i < k we compute the E~ term of the spectral sequence giving us that 
H2k-IMU, = 0 and a form of H2kMU,. We use the Hopf ring nature of the spectral 
sequence to show that H~kMU,--> H:~MU, is onto. This allows us to solve the 
algebra extensions of the spectral sequence and show that H ,  M U ,  is a polynomial 
algebra for degrees <~ 2k. We then see that the size of H2kMU, is equal to the 
upper bound on the size of R H2kMU, and since the map H~kMU,--->H2kMU, is 

onto we are done. 
We begin our study of the size of Q H ~ M U ,  by investigating the degree zero. 

Recall that for a graded Hopf ring over Fp, H ,  (*), the module of indecomposables, 

OH,(*), is defined by 

QH, (n )  = I H , ( n ) / I H , ( n ) *  IH , (n )  

where IH , (n )  is the augmentation ideal, I H , ( n ) =  ker e, and * is the additive 
product. By 1.12 (c)(vi), OH,(*) is a bigraded algebra over F~, using the o product 
for multiplication and having [1]-[0o] as the unit. 

Recall that MU* = Z[x2, x4,.. .  ] with x2, of degree - 2i. 

Lemma 4.13. As an algebra with unit, OHo R M U ,  = F~, [[x2] - [0-2], [x4] - [0_,],,.. ]. 

Proof. By construction, H~MU,  = Fp[MU*]. Considering only the * product 
structure, H:p [MU n] ~-®Fp [Z], one copy of ~:p [Z] for each Z free summand of 
MU n. For Fp [Z], an 0:p basis for the augmentation ideal is given by [ n ] - [ 0 ] ,  
0 F  n z .  Now ([n]-[O])*([m]-[O])=[m + OF,[Z]. 
Thus In + m ] -  [0] = (Ira ] -  [0])+ ( I n ] -  [0]) in QFp [Z]. In particular n ( [1 ] -  [0]) = 
I n ] -  [0] for all n. Thus QFp[Z] = Fp is generated by [1 ] -  [0]. Since Q(®F~, [Z]) = 

QFp [Z], QFp [MU*] is ~:p free on generators I x ] -  [0-dos x] for a Z basis {x} of 
MU*. From ([al-[O])o([b]-[O])=[ab]-[O] w e  have the desired result for 

QHoR MU , . 

From the construction of H~,MU, we now know that Q H ~ M U ,  is a ring with 
unit [1]-[0o] with generators [x2,]-[0-2,] and b,, i > 0 .  We improve on this by 
eliminating the unnecessary b's. 

Lemma 4.14. As an algebra with unit, Q H ~ M U ,  is generated by [x2,]-[0-2,], 
i > O, and bp, = bo), i >i O. 

Proof. For m not a power of p we write m = m 'p '  with i maximal. Then m ' >  1 
and m ' ~  0(p). We will show that bm can be written in terms of lower b's. We use 
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the main relation 3.9 (b)(i), b(s + t) = b(s) +tvl b(t). In degree 2m the left hand side 
is bm (s + t ) ' .  The coefficient of s(m'-~)~'t ~' is m 'bin ~ 0. The coefficient of s("-~)~'t ~' 
on the right hand side, b(s )+tv  ~ b(t), gives the desired result• 

The relations 3.14 tell us that QHR.MU. is not the free commutative algebra on 
the generators of 4.14. In fact, the relations of 3.14 are all there are. We must now 
describe how effectively they can cut down the upper bound on the size of 

QHR, M U . .  Alexander [2] has shown that Hazewinkel 's generators are in the image 

of M U .  ~ B P . .  Thus we can consider the vn as elements of MU* and since we are 
working at p we can replace [x2(p--,)] with [vn]. It is not necessary to use 

Alexander ' s  result here. We could work with HR.MU(,). and use Quillen's  map 
B P .  ~ MU.(~) and derive H ~ M U .  from H .  MU(~),. A third way is to work with 
B P .  and prove part (a) of 4.2 from (b). 

Observe that 

([x2,]-[0-2,])obm = [x2,]°br. for m > 0 .  

The following will show how to add in the relations (3•14) to the algebra generated 

by [x2,] and bt,). 

Lemma 4.15. Let I=([vi],[v2], .) and r., = ET'=~[v,]o~-'p' E QHR.MU. 
• " / J  ( m - i )  " 

(a) r, is in the ideal generated by I °~ and [x2~], i ~  p n _ 1. 
(b) (r,, r2,... ) is a regular ideal in the polynomial algebra A = Fp [[x2i], b(~)], i > 0, 

k i> 0, i.e. rn multiplication on A/(r~, rz , . . . ,  r,_~) is injective. 

Proof. Part (a) is immediate  from 3.14 and 4.14. The relation 3.14 followed purely 

algebraically from the defining relation for H ~ M U . .  Part (b) is more complicated. 
Fix n > 0. Let J~ = (rn, rn-~,..., rn-,.]), 0 < i ~< n. We regard J~ as an ideal in various 

rings related to A. Let A, = A/(b(o), b(1),..., b(n-,-1)) and B, = b-(2-oA,. Note that 
An = A and that if J.  C An = A is a regular ideal for all n then (b) is proven. 

We will show Z is regular in A, by induction on i. For i = 1, J] is a non-zero 

principal ideal in the integral domain AI and is therefore regular• Assume the result 
for < i. The map given by multiplication of b(n-,) in 

0 > Ai b(,_,) ) Ai > Ai-i  > 0 

raises degree, so it is possible by induction on degree to show that Z-I is regular in 
Ai, assuming Z_I is regular in A,_~. If we prove that Z-1C A, is pr ime then Ai/J~-~ is 

an integral domain and so multiplication by r,_,.~ is injective if 0 ~ r._,÷~ ~ A,/J~-I. 
However, in the degree of r._,÷~, A,/Z_~ = A, so r._~+l ~ 0 .  

It is prime in Bi since each of its generators is a polynomial generator of the 
polynomial  algebra B~ over Fp [b(.-o, b?2-o]. Suppose ~_~ is not prime in A~, i.e. 
there exist x, y ~ ~-1 C As with xy E Z_~. Since J~_~ is prime in B~, we have x or y, 
say x E b~-~_,)oJ~_~, i.e. .k b(._i)ox E ~_, for some minimum k > 0 .  We may assume 
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k = 1 by replacing x with b~f2~)ox. We have b(._oox = ~,j-~ aj or,,_j+~ with aj E A, 
not all divisible by b(,_,). We can assume that if a i~  0 then aj ~ J,_~. In A,_I this 
becomes 0 = ~i~'~ a~ o r,_j+, with aj not all in Jj_~. This is a contradiction since J~_~ is 
regular in A~-~ by induction. Therefore J~_~ is prime in Ai and ~ is regular in A~. 
This proves the claim which completes the proof of 4.15 (b). 

The polynomial algebra S:p [[x2, ], b~], i > 0, has a natural bigrading inherited from 
QH~MU,. Define c~j and dq as follows. 

and 
c** = dime, OH~MU, 

d** = dimF, t:~ [Ix2, ], b~]**. 

We can now give our upper  bound on the size of QHR, MU,. 

Lemma 4.16. 

(a) c**<~d**. 

(b) d,, = i 

Remark 4.17. As we see later, cq = dq. 

Proof of 4.16. By 4.14 and 4.15 (a), c** is less than or equal to the F~-dimension of 
~:~ [[x2,], bo)]** modulo the ideal (rl, r2, . . . ) .  The bidegree's of r, and b(.) are the 
same, and the result follows because (rl, r2,. . .  ) is a regular ideal (4.15 (b)). To prove 
(b) it is enough to note the bidegree of b~ = b(0) is (2, 1). 

Lemma 4.16 completes our estimate of the size of HR, MU,. We are now ready to 
commence our computation of H ,  MU, proving our isomorphism 4.2 (a) as we go. 
We do this by induction on degree. By construction H g M U ,  = l:~ [MU*].  By 1.14 
(f), HoMU, ~- I:p [MU*]. Also H ~ M U ,  = 0 and since ~IMU, = O, HIMU, = O. 
Let M U ,  be the zero component  of MU,, i.e. MU~ is the component  of MU~ 
which contains [026]. 

Induction 4.18. In degrees < 2k - 1, 

(i) QH, MU, is generated by o products of the [x2,] and b(,). 
(ii) H,  MU, is a polynomial algebra. 

(iii) For i > 0, d, ,  = dirr~, QH, MU,.  

Proof of 4.2 (a). Assuming 4.18 for all k, (i) implies iR is a surjection. 4.16 (a) and 
4.18 (iii) together with the fact that ie is onto imply Remark 4.17 and we have 
QH~MU,---> QH,MU, is an isomorphism. Since H , M U ,  is a free commutative 
algebra (by (ii)), the above isomorphism implies that the map H~MU,----> H , M U ,  
is really an isomorphism. 



D.C Ravenel, W.S. Wilson / The Hopf ring for complex cobordism 2 6 9  

Proot of 4.18. For k = 1 there is nothing to prove. We assume 4.18 for degrees less 
than 2 k -  1 and we wish to prove it for degrees ~< 2k. We know O ( D M U , ) " -  

M U , _ ~ .  We use the bar spectral sequence as in [31] and [32], 

Torn"t"(Fp, Fp) ~ E o n ,  F2MU.+I. 

Our knowledge of H o M U .  and 4.18 (ii) for degrees < 2k - 1 imply Torm~U'(Fp, F~,) 
is an exterior algebra on Tor~ up through degree 2k - 1. This is because Tor of a 
polynomial algebra is an exterior algebra on generators of one degree higher than 
those for the polynomial algebra. This is a spectral sequence of Hopf algebras and 
the differentials lower the homological degree. Torq  = 0 for q < 1 and all of the 
generators are in TOrl so the differentials on the generators are zero and so the 
spectral sequence collapses. We have no algebra extension problems even at the 
prime 2 because all of the generators are in odd degree. By the homology 
suspension we have 

4.19 Qt- I iMU.  "- P t - L . I O M U . . I  "- Q H , . I D M U , + I ,  i + 1 <<- 2k - 1. 

We now use 

Torn'a*n/'(Fp, F~,) ~ E o H . M U . .  

Tor of an exterior algebra is a divided power algebra on generators of degree one 
higher than those of the exterior algebra. Since H . 1 2 M U .  is an exterior algebra 
through degree 2k - 1, Torn'aM~'(Fp, Fp) is a divided power Hopf algebra through 
degree 2k. The spectral sequence is concentrated in even degrees through 2k so it 
collapses. It is a divided power algebra on the primitives, --Tora, which are 
isomorphic, by the homology suspension, to Q H . F I M U . ,  so 

4.20 PEoH~+2MU.÷~ -- QI-t~+IDMU.+I, i + 2 <<. 2k. 

The iterated isomorphisms of 4.19 and 4.20 are by the double suspension, which 
by 2.4 is just o multiplication by bl = b(0). By induction and 4.18 (i) for lower degrees 
this shows that P E o H 2 k M U .  is generated by the [x2,] and b(o. 

A divided power Hopf algebra on x , F ( x ) ,  has F:p basis {yi(x)} yi(x)y~(x)= 
(i, j)yi÷~(x ). Thus the yp,(x) are the generators. The only primitive is yl(x). We 
have shown that all yl(x) in Eo H~MU.  are given by o products of the [x2i] and bo) 

for i ~< 2k. It is now only necessary to do the same for each %,(x) for degree = 2k. 
Pick x with yp,(x) of degree 2k with i >0 .  By (i) we know that y~(x) is a linear 
combination of elements [y] '-'Jo o " O O (o ~ b ('~'~o. . . , y E M U * .  It is enough to prove what 
we want assuming y l ( x ) = [ y ] o h ' S o o h  ° j l . . .  Consider the representative in 

- ( 0 )  - ( 1 )  • 

E o H , M U ,  say z, of the element [y]ob'~oob .j, o Computing the iterated 
' ( 0  ( i + D  . . . .  

coproduct of z - yp,(x) in E o H ,  M U .  we see that it must lie in a lower filtration 
than yp,(x). (The coproduct of z can be computed using 1.12 (c)(i).) So z = %,,(x) 
mod lower filtration and 7p,(x) can therefore be represented in terms of [x2~] and 
b(~). This concludes the proof of (i) for degrees ~ 2k. 
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We will now show that QEoH,MU~, is so big that HR, MU, can map onto 
H,MU~, only if it is a polynomial algebra. In the process we will show that 
H , M U ,  is the size of the upper bound on HR, MU,.  

4.21 QI-I~MU, = PEoHi÷2MU,+I i + 2 ~ 2k by 4.19 and 4.20 

dim~,PEoH2kMU~÷l = d2 tk -1 ) , ,  by 4.21 and 4.18 (iii), i = 2(k - 1) 

4.22 = d2k.,+, by 4.16 (b). 

From the general properties of divided power Hopf algebras over [:, we have 

e2k., = dimFp OEoH2EMU, 

4.23 = dimFpPEoH2kMU , + dimFp QEoH2k/pMU , 

= d2k,, + ezk/~., by 4.22 

(e2k/p., = 0 if p ,l" k). 

Because ia is onto (by (i) for degrees <~ 2k), we can impose the algebra structure 
of HR, MU, on EoH, MU, to solve the algebra extension problems. By surjectivity 
and 4.16 (a) we must have 

dimF~ QH2kMU, <~ d2k. , .  

By this and 4.23 a subspace of QEoH2kMU, of dimension ~ e2k/p., must become 
decomposable in QH2kMU,, i.e. they must be pth powers. By induction there are 
exactly e2k/p., generators in degrees of the form (2k/p',*), i >  0, which can have 
pth powers so in fact they must all have nontrivial pth powers in degree 2k. Thus 
we have a polynomial algebra, 4.18 (ii), and 4.18 (iii) holds in degree 2k. 

Remark 4.24. This computation could have been done directly without 4.15 using 
the linear algebra of the next section by giving a basis for QEoH,BP, and using it 
to do our counting. This was how the original proof of 4.2 (b) went but we feel it is 
much nicer to be able to prove 4.2 (a) without resorting to massive linear algebra. 

Call a Hopf algebra bipolynomial if it and its dual are both polynomial algebras. 
Because a divided power algebra is dual to a polynomial algebra our proof actually 
gave the following. 

Corollary 4.25 [40]. H,(MU,  ; Z) is a bipolynomial Hopf algebra. 

Proof. We have just proven this for H , M U ,  for all primes. The property lifts to Z. 

Remark 4.26. From [28] we know 4.24 actually determines the Hopf algebra 
structure of H , M U , .  
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5. A basis for QH, BP, 

Although we have given some explicit relations (3.12 and 3.14), so far most of our 
work has been of a very general nature, e.g. relations in E ,  G ,  and isomorphisms 
E ~ M U ,  ~ - E ,  M U , .  However, in proving these last isomorphisms we computed 
and could have described E , M U ,  quite nicely. In this section we restrict our 
attention to H ,  B P ,  and describe explicitly its generators and primitives. By 
Remark 4.9 this does the same for E ,  BP, .  

Recall that by H ,  BP ,  we mean H,(BP, ;F~) .  Let Q H , B P ,  denote the 
indecomposables (see 4.13). BP,  denotes the zero component of BP, ,  i.e. BP~ is 
the component of BPk containing [02k]. 

Proposition 5.1. 
(a) Q H ,  BP,  is a ring under the o product. 
(b) QHoBP, = Fp[[v,]-[0_2tp,-~)] : i >0]  with unit [1 ] -  [00]. 
(c) In positive degrees, Q H ,  B P ,  = Q H ,  B P , .  
(d) Q H , B P ,  is generated over QHoBP, by the bt,~) = bp., ~ H2p-BP1. 

Proof. Lemma 4.13 is the same as (b) and (a) follows from 1.14(0. For (c) one 
knows that the components of BP, are all equivalent. A 'generator' in the positive 
dimensional homology of a nonzero component is the * product of a generator of 
H , B P ,  and [v] for some v E BP*. Hence these 'generators' actually differ from 
those of H ,  BP~, by decomposables. (d) follows from the corresponding statement 
for H~,BP, of 4.14. 

Define elements in Q H , B P , ,  

v ' b "  ,, ,5 . h. oobi,?) = I v , v 2 "  ]o  o . . .  
- ( 0 )  

where I = (il, i2 , . . . )  and J = (jo, j~ , . . . )  are sequences of non-negative integers 
almost all zero. Let Ak be the sequence with 1 in the k th place and zeros elsewhere. 
Recall the notation bp, = b(i).  

Definition 5.2. We call v~b s allowable if 

J = pAk,+p2Ak~+ "'' +p"Ak. + J' 

where kl ~< k2 ~< .- • ~< k. and J '  is non-negative implies in = 0. 

Theorem 5.3. 
(a) The allowable vlb s (J~ O) form a basis for Q H , B P , .  
(b) The v ~b s o b, with v ~b J allowable (J possibly zero)form a basis for PH ,BP  , . 

Remark 5.4. Part (b) follows immediately from part (a) and the spectral sequence 
computation (4.21) of the previous section. 
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Remark 5.5. From the spectral sequence computation (4.13) of the previous 
section, a basis for P H ,  n B P ,  -- O H ,  O B P ,  is given by the suspension of the basis 
of 5.3(a) (and 5.1(b)) for QH,_~BP,_~. 

Remark 5.6. Q H 2 , _ I B P ,  = 0 = P H 2 , - ~ B P , .  

Remark 5.7. A basis for QI-I2,,,BPn, m > 0 ,  is given by all allowable v tb  " with 
m = ~,k~.o jkp k and n = ~a,~.0 jk - ~k>0 ik (pk _ 1). 

Remark 5.8. Since H , ( B P ,  ; Zo,>) has no torsion and is a polynomial algebra our 
basis lifts to it. 

The rest of this section is occupied with the proof of 5.3(a). Let I =  
([v~] - [0-2tp-~)], [05]- [0-2tp~-l)],... ) and define 

F, Q H  , BP , = I"  o Q H  , BP , for s i> 0. 

We obtain the associated graded object 

E, Q H , B P ,  = F, Q H , B P , / F , _ I Q H , B P , ,  s >10. 

E , Q H , B P ,  is now a tri-graded ring under o products. From 3.14 we have the 
relation 

5.9n * ~ [v, ] o J"~' = ,-'(.-o 0 in EIQH:~,-BP1. 
i E 1  

By the previous section these relations generate all relations and, in fact, provide 
defining relations for E .  Q H . B P , .  (Remark 4.17, Lemma 4.15.) Thus a basis for 
E . Q H . B P .  can be lifted to a basis for Q H . B P . .  

Let A = F~ [u,, u2, . . . ,  bto), bo),... ] be triply graded so that the map given by 
A(ui)=[v~]-[0_20,,_~] and A(b(,,,~)=bo,o, preserves the grading. Let r , =  
~, '~ uibf~_ o E A and R = (rl, r2,... ) C A. Then by the above remarks A induces an 
isomorphism 

5.10 A" A / R  " > E , Q H , B P , ,  

so proving 5.3 amounts to showing the allowable monomials in A (defined 
analogously to 5.2) project down to a basis of A / R .  

We want to give an algorithm for expressing an arbitrary monomial in 
E ,  Q H . B P ,  as a linear combination of allowable monomials, which is equivalent 
by 5.10 to an algorithm for expressing a monomial in A in a linear combination of 
allowable monomials and elements of the relation ideal R. 
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We need to define some specific elements in A. Let N = (nl, n2, . . . ,  nk) be a finite 
strictly increasing sequence of positive integers and let 

k 

5.11 s N  = E ( -  1) * l"I b['~,,,_,, 
o, i = l  

where the sum is taken over all permutations o" of {1, 2 , . . . ,  k} and ( -  1)" is the sign 
of tr. Let bo)= 0 for i < 0 .  

Let /V~ denote the sequence N with n~ deleted and define 

5.12 l ~i+kS r rN = X ( - / N,n, 
i = 1  

where r, ~7=1 P' = usb(.-i) as above. Then we have 

L e m m a  5.13. Let  N = (nl, n 2 , . . . ,  nk), 0 < ni < hi+x, 

(i) r~ E R for all N.  

(ii) The coefficient o f  u, in r~ is zero for  i < k. 

(iii) The coefficient o f  uk in rN is s~,. 

Proof .  (i) is obvious .  (ii) and (iii) are obv ious  w h e n  k = 1, so we  can argue by 
induction on k. The sN satisfy 

k 
.-. 1,~i+kt,  ~ p k  

5.14 S~ X (--~1 ~ . , v ( . , - k ) .  
i = l  

For i #  j and 1 ~< i, j ~< k let N~i denote the sequence N with n~ and nj deleted. Then 

5.12 and 5.14 imply 

k 

where 

rN = ~ ( -  1) '+k ~ ( -  1)'(ti'k-~s~,~bf~--~+~)r,,, 
i ~ l  i # i  

j) = ('J 

L j - 1  

for j < i 

for j > i. 

This can be rewritten as 

5.15 r~ = 

5 .16 = 

k 

l~l+k-lbPk-t 1 ~'e'iv'k-t" r X(-. ,  ,.,-,.,X(-, 
1=1 i # i  

k 
l ~ ] + k - l  l~P k - I  t, 

X ( - -  J ' ]  u'(nj--k+l)'NJ" 
j--I 

Therefore the inductive hypothesis implies that the coefficient of ui in rN zero for 
i < k - 1, and that the coeffecient of UE-1 is 
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k 
t \ i + k - l j k p  k-1 ¢, 

( -  .I. f U (nj-k +l)~Nj 
j=l  

: ~ ( -  l '~d+k-lkp k-I l~t.e:(j,i)+k--lt,, jl.lp k-1 
1 I  U(,,i--k+l) ~ ( - - " S  '-'N,/-" t,,, --k +l) 

j = l  i]gj 

: ' ~  ( -  s (,,j-k+l),-,(,,,-k+Z),V,',j 
i~ j  

= 0, since sN,j = sN,,, 

so (ii) is proved. (iii) is an immediate consequence of 5.14 and the definition of r,,,. 

We are now ready to describe our algorithm for expressing nonallowable 
monomials in terms of allowable ones modulo R. Let 

k 

XN Uk I--I pi = b(,i-i) • 
i=1 

By Definition 5.2 every nonallowable monomial is divisible by some x~. The choice 
of N is not unique, but that is irrelevant. 

Algorithm 5.17. Given a monomial of the form xNulb s, replace it by (x~ - rN)u~b s. 

(Note that the leading term of rN is xN.) 

Lemma 5.18. 
(a) The allowable ulb s give a basis for A / R  = E , Q H , B P , .  
(b) A n y  ulb s can be written as a linear combination of allowable monomials  in 

A / R  by iterating 5.17 a finite number of times. 

Remark. This lemma completes the proof of Theorem 5.3(a). 

Proof of 5.18(b). We assign a nonnegative weight w ( x ) U O  to each monomial 
x E A by the rules w(xy) = w ( x ) +  w(y), w(ui)  = 0 and 

5.19 
p2,~+2_ 2p2,~ + 1 

w ( b ( , , , ) ) = f ( m ) =  pro(p2_ 1) 

Then we have for m I> i, 

5.20 
[p2' - 1) 

p~f(m - i ) - f ( m ) =  p - "  \ p 2 _  1 ' 

in particular 

5.21 p f ( m  - 1) > f(m ). 
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We want to show 

5.22 r~ = xN + terms of higher weight. 

We first consider the expression UkSN. In s~, the term ( - 1 ) "  1I~=1 p' bt~o~_ o has 
weight 

' _ 
p f(n,,(,) i) = f(r~(,)) - p2_  1] + ,=1 = ,~1 p2_  1 

by 5.20. The first term on the right is independent of the permutation while the 
second term is strictly minimized by setting o" = identity. From 5.12 the coefficient 

of u~, j > k is given by 

k 

lV÷ks b p' E (-- ' ~, (n,-,,. 
i = 1  

Comparing this to 5.14, the coeffecient of uk, we see by j > k and 5.20 that the 
weight of each term is higher than for the corresponding term for uk. This completes 
the proof of 5.22. 

5.17 is homogeneous with respect to the triple grading on A and so it stays within 

a certain finite dimensional vector space. Each application of it raises the weight by 
a positive rational number  with bounded denominator,  so a maximum possible 
weight, and therefore an allowable expression, will occur after a finite number  of 

applications. 

Remark 5.23. A simpler algorithm is the following. Choose x N so that each n, is 
! 

minimal and replace the factor u k b ~  by u~b~>-rk+n~. We conjecture that this 

method is also effective. 

We now prove 5.18 (a). We assume that we can write all v~b " in terms of 
allowable vrb J'. To prove (a) it is enough to  show that the number  of allowable 

terms is equal to the dimension of the vector space Q H , B P , .  We do several 
inductive steps. The main induction is on degree. For degree 2 we have v fbt0) and 
there are no relations so induction is begun. To do our counting argument we will 
actually give a basis for Q E o H , B P ,  (see Remark 4.24). In the last section we 
worked with M U ,  but we could have worked equally well with BP, .  We assume 

the reader can handle the minor changes necessary. 

Define s ( J )  = (0,jo,./1,...) and s ' ( J ) =  s(s'-~(J)). If j o = 0  we can also define 
s-l(J) = (j~,j2,. . .) .  We assume the allowable v'b J give a basis for Q H , B P ,  for 
degrees < 2k. By the proof of the main theorem (between 4.20 and 4.21) a basis for 
O E o H , B P , ,  in degrees ~< 2k, is given by all v~b s'~J+ao with v~b ~ allowable and 
n I> 0. It is easy to see that this includes all vrb J' allowable of degree 2k. By 4.17 we 



276 D.C. R avenel, W.S. Wilson / The Hop[ ring [or complex cobordism 

need to have  exactly d:~., al lowable v ~b: of degree 2k. By 4.23 it is enough to show 
that in degree 2k we have  exactly e:,,/p,, non-al lowable v r b  ~' of the form v~b ,'t:+ao), 

n >-O, v~b ~ allowable.  We  define a map:  (the Verschiebung)  

by 
V " Q E o H 2 ~ B P  , ~ QEoH2~/pBP , 

V(v~b~"t'+a°)) = I 0  if n = 0 

t v~b ~'-'<J÷~ if n > 0. 

This gives a 1-1 cor respondence  be tween vXb ~'t~÷a°) with degree  2k, n > 0, v tb  J 

allowable and the  v r b  `''w÷ao) of degree 2 k / p ,  n'  >i 0, v r b  J" allowable.  Fu r the rmore  

V(v~b~"(J+~°)), n > 0, is al lowable if and only if v~b ~'(J÷4d is. By induction we see 
there are e2k/p~,, non-al lowable  v~b ~'c~÷ao> of degree 2k with n > 0, vlb  J allowable.  

By 4.22 there are d2k/p., v r b  J+a° of degree 2 k / p  with v r b  ~" allowable. If we show 

that these are in 1-1 cor respondence  with the non-al lowable  v~b ~÷ao of degree  2k 

with v~b J al lowable  then we will have  d~k/p.,+e2~/~.,= e~/~., non-al lowable  

v~b ~'~÷~°), n I>0, with v lb  ~ allowable and our result will be  proven. So, given 

v~b ~÷~° of degree  2k, not allowable, v~b ~ allowable, let n + 1 be the smallest n + 1 
such that i.+~ ~ 0. Then  write 

n + l  A J t t  J = ( p - 1 ) A o + p ~ A k ~ + . - . + p  ,.,~. + 

with 0 ~< k, <~ k:  <~ .- • ~< k., each k, minimum. Define I '  = I - A.+, and 

J '  = p A ~  + . . .  + p"A~. + s - ' (J") .  

The following details are easily checked:  J can be wri t ten in this fashion, J '  is 

defined b e c a u s e / g  = 0, the degree of v "b  ~'÷~o is 2 k / p .  We need  to show that  v"b ' "  is 
allowable. We will show that if 

5 . 2 4  J '  = pAu, + p2A~  + . .  • + p m A . .  + L 

with u~ ~< u2 <~ • • • ~< urn, each u, minimum, m maximum, then ki = ui and m = n. 
This will show v rb~' is allowable because " - t ~ -  0 if k ~< n. By the minimali ty of ui 

and the definition of J '  we have ui ~< k,  We proceed by induction. If 

then 
Ul = k l  <~ • • • <~ uq-1 = kq-1 <~ uq < kq, 

J = pAk, + • " " + p~-lA~,_, + pqA,,._~ + pq*lA~, + • • " + p"+lAk. + K 

and v lb  ~ is not  al lowable (i,,+1 ~ 0). This is a contradiction so u,~ = kq. In part icular ,  
if m > n, then v lb ~ is  not allowable. 

We now have  a m a p  of v~b J allowable to v r b  J" al lowable where  degree v~b J+ao is 
2k and  degree  v r b  ''÷~o is 2 k / p .  We need an inverse to this map.  Let v r b  ''÷ao be of 
degree 2 k / p  with v r b  r allowable.  Wri te  J '  as in 5.24. Then  define I = I ' +  A,.+I and  

J = (p  - 1)Ao + p2Au, + ' ' '  + p'+'A. .  + s(L). 
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We must show that vlb J is allowable. Recall that from iq = 0, q ~< m, because v r b  r 

is allowable. To prove vlb ~ is allowable write 

J = pAR + p2A~ + " "  + p"A~, + K, 

v~ ~< v2 ~< • • • ~< v,, each v~ minimal, n maximal, then we can show by an argument 
similar to the one for the other  map that v~ = u~ and m = n. Thus vlb J is allowable 

and a careful check using the proofs that the maps are well defined shows that they 
are inverses to each other. 

Remark  5.25. Although the proof of 5.18 (a) is motivated by the spectral sequence 

used to prove 4.2 (a), the argument could be rephrased so that it would be 

independent of Section 4. It should be regarded as a s tatement about H ~ B P , .  

6. Final remarks 

We have described everything about H .  M U ,  except the homology operations. 

The first author has done some work in this direction. As  our interests are 

elsewhere at the present time and we may never come back to the problem we 

quote what is known for the benefit of others who wish to pursue the matter. We 

denote [p]F(X)/X as the power series [ p i t ( x )  divided by x. 

Theorem 6.1. In  H , ( M U , ; F p ) [ [ s ] ] ,  

O' ([1])a 's  ° ' - ' '  = [p]tr)(b(s)) /b(s)  
i~O 

where a E f:p is some nonzero element. 

Proof. Let q = 2 p -  2 and let L q~-~ denote the q i -  1 dimensional lens space, i.e. 

the quotient of S ~'-~ C C ~°'-~) by scalar multiplication by the p th  roots of unity. Let 

L q '=  L q'-I (.Jfe q' where f : sq'-~---~ L q'-~ is the universal covering projection. Let 

/_', q' denote the universal cover of L ~, i.e. L~ q~ is Sq'-~ with p copies of the disc 

attached. 

Now we know that if X is a stably complex manifold, a map g : X  ~ MUo is 

induced by a map f : X ~ X where X" is another  stably complex manifold of the 

same dimension. If X and ..~ are manifolds with singularities and .f preserves them 

in an appropriate sense, then f can still induce a map g. In particular, the covering 

projection f0 :/-~'~' ~ L q' induces a map go : L ~' ~ MUo. It follows from the defini- 
tion of Dyer -Lashof  operations that go represents a nonzero scalar multiple of 

O'[1] E Hq' (MUo; t:p ). 

Our program then is to show that the map )Co is homologous to an appropriate 
map of a stably complex manifold into MUo. 
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Let Vg~C CP '°'-1)+1 denote a degree p algebraic hypersurface of complex 
dimension ( p -  1)i defined by the equation 

i(l,~)+l zip = 0. 
jr0 

Let y E cptp-1)'+Ldenote the point [0, 0 , . . . ,  0, 1]. Then there is a linear projection 

zr : CP ""-~)+~ - { y } ~  CP'  

obtained by dropping the last co-ordinate. Restricting 7r to V~, ~ we get a map 
fl" Vg'---~ CP '°'-1) which induces a map g~" CP~°'-~)--> MUo. The  map f~ can easily be 
seen to be a p-fold branched covering ramified along a degree p hypersurface in 
Cpi(p-~).  

We will show that the maps go and gl are homologous by constructing an 
appropriate kind of "cobordism" between )Co and f~. Let M = CP '°'-~) x I (where I 
denotes the unit interval). Let u ~ M denote the point ([1, 0 , . . .  0], 0). Let 

/~r Z/~q ' - -{([1 ,  za, z2 . . .  z,0,-,>],0): E Iz~ 1~<½~, 

i.e. /gq' is an open qi-disc in CP'tP-1)×{0} with center u. Let U denote the 
complement of/gq' in CP '°'-~ × {0}. Define an action of the group Z / ( p )  on U by 

([Zo, z~-. .  z,~_,)], 0 ) ~  ([e 2"'PZo, z~-. .  z,0,_,)], 0). 

Note that the quotient of U by this action is a D 2 bundle over CP i°'-~r-~ with 
boundary L qi-~. Let M denote the quotient of M obtained by. indentifying points in 
U conjugate under the group action. M can be thought of as a manifold with 
singularities whose boundary is L ~ IICP "p-~). 

Hence M is a "cobordism" between CP '°'-1) and L q'. We need to construct a 
cobordism N between V~' and Lq~ and an appropriate map N---~ M. Let gr = V~'x I 
and consider f -- f~ x id. : gr ~/I7/. The group action on U can be lifted to one on 
f-~(U) and we define the quotient N of gr in a similar way. Hence we get a map 
f : N ~ M which is a "cobordism" between fo and fl, so go and g~ are homologous. 

It remains then to describe the homology class represented by g~ (and thereby 
O'[1]) in terms of familiar elements in H.(MUo;Fj,). Recall that if x E 
M U 2 C P  '°'-~÷~ is the canonical generator, then the degree p hypersurface V~iC 
CP '°'-~)÷1 is dual to the cobordism class [p]Mu(x). It follows that the map 
fl : V~'---~ CP '°'-1) is dual to the class [p]Mv (x)/x E MU°(CP'°'-')). Hence the map 

lPlMu(x)l~ 
CP '°'-~)'-'~ CP ® > MUo 

is induced by fl and the Theorem follows. 

A totally unrelated problem which we will also probably never get around to is 
the following. Let m + n = k and let M" and N" denote weakly almost complex 
manifolds of dimensions 2m and 2n respectively. Let .f be an element of 



D.C. Ravenel, W.S. Wilson / The Hopf ring for complex cobordism 279 

MU2kN" - - -  IN n, MUk ]. We have given an acceptable description of the homology 
of MUk, but it would be nice to be able to describe the image of the map 

f* : H*(MUk ; Z)--> H*(N" ; Z)  
without resorting to the space MUk (much the same as Chern classes can be 
handled). In particular, be duality, MU2kN ~ = MU2,,N" which is represented by a 
bordism element 

g : M ' - - . > N  ~. 

The information of g is equivalent to that of [. It would be nice to describe the 
image of f* just using constructions with the map g. An application of this would 
come from the fact that elements in the ker of H*(MUk;Z)--> H * ( M U k ; Z )  give 
obstructions in H*(N"; Z)  to making g bordant to an embedding gl" M~"---> N". 

Note added in proof 

Our final result allows one to compute the coaction BP.BP~ --> B P . B P  ®ap. BP.BP~ in a simple way 
where B P . B P  is the Quillen algebra BP.[t~, t2,... ] (see [1]). It is easy to compute the coproduct on 
both kinds of products, * and o, so it is only necessary to compute 

tz : BP , CP"-"> BP , BP ®ap BP*CP ®. 

Let c be the canonical antiautomorphism of B P , B P  and define 18 = Y~,~18,, [3(x)= Y~,.ox' ®18, and 
F 

t r = 1 +~=tl+~t2+F . . . .  ~i;.o t~. 

Theorem. /.t(18)= 18(c(t~)). 

Both sides of this formula have only finite sums in each degree and by equality we mean they are 
degreewise the same. 

Proof. From Adams' notes on Quillen's work [1], we combine 

(11.4) (rephrased)/~(fl) = fl(b), (ll.3)(iii) b = c(M), (16.4) M = t r. 
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