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1. Introduction

For our purposes the Arf-Kervaire invariant problem for a prime p is to determine
the fate of the elements

(1) θj ∈
{

h2
j for p = 2

bj−1 for p > 2

}
∈ Ext

2,2pj(p−1)
A (Z/(p),Z/(p))

where A denotes the mod p Steenrod algebra. This Ext group is the E2-term for
the classical Adams spectral sequence converging to the p-component of the stable
homotopy groups of spheres. In these bidegrees the groups are known (Adams
[Ada60] for p = 2 and Liulevicius [Liu62] for odd primes) to be isomorphic to Z/(p)
in each case, generated by these elements.

Closely related to them are the elements

βpj−1/pj−1 ∈ Ext
2,2pj(p−1)
BP∗(BP ) (BP∗, BP∗) for j > 0.

This Ext group is the E2-term of the Adams-Novikov spectral sequence converging
to the p-local stable homotopy groups of spheres. The Thom reduction map sends
this group to the one in (1). This generator maps to a unit multiple of the one in
(1) in each case except p = 2 and j = 1, for which we have β1/1 = 0 as explained
in [Rav86, Theorem 5.1.22].

Browder’s Theorem [Bro69] states that at p = 2, h2
j is a permanent cycle in the

Adams spectral sequence if and only if there is a framed manifold with nontrivial
Kervaire invariant manifold in dimension 2j+1 − 2. Such manifolds are known to
exist for 1 ≤ j ≤ 5, the case j = 5 (the most difficult) being given in [BJM84].
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In [HHR] we showed that for p = 2, θj does not exist for j ≥ 7. The case j = 6
remains open.

There is no known intrepretation of the problem at odd primes in terms of
manifolds. In [Rav78] (and in [Rav86, §6.4]) the third author showed for that for
p ≥ 5 the element θj for j > 1 is not a permanent cycle, while θ1 is a permanent
cycle representing β1 ∈ π2p2−2p−1S

0. It is shown that modulo some indeterminacy
there are differentials

(2) d2p−1(θj) = h0θ
p
j−1 where h0 ∈ Ext1,2p−1

A (Z/(p),Z/(p))

represents α1 ∈ π2p−3S
0. The methods used there break down at p = 3, which is

the subject of this paper.
In order to describe the problems at p = 3 we need to recall the methods of

[Rav78] and [HHR]. We know now (but only suspected when [Rav78] was written)
that the extended Morava stabilizer group Gn acts on the Morava spectrum En

in such a way that the homotopy fixed point set EhGn
n is LK(n)S

0, the Bousfield
localization of the sphere spectrum with respect to the nth Morava K-theory. This is
a corollary of the Hopkins-Miller theorem, for which we refer the reader to [Rez98].
For any closed subgroup H ⊂ Gn there is a homotopy fixed point spectral sequence

H∗(H;π∗En) =⇒ π∗E
hH
n

which coincides with the Adams-Novikov spectral sequence for EhH
n . One has the

expected restriction maps for subgroups.
The group Gn is known to have a subgroup of order p (unique up to conjugacy)

when p− 1 divides n. This leads to a composite homomorphism

(3) ExtBP∗(BP ) (BP∗, BP∗) // H∗(Cp;π∗Ep−1) // H∗(Cp;Fpp−1 [u, u−1])

where the second homomorphism is reduction modulo the maximal ideal in π∗Ep−1

and |u| = 2. The action of Cp here is trivial, so the target is a bigraded form of the
usual mod p cohomology of Cp. Assume now that p is odd. Then this cohomology
is

E(α)⊗ P (β)⊗ Fpp−1 [u, u−1]

where α ∈ H1 and β ∈ H2 each have topological degree 0. It is shown that under
the composite of (3) homomorphism we have

(4)
α1 7→ up−1α

βpj−1/pj−1 7→ upj(p−1)β

up to unit scalar. Hence all monomials in the βpj−1/pj−1 and their products with
α1 have nontrivial images. We also show that there are relations

(5) βpj−1/pj−1βpj−1

p/p = βpj/pjβpj−1

1 .

In order to proceed further we need the following result of Toda ([Tod67] and
[Tod68]): In the Adams-Novikov spectral sequence for an odd prime p there is a
nontrivial differential

(6) d2p−1(βp/p) = α1β
p
1 .

Using (5-6) one can deduce that

d2p−1(βpj−1/pj−1) = α1β
p
pj−2/pj−2 for all j ≥ 2,

and (4) implies that this is nontrivial.
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Now some comments are in order about why this approach fails for p < 5.

• For p = 2, (5) and a suitable modification of (4) both hold, but the right
hand side of (6) is trivial, so this method does not show that any β2j−1/2j−1

fails to be a permanent cycle.

• The group Ext
2,2pj(p−1)
BP∗(BP ) (BP∗, BP∗) is known to have [(j−1)/2] other gener-

ators besides βpj−1/pj−1 . The sum of βpj−1/pj−1 with any linear combination
of them maps to θj under the Thom reduction map. For p ≥ 5, they are all
in the kernel of (3). This means that any element on the Adams-Novikov
2-line mapping to θj supports a nontrivial differential, so θj does not exist
as a homotopy element.

• For p = 3 these other generators, such as β7 in the bidegree of β9/9, can
have nontrivial images under (3). This has to do with the fact that they
are v2-periodic and hence vp−1-periodic. It turns out that β9/9 ± β7 and
hence θ3 are permanent cycles even though θ2 is not.

In order to describe the way out of these difficulties we need to say more about
finite subgroups of Gn. It is by definition an extension of the Morava stabilizer
group Sn by Gal(Fpn : Fp). The Galois group (which is cyclic of order n) is there
for technical reasons but plays no role on our calculations. Sn is the group of units
in the maximal order of a certain division algebra over the p-adic numbers Qp. Its
finite subgroups have been classified by Hewett [Hew95].

Sn has an element of order p iff p− 1 divides n, a condition that is trivial when
p = 2. More generally Sn has an element of order pk+1 iff pk(p− 1) divides n. For
such n we could replace (3) by

(7) ExtBP∗(BP ) (BP∗, BP∗) // H∗(Cpk+1 ;π∗En) // H∗(Cpk+1 ; ?),

where the coefficient ring in the target will be named later. The naive choice of
Fpn [u, u−1] for this ring turns out not to detect βpj−1/pj−1 for n > p−1. Experience
has shown two things:

(i) In order to flush out the spurious elements (which are v2-periodic) having
the same bidegree as βpj−1/pj−1 , we need to have n > 2.

(ii) In order to detect the βpj−1/pj−1 itself, we need to have n be equal to

pk+1(p − 1) for some k ≥ 0, not just be divisible by it. Then it will map
to an element of order p in a cohomology group isomorphic to Z/pk+1. We
cannot detect higher powers of it for k > 0.

For p = 2 these considerations suggest using the group C8 and n = 4, which is
the approach used in [HHR].

For p = 3 we need to use the group C9 with n = 6.
For the prime 2, our strategy in [HHR] was to construct a ring spectrum Ω with

a unit map S0 → Ω satisfying three properties:

(i) Detection Theorem. If θj exists, its image in π∗Ω is nontrivial.
(ii) Periodicity Theorem. πkΩ depends only on the congruence class of k

modulo 256.
(iii) Gap Theorem. π−2Ω = 0.

The nonexistence of θj for j ≥ 7 follows from the fact that its dimension is
congruent to −2 modulo 256.
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Ever since the discovery of the Hopkins-Miller theorem, it has been possible
to prove that EhC8

4 satisfies the first two of these properties without the use of
equivariant stable homotopy theory.

For p = 3, the same goes for EhC9
6 with the periodicity dimension being 972 (2

more than the dimension of θ5) instead of 256. If all goes well, we will get a theorem
saying θj does not exist for j ≥ 5, leaving the status of θ4 open. We already know
that θ1 (in the 10-stem) and θ3 (in the 106-stem) exist and θ2 (in the 34-stem) does
not.

For p ≥ 5, the same holds for E
hCp

p−1 with periodicity 2p2(p− 1), which is 2 more
than the dimension of θ2. In this case the spectrum also detects the product of α1

with any monomial in the θjs. As explained above, this enables us to use Toda’s
differential to show that none of the θj for j > 1 exists.

We cannot use Toda’s differential for p < 5 because

(a) for p = 2 its target is trivial, and
(b) since we cannot detect products of the θjs, we cannot make an inductive

argument.

The proof of the Gap Theorem requires the use of equivariant stable homotopy
theory and the slice filtration. Unfortunately the Morava spectrum En is not an
equivariant spectrum for finite subgroups H ⊂ Sn as we would like, but only for
certain groups homotopy equivalent to such H. The actions of Sn and its subgroups
are defined only up to homotopy, and the content of the Hopkins-Miller theorem
is that the group G0 of E∞ self-equivalences of En homotopic to the identity is
contractible. This means that we have an action of an extension of G0 by any such
H. This is good enough for forming homotopy fixed point spectra EhH

n with the
expected properties, but not for the more delicate equivariant constructions needed
for the Gap Theorem.

This difficulty led us to replace the homotopy action of C2n+1 on E2n by a
pointwise action on a relative of the smash power MU (2n), induced via the norm
construction from the action of C2 on MU by complex conjugation. This action of
C2n+1 has the additional advantage of a transparent action on the homotopy of the
spectrum. The action of Sn on π∗En is problematic.

In order to do a similar thing at an odd prime we need an analog MUCp
of the

C2-spectrum MUR. It should be a Cp-spectrum underlain by roughly (but not

precisely, as will be explained below) MU (p−1) with two properties:

(i) It should have a tractable slice filtration that enables us to prove a gap
theorem for certain periodic spectra derived from it. As a Cp-module,
Qπu

kMUCp
, the indecomposable quotient of the kth homotopy group of the

underlying spectrum, will be

Qπu
2kMUCp =

 0 for k odd
J for k = 2(pn − 1)
Z[Cp] otherwise

where J denotes augmentation ideal J in the group ring Z[Cp].
(ii) The geometric fixed point spectrum ΦCpMUCp

should be a wedge of sus-
pensions of H/p, the mod p Eilenberg-Mac Lane spectrum. For p = 2 we
have ΦC2MUR = MO, the unoriented cobordism spectrum, which fits this
description. This identification is a pivotal step in determining differentials
in the slice spectral sequence needed to prove the Periodicity Theorem.
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Alternatively, we could look for a Cp-spectrum BPCp
underlain by BP (p−1) with

similar properties including ΦCpBPCp = H/p. It would be nice if MUCp were also
an E∞-ring spectrum like MUR, but this is out of reach at the moment. Once we
have such an MUCp

or BPCp
for p = 3, we can use the norm to get a C9-spectrum

underlain by (approximately) MU (6) or BP (6). The spectar we actaually construct
have a extara smash factors of MU and BP respectively, but thiis is harmless for
our purposes.

We will make extensive use of the old and new equivariant methods recalled and
introduced in [HHR]. The reader would be well advised to have a copy of it within
easy reach while reading this paper.

2. Odd primary analogs of MUR and BPR

We now describe a program for constructing MUCp and BPCp . We start with

the p-fold smash power MU (p) or BP (p). In both cases Cp acts by permuting the
factors, and the spectrum is obtained by norming up from the action of the trivial
group on MU or BP . For technical reasons we need to smash them with MU or
BP equipped with the trivial group action.

To deriveMUCp
(respectively BPCp

) fromMU (p)∧MU (BP (p)∧BP ) we will use
the method of polynomial algebras introduced in [HHR, §2.4]. Roughly speaking,
it gives us a way of killing off a polynomial sub-Z[Cp]-algebra R of πu

∗X (where

X is MU (p)or BP (p)) equivariantly. One forms an associative Cp-ring spectrum
A underlain by a wedge of spheres, one for each monomial in R. There is a map
A → X representing the inclusion R → πu

∗X. This makes X an A-module. There
is also a map A → S0 obtained by sending all positive dimensional summands of A
to a point. This makes S0 into an A-module. These two module structures enable
us to form the Cp-spectrum

Y = X ∧
A
S0 with πu

∗Y = πu
∗X ⊗R Z.

Its geometric fixed point spectrum is

ΦCpY = ΦCpX ∧
ΦCpA

S0,

where ΦCpX is MU or BP . Y and ΦCpY do not inherit ring structures from X.
Let G = Cp or {e}. Given a suitable wedge of spheres W with G-action, we let

S0 [W ] denote the corresponding equivariant polynomial algebra. (In [HHR], each
sphere is assumed to be invariant, but we are not assuming that here.) Let

A0 = S0

 ∨
k>0

k 6=pn−1

S2k


and A0 = Np

1A0 = S0

Cp+ ∧
∨
k>0

k 6=pn−1

S2k

 .

Then we have

MU ∧
A0

S0 = BP,
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which implies that

MU (p) ∧
A0

S0 = Np
1

(
MU ∧

A0

S0

)
= Np

1BP = BP (p) as Cp-spectra

and (
MU (p) ∧MU

)
∧

A0∧A0

S0 = BP (p) ∧BP as Cp-spectra.

Theorem 2.1. Changing the geometric fixed points of MU (p) ∧ MU and
BP (p) ∧BP . For each n > 0 there is an equivariant map

fn : S2pn−1ρ−2 → MU (p) ∧MU

such that the composite map

S2pn−1ρ−2 fn // MU (p) ∧MU // BP (p) ∧BP
m // BP

(where m is multiplication) is vn modulo decomposables and

S2pn−1−2 ΦCpfn // MU ∧MU // BP ∧BP
m // BP

is vn−1 (where v0 = p) modulo decomposables.
Let

A1 = S0

[∨
n>0

S2pn−1ρ−2

]
and use the maps fn to define A1-module structures on MU (p)∧MU and BP (p) ∧BP .
Then we define

MUCp =
(
MU (p) ∧MU

)
∧
A1

S0 and BPCp =
(
BP (p) ∧BP

)
∧
A1

S0.

The second of these is underlain by BP (p−1)∧BP with trivial action on the second
factor, and we have

ΦCpMUCp = (MU ∧MU) ∧
ΦCpA1

S0 = H/p ∧A0 ∧MU

and ΦCpBPCp
= (BP ∧BP ) ∧

ΦCpA1

S0 = H/p ∧BP.

In [HHR] we used MUR rather than BPR because the former is an E∞-ring
spectrum. We do not have that luxury here. When explicit computations are
needed, we will use BPCp rather than MUCp .

Proof. We will construct the map fn geometrically by defining a Cp-action on
Milnor hypersurface

H = Hpn−1,...,pn−1

⊂
(
CP pn−1

)p
whose cobordism class will be shown to represent vn modulo decomposables. Its

fixed point set HCp will be the degree p Fermat hypersurface V in CP pn−1

, whose
cobordism class will be shown to represent vn−1 modulo decomposables. We will
do these cobordism calculations separately in Lemma 2.2 below.

Let ν : CP pn−1 → BU be the map inducing the stable normal bundle and let(
CP pn−1

)p
νp
// BUp
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be its p-fold Cartesian product. Let Cp act by permuting the factors of source and
target. Thomification leads to an equivariant map

S2pn−1ρ νp
// MU (p).

A Milnor hypersurface

H = Hpn−1,...,pn−1

⊂
(
CP pn−1

)p
can be chosen to be invariant under the Cp-action. To see this, let[

x
(j)
0 , x

(j)
1 , . . . , x

(j)
pn−1

]
for 1 ≤ j ≤ p denote a point in the jth factor CP pn−1

. Cp acts on the product by

permuting the homogeneous coordinates x
(j)
k for each k. We define our hypersurface

by the equation ∑
0≤k≤pn−1

 ∏
1≤j≤p

x
(j)
k

 = 0.

It is is invariant under the group action since each term in the sum is.
The normal bundle of H is induced by a map

H → BUp ×BU(1)

which Thomifies to a map

S2pn−1ρ−2 → MU (p) ∧MU(1)

whose composition with the multiplication map into MU represents the cobordism
class of H.

The fixed point set of the product
(
CP pn−1

)p
is the diagonal copy of CP pn−1

.

On it the equation becomes ∑
0≤k≤pn−1

xp
k = 0,

which defines the Fermat hypersurface V . Note that when n = 1, it consists of the
p points {[

1, e(2j−1)πi/p
]
: 1 ≤ j ≤ p

}
.

Note that π∗MU (p) ∧ MU is the cobordism group of complex manifolds M
equipped with a decomposition of their normal bundles into p + 1 Whitney sum-
mands. Equivariantly M can be equipped with a Cp-action that lifts to a bundle
map permuting the first p of them.

For the element of π
Cp
? MU (p) ∧MU at hand, the manifold is H with the group

action inherited from the Cartesian product of projective spaces and the p + 1
bundles are the pullbacks of the normal bundles of the p projective spaces and the
line bubdle that defines the hypersurface.

The composite map mfn represents the cobordism class of the Milnor hypersur-
face, which is vn modulo decomposables.

Passing to geometric fixed points gives

S2pn−1−2 Φfn // MU ∧MU
m // MU
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The fixed point set of the Cp-action on the Milnor hypersurface H is the degree

p hypersurface in CP pn−1

. The s-number (see (8) below) of the latter is a unit
multiple of p, so the map Φfn represents vn−1 modulo decomposables. �

Lemma 2.2. Cobordism classes of Milnor and Fermat hypersurfaces. The
Milnor and Fermat hypersufaces H and V of the proof above represent vn and vn−1

modulo decomposables respectively.

Before proving this we recall some characteristic classes of of complex vector
bundles. Let ξ be a complex k-plane bundle over a manifold M . Write its total
Chern class formally as follows:

ct(ξ) = 1 + c1(ξ)t+ · · ·+ ck(ξ)t
k = (1 + x1t) · · · (1 + xkt)

so that ci(ξ) = σi(x1 · · · , xk) is the ith elementary symmetric function in the formal
indeterminates xj . Consider the polynomial

Pn(x1, . . . , xk) = xn
1 + · · ·+ xn

k

and express it via the elementary symmetric functions:

Pn(x1, . . . , xk) = sn(σ1, . . . , σk).

Substituting the Chern classes for the elementary symmetric functions we obtain a
certain characteristic class of ξ:

sn(ξ) = sn(c1(ξ), . . . , ck(ξ)) ∈ H2n(M).

The following properties of characteristic class follow immediately from the defini-
tion:

Proposition 2.3. Properties of the s-class.

(i) sn(ξ) = 0 when 2n exceeds the dimension of M .
(ii) sn(ξ ⊕ η) = sn(ξ) + sn(η).
(iii) If ξ is a line bundle, then sn(ξ) = c1(ξ)

n.

Now we define the s-number of a 2k-dimensional complex manifold M to be

(8) sk[M ] := sk(τ)〈M〉 ∈ Z,

where τ and 〈M〉 are the complex tangent bundle and fundamental homology class
of M . It could equivalently be defined in terms of the normal bundle, giving
the negative of the integer above. This characteristic number is useful because it
vanishes on Cartesian products and thus detects indecomposable cobordism classes.
See Stong’s book [Sto68, Chapter 7] for details. It is known that a 2k-dimensional
manifold M represents a polynomial generator of π2kMU(p) iff

(9) sk[M ] =

{
u for k 6= pn − 1
up for k = pn − 1

}
for some unit u ∈ Z×

(p).

Proof of Lemma 2.2. Recall that the fundamental homology class of a hypersurface
S ⊂ T of dimension 2k is Poincaré dual of the first Chern class of the normal line
bundle ν that defines it. Moreover for y ∈ H2kT , we have

(10) y〈S〉 = yc1(ν)〈T 〉.
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In the case of the degree p Fermat hypersurface in CP pn−1

, let x ∈ H2 denote
the first Chern class of the tautological line bundle η and bi ∈ H2i the linear dual
of xi. The normal line bundle in this case is

ν = η⊗p,

and the fundamental class is pbpn−1−1, the Poincaré dual of px = c1(η
⊗p). Let τ

be the tangent bundle of the ambient space CP pn−1

. Then the tangent bundle of
V is the restriction of

τ ′ = τ ⊕−ν.

The total Chern classes of these two bundles are

c(τ) = (1 + x)1+pn−1

c(τ ′) = (1 + x)1+pn−1

(1 + px)−1

so

spn−1−1(τ) = (1 + pn−1)xpn−1−1

spn−1−1(τ
′) = (1 + pn−1 − pp

n−1−1)xpn−1−1

spn−1−1[V ] = p(1 + pn−1 − pp
n−1−1)

Since this is a p-local unit multiple of p, V represents vn−1 modulo decomposables
as claimed.

We now make a similar calculation for the Milnor hypersurface H. Here the

ambient space is is the p-fold Cartesian product X =
(
CP pn−1

)p
with cohomology

H∗X = Z[x1, . . . , xp]/
(
x1+pn−1

j

)
.

Let ηj denote the pullback of the tautological line bundle on the jth factor. The
normal bundle is

ν = η1 ⊗ · · · ⊗ ηp,

so the fundamental class of the hypersurface H is the Poincaré dual of x1+ · · ·+xp.
The total Chern classes of these two bundles are

c(τ) =

p∏
j=1

(1 + xj)
1+pn−1

c(τ ′) =

1 +

p∑
j=1

xj

−1
p∏

j=1

(1 + xj)
1+pn−1
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so

spn−1(τ) = (1 + pn−1)

p∑
j=1

xpn−1
j = 0

spn−1(τ
′) = −

 p∑
j=1

xj

pn−1

+ (1 + pn−1)

p∑
j=1

xpn−1
j

= −c1(ν)
pn−1

spn−1[H] = −c1(ν)
pn−1〈H〉 = −c1(ν)

pn

〈X〉 by (10)

= −
(

pn

pn−1, . . . , pn−1

)
= − pn!

(pn−1!)
p .

This is also a unit multiple of p, so H represents vn modulo decomposables as
claimed. �

3. The slice filtration

We will define the slice filtration of the category of G-equivariant spectra as in
[HHR, §4]. The relevant groups G for us are C3 and C9. For an integer n and a
subgroup H of G, let

Ŝ(n,H) = G+ ∧
H
SnρH .

where ρH is the regular representation of H.

Definition 3.1. Slice cells. Slice cells are members of the set

A =
{
Ŝ(n,H), Σ−1Ŝ(n,H) : H ⊂ G, n ∈ Z

}
.

The dimension of a slice cell is that of its underlying spheres, i.e., n|H| or n|H|−1.

Definition 3.2. Slice null and slice positive. A G-spectrum Y is slice n-null,
written

Y < n or Y ≤ n− 1

if for every slice cell Ŝ with dim Ŝ ≥ n the G-space

SG(Ŝ, Y )

is equivariantly contractible. A G-spectrum X is slice n-positive, written

X > n or X ≥ n+ 1

if
SG(X,Y )

is equivariantly contractible for every Y with Y ≤ n.

The full subcategory of SG consisting of X with X > n will be denoted SG>n or

SG≥n+1. Similarly, the full subcategory of SG consisting of X with X < n will be

denoted SG<n or SG≤n−1.

Remark 3.3. Subcategories associated with the slice filtration. The cat-

egory SG>n is the smallest full subcategory of SG containing the slice cells Ŝ with

dim Ŝ > n and possessing the following properties:
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i) If X is weakly equivalent to an object of SG>n, then X is in SG>n.

ii) Arbitrary wedges of objects of SG>n are in SG>n.

iii) If X → Y → Z is a cofibration sequence and X and Y are in SG>n then so
is Z.

iv) If X → Y → Z is a cofibration sequence and X and Z are in SG>n then so
is Y .

More briefly, these properties are that SG>n is closed under weak equivalences, ho-
motopy colimits (properties ii) and iii)), and extensions.

Let PnX be the Bousfield localization, or Dror Farjoun nullification ([Far96,

Hir03]) of X with respect to the class SG>n , and Pn+1X the homotopy fiber of
X → PnX. Thus, by definition, there is a functorial fibration sequence

Pn+1X → X → PnX.

When there is more than one group involved, we will denote these fucntors by Pn
G

and PG
n+1. In the nonequivariant case, PnX is the nth Postnikov section of X,

i.e., the spectrum obtained by killing all homotopy groups above dimension n. The
fiber Pn+1X is the n-connected cover of X.

Definition 3.4. The slice tower. The slice tower of X is the tower {PnX}n∈Z.
The spectrum PnX is the nth slice section of X.

When considering more than one group, we will write PnX = Pn
GX and PnX =

PG
n X.
Let Pn

nX be the fiber of the map

PnX → Pn−1X.

Definition 3.5. n-slices. The n-slice of a spectrum X is Pn
nX. A spectrum X is

an n-slice if X = Pn
nX.

In [HHR] we considered certain G-spectra (with G a finite cycylic 2-group) re-
lated to MU and found that their oddly indexed slices were contractible, and their
evenly indexed slices each had the form W ∧HZ(2), with HZ(2) being the 2-local
integer Eilenberg-Mac Lane spectrum with trivial action and W a certain wedge of
slice cells as defined above. In the case at hand we get a similar result involving
HZ(3) in each W could also have summands equivalent to the codimension 1 skele-

ton of some Σ−1Ŝ(2n,C3). When G = Cp, this skeleton is defined in terms of an
equivariant cellular structure in which there is a single cell in dimension 2n−1 and
p cells (permuted cyclically by the group) in each higher dimension up to 2pn− 1.
It is underlain by a wedge of two copies of S6n−2 when G = C3 and six of them
when G = C9.

For G = Cp for an odd prime p, let λk denote the 2-dimensional representation
corresponding to rotation through an angle of 2πk/p. Let q = p − 1 and r = q/2.
For G = Cp2 for an odd prime p, let λk for k 6= 0 denote the 2-dimensional
representation corresponding to rotation through an angle of 2πk/p2, and let λ′ =
λp.

Proposition 3.6. p-local representation spheres. With notation as above, in
RO(Cp) we have

ρ = 1 +

r∑
k=1

λk.
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For k prime to p, Sλk

is p-locally equivalent to Sλ, and Sρ is p-locally equivalent
to S1+rλ.

In RO(Cp2),

ρ = 1 +

(p2−1)/2∑
k=1

λr = 1 +

r∑
k=1

(λ′)k +
∑

0<k<p2/2
p|/ k

λk.

and Sρ is p-locally equivalent to S1+rλ′+prλ.

Definition 3.7. Half representation spheres at odd primes. For G = Cp,

S(2m−1)λ/2 is the finite G-spectrum underlain by ∨p−1S
(2m−1) with Hu

2m−1(S
(2m−1)λ/2)

isomorphic to the augmentation ideal as a Z[G]-module, with fixed point set S0.
Equivalently, it is the codimension 1 skeleton of Smλ under its standard cellular
structure, namely the one with p cells in each positive dimension up to 2m.

A similar definition can be made for larger cyclic groups.
Our justification for this notation is the fact that

S(2m−1)λ/2 ∧ S(2n−1)λ/2 = S(m+n−1)λ ∨

(
G+ ∧

∨
p−2

S2(m+n−1)

)
.

We will often ignore the free summand on the right. For p = 2 it is trivial, and
since λ = 2σ (where σ is the sign representation), λ/2 = σ. Alternatively a half
representation sphere can be thought of as the odd primary analog of a nonori-
ented representation sphere, namely one for which the matrix corresponding to a
generator of the cyclic group has determinant −1.

Lemma 3.8. A (2pn − 2)-slice. For G = Cp, let S
2nρ−1

denote the (2pn −
2)-skeleton of S2nρ−1, where ρ denotes the regular representation. Then S

2nρ−1 ∧
HZ is a (2pn− 2)-slice.

The p-localization of S
2nρ−1

is S(2qn−1)λ/2+2n−1.
Hill [Hil, Theorem 3.1] has shown that the k-skeleton of a n-dimensional slice

cell for n > 0 is ≥ k for any 0 < k < n. The methods below can be used to show
that its smash product with HZ is a k-slice.

Proof. Let X = S
2nρ−1 ∧HZ. We have a cofiber sequence

G+ ∧ S2pn−2 // S
2nρ−1 // S2nρ−1 // G+ ∧ S2pn−1.

It follows that S
2nρ−1 ≥ 2pn − 2 and hence X ≥ 2pn − 2. We also know that

X ≤ 2pn− 1 since the same holds for G+ ∧S2pn−2 ∧HZ and S2nρ−1 ∧HZ. Hence
showing that X is a (2pn − 2)-slice reduces to showing that the groups πG

2nρ−1X

and πG
2pn−1X both vanish.

For the latter we have

πG
2pn−1X = π2pn−1X

G

= π2pn−1S
2n−1 ∧HZ

= H2pn−1S
2n−1 = 0.
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For the former we have an exact sequence

πG
2nρ−1(G+ ∧ S2pn−2 ∧HZ)

��

πu
1 (G+ ∧HZ) 0

πG
2nρ−1(X)

��
πG
2nρ−1(S

2nρ−1 ∧HZ)

��

πG
0 (HZ) Z

πG
2nρ−1(G+ ∧ S2pn−1 ∧HZ) πu

0 (G+ ∧HZ) Z[Cp]

The bottom map is monomorphic, so πG
2nρ−1(X) = 0 and X is a (2pn−2)-slice. �

With the above example in mind, we make the following definition.

Definition 3.9. Generalized slice cells and refinements. A generalized n-
dimensional slice cell is a (p-local) n-dimensional G-CW complex W such that
(W ∧HZ(p)) W ∧HZ is an n-slice.

For a (p-local) G-spectrum X with πi
nX a free (Z(p)-module) abelian group, a

generalized refinement of πu
nX is a map f : W → X where W as above is underlain

by a wedge of (p-local) n-spheres such that πu
n(f) is an isomorphism of G-modules.

4. The detection theorem

The calculations for the 3-primary detection theorem are similar to those at
p = 2 subject to some obvious changes. In the bigrading of θj we have{

β9/9, β7

}
for j = 3{

β27/27, β21/3

}
for j = 4{

β81/81, β63/9, β62

}
for j = 5

and so on, generalizing to{
βc(j,k)/3j−1−2k : 0 ≤ k ≤ (j − 1)/2)

}
where c(j, k) = (3j +3j−1−2k)/4. As before we will construction a detection homo-
morphism which kills each element in this set other than β3j−1/3j−1 . It leads to a
valuation on BP∗ with

||vn|| = max(0, (6− n)/6),

which for k > 0 gives

||βc(j,k)/3j−1−2k || =

∣∣∣∣∣
∣∣∣∣∣ v

c(j,k)
2

3v3
j−1−2k

1

∣∣∣∣∣
∣∣∣∣∣

=
2

3

(3j + 3j−1−2k)

4
− 1− 5 · 3j−1−2k

6

=
2 · 3j − 8 · 3j−1−2k

12
− 1

=
(2 · 32k+1 − 8) · 3j−1−2k

12
− 1

≥ 54− 8

12
− 1 > 2,
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which shows that the element in question maps to one that is divisible by 9 and
therefore trivial.

We replace the ring A = Z2[ζ8] by Z3[ζ9], where the maximal ideal is generated
by π = ζ9 − 1 with π6 being a unit multiple of 3. There is a formal A-module F
over R∗ = A[w±1] with logarithm

logF (x) = x+
∑
k>0

w3k−1x3k

πk

The analog of HHR Lemma 11.8 is the statement the vi maps to a unit multiple
of π6−i for 1 ≤ i ≤ 6. Hazewinkel’s formula

3`n =
∑

0≤i<n

`iv
3i

n−i

can be rewritten as

3`n =
∑

1≤i≤n

`n−iv
3n−i

i

maps under φ : BP∗ → R∗/(w − 1) to

3

πn
=
∑

1≤i≤n

φ(vi)
3n−i

πn−i
= φ(vn) +

∑
1≤i≤n−1

φ(vi)
3n−i

πn−i

For n ≤ 6, assume inductively that φ(vn) = uiπ
6−n for a unit un ∈ A. Then we

have

3

πn
= φ(vn) +

∑
1≤i≤n−1

(uiπ
6−i)3

n−i

πn−i

= φ(vn) +
∑

1≤i≤n−1

u3n−i

i π3n−i(6−i)+i−n

The exponent of π is each term of the sum exceeds 6− n, and the result follows.
Now we can mimic the calculation of HHR §11.5 as follows. Let G = C9 and let

H ⊂ G be a nontrivial subgroup of order h. There are elements rHi ∈ π2iMU (6)

satisfying

x+
∑
i>0

mix
i+1 =

(
x+

∑
k>0

γ9/h(m3k−1)x
3k

)
◦

(
x+

∑
i>0

rHi xi+1

)

Applying the homomorphism λ(6) : π∗MU (6) → R∗, we get

(11) x+
∑
k>0

w3k−1

πk
x3k =

x+
∑
j>0

ζ9/hw3j−1

πj
x3j

 ◦

(
x+

∑
i>0

λ(6)(rH,i)x
i+1

)
.

Let sH,i = λ(6)(rH,i) and

fH(x) = x+
∑
i>0

sH,ix
i+1.
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Then (11) reads

x+
∑
k>0

w3k−1

πk
x3k =

x+
∑
j>0

ζ9/hw3j−1

πj
x3j

 ◦ fH(x)

= fH(x) +
∑
j>0

ζ9/hw3j−1

πj
fH(x)3

j

(12)

We see immediately that fH(x) is odd, so SH,i = 0 for odd i. Modulo x4, (12)
reads

x+
w2x3

π
= x+ sH,2x

3 + ζ9/h
w2

π
x3

so

sH,2 =
(1− ζ9/h)w2

π
=

{
−w2 for h = 9
−(3 + 3π + π2)w2 for h = 3

For h = 3 we need to find the smallest k such that sH,2k is a unit. We will

compute modulo x28 and it suffices to replace fH(x)3
j

by its mod 3 approximation,

(fH(x))3
j

=

∑
k≥0

sH,2kx
2k+1

3j

≡
∑
k≥0

s3
j

H,2kx
(2k+1)3j .

where sH,0 = 1. Thus we have

x+
∑
k>0

w3k−1

πk
x3k = fC3

(x) +
∑
j>0

ζ3w3j−1

πj
fC3

(x)3
j

≡ x+
∑
k>0

sC3,2kx
2k+1 +

∑
j>0

ζ3w3j−1

πj

∑
k≥0

s3
j

C3,2kx
(2k+1)3j

∑
k>0

w3k−1

πk
x3k ≡

∑
k>0

sC3,2kx
2k+1 +

∑
j>0

ζ3w3j−1

πj

∑
k≥0

s3
j

C3,2kx
(2k+1)3j

∑
k>0

w3k−1

πk
x3k ≡

∑
k>0

sC3,2kx
2k+1 +

∑
j>0

ζ3w3j−1x3j

πj

+
∑
j>0

ζ3w3j−1

πj

∑
k>0

s3
j

C3,2kx
(2k+1)3j

(1− ζ3)
∑
j>0

w3j−1

πj
x3j ≡

∑
k>0

sC3,2kx
2k+1 +

∑
j>0

ζ3w3j−1

πj

∑
k>0

s3
j

C3,2kx
(2k+1)3j

From this we see that SC3,2k is congruent to zero unless 2k+ 1 is divisible by 3, so
we replace k by 3`+ 1, and we have

(1− ζ3)
∑
j>0

w3j−1

πj
x3j ≡

∑
`≥0

sC3,6`+2x
6`+3 +

∑
j>0

ζ3w3j−1

πj

∑
`≥0

s3
j

C3,6`+2x
(6`+3)3j

Equating coefficients of x3 gives

sC3,2 =
(1− ζ3)w2

π
= −( pi2 + 3π + 3)w2,
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which we abbreviate by π2u1w
2 for a unit u1 ∈ A. Subtracting this from both sides

gives

(1− ζ3)
∑
j≥2

w3j−1

πj
x3j ≡

∑
`>0

sC3,6`+2x
6`+3 +

∑
j>0

ζ3w3j−1

πj
s3

j

C3,2x
3j+1

+
∑
j>0

ζ3w3j−1

πj

∑
`>0

s3
j

C3,6`+2x
(6`+3)3j

≡
∑
`>0

sC3,6`+2x
6`+3 +

∑
j≥2

ζ3w3j−1−1

πj−1
(π2u1w

2)3
j−1

x3j

+
∑
j>0

ζ3w3j−1

πj

∑
`>0

s3
j

C3,6`+2x
(6`+3)3j

≡
∑
`>0

sC3,6`+2x
6`+3 +

∑
j≥2

ζ3π2·3j−1+1w3j−1

πj
u3j−1

1 x3j

+
∑
j>0

ζ3w3j−1

πj

∑
`>0

s3
j

C3,6`+2x
(6`+3)3j

∑
j≥2

w3j−1(1− ζ3 − ζ3π2·3j−1+1)

πj
x3j

=
∑
j≥2

w3j−1aj
πj

x3j where aj = 1− ζ3 − ζ3π2·3j−1+1

≡
∑
`>0

sC3,6`+2x
6`+3

+
∑
j>0

ζ3w3j−1

πj

∑
`>0

s3
j

C3,6`+2x
(6`+3)3j

Equating coefficients of x9 gives

sC3,8 = πw8u2

for a unit u2 = a2/π
3 ∈ A. Subtracting this from both sides gives

∑
j≥3

w3j−1aj
πj

x3j

≡
∑
`>1

sC3,6`+2x
6`+3 +

∑
j>0

ζ3w3j−1

πj

∑
`>0

s3
j

C3,6`+2x
(6`+3)3j
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From this we see that sC3,14 and sC3,20 are congruent to zero, and

sC3,26 ≡ w26

(
a3
π3

− ζ3

π
π3u3

2

)
= w26

(
a3
π3

− ζ3a32
π7

)
= w26

( a3
π3

− ζ3π2u3
2

)
= w26u3

for a unit u3 ∈ A.

5. The odd primary periodicity theorem

This is intended to be an outline without detailed proofs. We assume there is a
Cp-spectrum BPR underlain by BP (q), where as usual q = p − 1. We also define
r = q/2.

λ will denote a degree 2 representation of a nontrivial cyclic p-group G that
sends a generator to a rotation of order p. We will let

a = aλ ∈ πG
−λS

0 and u = uλ ∈ πG
2−λHZ.

These elements will figure in the statement of the Slice Differentials Theorem. For
G = Cp, the regular representation ρ decomposes as ρ = 1 + rλ.

More generally λ(pi) will denote a degree 2 representation of a cyclic p-group G
containing Cpi that sends a generator to a rotation of order pi. We will denote by
ρpi the composite of the regular representation of Cpi with any surjection G → Cpi .
It satisfies

ρpi = ρpi−1 + rpi−1λ(pi).

We will make use of the Cp-map f : Np
1 (BP ) → BPR which is onto in underlying

homotopy. It induces maps

Npi

p (f) : Npi

1 (BP ) → Npi

p (BPR)

for all i ≥ 1. Recall that the indecomposable quotient of πu
2pn−2BPR is refined by

a map

S
2pn−1ρ−1 vn // BPR,

where ρ denotes the regular representation of Cp and S
V

denotes the codimension

1 skeleton of SV . Since S
V

is not a sphere, vn is not an element in π
Cp
? BPR. The

codimension 1 skeleton of S
V

is a sphere, so we have an element

yn ∈ π
Cp

2pn−1+(qpn−1−1)λBPR

defined to be the composite

S2pn−1+(qpn−1−1)λ // S
2pn−1−1+qpn−1λ

S(2pn−1−1)ρ+(r−1)λ //

yn

22S
2pn−1ρ−1 vn // BPR.
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This represents a permanent cycle in E
1,1+(2pn−1−1)ρ
2 of the slice SS, and

fn = aqp
n−1−1yn ∈ E2qpn−1−1,2pn

2

is on the vanishing line.
We also have maps

S2(pn−1)ρ
Np

1 (vn) //

xn

22Np
1 (BP )

f // BPR

representing a permanent cycle in E
0,2(pn−1)ρ
2 with

en = aq(p
n−1)xn ∈ E

2q(pn−1),2p(pn−1)
2

also on the vanishing line.
The Slice Differentials Theorem for G = Cp says

d2pn−1(u
pn−1

) = ap
n−1

fn

and d2q(pn−1)+1(u
qpn−1

fn) = aqp
n−1

en.

For a finite cyclic p-group G of order g, let G′ = G/Cp with order g′ = g/p.
We need to replace xn and vn by their norms. The former is an element in
πG
2(pn−1)ρG

Ng
p (BPR) that we will denote by xG

n . The corresponding element on

the vanishing line is

eGn = a2(pn−1)ρG
xG
n ∈ E

2(pn−1)(g−1),2(pn−1)g
2 .

It lies on the line through the origin of slope g − 1.

For the latter we need to determine X = Ng
p

(
S
2pn−1ρ−1

)
. It is underlain by

the g′-fold smash power of the wedge of q copies of S2pn−2. The number of wedge
summands here will be congruent to −1 modulo g. This means it is the wedge of
some free G-spheres, which we will ignore, and a wedge of g−1 copies of S2g′(pn−1).
Since (

S
2pn−1ρ−1

)Cp

= S2pn−1−1,

it follows that

XCp = Ng
p

(
S2pn−1−1

)
= S(2pn−1−1)ρg′ ,

which is a G′-spectrum. It reveals all of the fixed point data about X showing that
(modulo free summands) it has the form

S
(2pn−1−1)ρG′+mλ(g)

for some m. Equating dimensions of the above and S2g′(pn−1), we get

2(pn − 1)g′ + 1 = (2pn−1 − 1)g′ + 2m

m = (qpn−1 − 1)g′ + (g′ + 1)/2.
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With this in mind we define yGn ∈ πG
(2pn−1−1)ρG′+(m−1)λ(g)N

g
p (BPR) to be the com-

posite

S(2pn−1−1)ρG′+(m−1)λ(g) // S
(2pn−1−1)ρG′+mλ(g)

��

Ng
p

(
S
2pn−1ρ−1

)
Ng

p (vn) // Ng
p (BPR).

The corresponding element on the vanishing line is

fG
n = a(2pn−1−1)ρG′+(m−1)λ(g)y

G
n

∈ E
2m−1+(2pn−1−1)(g′−1),2m−1+(2pn−1−1)g′

2 .

This lies on the line with slope g − 1 and vertical intercept (q − 1)g′.

Slice Differentials Theorem. Let G be a finite cyclic p-group of order g. In the
slice SS for Ng

p (BPR) there are differentials

d2(pn−1)g′+1(u
pn−1

) = ap
n−1

fG
n

= ap
n−1

a(2pn−1−1)ρG′+(m−1)λ(g)y
G
n

and d2q(pn−1)g′+1(u
qpn−1

fG
n ) = aqp

n−1

eGn

= aqp
n−1

a2(pn−1)ρG
xG
n

for each n ≥ 1, where m, yGn and xG
n are as above, a = aλ(p) and u = uλ(p).

In particular inverting xG
n kills aqp

n−1

a2(pn−1)ρG
and makes upn

a permanent
cycle.

Now we specialize to the case p = 3 and G = C9. In order to detect our θjs,

we need to invert xC9
1 and N9

3 (x
C3
3 ). Inverting the former makes u3

λ(3) a permanent

cycle.
Inverting the latter makes a permanent cycle out of

N9
3 (u

27
λ(3)) = u27

3λ(9)−2ρ3

= u27
3λ(9)−2λ(3)

= u27
ρ9−3λ(3) because ρ9 = 1 + λ(3) + 3λ(9).

Since u3λ(3) = u3
λ(3) is a permanent cycle, so is u27

ρ9
. Then the periodicity we want

is given by

(u4ρ9x
C9
1 )27 ∈ π972N

9
3 (BPR).

6. Toward a reduction theorem for odd primes

We follow the proof in HHR. The statement we need to prove is that

MU (p) ∧
A0∧A

S0 = HZ(p).
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It is complicated by the fact that we do not have a precise handle on A. We only
know it is an A1-algebra satisfying A ∧

A1

S0 = A2, where

A0 = S0

G+ ∧
∨
k>0

k 6=pn−1

S2k

 = Np
1S

0

 ∨
k>0

k 6=pn−1

S2k


A1 =

∧
n>0

∨
k≥0

Sk(2pn−1ρ−2) =
∧
n>0

S0
[
S2pn−1ρ−2

]

= S0

[∨
n>0

S2pn−1ρ−2

]
,

which we map to BP (p) using the generators vn. Let

E = BP (p) ∧
A1

S0

be the Cp-spectrum obtained from BP (p) by killing the vn. It appears to be un-

derlain by BP (p−1) and to have H/p as its geometric fixed points. Its slice spectral
sequence is depicted on 5/25/11.

Let

A2 = S0

[∨
n>0

Sτn

]
where

(13) τn = 2pn−1 − 1 + (2qpn−1 − 1)λ/2 = (p− 2)λ/2 + (2pn−1 − 1)ρ ∈ RO1/2(G).

Note that for p = 2, τn as defined above is (2n − 1)ρ ∈ RO(G). There is a map

(14) tn : Sτn → E

refining πu
2pn−2E.

We can still define the analogs of the auxiliary spectra R(k) by

(15) R(k) = MU (p) ∧
A0∧A

(A′
0 ∧A′)

where

A′
0 = Np

1

 ∨
`>k

k 6=pn−1

S2`


and A′ is a similar modification of A.

We know that the Cp-map

R(∞) → HZ(p)

is underlain by an equiavalence, so it suffices to so show that the corresponding
map h of geometric fixed points is also an equivalence. As in the 2-primary case,
we have

π∗Φ
GHZ(p) = Z/(p)[b] where b = a−1u
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For the moment, we will ignore the technicalities about the monoidal geometric
fixed point functor and cofibrant replacements. Hopefully the following are true.

ΦGMU (p) = MU

ΦGA0 = S0

 ∨
k>0

k 6=pn−1

S2k


ΦGA1 = S0

[∨
n>0

S2pn−1−2

]
ΦGA2 =

∧
n>0

((
S0 ∨ S2pn−1−1

)
∧ S0

[
S2pn−2

])
It should follow that

ΦG(MU (p) ∧
A0

S0) = MU ∧
ΦGA0

S0

= BP

ΦG(MU (p) ∧
A0∧A1

S0) = BP ∧
ΦGA1

S0

= H/p

ΦGR(∞) = ΦG(MU (p) ∧
A0∧A

S0)

= H/p ∧
ΦGA2

S0

?
= H/p ∧

∧
n>0

 ∨
0≤j<p

S2jpn−1


=

∨
k≥0

Σ2kH/p.

The penultimate equality above depends on having an A∞-structure on A2, which
is produced in the note of June 1

Hence the source and target of

(16) h : ΦGR(∞) → ΦGHZ(p)

are equivalent as in the 2-primary case (Prop. 7.5 of HHR).
However we cannot form analogs of the spectra MU (G)/G ·r2n−1 used in Lemma

7.7, because of the twisted nature of A. To get around this we start with the
spectrum

E = MU (p) ∧
A0∧A1

S0

instead. It is underlain by BP (p−1) and ΦGE = H/p. Unfortunately it is not
known to have a good multiplicative structure. The same is true of the spectrum

Ẽ = MU (p) ∧
A1

S0,

for which E = Ẽ ∧
A0

S0 and whose geometric fixed point set is

ΦGẼ = H/p ∧A0.
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The reduction theorem is the statement that the map

Ẽ ∧
A0∧A2

S0 = E ∧
A2

S0 → HZ(p)

is an equivariant equivalence.
Let

A2,n = S0 [Sτn ] where τn is as in (13);

we know that modulo free summands this is (nonmultiplicatively) equivalent to(
S0 ∨ Sτn

)
∧ S0

[
S2(pn−1)ρ

]
.

The generator of πG
2(pn−1)ρA2,n maps to xn = N(vn).

Then let

(17) Mn =

(
MU (p) ∧

A0∧A1

S0

)
∧

A2,n

S0,

so we have

ΦGMn =
∨

0≤j<p

Σ2jpn−1

H/p.

Lemma 6.1. Analog of Lemma 7.7 of HHR. If for every n > 0 and 0 < j < p,

the class bjp
n−1

is in the image of

π2jpn−1ΦGMn → π2jpn−1ΦGHZ(p),

then the map π∗(h) of (16) is surjective and hence an isomorphism.

Proof. We argue as in HHR using that fact that

R(∞) = M1 ∧
MU(p)

M2 ∧
MU(p)

· · ·

to show that all powers of b are in the image of (16). �

Proposition 6.2. Analog of Prop. 7.10 of HHR. For every n > 0 and

0 < j < p, the class bjp
n−1

is in the image of

π2jpn−1ΦGMn → π2jpn−1ΦGHZ(p).

We will use the Mn of (17) to mimic the diagram (7.11) in HHR, so we have

(18) Sτn

tn

&&LL
LLL

LLL
LLL

L

0

��9
99

99
99

99
99

99
99

99
0

**UUU
UUUU

UUUU
UUUU

UUUU
U

yn

��
ỹn

}}

EG+ ∧ E //

��

E //

��

ẼG ∧ E

��
Σ−1ẼG ∧Mn

//

��

EG+ ∧Mn
//

��

Mn
//

��

ẼG ∧Mn

��
Σ−1ẼG ∧HZ(p)

// EG+ ∧HZ(p)
// HZ(p)

// ẼG ∧HZ(p)

The map tn of (14) has trivial composition with the map E → Mn by construc-

tion. Its composition with E → ẼG ∧E is trivial because ΦGE = H/p. Hence the
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indicated liftings to EG+ ∧ E and Σ−1ẼG ∧Mn exist. There is a similar diagram
with E replaced by R(pn − 2) as defined in (15).

We will assume for now (HHR 7.12) that the composite of yn with the map to
EG+ ∧HZ(p) is essential. This implies the same about the composite of ỹn with

the map to Σ−1ẼG. Then we have a diagram

πG
τn+1ẼG ∧Mn

��

π2pn−1ẼG ∧Mn

��
πG
τn+1ẼG ∧HZ(p) π2pn−1ẼG ∧HZ(p)

so ỹn maps to a nontrivial element of

π2pn−1ẼG ∧HZ(p) = π2pn−1ΦGHZ(p) = Z/(p),

namely a unit multiple of bp
n−1

.

To get the required jth power (for 0 < j < p) of bp
n−1

, recall that

EG+ ∧ EG+ ' EG+ and ẼG ∧ ẼG ' ẼG.

For brevity let

X = ẼG and Y = EG+.

From (18) we have a diagram

Sτn

z̃n

xxrrr
rrr

rrr
rrr

zn

$$JJ
JJJ

JJJ
JJJ

J

Σ−1X ∧HZ(p)
// Y ∧HZ(p)

Taking j-fold smash products and using the multiplication on HZ(p) gives

(19) Sjτn

z̃(j)
n

wwnnn
nnn

nnn
nnn

nnn
nn

z(j)
n

''NN
NNN

NNN
NNN

NNN
NN

z̃n,j

zz

zn,j

##

Σ−jX(j) ∧HZ
(j)
(p)

// Y (j) ∧HZ
(j)
(p)

Σ−jX ∧HZ
(j)
(p)

//

��

Y ∧HZ
(j)
(p)

��
Σ−jX ∧HZ(p)

// Y ∧HZ(p)

Then if zn,j is essential, it follows that ΦGz̃n,j is bjp
n−1

. Thus it remains to prove

Proposition 6.3. Analog of HHR Prop. 7.12. The map zn,j of (19) is essential
for 0 < j < p and n > 0.
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Following HHR we use the spectrum R(pn − 2). We will denote its jth smash
power by Rj for short. We have maps

Sτn

yn

xx
tn

��
EG+ ∧R(pn − 2) // R(pn − 2)

and Sjτn

y(j)
n

zz

zn,j

��

t
(j)
n

��
EG+ ∧Rj

//

��

Rj

EG+ ∧HZ(p).

We need to show that any choice of yn leads a nontrivial zn,j . It suffices to do
this for j = p − 1. Note that since G = Cp, the G-equivariant homotopy type of
EG+∧X is determined by the ordinary homotopy type of X for any G-equivariant
spectrum X. We will study it by examining the smash product of EG+ with the
ordinary (nonequivariant) Postnikov tower for X.

Lemma 6.4. Analog of HHR Lemma 7.14. For 0 < m < 2pn−2 and 0 < j < p,

πG
jτnEG+ ∧ Pm

mRj = 0

and there is an exact sequence

πG
jτn

EG+ ∧ P2pn−2Rj
// πG

jτn
EG+ ∧Rj

��
πG
jτn

EG+ ∧HZ(p) = Z/(p).

Proof. We can identify the slices of Rj (with respect to the trivial group) as in HHR
and derive the first assertion since the slices in question are contractible. The 0th

slice is HZ(p) and the first nontrivial positively indexed slice is P 2pn−2
2pn−2Rj . Hence

P1Rj = P2pn−2Rj .

The second assertion follows from the exact sequence of the smash product of EG+

with the fibration
P1Rj

// Rj
// P 0

0Rj .

�

Thus we need to show that y
(j)
n is not in the image of

πG
jτnEG+ ∧ P2pn−2Rj .

What follows is still suspect for j > 1.

Proposition 6.5. Analog of HHR Prop. 7.15. The image of the vertical
composite map of

πG
jτn

EG+ ∧ P2pn−2Rj

��
y
(j)
n ∈ πG

jτn
EG+ ∧Rj

// πG
jτn

Rj

i∗0��⊕
p−1 π

u
2j(pn−1)Rj
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is contained in the image of 1− γ (for a generator γ of G) while that of y
(j)
n is not.

The image of yn generates a rank one summand of the indicated Z[G]-module,
which is

HomZ(I,Z⊕ I) = I ⊕ Z⊕
⊕
p−2

Z[G].

It jth smash power is a nontrivial fixed element of the jth tensor power of this
module. Hence it is not in the image of 1− γ.

To prove the first assertion of Proposition 6.5 we need two steps as in HHR.
First it is shown (Corollary 6.8) that the image of

πG
jτnEG+ ∧ P2pn−2Rj → πG

jτnRj

is contained in the image of the transfer map

πjτnRj → πG
jτnRj

from the trivial subgroup of G. We then show (Lemma 6.9) that the image of the
transfer map in πu

j(2pn−2)Rj is in the image of (1− γ). We now turn to these steps.

Lemma 6.6. Analog of HHR Lemma 7.16. Let M ≥ 0 be a G-spectrum. The
image of

πG
0 EG+ ∧M → πG

0 M

is the image of the transfer map

π0M → πG
0 M

from the trivial subgroup of G.

Proof: Since M is (−1)-connected the cell decomposition of EG+ implies that
πG
0 G+ ∧M → πG

0 EG+ ∧M is surjective. The composite

πG
0 G+ ∧M → πG

0 EG+ ∧M → πG
0 M

is the transfer. �

Corollary 6.7. Analog of HHR Cor. 7.17. The image of

πG
jτnEG+ ∧ P2pn−2Rj → πG

jτnP2pn−2Rj

is contained in the image of the transfer map.

Proof: This follows from Lemma 6.6 above, after the identification

πG
jτn (P2pn−2R(pn − 2))

(j) ≈ πG
0 S

−jτn ∧ (P2pn−2R(pn − 2))
(j)

and the observation that

S−jτn ∧ (P2pn−2R(pn − 2))
(j) ≈

(
P0

(
S−τn ∧R(pn − 2)

))(j)
is ≥ 0. �

Corollary 6.8. Analog of HHR Cor. 7.18. The image of

πG
τnEG+ ∧ P2pn−2R(pn − 2) → πG

τnR(pn − 2)

is contained in the image of the transfer map.
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Proof: Immediate from Corollary 6.7 and the naturality of the transfer. �

The remaining step is the special case X = P2pn−2R(pn−2), V = τn of the next
result.

Lemma 6.9. Analog of HHR Lemma 7.19. Let X be a G-spectrum, V a virtual
representation of G of virtual dimension d, and H ⊂ G the subgroup of index 2.
Write ε ∈ {±1} for the degree of

γ : i∗0S
V → i∗0S

V .

The image of

πV X
Tr−−→ πG

V X → πu
dX

is contained in the image of

(1 + εγ) : πu
dX → πu

dX.

Proof: Consider the diagram

πG
V (G+ ∧X) //

��

πG
V X

��
πu
d (G+ ∧X) // πu

dX,

in which the map of the top row is induced by the projection G+ → S0. By the
Wirthmüller isomorphism, the term in the upper left is isomorphic to πV X and the
map of the top row can be identified with the transfer map. The non-equivariant
identification

G+ ≈ S0 ∨ S0

gives an isomorphism of groups of non-equivariant stable maps

[G+ ∧ SV , X] ≈ [SV , X]⊕ [SV , X],

and so an isomorphism of the group in the lower left hand corner with

πu
dX ⊕ πu

dX

under which the generator γ ∈ G acts as

(a, b) 7→ (εγb, εγa).

The map along the bottom is (a, b) 7→ a+ b. Now the image of the left vertical map
is contained in the set of elements invariant under γ which, in turn, is contained in
the set of elements of the form

(a, εγa).

�

Proof of Proposition ??: As described after its statement, Proposition ?? is a
consequence of Corollary 6.8 and Lemma 6.9. �
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