NONSPLIT RING SPECTRA AND PRODUCTS OF β-ELEMENTS IN THE STABLE HOMOTOPY OF MOORE SPACES

Jinkun Lin

Abstract

This paper proves trivialities and nontrivialities of some products of higher order $\beta_{\left(t p^{n} / s\right)}$ elements in the stable homotopy of Moore spaces. The proof is based mainly on properties of nonsplit ring spectra K_{r} (the cofibre of r-iterated Adams map with r not divisible by prime $p \geq 5$) which are given in the rest of the paper.

1. Introduction. Let S be the sphere spectrum and M the Moore spectrum modulo a prime $p \geq 5$ given by the cofibration $S \xrightarrow{p} S \xrightarrow{i}$ $M \xrightarrow{j} \Sigma S$. Consider the Brown-Peterson spectrum $B P$ at p; it is known that there is a map $\alpha: \Sigma^{q} M \rightarrow M$ such that the induced $B P_{*}$ homomorphism $\alpha_{*}=v_{1}: B P_{*} /(p) \rightarrow B P_{*} /(p), q=2(p-1)$.

Let K_{r} be the cofibre of α^{r} given by the cofibration

$$
\begin{equation*}
\Sigma^{r q} M \xrightarrow{\alpha^{\prime}} M \xrightarrow{i_{r}^{\prime}} K_{r} \xrightarrow{j_{r}^{\prime}} \Sigma^{r q+1} M . \tag{1.1}
\end{equation*}
$$

In [4] and [6], S. Oka showed that K_{r} is a ring spectrum for $r \geq 1$; if $r \equiv 0(\bmod p)$ it is called a split ring spectrum since $K_{r} \wedge K_{r}$ splits into four summands $K_{r}, \Sigma K_{r}, \Sigma^{r q+1} K_{r}, \Sigma^{r q+2} K_{r}$. If $r \not \equiv 0$ $(\bmod p)$, it is called a nonsplit ring spectrum since $K_{r} \wedge K_{r}$ splits only into three summands $K_{r}, \Sigma L \wedge K_{r}, \Sigma^{r q+2} K_{r}$, where L is the cofibre of $\phi_{1}=j \alpha^{r} i \in \pi_{r q-1} S$.

In the nonsplit case, S . Oka showed in [4] that there is a direct summand decomposition

$$
\begin{equation*}
\left[\Sigma^{*} K_{r}, K_{r}\right]=\operatorname{Mod} \oplus \operatorname{Der} \oplus \operatorname{Mod} \delta_{0} \tag{1.2}
\end{equation*}
$$

where Mod consists of right K_{r}-module maps, Der consists of elements which behave as a derivation on the cohomology defined by K_{r} and $\delta_{0}=i_{r}^{\prime} i j j_{r}^{\prime} \in\left[\Sigma^{-r q-2} K_{r}, K_{r}\right]$. Moreover, Mod is a commutative subring, $\operatorname{ker}\left\{\left(i_{r}^{\prime}\right)^{*}:\left[\Sigma^{*} K_{r}, K_{r}\right] \rightarrow \pi_{*} K_{r}\right\}=\operatorname{Der} \oplus \operatorname{Mod} \delta_{0}$ and $\left(i_{r}^{\prime} i\right)^{*}: \operatorname{Mod} \rightarrow \pi_{*} K_{r}$ is an isomorphism.

One of the most important properties which are shown in [4] is $\delta^{\prime} f-f \delta^{\prime} \in \operatorname{Mod}$ for any $f \in \operatorname{Mod}, \delta^{\prime}=i_{r}^{\prime} j_{r}^{\prime} \in\left[\Sigma^{-r q-1} K_{r}, K_{r}\right]$ and the commutativity $\delta^{\prime} f^{p}=f^{p} \delta^{\prime}$ for any $f \in \operatorname{Mod}$ having even degree.

This has been found very useful in the detection of higher order $\beta_{t p^{n} / s}$ elements in $\pi_{*} S$ (cf. [8]).

From [8] and [9], there exist $f_{s} \in \operatorname{Mod} \cap\left[\Sigma^{*} K_{s}, K_{s}\right]$ for $p \geq 5$, $s \leq p^{n}$ if $p \nmid t \geq 2$ or $s \leq p^{n}-1$ if $t=1$ such that the induced $B P_{*}$ homomorphism $\left(f_{s}\right)_{*}=v_{2}^{t p^{n}}, \beta_{\left(t p^{n} / s\right)}=j_{s}^{\prime} f_{s} i_{s}^{\prime}$ is known to be a β-element in $\left[\Sigma^{*} M, M\right]$ such that

$$
\beta_{t p^{n} / s}^{\prime} \in \operatorname{Ext}^{1, *} M=\operatorname{Ext}_{B P \cdot B P}^{1, *}\left(B P_{*}, B P_{*} M\right)
$$

converges to $\beta_{\left(t p^{n} / s\right)} i \in \pi_{*} M$ in the Adams-Novikov spectral sequence $\mathrm{Ext}^{*}{ }^{* *} M \Rightarrow \pi_{*} M$.

In this paper, we will prove the following trivialities and nontrivialities of products of $\beta_{\left(t p^{n} / s\right)}$ elements in [$\Sigma^{*} M, M$].

Theorem I. Let $p \geq 5$. The following relations on products of β elements in $\left[\Sigma^{*} M, M\right]$ hold:
(1) $\beta_{\left(k t p^{n} / s\right)} \cdot \beta_{\left(t p^{n} / s\right)}=0$ for $s \leq p^{n}$ if $p \nmid t \geq 2, s \leq p^{n}-1$ if $t=1$ and $k \not \equiv-1(\bmod p)$.
(2) $\beta_{\left(k t p^{n} / s\right)} \delta \beta_{\left(t p^{n} / s\right)}=0$ for $s \leq p^{n-1}$ if $p \nmid t \geq 2, s \leq p^{n-1}-1$ if $t=1$ and $k \not \equiv-1(\bmod p)$, where $\delta=i j \in\left[\Sigma^{-1} M, M\right]$.
(3) $\beta_{\left(a p^{m} / s\right)} \delta \beta_{\left(t p^{n} / s\right)}=-\beta_{\left(t p^{n} / s\right)} \delta \beta_{\left(a p^{m} / s\right)}$ if one of the following conditions holds
(i) $s \leq \min \left(p^{n-1}, p^{m-1}\right)$ if $p \nmid t \geq 2$ and $p \nmid a \geq 2$.
(ii) $s \leq \min \left(p^{n-1}, p^{m-1}-1\right)$ if $p \nmid t \geq 2$ and $a=1$.
(iii) $s \leq \min \left(p^{n-1}-1, p^{m-1}\right)$ if $t=1$ and $p \nmid a \geq 2$.
(iv) $s \leq \min \left(p^{n-1}-1, p^{m-1}-1\right)$ if $t=a=1$.
(4) Suppose that $s \leq p^{n}$ if $p \nmid t \geq 2$ or $s \leq p^{n}-1$ if $t=1, r \leq p^{m}$ if $p \nmid a \geq 2$ or $r \leq p^{m}-1$ if $a=1$; then

$$
\beta_{\left(a p^{m} / r\right)} \cdot \beta_{\left(t p^{n} / s\right)} \neq 0, \quad \beta_{\left(a p^{m} / r\right)} \delta \beta_{\left(t p^{n} / s\right)} \neq 0
$$

if $r+s \geq p^{n}+p^{n-1}$ and one of the following conditions holds:
(i) $m=n, a+t \equiv 0(\bmod p)$.
(ii) $m=n-1, a \not \equiv 1(\bmod p)$.
(iii) $m<n-1, a \neq-1(\bmod p)$.

Theorem I is proved by using some results on nonsplit ring spectra K_{r} given in S. Oka [4] and some results on $\mathrm{Ext}^{1, *} M$ given in Miller and Wilson [1]. The proof also needs some further properties of K_{r} which are not in [4], mainly the following fact on commutativity of some elements in [$\Sigma^{*} K_{r}, K_{r}$].

Theorem II. If $r \not \equiv 0(\bmod p)$ and $g, f \in \operatorname{Mod} \cap\left[\Sigma^{*} K_{r}, K_{r}\right]$, then

$$
g^{p}\left(\delta_{0} f^{p}-f^{p} \delta_{0}\right)=(-1)^{|f| \cdot|g|}\left(\delta_{0} f^{p}-f^{p} \delta_{0}\right) g^{p}
$$

and $\delta_{0} f^{p^{2}}=f^{p^{2}} \delta_{0}$ if f has even degree, where $\delta_{0}=i_{r}^{\prime} i j j_{r}^{\prime}$ is the unique generator in $\left[\Sigma^{-r q-2} K_{r}, K_{r}\right]$. If $r \equiv 0(\bmod p), \delta_{0} f^{p}-f^{p} \delta_{0}$ belongs to the commutative subring \mathscr{C}_{*} of $\left[\Sigma^{*} K_{r}, K_{r}\right]$ and the above two equalities also hold.

The proof of Theorem I will be given in §2. In §3, we first recall some results on K_{r} given in [4], then develop some further technical results on K_{r} and prove Theorem II.
2. Proof of Theorem I. From [8] and [9], there exists $f \in$ [$\left.\Sigma^{t p^{n}(p+1) q} K_{s}, K_{s}\right]$ for $s \leq p^{n}$ if $p \nmid t \geq 2$ or $s \leq p^{n}-1$ if $t=1$ such that the induced $B P_{*}$ homomorphism $f_{*}=v_{2}^{t p^{n}}: B P_{*} /\left(p, v_{1}^{s}\right) \rightarrow$ $B P_{*} /\left(p, v_{1}^{s}\right)$. We may assume $f \in \operatorname{Mod}$ (or $f \in \mathscr{C}_{*}$ in case $s \equiv 0$ $(\bmod p))$ since the components of f in Der and Mod δ_{0} induce the zero homomorphism. Then $j_{s}^{\prime} f i_{s}^{\prime}=\beta_{\left(t p^{n} / s\right)} \in\left[\Sigma^{*} M, M\right]$ and $\beta_{\left(k t p^{n} / s\right)} \beta_{\left(t p^{n} / s\right)}=j_{s}^{\prime} f^{k} i_{s}^{\prime} j_{s}^{\prime} f i_{s}^{\prime}$.

Recall that $\delta^{\prime}=i_{s}^{\prime} j_{s}^{\prime} \in\left[\Sigma^{-s q-1} K_{s}, K_{s}\right]$ and $\delta^{\prime} f-f \delta^{\prime} \in \operatorname{Mod}$. From commutativity of Mod, we have $f\left(\delta^{\prime} f-f \delta^{\prime}\right)=\left(\delta^{\prime} f-f \delta^{\prime}\right) f$ or equivalently $f^{2} \delta^{\prime}-\delta^{\prime} f^{2}=2\left(f^{2} \delta^{\prime}-f \delta^{\prime} f\right)$. Composing f with the above equation, inductively we have

$$
f^{r} \delta^{\prime}-\delta^{\prime} f^{r}=r\left(f^{r} \delta^{\prime}-f^{r-1} \delta^{\prime} f\right), \quad r \geq 1,
$$

and $f^{k} \delta^{\prime} f=\frac{1}{k+1}\left(\delta^{\prime} f^{k+1}+k f^{k+1} \delta^{\prime}\right)$ if we let $r-1=k \not \equiv-1(\bmod p)$. So $\beta_{\left(k t p^{n} / s\right)} \cdot \beta_{\left(t p^{n} / s\right)}=j_{s}^{\prime} f^{k} \delta^{\prime} f i_{s}^{\prime}=0$; this proves Theorem I (1).
(2) From [8], there exists $f \in\left[\Sigma^{t p^{n-1}(p+1) q} K_{s}, K_{s}\right]$ such that the induced $B P_{*}$ homomorphism $f_{*}=v_{2}^{t p^{n-1}}$ and $f \in$ Mod. Hence $f_{*}^{p}=v_{2}^{t p^{n}}$ and $\beta_{\left(k t p^{n} / s\right)} \delta \beta_{\left(t p^{n} / s\right)}=j_{s}^{\prime} f^{k p} i_{s}^{\prime} i j j_{s}^{\prime} f^{p} i_{s}^{\prime}=j_{s}^{\prime} f^{k p} \delta_{0} f^{p} i_{s}^{\prime}$. From Theorem II, $f^{p}\left(\delta_{0} f^{p}-f^{p} \delta_{0}\right)=\left(\delta_{0} f^{p}-f^{p} \delta_{0}\right) f^{p}$ or equivalently $f^{2 p} \delta_{0}-\delta_{0} f^{2 p}=2\left(f^{2 p} \delta_{0}-f^{p} \delta_{0} f^{p}\right)$. By induction we have $f^{r p} \delta_{0}-\delta_{0} f^{r p}=r\left(f^{r p} \delta_{0}-f^{(r-1) p} \delta_{0} f^{p}\right)$ for $r \geq 1$. Thus

$$
f^{k p} \delta_{0} f^{p}=\frac{1}{k+1}\left(\delta_{0} f^{(k+1) p}+k f^{(k+1) p} \delta_{0}\right)
$$

for $k \not \equiv-1(\bmod p)$ and so $\beta_{\left(k t p^{n} / s\right)} \delta \beta_{\left(t p^{n} / s\right)}=j_{s}^{\prime} f^{k p} \delta_{0} f^{p} i_{s}^{\prime}=0$.
(3) In all cases, there exists $f \in \operatorname{Mod} \cap\left[\Sigma^{t p^{n-1}}(p+1) q K_{s}, K_{s}\right]$ and $g \in \operatorname{Mod} \cap\left[\Sigma^{a p^{m-1}(p+1) q} K_{s}, K_{s}\right]$ such that $f_{*}=v_{2}^{t p^{n-1}}$ and $g_{*}=v_{2}^{a p^{m-1}}$. Then $\beta_{\left(a p^{m} / s\right)} \delta \beta_{\left(t p^{n} / s\right)}=j_{s}^{\prime} g^{p} i_{s}^{\prime} i j j_{s}^{\prime} f^{p} i_{s}^{\prime}=j_{s}^{\prime} g^{p} \delta_{0} f^{p} i_{s}^{\prime}$.

From Theorem II, $g^{p}\left(\delta_{0} f^{p}-f^{p} \delta_{0}\right)=\left(\delta_{0} f^{p}-f^{p} \delta_{0}\right) g^{p}$ or equivalently $g^{p} \delta_{0} f^{p}+f^{p} \delta_{0} g^{p}=\delta_{0} f^{p} g^{p}+g^{p} f^{p} \delta_{0}$. Hence $\beta_{\left(a p^{m} / s\right)} \delta \beta_{\left(t p^{n} / s\right)}+$ $\beta_{\left(t p^{n} / s\right)} \delta \beta_{\left(a p^{m} / s\right)}=j_{s}^{\prime}\left(g^{p} \delta_{0} f^{p}+f^{p} \delta_{0} g^{p}\right) i_{s}^{\prime}=0$.
(4) From [4, p. 422], $i_{r}^{\prime} j_{s}^{\prime}: K_{s} \rightarrow \Sigma^{s q+1} K_{r}$ induces a cofibration

$$
\Sigma^{s q} K_{r} \xrightarrow{\psi_{r, r+s}} K_{r+s} \xrightarrow{\rho_{r+s, s}} K_{s} \xrightarrow{i_{r}^{\prime} j_{s}^{\prime}} \Sigma^{s q+1} K_{r}
$$

which realizes the short exact sequence

$$
0 \rightarrow B P_{*} /\left(p, v_{1}^{r}\right) \xrightarrow{\psi_{*}} B P_{*} /\left(p, v_{1}^{r+s}\right) \xrightarrow{\rho_{*}} B P_{*} /\left(p, v_{1}^{s}\right) \rightarrow 0
$$

such that $\psi_{*}=v_{1}^{s}$ and then induces Ext exact sequence

$$
\begin{aligned}
\cdots \rightarrow \mathrm{Ext}^{k, t-s q} K_{r} \xrightarrow{\psi_{*}} \mathrm{Ext}^{k, t} K_{r+s} \xrightarrow{\rho_{*}} \mathrm{Ext}^{k, t} K_{s} \\
\xrightarrow{\left(i_{r}^{\prime} j_{s}^{\prime}\right)} \mathrm{Ext}^{k+1, t-s q} K_{r} \rightarrow \cdots
\end{aligned}
$$

where we briefly write $\operatorname{Ext}^{k, *} X=\operatorname{Ext}_{B P_{*} B P}^{k, *}\left(B P_{*}, B P_{*} X\right)$ and $\left(i_{r}^{\prime} j_{s}^{\prime}\right)_{*}$ as the boundary homomorphism. Moreover, we have (cf. [8] (3.23))

$$
\psi_{r, r+s} i_{r}^{\prime}=i_{r+s}^{\prime} \alpha^{s}, \quad \rho_{r+s, s} i_{r+s}^{\prime}=i_{s}^{\prime}, \quad j_{s}^{\prime} \rho_{r+s, s}=\alpha^{r} j_{r+s}^{\prime}
$$

Note that the behavior of $\psi_{*}, \rho_{*},\left(i_{r}^{\prime} j_{s}^{\prime}\right)_{*}$ in the above Ext exact sequence is compatible with that of $\psi, \rho, i_{r}^{\prime} j_{s}^{\prime}$ in the cofibration, i.e., we also have $\psi_{*}\left(i_{r}^{\prime}\right)_{*}=\left(i_{r+s}^{\prime}\right)_{*} v_{1}^{s}, \rho_{*}\left(i_{r+s}^{\prime}\right)_{*}=\left(i_{s}^{\prime}\right)_{*}$ in the Ext stage, where $\left(i_{r}^{\prime}\right)_{*}: \mathrm{Ext}^{k, *} M \rightarrow \mathrm{Ext}^{k, *} K_{r}$ is the reduction in the following exact sequence

$$
\cdots \rightarrow \mathrm{Ext}^{k, t-r q} M \xrightarrow{v_{1}^{r}} \mathrm{Ext}^{k, t} M \xrightarrow{\left(i_{r}^{\prime}\right)_{*}} \mathrm{Ext}^{k, t} K_{r} \xrightarrow{\left(j_{r}^{\prime}\right)_{*}} \mathrm{Ext}^{k+1, t-r q} M \rightarrow \cdots
$$

Case (A). $r+s=p^{n}+p^{n-1}$. Let $g \in \operatorname{Mod} \cap\left[\Sigma^{*} K_{r}, K_{r}\right]$ and $f \in \operatorname{Mod} \cap\left[\Sigma^{*} K_{s}, K_{s}\right]$ such that $g_{*}=v_{2}^{a p^{m}}$ and $f_{*}=v_{2}^{t p^{n}}$. Consider $\beta_{\left(a p^{m} / r\right)} \beta_{\left(t p^{n} / s\right)}=j_{r}^{\prime} g i_{r}^{\prime} j_{s}^{\prime} f i_{s}^{\prime} \in\left[\Sigma^{*} M, M\right]$.

Suppose that $j_{r}^{\prime} g i_{r}^{\prime} j_{s}^{\prime} f i_{s}^{\prime}=0$; then $g i_{r}^{\prime} j_{s}^{\prime} f i_{s}^{\prime}=i_{r}^{\prime} k$ for some $k \in$ $\pi_{*} M$ and the arguments below show that it yields a contradiction.

Since $j_{s}^{\prime} f i_{s}^{\prime} i \in \pi_{*} M$ is detected by $\beta_{t p^{n} / s}^{\prime} \in \operatorname{Ext}^{1} M$, then $i_{r}^{\prime} j_{s}^{\prime} f i_{s}^{\prime} i \in$ $\pi_{*} K_{r}$ is detected by

$$
\begin{aligned}
\left(i_{r}^{\prime}\right)_{*}\left(\beta_{t p^{n} / s}^{\prime}\right) & =\left(i_{r}^{\prime}\right)_{*}\left(v_{1}^{r-1} \beta_{t p^{n} / r+s-1}^{\prime}\right) \\
& =\left(\psi_{1, r}\right)_{*} i_{*}^{\prime}\left(\beta_{t p^{n} / p^{n}+p^{n-1}-1}^{\prime}\right) \in \operatorname{Ext}^{1} K_{r}
\end{aligned}
$$

From [1, p. 132 Theorem 1.1(b)(iii)],

$$
i_{*}^{\prime}\left(c_{1}\left(t p^{n}\right)\right)=2 t v_{2}^{t p^{n}-p^{n-1}} h_{0} \in \operatorname{Ext}^{1} K_{1}
$$

where $c_{1}\left(t p^{n}\right)$ in [1] actually is $\beta_{t p^{n} / p^{n}+p^{n-1}-1}^{\prime} \in \operatorname{Ext}^{1} M$ and $h_{0} \in$ $\mathrm{Ext}^{1} K_{1}$ is the v_{2}-torsion free generator. Hence $i_{r}^{\prime} j_{s}^{\prime} f i_{s}^{\prime} i \in \pi_{*} K_{r}$ is detected by $2 t\left(\psi_{1, r}\right)_{*}\left(v_{2}^{t p^{n}-p^{n-1}} h_{0}\right) \in \operatorname{Ext}^{1} K_{r}$.

Since $g \in \operatorname{Mod} \cap\left[\Sigma^{*} K_{r}, K_{r}\right]$ and $\left(g i_{r}^{\prime} i\right)_{*}=v_{2}^{a p^{m}} \in \operatorname{Ext}^{0} K_{r}$, then $g i_{r}^{\prime} j_{s}^{\prime} f i_{s}^{\prime} i \in \pi_{*} K_{r}$ is detected by the product

$$
\begin{aligned}
& v_{2}^{a p^{m}} \cdot 2 t\left(\psi_{1, r}\right)_{*}\left(v_{2}^{t p^{n}-p^{n-1}} h_{0}\right) \\
& \quad=2 t\left(\psi_{1, r}\right)_{*}\left(v_{2}^{a p^{m}+t p^{n}-p^{n-1}} h_{0}\right) \neq 0 \in \operatorname{Ext}^{1} K_{r}
\end{aligned}
$$

(if it is zero, then $v_{2}^{a p^{m}+t p^{n}-p^{n-1}} h_{0}=\left(i_{1}^{\prime} j_{r-1}^{\prime}\right)_{*}(x)$ for some $x \in$ $\operatorname{Ext}^{0}{ }^{0}\left(a p^{m}+t p^{n}-p^{n-1}\right)(p+1) q+r q K_{r-1}$, but the group vanishes for degree reasons, cf. [1, p. 140 Prop. 6.3]).

Hence $i_{r}^{\prime} k \in \pi_{*} K_{r}$ and so $k \in \pi_{*} M$ has $B P$ filtration 1, i.e. k is detected by some $y \in \operatorname{Ext}^{1} M$ and $\left(i_{r}^{\prime}\right)_{*}(y)=2 t\left(\psi_{1, r}\right)_{*}\left(v_{2}^{a p^{m}+t p^{n}-p^{n-1}} h_{0}\right) \neq$ $0 \in \operatorname{Ext}^{1} K_{r}$. Thus $\left(i_{r-1}^{\prime}\right)_{*}(y)=\left(\rho_{r, r-1}\right)_{*}\left(i_{r}^{\prime}\right)_{*}(y)=0$ and $y=v_{1}^{r-1} \bar{y}$ for some $\bar{y} \in \operatorname{Ext}^{1}{ }^{(}\left(a p^{m}+t p^{n}-p^{n-1}\right)(p+1) q+q M$.

From [1, p. 132 Theorem 1.1], $\operatorname{Ext}^{1} M$ is generated by $v_{1}^{u} h_{0} \quad(u \geq 0)$ and $v_{1}^{u} c_{1}\left(b p^{s}\right)\left(0 \leq u<p^{s}+p^{s-1}-1\right.$ if $p \nmid b \geq 2,0 \leq u<p^{s}$ if $b=$ 1) additively, where $h_{0} \in \operatorname{Ext}^{1} M$ is the v_{1}-torsion free generator and $c_{1}\left(b p^{s}\right) \in \operatorname{Ext}^{1} M$ is the v_{1}-torsion generator whose internal degree is $\left(b p^{s}-p^{s-1}\right)(p+1) q+q$.
It is impossible for $\bar{y}=v_{1}^{u} h_{0}$ since then $\left(i_{r}^{\prime}\right)_{*}(y)=\left(i_{r}^{\prime}\right)_{*}\left(v_{1}^{r-1} \bar{y}\right)=0$ which yields a contradiction.
If $\bar{y}=v_{1}^{u} c_{1}\left(b p^{s}\right)$ with $u>0$, then $y=v_{1}^{r-1} \bar{y}=v_{1}^{r} z$ for $z=$ $v_{1}^{u-1} c_{1}\left(b p^{s}\right)$ and so $\left(i_{r}^{\prime}\right)_{*}(y)=0$ which yields a contradiction.
If $\bar{y}=c_{1}\left(b p^{s}\right)$, then for degree reasons $(b p-1) p^{s-1}=a p^{m}+t p^{n}-$ p^{n-1}. If $m=n, a+t \equiv 0(\bmod p)$, then $b=a+t \equiv 0(\bmod p)$ which yields a contradiction. If $m=n-1$ and $a \not \equiv 1(\bmod p)$, $(b p-1) p^{s-1}=(a+t p-1) p^{n-1}$ and so $b p-1 \equiv 0(\bmod p)$ if $s<n$, $a \equiv 1$ if $s>n$ and $a \equiv 0(\bmod p)$ if $s=n$ all of which yields contradictions. Similarly, there is a contradiction if $m<n-1$ and $a \not \equiv-1(\bmod p)$. Thus we have $\beta_{\left(a p^{m} / r\right)} \cdot \beta_{\left(t p^{n} / s\right)} \neq 0$ for $r+s=$ $p^{n}+p^{n-1}$ and one of the conditions (i)-(iii) holds.
Case (B). $r+s>p^{n}+p^{n-1}$.
Let $u=(r+s)-\left(p^{n}+p^{n-1}\right)$; then there are c and d such that $u=c+d$ and $c<r, d<s$. From [6, p. 277 Lemma 2.4], $d\left(i_{r}^{\prime}\right)=0=$ $d\left(j_{r}^{\prime}\right)$. Moreover, $\operatorname{Mod} \subset \operatorname{ker} d$, so $\beta_{\left(a p^{m} / r\right)}=j_{r}^{\prime} g i_{r}^{\prime}, \beta_{\left(t p^{n} / s\right)}=j_{s}^{\prime} f i_{s}^{\prime}$ all belong to ker d which is a commutative subring of $\left[\Sigma^{*} M, M\right.$].

Since $\alpha^{d} j_{s}^{\prime} f i_{s}^{\prime} \delta=j_{s-d}^{\prime} \rho_{s, s-d} f i_{s}^{\prime} i j$, there exists $\bar{f} \in \operatorname{Mod} \cap\left[\Sigma^{*} K_{s-d}\right.$, $\left.K_{s-d}\right]$ such that $\rho_{s, s-d} f i_{s}^{\prime} i=\bar{f} i_{s-d}^{\prime} i$ and $\bar{f}_{*}=v_{2}^{t p^{n}}$; then $\alpha^{d} \beta_{\left(t p^{n} / s\right)} \delta$ $=\alpha^{d} j_{s}^{\prime} f i_{s}^{\prime} \delta=j_{s-d}^{\prime} \bar{f} i_{s-d}^{\prime} \delta=\beta_{\left(t p^{n} / s-d\right)} \delta$.

Suppose that $\beta_{\left(a p^{m} / r\right)} \cdot \boldsymbol{\beta}_{\left(t p^{n} / s\right)}=0$. Then

$$
\begin{aligned}
& \beta_{\left(a p^{m} / r-c\right)} \beta_{\left(t p^{n} / s-d\right)} \delta=\beta_{\left(a p^{m} / r-c\right)} \alpha^{d} \beta_{\left(t p^{n} / s\right)} \delta \\
& \quad=-\alpha^{d} \beta_{\left(t p^{n} / s\right)} \beta_{\left(a p^{m} / r-c\right)} \delta=\alpha^{c+d} \beta_{\left(a p^{m} / r\right)} \beta_{\left(t p^{n} / s\right)} \delta=0 .
\end{aligned}
$$

By applying the derivation d to the above equation we have $\beta_{\left(a p^{m} / r-c\right)} \boldsymbol{\beta}_{\left(t p^{n} / s-d\right)}=0$ which contradicts case (A) when one of the conditions (i)-(iii) holds.
Hence we have $\beta_{\left(a p^{m} / r\right)} \beta_{\left(t p^{n} / s\right)} \neq 0$ for $r+s \geq p^{n}+p^{n-1}$ and one of the conditions (i)-(iii) holds. $\beta_{\left(a p^{m} / r\right)} \beta_{\left(t p^{n} / s\right)} \neq 0$ implies $\beta_{\left(a p^{m} / r\right)} \delta \beta_{\left(t p^{n} / s\right)} \neq 0$ since by applying the derivation d to the equation $\beta_{\left(a p^{m} / r\right)} \delta \beta_{\left(t p^{n} / s\right)}=0$ we will have $\beta_{\left(a p^{m} / r\right)} \beta_{\left(t p^{n} / s\right)}=0$.
3. Structure of nonsplit ring spectra. In this section, we will develop some technical results on nonsplit ring spectra K_{r} and prove Theorem II.

We first recall some facts on K_{r} given in [4]. A spectrum X is called a Z_{p} spectrum if there are two maps $m_{X}: M \wedge X \rightarrow X, \bar{m}_{X}: \Sigma X \rightarrow$ $M \wedge X$ such that

$$
\begin{gather*}
m_{X}\left(i \wedge 1_{X}\right)=1_{X}, \quad\left(j \wedge 1_{X}\right) \bar{m}_{X}=1_{X} \tag{3.1}\\
m_{X} \bar{m}_{X}=0, \quad\left(i \wedge 1_{X}\right) m_{X}+\bar{m}_{X}\left(j \wedge 1_{X}\right)=1_{M \wedge X}
\end{gather*}
$$

where M is the $\bmod p$ Moore spectrum and m_{X} is called an M module action of X. For Z_{p} spectra X, Y, Z, we define $d:\left[\Sigma^{r} X, Y\right]$ $\rightarrow\left[\Sigma^{r+1} X, Y\right]$ to be $d(f)=m_{Y}\left(1_{M} \wedge f\right) \bar{m}_{X}$. If m_{X} is associative, then d is a derivation, i.e.

$$
\begin{equation*}
d^{2}=0, \quad d(f g)=(-1)^{t} d(f) g+f d(g) \tag{3.2}
\end{equation*}
$$

for $g \in\left[\Sigma^{*} X, Y\right], f \in\left[\Sigma^{*} Y, Z\right]$ and $\operatorname{deg} g=t$.
We briefly write $K_{r}, i_{r}^{\prime}, j_{r}^{\prime}$ as $K, i^{\prime}, j^{\prime}$. Since $p \wedge 1_{K}=0: S \wedge K \rightarrow$ $S \wedge K$, then there is a homotopy equivalence $M \wedge K=K \vee \Sigma K$. From [4, p. 432], there is an associative M-module action $m: M \wedge K \rightarrow K$ and $\bar{m}: \Sigma K \rightarrow M \wedge K$ is an associated element such that

$$
\begin{gather*}
m\left(i \wedge 1_{K}\right)=1_{K}, \quad\left(j \wedge 1_{K}\right) \bar{m}=1_{K}, \tag{3.3}\\
m \bar{m}=0, \quad\left(i \wedge 1_{K}\right) m+\bar{m}\left(j \wedge 1_{K}\right)=1_{M \wedge K}
\end{gather*}
$$

So (3.2) also holds in case $X=Y=Z=K$.

Let $\phi=\alpha^{r} \in\left[\Sigma^{r q} M, M\right]$ and $\phi_{1}=j \alpha^{r} i \in \pi_{r q-1} S, \bar{\phi}=\phi_{1} \wedge 1_{K} \in$ [$\Sigma^{r q-1} K, K$], then [4, p. 431 (5.14) and p. 432 Remark 5.7] showed that

$$
\begin{align*}
\bar{\phi} & =r \bar{\alpha}^{r-1} \alpha^{\prime}, & \bar{\phi} i^{\prime} & =i^{\prime} \delta \phi, \tag{3.4}\\
j^{\prime} \bar{\phi} & =-\phi \delta j^{\prime}, & \bar{\phi} \delta_{0} & =\delta_{0} \bar{\phi},
\end{align*}
$$

where $\delta=i j \in\left[\Sigma^{-1} M, M\right], \delta_{0}=i^{\prime} i j j^{\prime} \in\left[\Sigma^{-r q-2} K, K\right], \bar{\alpha}=$ $\lambda(\alpha \delta) \in\left[\Sigma^{q} K, K\right], \alpha^{\prime}=\lambda(\delta \alpha \delta) \in\left[\Sigma^{q-1} K, K\right]$ and $\lambda:\left[\Sigma^{r} M, M\right] \rightarrow$ [$\left.\Sigma^{r+1} K, K\right]$ is defined to be $\lambda(f)=m\left(f \wedge 1_{K}\right) \bar{m} .[4$, p. 432 (6.2)] also showed that

$$
\begin{equation*}
\phi \wedge 1_{K}=\bar{m} \bar{\phi} m \tag{3.5}
\end{equation*}
$$

Then there is a homotopy equivalence

$$
\begin{equation*}
K \wedge K=K \vee \Sigma L \wedge K \vee \Sigma^{r q+1} K \tag{3.6}
\end{equation*}
$$

where L is the cofibre of $\phi_{1}=j \phi i$ given by the cofibration

$$
\begin{equation*}
\Sigma^{r q-1} S \xrightarrow{\phi_{1}} S \xrightarrow{i^{\prime \prime}} L \xrightarrow{j^{\prime \prime}} \Sigma^{r q} S \tag{3.7}
\end{equation*}
$$

and there exist

$$
\begin{array}{cc}
\mu: K \wedge K \rightarrow K, & \mu_{2}: K \wedge K \rightarrow \Sigma L \wedge K, \\
\nu_{3}: K \rightarrow K \wedge K, & \mu_{3}: K \wedge K \rightarrow \Sigma^{r q+2} K \\
\nu_{2}: \Sigma L \wedge K \rightarrow K \wedge K, & \nu: \Sigma^{r q+2} K \rightarrow K \wedge K
\end{array}
$$

such that (cf. [4, p. 433])
(A) $\mu\left(i^{\prime} \wedge i_{K}\right)=m, \quad\left(j^{\prime} \wedge 1_{K}\right) \nu=\bar{m}$,
(B) $\mu_{2}\left(i^{\prime} \wedge 1_{K}\right)=\left(i^{\prime \prime} \wedge 1_{K}\right)\left(j \wedge 1_{K}\right)$, $\left(j^{\prime} \wedge 1_{K}\right) \nu_{2}=\left(i \wedge 1_{K}\right)\left(j^{\prime \prime} \wedge 1_{K}\right)$,
(C) $\quad\left(j^{\prime \prime} \wedge 1_{K}\right) \mu_{2}=m\left(j^{\prime} \wedge 1_{K}\right), \quad \nu_{2}\left(i^{\prime \prime} \wedge 1_{K}\right)=\left(i^{\prime} \wedge 1_{K}\right) \bar{m}$,
(D) $\quad \mu \nu_{2}=0, \quad \mu \nu=0, \quad \mu_{2} \nu=0, \quad \mu_{2} \nu_{2}=1_{L \wedge K}$.

Let $\mu_{3}=j j^{\prime} \wedge 1_{K}, \nu_{3}=i^{\prime} i \wedge 1_{K}$, (A) and (B) imply
(A) $\quad \mu \nu_{3}=1_{K}, \quad \mu_{3} \nu=1_{K}$,
(B) ${ }^{\prime} \quad \mu_{2} \nu_{3}=0, \quad \mu_{3} \nu_{2}=0$,
(C) $\quad \nu \mu_{3}+\nu_{2} \mu_{2}+\nu_{3} \mu=1_{K \wedge K}$.

Recall that $\delta^{\prime}=i^{\prime} j^{\prime} \in\left[\Sigma^{-r q-1} K, K\right], \delta_{0}=i^{\prime} i j j^{\prime} \in\left[\Sigma^{-r q-2} K, K\right]$ and $\delta=i j \in\left[\Sigma^{-1} M, M\right]$; they satisfy (cf. [4, p. 434])

$$
\begin{equation*}
d(\delta)=-1_{M}, \quad d\left(\delta^{\prime}\right)=0, \quad d\left(\delta_{0}\right)=\delta^{\prime} . \tag{3.10}
\end{equation*}
$$

Lemma 3.11 ([4, p. 434 Lemma 6.2]). There exist elements

$$
\tilde{\Delta} \in\left[\Sigma^{-1} K, L \wedge K\right], \quad \bar{\Delta} \in\left[\Sigma^{-r q-1} L \wedge K, K\right]
$$

such that
(i) $\left(j^{\prime \prime} \wedge 1_{K}\right) \widetilde{\Delta}=\delta^{\prime}, \bar{\Delta}\left(i^{\prime \prime} \wedge 1_{K}\right)=\delta^{\prime}$,
(ii) $\widetilde{\Delta} i^{\prime}=\left(i^{\prime \prime} \wedge 1_{K}\right) i^{\prime} \delta, j^{\prime} \bar{\Delta}=\delta j^{\prime}\left(j^{\prime \prime} \wedge 1_{K}\right)$,
(iii) $\left(1_{L} \wedge j^{\prime}\right) \widetilde{\Delta}=-\left(i^{\prime \prime} \wedge 1_{M}\right) \delta j^{\prime}, \bar{\Delta}\left(1_{L} \wedge i^{\prime}\right)=-i^{\prime} \delta\left(j^{\prime \prime} \wedge 1_{M}\right)$,
(iv) $\bar{\Delta} \widetilde{\Delta}=2 \delta_{0}$.

Theorem 3.12 ([4, p. 438 Theorems 6.5 and 6.6]). There is a choice of ($\mu, \mu_{2}, \nu, \nu_{2}$) such that

$$
\begin{aligned}
\mu T & =\mu, & T \nu & =\nu, \\
\mu_{2} T & =-\mu_{2}+\widetilde{\Delta} \mu, & T \nu_{2} & =-\nu_{2}+\nu \bar{\Delta}
\end{aligned}
$$

and any such μ is an associative multiplication of K, where $T: K \wedge$ $K \rightarrow K \wedge K$ is the switching map.

Definition 3.13 ([4, p. 423 Def. 2.2)].

$$
\begin{aligned}
\operatorname{Mod} & =\left\{f \in\left[\Sigma^{*} K, K\right] \mid \mu\left(f \wedge 1_{K}\right)=f \mu\right\} \\
\operatorname{Der} & =\left\{f \in\left[\Sigma^{*} K, K\right] \mid f \mu=\mu\left(f \wedge 1_{K}\right)+\mu\left(1_{K} \wedge f\right)\right\}
\end{aligned}
$$

That is, Mod consists of right K-module maps and Der consists of elements which behave as a derivation on the cohomology defined by K.

Theorem 3.14 ([4, p. 424 Remark 2.4 and p. 423 Lemma 2.3]). There is a direct summand decomposition

$$
\left[\Sigma^{*} K, K\right]=\operatorname{Mod} \oplus \operatorname{Der} \oplus \operatorname{Mod} \delta_{0}
$$

and $\operatorname{ker} i_{0}^{*}=\operatorname{Der} \oplus \operatorname{Mod} \delta_{0}$, [Der, Mod] $\subset \operatorname{Mod}$, where $i_{0}=i^{\prime} i: S \rightarrow$ K is injection of the bottom cell and $[f, g]$ denotes the graded commutator $f g-(-1)^{|f| \cdot|g|} g f$.

By using Theorem 3.12 and (3.8) (A) (B) (D), we can easily check that $h \nu=0, h \nu_{2}=0, h \nu_{3}=0$ for $h=\mu\left(\delta^{\prime} \wedge 1_{K}\right)+\mu\left(1_{K} \wedge \delta^{\prime}\right)-\delta^{\prime} \mu$. Hence it follows from (3.9)(C)' that $\delta^{\prime} \mu=\mu\left(\delta^{\prime} \wedge 1_{K}\right)+\mu\left(1_{K} \wedge \delta^{\prime}\right)$ and
so $\delta^{\prime} \in$ Der. From Theorem 3.14, $\left[\delta^{\prime}, f\right] \in \operatorname{Mod}$ for $f \in \operatorname{Mod}$ and in particular we have $\delta^{\prime} f^{p}=f^{p} \delta^{\prime}$ for $f \in \operatorname{Mod}$ having even degree.

Now we consider further properties of $\left[\Sigma^{*} K, K\right]$ which are not in [4]. Define

$$
d_{0}:\left[\Sigma^{s} K, K\right] \rightarrow\left[\Sigma^{s+r q+2} K, K\right]
$$

to be $d_{0}(f)=\mu\left(f \wedge 1_{K}\right) \nu$. d_{0} has the following important properties.
Proposition 3.15. (1) $d_{0}\left(\delta_{0}\right)=1_{K}, d_{0}\left(g \delta_{0}\right)=g$ for $g \in \operatorname{Mod}$.
(2) $\operatorname{ker} d_{0}=\operatorname{Mod} \oplus \operatorname{Der}, \operatorname{im} d_{0} \subset \operatorname{Mod}$.

Proof. (1) From (3.9) (A)',

$$
d_{0}\left(\delta_{0}\right)=\mu\left(\delta_{0} \wedge 1_{K}\right) \nu=\mu\left(i^{\prime} i \wedge 1_{K}\right)\left(j j^{\prime} \wedge 1_{K}\right) \nu=1_{K}
$$

and $d_{0}\left(g \delta_{0}\right)=\mu\left(g \delta_{0} \wedge 1_{K}\right) \nu=g \mu\left(\delta_{0} \wedge 1_{K}\right) \nu=g$.
(2) It is easily seen that $\operatorname{Mod} \subset \operatorname{ker} d_{0}$ and for $f \in \operatorname{Der}$

$$
\begin{aligned}
d_{0}(f) & =\mu\left(f \wedge 1_{K}\right) \nu=f \mu \nu-\mu\left(1_{K} \wedge f\right) \nu \\
& =-\mu T\left(1_{K} \wedge f\right) \nu=-\mu\left(f \wedge 1_{K}\right) \nu=-d_{0}(f)=0
\end{aligned}
$$

then $\operatorname{Der} \subset \operatorname{ker} d_{0}$. On the other hand, if $f \in \operatorname{ker} d_{0}$, let $f=f_{1}+$ $f_{2}+f_{3} \delta_{0}$ with $f_{1}, f_{3} \in \operatorname{Mod}$ and $f_{2} \in \operatorname{Der}$, (cf. Thm. 3.14), then $0=d_{0}(f)=d_{0}\left(f_{3} \delta_{0}\right)=f_{3}$ and so $f \in \operatorname{Der} \oplus \operatorname{Mod} . \operatorname{im} d_{0} \subset \operatorname{Mod}$ is immediate.

Proposition 3.16. (1) If $h \in \operatorname{Mod}, u \in \operatorname{Der}$, then $h u \in \operatorname{Der}$; in particular, Mod $\delta^{\prime} \subset$ Der.
(2) $d_{0}\left(\delta^{\prime} g\right)=(-1)^{t+1} d(g)+\delta^{\prime} d_{0}(g), d_{0}\left(g \delta^{\prime}\right)=-d\left(g_{2}\right)$, where $t=\operatorname{deg} g$ and g_{2} is the component of g in Der in the decomposition in Theorem 3.14.

Proof. (1) If $h \in \operatorname{Mod}$ and $u \in \operatorname{Der}$, then $h \mu=\mu\left(h \wedge 1_{K}\right)$ and $u \mu=\mu\left(u \wedge 1_{K}\right)+\mu\left(1_{K} \wedge u\right)$. Hence

$$
\begin{aligned}
h u \mu & =h \mu\left(u \wedge 1_{K}\right)+h \mu\left(1_{K} \wedge u\right) \\
& =\mu\left(h u \wedge 1_{K}\right)+h \mu T\left(1_{K} \wedge u\right), \quad(\mu T=\mu \text { from Thm. 3.12) } \\
& =\mu\left(h u \wedge 1_{K}\right)+\mu\left(h \wedge 1_{K}\right) T\left(1_{K} \wedge u\right) \\
& =\mu\left(h u \wedge 1_{K}\right)+\mu T\left(1_{K} \wedge h u\right) \\
& =\mu\left(h u \wedge 1_{K}\right)+\mu\left(1_{K} \wedge h u\right)
\end{aligned}
$$

and so $h u \in \operatorname{Der}$. Since $\delta^{\prime} \in \operatorname{Der}$, then $\operatorname{Mod} \delta^{\prime} \subset$ Der.
(2) If $g_{1} \in \operatorname{Mod}$, then $d_{0}\left(g_{1} \delta^{\prime}\right)=\mu\left(g_{1} \delta^{\prime} \wedge 1_{K}\right) \nu=g_{1} \mu\left(\delta^{\prime} \wedge 1_{K}\right) \nu=$ 0 . Since $\left[\delta^{\prime}, g_{1}\right] \in \operatorname{Mod}$, then $d_{0}\left(\delta^{\prime} g_{1}\right)=d_{0}\left(g_{1} \delta^{\prime}\right)=0$.

Let $g=g_{1}+g_{2}+g_{3} \delta_{0}$ with $g_{1}, g_{3} \in \operatorname{Mod}$ and $g_{2} \in \operatorname{Der}$; then

$$
\begin{aligned}
d_{0}\left(\delta^{\prime} g\right) & =d_{0}\left(\delta^{\prime} g_{2}\right)+d_{0}\left(\delta^{\prime} g_{3} \delta_{0}\right) \\
& =d_{0}\left(\delta^{\prime} g_{2}\right)+\delta^{\prime} g_{3}-(-1)^{t} g_{3} \delta^{\prime}
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
d_{0}\left(\delta^{\prime} g_{2}\right)= & \mu\left(1_{K} \wedge \delta^{\prime}\right) \nu \mu_{3}\left(1_{K} \wedge g_{2}\right) \nu+\mu\left(1_{K} \wedge \delta^{\prime}\right) \nu_{2} \mu_{2}\left(1_{K} \wedge g_{2}\right) \nu \\
& +\mu\left(1_{K} \wedge \delta^{\prime}\right) \nu_{3} \mu\left(1_{K} \wedge g_{2}\right) \nu, \quad\left(\text { cf. }(3.9)(\mathrm{C})^{\prime}\right) \\
= & \mu\left(\delta^{\prime} \wedge 1_{K}\right) T \nu_{2} \mu_{2}\left(1_{K} \wedge g_{2}\right) \nu, \\
& \quad \text { (since 1st and 3rd terms are zero }) \\
= & -\mu\left(\delta^{\prime} \wedge 1_{K}\right) \nu_{2} \mu_{2}\left(1_{K} \wedge g_{2}\right) \nu, \quad\left(T \nu_{2}=-\nu_{2}+\nu \bar{\Delta}\right) \\
= & -m\left(i \wedge 1_{K}\right)\left(j^{\prime \prime} \wedge 1_{K}\right) \mu_{2}\left(1_{K} \wedge g_{2}\right) \nu, \\
& \quad\left(\left(j^{\prime} \wedge 1_{K}\right) \nu_{2}=\left(i j^{\prime \prime} \wedge 1_{K}\right)\right) \\
= & -m\left(j^{\prime} \wedge 1_{K}\right)\left(1_{K} \wedge g_{2}\right) \nu, \quad\left(\left(j^{\prime \prime} \wedge 1_{K}\right) \mu_{2}=m\left(j^{\prime} \wedge 1_{K}\right)\right) \\
= & (-1)^{t+1} m\left(1_{M} \wedge g_{2}\right) \bar{m}, \quad\left(\bar{m}=\left(j^{\prime} \wedge 1_{K}\right) \nu\right) \\
= & (-1)^{t+1} d\left(g_{2}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
d_{0}\left(\delta^{\prime} g\right) & =(-1)^{t+1} d\left(g_{2}\right)+\delta^{\prime} g_{3}-(-1)^{t} g_{3} \delta^{\prime} \\
& =(-1)^{t+1} d(g)+\delta^{\prime}\left(d_{0}(g)\right.
\end{aligned}
$$

note that $d(g)=d\left(g_{2}\right)+g_{3} \delta^{\prime}$ and $d_{0}(g)=g_{3}$.
The proof of $d_{0}\left(g \delta^{\prime}\right)=-d\left(g_{2}\right)$ is similar.
Proposition 3.17. If $g \in \operatorname{Der}$, then $g \delta^{\prime} \in \operatorname{Mod} \delta_{0}$ and $d(g) \in$ Mod. Moreover, $g \in \operatorname{Mod} \delta^{\prime}$ if $d(g)=0$.

Proof. Since $g \in \operatorname{Der}$, then $g i^{\prime} i=0$ (cf. Thm. 3.14) and so $g i^{\prime}=$ ηj for some $\eta \in \pi_{*} K . \eta$ can be extended to $\bar{\eta} \in\left[\Sigma^{*} K, K\right]$ such that $\eta=\bar{\eta} i^{\prime} i$ and $\bar{\eta} \in \operatorname{Mod}$. Then $g \delta^{\prime}=\bar{\eta} i^{\prime} i j j^{\prime}=\bar{\eta} \delta_{0} \in \operatorname{Mod} \delta_{0}$.

On the other hand, $\bar{\eta}=d_{0}\left(\bar{\eta} \delta_{0}\right)=d_{0}\left(g \delta^{\prime}\right)=-d(g)$, so $d(g) \in$ Mod. Moreover, if $d(g)=0$, then $g i^{\prime}=\bar{\eta} i^{\prime} i j=-d(g) i^{\prime} i j=0$ and so $g=\bar{g} j^{\prime}$ for some $\bar{g} \in\left[\Sigma^{*} M, K\right]$. Since $g \delta_{0}=0$, then

$$
\begin{aligned}
& 0=\mu\left(1_{K} \wedge g\right)\left(1_{K} \wedge \delta_{0}\right) \nu \\
& =\mu\left(1_{K} \wedge g\right) \nu \mu_{3}\left(1_{K} \wedge \delta_{0}\right) \nu \\
& +\mu\left(1_{K} \wedge g\right) \nu_{2} \mu_{2}\left(1_{K} \wedge \delta_{0}\right) \nu+\mu\left(1_{K} \wedge g\right) \nu_{3} \mu\left(1_{K} \wedge \delta_{0}\right) \nu \\
& =\mu\left(1_{K} \wedge g\right) \nu_{2} \mu_{2}\left(1_{K} \wedge \delta_{0}\right) \nu+g \\
& \left(\mu\left(1_{K} \wedge g\right) \nu=0, \mu\left(1_{K} \wedge \delta_{0}\right) \nu=1_{K}\right) \\
& =\mu\left(1_{K} \wedge g\right) \nu_{2} \mu_{2} T\left(\delta_{0} \wedge 1_{K}\right) \nu+g \quad(T \nu=\nu) \\
& =-\mu\left(1_{K} \wedge g\right) \nu_{2} \mu_{2}\left(\delta_{0} \wedge 1_{K}\right) \nu+\mu\left(1_{K} \wedge g\right) \nu_{2} \widetilde{\Delta} \mu\left(\delta_{0} \wedge 1_{K}\right) \nu+g \\
& \left(\mu_{2} T=-\mu_{2}+\widetilde{\Delta} \mu\right) \\
& =g+\mu\left(1_{K} \wedge g\right) \nu_{2} \tilde{\Delta} \quad\left(\mu_{2}\left(\delta_{0} \wedge 1_{K}\right)=\left(i^{\prime \prime} j \wedge 1_{K}\right)\left(i j j^{\prime} \wedge 1_{K}\right)=0\right) \\
& =g-\mu\left(g \wedge 1_{K}\right) \nu_{2} \tilde{\Delta} \quad\left(\mu T=\mu, T \nu_{2}=-\nu_{2}+\nu \bar{\Delta}\right) \\
& =g-\mu\left(\bar{g} \wedge 1_{K}\right)\left(j^{\prime} \wedge 1_{K}\right) \nu_{2} \widetilde{\Delta} \quad\left(\text { since } g=\bar{g} j^{\prime}\right) \\
& =g-\mu\left(\bar{g} \wedge 1_{K}\right)\left(i \wedge 1_{K}\right)\left(j^{\prime \prime} \wedge 1_{K}\right) \widetilde{\Delta} \quad\left(\left(j^{\prime} \wedge 1_{K}\right) \nu_{2}=\left(i j^{\prime \prime} \wedge 1_{K}\right)\right) \\
& =g-\mu\left(\bar{g} i \wedge 1_{K}\right) \delta^{\prime} \\
& \left(\left(j^{\prime \prime} \wedge 1_{K}\right) \widetilde{\Delta}=\delta^{\prime}\right) .
\end{aligned}
$$

Thus $g=u \delta^{\prime}$, where $u=\mu\left(\bar{g} i \wedge 1_{K}\right) \in \operatorname{Mod}$.
Proposition 3.18. $\bar{\phi} \in \operatorname{Mod}$ and there exists $\varepsilon \in \operatorname{Der}$ such that $d(\varepsilon)=\bar{\phi}$.

Proof. Recall (3.4), $\bar{\phi}=r \bar{\alpha}^{r-1} \alpha^{\prime}$, where $\bar{\alpha}=\lambda(\alpha \delta)$ and $\alpha^{\prime}=$ $\lambda(\delta \alpha \delta)$. Hence, it follows from im $\lambda \subset \operatorname{Mod}$ that $\bar{\phi} \in \operatorname{Mod}$.

From Lemma 3.11(i) and (3.4), $\overline{\phi \Delta}\left(i^{\prime \prime} \wedge 1_{K}\right)=\bar{\phi} \delta^{\prime}=i^{\prime} \delta \phi j^{\prime}=0$; then $\overline{\phi \Delta}=u\left(j^{\prime \prime} \wedge 1_{K}\right)$ for some $u \in\left[\Sigma^{*} K, K\right]$. Hence it follows from Lemma 3.11(iv) and (i) that

$$
2 \bar{\phi} \delta_{0}=\overline{\phi \Delta} \widetilde{\Delta}=u\left(j^{\prime \prime} \wedge 1_{K}\right) \widetilde{\Delta}=u \delta^{\prime}
$$

and so $2 \bar{\phi}=2 d_{0}\left(\bar{\phi} \delta_{0}\right)=d_{0}\left(u \delta^{\prime}\right)=-d\left(u_{2}\right)$ (cf. Prop. 3.16(2)). Thus $\bar{\phi}=d(\varepsilon)$ if we let $\varepsilon=-\frac{1}{2} u_{2}$.

Proposition 3.19. (1) If $g \in \operatorname{Mod}$ and $g \delta^{\prime}=0\left(\right.$ resp. $\left.\delta^{\prime} g=0\right)$, then $g=\eta \bar{\phi}$ resp. $g=\bar{\phi} \eta$) for some $\eta \in \operatorname{Mod}$.
(2) If $\eta \in \operatorname{Mod}$, then $\eta \bar{\phi}=0$ if and only if $\eta=d(u)$ for some $u \in \operatorname{Der}$.

Proof. (1) Since $g \delta_{0}\left(j^{\prime \prime} \wedge 1_{K}\right)=g i^{\prime} \delta j^{\prime}\left(j^{\prime \prime} \wedge 1_{K}\right)=g i^{\prime} j^{\prime} \bar{\Delta}=0$ (cf. Lemma 3.11(ii)), then $g \delta_{0}=\bar{\eta}\left(j \phi i \wedge 1_{K}\right)=\bar{\eta} \bar{\phi}$ for some $\bar{\eta} \in$ $\left[\Sigma^{*} K, K\right]$. Let $\bar{\eta}=\underline{\eta}_{1}+\eta_{2}+\eta_{3} \delta_{0}$ with $\eta_{1}, \eta_{3} \in \operatorname{Mod}$ and $\underline{\eta}_{2} \in$ Der. Then $g \delta_{0}=\eta_{1} \bar{\phi}+\eta_{2} \bar{\phi}+\eta_{3} \delta_{0} \bar{\phi}$ and $g=d_{0}\left(\underline{g} \delta_{0}\right)=d_{0}\left(\eta_{2} \bar{\phi}\right)+$ $d_{0}\left(\eta_{3} \delta_{0} \bar{\phi}\right)$. However, $d_{0}\left(\eta_{3} \delta_{0} \bar{\phi}\right)=d_{0}\left(\eta_{3} \bar{\phi} \delta_{0}\right)=\eta_{3} \bar{\phi}$ (cf. (3.4)) and
$\eta_{2} \bar{\phi}-(-1)^{t} \bar{\phi} \eta_{2} \in \operatorname{Mod}, d_{0}\left(\eta_{2} \bar{\phi}\right)= \pm d_{0}\left(\bar{\phi} \eta_{2}\right)=0$ (note that $\bar{\phi} \eta_{2} \in \operatorname{Der}$ from Prop. 3.16(1)); then $g=\eta_{3} \bar{\phi}$ with $\eta_{3} \in \operatorname{Mod}$.

If $g \in \operatorname{Mod}$ and $\delta^{\prime} g=0$, then $\underline{g} \delta^{\prime}=g \delta^{\prime}-(-1)^{|g|} \delta^{\prime} g \in \operatorname{Mod} \cap$ Mod $\delta^{\prime} \subset \operatorname{Mod} \cap \operatorname{Der}=0$. So $g=\eta \bar{\phi}= \pm \bar{\phi} \eta$ for some $\eta \in \operatorname{Mod}$.
(2) $d(u) \bar{\phi} m=m\left(1_{M} \wedge u\right) \bar{m} \bar{\phi} m=m\left(1_{M} \wedge u\right)\left(\phi \wedge 1_{K}\right)=m\left(\phi \wedge \cdot 1_{K}\right) \cdot$ $\left(1_{K} \wedge u\right)=0$. Then $d(u) \bar{\phi}=d(u) \bar{\phi} m\left(i \wedge 1_{K}\right)=0$.

Conversely, if $\eta \bar{\phi}=0$ for $\eta \in \operatorname{Mod}$, then $\eta \bar{\phi} i^{\prime} i=0=\eta i^{\prime} i j \phi i$ and so $\eta i^{\prime} i j \phi=u j$ for some $u \in \pi_{*} K . u$ can be extended to $\bar{u} \in$ [$\left.\Sigma^{*} K, K\right]$ such that $\bar{u} i^{\prime} i=u$ and $\bar{u} \in \operatorname{Mod}$. Then $\eta i^{\prime} i j \phi=\bar{u} i^{\prime} i j$ and $\bar{u} \delta_{0}=0, \bar{u}=d_{0}\left(\bar{u} \delta_{0}\right)=0$. Hence $\eta i^{\prime} i j \phi=0$ and $\eta i^{\prime} i j=w i^{\prime}$ for some $w \in\left[\Sigma^{*} K, K\right]$. Thus $\eta \delta_{0}=w \delta^{\prime}, \eta=d_{0}\left(\eta \delta_{0}\right)=d_{0}\left(w \delta^{\prime}\right)=$ $-d\left(w_{2}\right)$, where w_{2} is the component of w in Der, see Proposition 3.16(2).

Proposition 3.20. If $g \in \operatorname{Mod}$, then $d_{0}\left(\delta_{0} g\right)=g$ and $\delta_{0} g-g \delta_{0} \in$ Mod \oplus Der .

Proof.

$$
\begin{aligned}
d_{0}\left(\delta_{0} g\right)= & \mu\left(\delta_{0} \wedge 1_{K}\right)\left(g \wedge 1_{K}\right) \nu \\
= & \mu\left(\delta_{0} \wedge 1_{K}\right) T \nu \mu_{3}\left(1_{K} \wedge g\right) \nu+\mu\left(\delta_{0} \wedge 1_{K}\right) T \nu_{2} \mu_{2}\left(1_{K} \wedge g\right) \nu \\
& +\mu\left(\delta_{0} \wedge 1_{K}\right) T \nu_{3} \mu\left(1_{K} \wedge g\right) \nu \quad\left(\mathrm{cf.}(3.9)(\mathrm{C})^{\prime}\right) \\
= & \left(j j^{\prime} \wedge 1_{K}\right)\left(1_{K} \wedge g\right) \nu-\mu\left(\delta_{0} \wedge 1_{K}\right) \nu_{2} \mu_{2}\left(1_{K} \wedge g\right) \nu \\
& +\mu\left(\delta_{0} \wedge 1_{K}\right) \nu \bar{\Delta} \mu_{2}\left(1_{K} \wedge g\right) \nu \\
& \quad\left(\text { since } \mu\left(1_{K} \wedge g\right) \nu=0, T \nu_{2}=-\nu_{2}+\nu \bar{\Delta}\right) \\
= & g+\bar{\Delta} \mu_{2}\left(1_{K} \wedge g\right) \nu \quad\left(\text { since } \mu\left(\delta_{0} \wedge 1_{K}\right) \nu_{2}=0, \text { cf. }(3.8)\right)
\end{aligned}
$$

Let $h=d_{0}\left(\delta_{0} g\right)-g=\bar{\Delta} \mu_{2}\left(1_{K} \wedge g\right) \nu$. Then $h \in \operatorname{Mod}$ and

$$
\begin{aligned}
j^{\prime} h & =j^{\prime} \bar{\Delta} \mu_{2}\left(1_{K} \wedge g\right) \nu=\delta j^{\prime}\left(j^{\prime \prime} \wedge 1_{K}\right) \mu_{2}\left(1_{K} \wedge g\right) \nu \\
& =\delta j^{\prime} m\left(j^{\prime} \wedge 1_{K}\right)\left(1_{K} \wedge g\right) \nu=\delta j^{\prime} m\left(1_{M} \wedge g\right) \bar{m}=j^{\prime} d(g)=0
\end{aligned}
$$

So $\delta^{\prime} h=0$ and from Prop. $3.19(1)$ we have $h=\bar{\phi} g_{1}$ for some $g_{1} \in \operatorname{Mod}$, i.e. there is some $g_{1} \in \operatorname{Mod}$ such that

$$
d_{0}\left(\delta_{0} g\right)-g=\bar{\phi} g_{1} \quad \text { and } \quad j^{\prime} \bar{\phi} g_{1}=0
$$

Thus inductively we have $g_{s}, g_{s+1} \in \operatorname{Mod}\left(s \geq 0\right.$ with $\left.g_{0}=g\right)$ such that $d_{0}\left(\delta_{0} g_{s}\right)-g_{s}=\bar{\phi} g_{s+1}$ and $j^{\prime} \bar{\phi} g_{s+1}=0(s \geq 0)$. It is easily seen for degree reasons that $g_{s+1}=0$ for s large and so $d_{0}\left(\delta_{0} g_{s}\right)=g_{s}$ for some fixed large s.

Since $j^{\prime} \bar{\phi} g_{s}=0$, then $\phi \delta j^{\prime} g_{s}=0$ (cf. (3.4)) and so $\delta j^{\prime} g_{s}=j^{\prime} k$ for some $k \in\left[\Sigma^{*} K, K\right]$. Hence $\delta_{0} g_{x}=\delta^{\prime} k$ and $g_{s}=d_{0}\left(\delta_{0} g_{s}\right)=$ $d_{0}\left(\delta^{\prime} k\right)= \pm d(k)+\delta^{\prime} d_{0}(k)$ (cf. Prop. 3.16(2)). Thus $\bar{\phi} g_{s}=0$ since $\bar{\phi} d(k)=0$ and $\bar{\phi} \delta^{\prime}=0$ (cf. Prop. 3.19(2) and (3.4)). Hence $d_{0}\left(\delta_{0} g_{s-1}\right)$ $-g_{s-1}=\bar{\phi} g_{s}=0$ and inductively we have $d_{0}\left(\delta_{0} g\right)=g$.

Since $d_{0}\left(\delta_{0} g-g \delta_{0}\right)=g-g=0$, then $\delta_{0} g-g \delta_{0} \in \operatorname{ker} d_{0}=$ Mod \oplus Der .

Now we are ready to prove Theorem II stated in $\S 1$.
Proof of Theorem II. Let $f, g \in \operatorname{Mod} \cap\left[\Sigma^{*} K_{r}, K_{r}\right]$ and $r \not \equiv 0$ $(\bmod p)$. From Prop. 3.20 we may assume $\delta_{0} f^{p}-f^{p} \delta_{0}=h_{1}+h_{2}$ with $h_{1} \in \operatorname{Mod}$ and $h_{2} \in$ Der. By applying the derivation $d, d\left(h_{2}\right)=$ $d\left(\delta_{0} f^{p}-f^{p} \delta_{0}\right)=\delta^{\prime} f^{p}-f^{p} \delta^{\prime}=0$ (cf. Thm. 3.14). Hence $h_{2}=u \delta^{\prime}$ for some $u \in \operatorname{Mod}$ (cf. Prop. 3.17). Hence

$$
\begin{aligned}
g^{p}\left(\delta_{0} f^{p}-f^{p} \delta_{0}\right) & =g^{p} h_{1}+g^{p} u \delta^{\prime}=(-1)^{|f| \cdot|g|}\left(h_{1}+u \delta\right) g^{p} \\
& =(-1)^{|f| \cdot|g|}\left(\delta_{0} f^{p}-f^{p} \delta_{0}\right) g^{p}
\end{aligned}
$$

since g^{p} commutes with δ^{\prime} and $h_{1}, u \in \operatorname{Mod}$.
Moreover, if f has even degree, $f^{p}\left(\delta_{0} f^{p}-f^{p} \delta_{0}\right)=\left(\delta_{0} f^{p}-f^{p} \delta_{0}\right) f^{p}$ and by induction we have $f^{k p} \delta_{0}-\delta_{0} f^{k p}=k\left(f^{k p} \delta_{0}-f^{(k-1) p} \delta_{0} f^{p}\right)$ for $k \geq 1$. In particular we have $f^{p^{2}} \delta_{0} \equiv \delta_{0} f^{p^{2}}$.

If $r \equiv 0(\bmod p),[6]$ showed that there exists $\bar{\delta} \in\left[\Sigma^{-1} K_{r}, K_{r}\right]$ such that $\bar{\delta} i_{r}^{\prime}=i_{r}^{\prime} i j, j_{r}^{\prime} \bar{\delta}=-i j j_{r}^{\prime}$ and apart from the derivation $d:\left[\Sigma^{s} K_{r}, K_{r}\right] \rightarrow\left[\Sigma^{s+1} K_{r}, K_{r}\right]$ there is another derivation d^{\prime} : $\left[\Sigma^{s} K_{r}, K_{r}\right] \rightarrow\left[\Sigma^{s+r q+1} K_{r}, K_{r}\right]$ such that

$$
d^{\prime}\left(\delta^{\prime}\right)=-1_{K_{r}}, \quad d^{\prime}(\bar{\delta})=0, \quad d(\bar{\delta})=-1_{K_{r}}, \quad d\left(\delta^{\prime}\right)=0
$$

Moreover, there is a direct summand decomposition

$$
\left[\Sigma^{*} K_{r}, K_{r}\right]=\mathscr{C}_{*} \oplus \mathscr{C}_{*} \bar{\delta} \oplus \mathscr{C}_{*} \delta^{\prime} \oplus \mathscr{C}_{*} \bar{\delta} \delta^{\prime}
$$

such that $\mathscr{C}_{*}=\operatorname{ker} d \cap \operatorname{ker} d^{\prime}$ is a commutative subring (cf. [6, p. 297 Thm. 5.5, 5.6]) and $\bar{\delta} f^{p}=f^{p} \bar{\delta}, \delta^{\prime} f^{p}=f^{p} \delta^{\prime}$ for $f \in \mathscr{C}_{*}$ having even degree (cf. [6, p. 298 Cor. 5.7]).

Hence $\delta_{0}=\bar{\delta} \delta^{\prime}, d\left(\delta_{0} f^{p}-f^{p} \delta_{0}\right)=\delta^{\prime} f^{p}-f^{p} \delta^{\prime}=0, d^{\prime}\left(\delta_{0} f^{p}-f^{p} \delta_{0}\right)=$ $\bar{\delta} f^{p}-f^{p} \bar{\delta}=0$ and so $\delta_{0} f^{p}-f^{p} \delta_{0} \in \operatorname{ker} d \cap \operatorname{ker} d^{\prime}=\mathscr{C}_{*}$.

Acknowledgments. I would like to thank the referee for pointing out a gap in the original manuscript and making some grammatical and stylistic suggestions. His comments are included in this revised version. Also I would like to thank the Mathematical Sciences Research Institute, Berkeley, for its hospitality during my stay in the fall 1989.

References

[1] H. R. Miller and W. S. Wilson, On Novikov's Ext ${ }^{1}$ modulo an invariant prime ideal, Topology, 15 (1976), 131-141.
[2] H. R. Miller, D. C. Ravenel and W. S. Wilson, Periodic phenomena in the Adams-Novikov spectral sequence, Ann. of Math., 106 (1977), 469-516.
[3] S. Oka, A new family in the stable homotopy of spheres, Hiroshima Math. J., 5 (1975), 87-114.
[4] _, Multiplicative structure of finite ring spectra and stable homotopy of spheres, Algebraic Topology, (Aarhus 1982) Lect. Notes in Math., 1051 p. 418441. Springer-Verlag 1984.
[5] , Realizing some cyclic BP modules and applications to stable homotopy of spheres, Hiroshima Math. J., 7 (1977), 427-447.
[6] , Small ring spectra and p-rank of the stable homotopy of spheres, Contemp. Math., 19 (1983), 267-308.
[7] D. C. Ravenel, The nonexistence of odd primary Arf invariant elements in stable homotopy, Math. Proc. Phil. Soc., 83 (1978), 429-443.
[8] Jinkun Lin, Split ring spectra and second periodicity families in stable homotopy of spheres, Topology, 29 no. 4, (1990), 389-407.
[9] - Detection of second periodicity families in stable homotopy of spheres, Amer. J. Math., 112 (1990), 595-610.

Received December 9, 1990 and in revised form July 15, 1991.
Nankai University
Tianjin
Peoples Republic of China

AND

MSRI
Berkeley, CA 94720

