NONSPLIT RING SPECTRA AND PRODUCTS OF β -ELEMENTS IN THE STABLE HOMOTOPY OF MOORE SPACES

Jinkun Lin

This paper proves trivialities and nontrivialities of some products of higher order $\beta_{(tp^n/s)}$ elements in the stable homotopy of Moore spaces. The proof is based mainly on properties of nonsplit ring spectra K_r (the cofibre of *r*-iterated Adams map with *r* not divisible by prime $p \ge 5$) which are given in the rest of the paper.

1. Introduction. Let S be the sphere spectrum and M the Moore spectrum modulo a prime $p \ge 5$ given by the cofibration $S \xrightarrow{p} S \xrightarrow{i} M \xrightarrow{j} \Sigma S$. Consider the Brown-Peterson spectrum BP at p; it is known that there is a map $\alpha: \Sigma^q M \to M$ such that the induced BP_* homomorphism $\alpha_* = v_1: BP_*/(p) \to BP_*/(p), q = 2(p-1)$.

Let K_r be the cofibre of α^r given by the cofibration

(1.1)
$$\Sigma^{rq} M \xrightarrow{\alpha'} M \xrightarrow{i_r} K_r \xrightarrow{j_r} \Sigma^{rq+1} M.$$

In [4] and [6], S. Oka showed that K_r is a ring spectrum for $r \ge 1$; if $r \equiv 0 \pmod{p}$ it is called a split ring spectrum since $K_r \wedge K_r$ splits into four summands K_r , ΣK_r , $\Sigma^{rq+1}K_r$, $\Sigma^{rq+2}K_r$. If $r \ne 0$ (mod p), it is called a nonsplit ring spectrum since $K_r \wedge K_r$ splits only into three summands K_r , $\Sigma L \wedge K_r$, $\Sigma^{rq+2}K_r$, where L is the cofibre of $\phi_1 = j\alpha^r i \in \pi_{rq-1}S$.

In the nonsplit case, S. Oka showed in [4] that there is a direct summand decomposition

(1.2)
$$[\Sigma^* K_r, K_r] = \operatorname{Mod} \oplus \operatorname{Der} \oplus \operatorname{Mod} \delta_0$$

where Mod consists of right K_r -module maps, Der consists of elements which behave as a derivation on the cohomology defined by K_r and $\delta_0 = i'_r i j j'_r \in [\Sigma^{-rq-2}K_r, K_r]$. Moreover, Mod is a commutative subring, ker $\{(i'_r i)^*: [\Sigma^*K_r, K_r] \to \pi_*K_r\}$ = Der \oplus Mod δ_0 and $(i'_r i)^*:$ Mod $\to \pi_*K_r$ is an isomorphism.

One of the most important properties which are shown in [4] is $\delta' f - f \delta' \in \text{Mod}$ for any $f \in \text{Mod}$, $\delta' = i'_r j'_r \in [\Sigma^{-rq-1}K_r, K_r]$ and the commutativity $\delta' f^p = f^p \delta'$ for any $f \in \text{Mod}$ having even degree.

This has been found very useful in the detection of higher order $\beta_{tp^n/s}$ elements in π_*S (cf. [8]).

From [8] and [9], there exist $f_s \in \text{Mod} \cap [\Sigma^* K_s, K_s]$ for $p \ge 5$, $s \le p^n$ if $p \nmid t \ge 2$ or $s \le p^n - 1$ if t = 1 such that the induced BP_* homomorphism $(f_s)_* = v_2^{tp^n}$, $\beta_{(tp^n/s)} = j'_s f_s i'_s$ is known to be a β -element in $[\Sigma^* M, M]$ such that

$$\beta'_{tp^n/s} \in \operatorname{Ext}^{1,*} M = \operatorname{Ext}^{1,*}_{BP_*BP}(BP_*, BP_*M)$$

converges to $\beta_{(tp^n/s)}i \in \pi_*M$ in the Adams-Novikov spectral sequence $Ext^{*,*}M \Rightarrow \pi_*M$.

In this paper, we will prove the following trivialities and nontrivialities of products of $\beta_{(tp^n/s)}$ elements in $[\Sigma^*M, M]$.

THEOREM I. Let $p \ge 5$. The following relations on products of β -elements in $[\Sigma^*M, M]$ hold:

(1) $\beta_{(ktp^n/s)} \cdot \beta_{(tp^n/s)} = 0$ for $s \le p^n$ if $p \nmid t \ge 2$, $s \le p^n - 1$ if t = 1and $k \ne -1 \pmod{p}$.

(2) $\beta_{(ktp^{n}/s)}\delta\beta_{(tp^{n}/s)} = 0$ for $s \le p^{n-1}$ if $p \nmid t \ge 2$, $s \le p^{n-1} - 1$ if t = 1 and $k \not\equiv -1 \pmod{p}$, where $\delta = ij \in [\Sigma^{-1}M, M]$.

(3) $\beta_{(ap^m/s)}\delta\beta_{(tp^n/s)} = -\beta_{(tp^n/s)}\delta\beta_{(ap^m/s)}$ if one of the following conditions holds

- (i) $s \le \min(p^{n-1}, p^{m-1})$ if $p \nmid t \ge 2$ and $p \nmid a \ge 2$.
- (ii) $s \le \min(p^{n-1}, p^{m-1} 1)$ if $p \nmid t \ge 2$ and a = 1.
- (iii) $s \le \min(p^{n-1} 1, p^{m-1})$ if t = 1 and $p \nmid a \ge 2$.
- (iv) $s \le \min(p^{n-1} 1, p^{m-1} 1)$ if t = a = 1.

(4) Suppose that $s \le p^n$ if $p \nmid t \ge 2$ or $s \le p^n - 1$ if t = 1, $r \le p^m$ if $p \nmid a \ge 2$ or $r \le p^m - 1$ if a = 1; then

$$\beta_{(ap^m/r)} \cdot \beta_{(tp^n/s)} \neq 0, \quad \beta_{(ap^m/r)} \delta \beta_{(tp^n/s)} \neq 0$$

if $r + s \ge p^n + p^{n-1}$ and one of the following conditions holds:

- (i) m = n, $a + t \equiv 0 \pmod{p}$.
- (ii) m = n 1, $a \not\equiv 1 \pmod{p}$.
- (iii) m < n 1, $a \not\equiv -1 \pmod{p}$.

Theorem I is proved by using some results on nonsplit ring spectra K_r given in S. Oka [4] and some results on $\text{Ext}^{1,*}M$ given in Miller and Wilson [1]. The proof also needs some further properties of K_r which are not in [4], mainly the following fact on commutativity of some elements in $[\Sigma^*K_r, K_r]$.

THEOREM II. If $r \not\equiv 0 \pmod{p}$ and $g, f \in \text{Mod} \cap [\Sigma^* K_r, K_r]$, then

$$g^p(\delta_0 f^p - f^p \delta_0) = (-1)^{|f| \cdot |g|} (\delta_0 f^p - f^p \delta_0) g^p$$

and $\delta_0 f^{p^2} = f^{p^2} \delta_0$ if f has even degree, where $\delta_0 = i'_r i j j'_r$ is the unique generator in $[\Sigma^{-rq-2}K_r, K_r]$. If $r \equiv 0 \pmod{p}$, $\delta_0 f^p - f^p \delta_0$ belongs to the commutative subring \mathscr{C}_* of $[\Sigma^*K_r, K_r]$ and the above two equalities also hold.

The proof of Theorem I will be given in §2. In §3, we first recall some results on K_r given in [4], then develop some further technical results on K_r and prove Theorem II.

2. Proof of Theorem I. From [8] and [9], there exists $f \in [\Sigma^{tp^n(p+1)q}K_s, K_s]$ for $s \leq p^n$ if $p \nmid t \geq 2$ or $s \leq p^n - 1$ if t = 1 such that the induced BP_* homomorphism $f_* = v_2^{tp^n} : BP_*/(p, v_1^s) \to BP_*/(p, v_1^s)$. We may assume $f \in Mod$ (or $f \in \mathscr{C}_*$ in case $s \equiv 0 \pmod{p}$) since the components of f in Der and Mod δ_0 induce the zero homomorphism. Then $j'_s f i'_s = \beta_{(tp^n/s)} \in [\Sigma^*M, M]$ and $\beta_{(ktp^n/s)}\beta_{(tp^n/s)} = j'_s f^k i'_s j'_s f i'_s$.

Recall that $\delta' = i'_s j'_s \in [\Sigma^{-sq-1}K_s, K_s]$ and $\delta'f - f\delta' \in \text{Mod}$. From commutativity of Mod, we have $f(\delta'f - f\delta') = (\delta'f - f\delta')f$ or equivalently $f^2\delta' - \delta'f^2 = 2(f^2\delta' - f\delta'f)$. Composing f with the above equation, inductively we have

$$f^r \delta' - \delta' f^r = r(f^r \delta' - f^{r-1} \delta' f), \qquad r \ge 1,$$

and $f^k \delta' f = \frac{1}{k+1} (\delta' f^{k+1} + k f^{k+1} \delta')$ if we let $r-1 = k \not\equiv -1 \pmod{p}$. So $\beta_{(ktp^n/s)} \cdot \beta_{(tp^n/s)} = j'_s f^k \delta' f i'_s = 0$; this proves Theorem I (1).

(2) From [8], there exists $f \in [\Sigma^{tp^{n-1}(p+1)q}K_s, K_s]$ such that the induced BP_* homomorphism $f_* = v_2^{tp^{n-1}}$ and $f \in Mod$. Hence $f_*^p = v_2^{tp^n}$ and $\beta_{(ktp^n/s)}\delta\beta_{(tp^n/s)} = j'_s f^{kp}i'_s ijj'_s f^p i'_s = j'_s f^{kp}\delta_0 f^p i'_s$. From Theorem II, $f^p(\delta_0 f^p - f^p\delta_0) = (\delta_0 f^p - f^p\delta_0)f^p$ or equivalently $f^{2p}\delta_0 - \delta_0 f^{2p} = 2(f^{2p}\delta_0 - f^p\delta_0 f^p)$. By induction we have $f^{rp}\delta_0 - \delta_0 f^{rp} = r(f^{rp}\delta_0 - f^{(r-1)p}\delta_0 f^p)$ for $r \ge 1$. Thus

$$f^{kp}\delta_0 f^p = \frac{1}{k+1} (\delta_0 f^{(k+1)p} + k f^{(k+1)p} \delta_0)$$

for $k \not\equiv -1 \pmod{p}$ and so $\beta_{(ktp^n/s)} \delta \beta_{(tp^n/s)} = j'_s f^{kp} \delta_0 f^p i'_s = 0$.

(3) In all cases, there exists $f \in \text{Mod} \cap [\Sigma^{tp^{n-1}(p+1)q}K_s, K_s]$ and $g \in \text{Mod} \cap [\Sigma^{ap^{m-1}(p+1)q}K_s, K_s]$ such that $f_* = v_2^{tp^{n-1}}$ and $g_* = v_2^{ap^{m-1}}$. Then $\beta_{(ap^m/s)}\delta\beta_{(tp^n/s)} = j'_s g^p i'_s ijj'_s f^p i'_s = j'_s g^p \delta_0 f^p i'_s$.

From Theorem II, $g^p(\delta_0 f^p - f^p \delta_0) = (\delta_0 f^p - f^p \delta_0) g^p$ or equivalently $g^p \delta_0 f^p + f^p \delta_0 g^p = \delta_0 f^p g^p + g^p f^p \delta_0$. Hence $\beta_{(ap^m/s)} \delta_{(tp^n/s)} +$ $\beta_{(tp^{n}/s)}\delta\beta_{(ap^{m}/s)} = j'_{s}(g^{p}\delta_{0}f^{p} + f^{p}\delta_{0}g^{p})i'_{s} = 0.$

(4) From [4, p. 422], $i'_r j'_s : K_s \to \Sigma^{sq+1} K_r$ induces a cofibration

$$\Sigma^{sq}K_r \xrightarrow{\psi_{r,r+s}} K_{r+s} \xrightarrow{\rho_{r+s,s}} K_s \xrightarrow{i'_r j'_s} \Sigma^{sq+1}K_r$$

which realizes the short exact sequence

$$0 \to BP_*/(p, v_1^r) \xrightarrow{\psi_*} BP_*/(p, v_1^{r+s}) \xrightarrow{\rho_*} BP_*/(p, v_1^s) \to 0$$

such that $\psi_* = v_1^s$ and then induces Ext exact sequence

$$\cdots \to \operatorname{Ext}^{k, t-sq} K_r \xrightarrow{\psi_{\star}} \operatorname{Ext}^{k, t} K_{r+s} \xrightarrow{\rho_{\star}} \operatorname{Ext}^{k, t} K_s$$
$$\xrightarrow{(i'_r j'_s)_{\star}} \operatorname{Ext}^{k+1, t-sq} K_r \to \cdots$$

where we briefly write $\operatorname{Ext}^{k,*}X = \operatorname{Ext}^{k,*}_{BP_*BP}(BP_*, BP_*X)$ and $(i'_r j'_s)_*$ as the boundary homomorphism. Moreover, we have (cf. [8] (3.23))

$$\psi_{r,r+s}i'_r = i'_{r+s}\alpha^s$$
, $\rho_{r+s,s}i'_{r+s} = i'_s$, $j'_s\rho_{r+s,s} = \alpha^r j'_{r+s}$.

Note that the behavior of ψ_* , ρ_* , $(i'_r j'_s)_*$ in the above Ext exact sequence is compatible with that of ψ , ρ , $i'_r j'_s$ in the cofibration, i.e., we also have $\psi_*(i'_r)_* = (i'_{r+s})_* v_1^s$, $\rho_*(i'_{r+s})_* = (i'_s)_*$ in the Ext stage, where $(i'_r)_*$: Ext^k, *M \rightarrow Ext^k, *K_r is the reduction in the following exact sequence

$$\cdots \to \operatorname{Ext}^{k, t-rq} M \xrightarrow{v_1'} \operatorname{Ext}^{k, t} M \xrightarrow{(i_r')_{\star}} \operatorname{Ext}^{k, t} K_r \xrightarrow{(j_r')_{\star}} \operatorname{Ext}^{k+1, t-rq} M \to \cdots$$

Case (A). $r + s = p^n + p^{n-1}$. Let $g \in \text{Mod} \cap [\Sigma^* K_r, K_r]$ and $f \in \text{Mod} \cap [\Sigma^* K_s, K_s]$ such that $g_* = v_2^{ap^m}$ and $f_* = v_2^{tp^n}$. Consider $\beta_{(ap^m/r)}\beta_{(tp^n/s)} = j'_r g i'_r j'_s f i'_s \in [\Sigma^* M, M].$

Suppose that $j'_r g i'_r j'_s f i'_s = 0$; then $g i'_r j'_s f i'_s = i'_r k$ for some $k \in$ π_*M and the arguments below show that it yields a contradiction.

Since $j'_s f i'_s i \in \pi_* M$ is detected by $\beta'_{tp^n/s} \in \operatorname{Ext}^1 M$, then $i'_r j'_s f i'_s i \in$ $\pi_{*}K_{r}$ is detected by

$$(i'_{r})_{*}(\beta'_{tp^{n}/s}) = (i'_{r})_{*}(v_{1}^{r-1}\beta'_{tp^{n}/r+s-1})$$

= $(\psi_{1,r})_{*}i'_{*}(\beta'_{tp^{n}/p^{n}+p^{n-1}-1}) \in \operatorname{Ext}^{1}K_{r}.$

From [1, p. 132 Theorem 1.1(b)(iii)],

$$i'_*(c_1(tp^n)) = 2tv_2^{tp^n - p^{n-1}}h_0 \in \operatorname{Ext}^1 K_1$$
,

where $c_1(tp^n)$ in [1] actually is $\beta'_{tp^n/p^n+p^{n-1}-1} \in \operatorname{Ext}^1 M$ and $h_0 \in \operatorname{Ext}^1 K_1$ is the v_2 -torsion free generator. Hence $i'_r j'_s f i'_s i \in \pi_* K_r$ is detected by $2t(\psi_{1,r})_*(v_2^{tp^n-p^{n-1}}h_0) \in \operatorname{Ext}^1 K_r$.

Since $g \in \text{Mod} \cap [\Sigma^* K_r, K_r]$ and $(gi'_r i)_* = v_2^{ap^m} \in \text{Ext}^0 K_r$, then $gi'_r j'_s fi'_s i \in \pi_* K_r$ is detected by the product

$$v_2^{ap^m} \cdot 2t(\psi_{1,r})_* (v_2^{tp^n - p^{n-1}} h_0)$$

= $2t(\psi_{1,r})_* (v_2^{ap^m + tp^n - p^{n-1}} h_0) \neq 0 \in \operatorname{Ext}^1 K_r$

(if it is zero, then $v_2^{ap^m+tp^n-p^{n-1}}h_0 = (i'_1j'_{r-1})_*(x)$ for some $x \in \text{Ext}^{0, (ap^m+tp^n-p^{n-1})(p+1)q+rq}K_{r-1}$, but the group vanishes for degree reasons, cf. [1, p. 140 Prop. 6.3]).

Hence $i'_r k \in \pi_* K_r$ and so $k \in \pi_* M$ has BP filtration 1, i.e. k is detected by some $y \in \operatorname{Ext}^1 M$ and $(i'_r)_*(y) = 2t(\psi_{1,r})_*(v_2^{ap^m + tp^n - p^{n-1}}h_0) \neq 0 \in \operatorname{Ext}^1 K_r$. Thus $(i'_{r-1})_*(y) = (\rho_{r,r-1})_*(i'_r)_*(y) = 0$ and $y = v_1^{r-1}\overline{y}$ for some $\overline{y} \in \operatorname{Ext}^{1, (ap^m + tp^n - p^{n-1})(p+1)q+q} M$.

From [1, p. 132 Theorem 1.1], $\operatorname{Ext}^1 M$ is generated by $v_1^u h_0$ $(u \ge 0)$ and $v_1^u c_1(bp^s)$ $(0 \le u < p^s + p^{s-1} - 1$ if $p \nmid b \ge 2$, $0 \le u < p^s$ if b = 1) additively, where $h_0 \in \operatorname{Ext}^1 M$ is the v_1 -torsion free generator and $c_1(bp^s) \in \operatorname{Ext}^1 M$ is the v_1 -torsion generator whose internal degree is $(bp^s - p^{s-1})(p+1)q + q$.

It is impossible for $\overline{y} = v_1^u h_0$ since then $(i'_r)_*(y) = (i'_r)_*(v_1^{r-1}\overline{y}) = 0$ which yields a contradiction.

If $\overline{y} = v_1^u c_1(bp^s)$ with u > 0, then $y = v_1^{r-1}\overline{y} = v_1^r z$ for $z = v_1^{u-1}c_1(bp^s)$ and so $(i'_r)_*(y) = 0$ which yields a contradiction. If $\overline{y} = c_1(bp^s)$, then for degree reasons $(bp-1)p^{s-1} = ap^m + tp^n - b^{s-1}$

If $\overline{y} = c_1(bp^s)$, then for degree reasons $(bp-1)p^{s-1} = ap^m + tp^n - p^{n-1}$. If m = n, $a + t \equiv 0 \pmod{p}$, then $b = a + t \equiv 0 \pmod{p}$ which yields a contradiction. If m = n - 1 and $a \not\equiv 1 \pmod{p}$, $(bp-1)p^{s-1} = (a+tp-1)p^{n-1}$ and so $bp-1 \equiv 0 \pmod{p}$ if s < n, $a \equiv 1$ if s > n and $a \equiv 0 \pmod{p}$ if s = n all of which yields contradictions. Similarly, there is a contradiction if m < n-1 and $a \not\equiv p^n + p^{n-1}$ and one of the conditions (i)-(iii) holds.

Case (B). $r + s > p^n + p^{n-1}$.

Let $u = (r+s) - (p^n + p^{n-1})$; then there are c and d such that u = c+d and c < r, d < s. From [6, p. 277 Lemma 2.4], $d(i'_r) = 0 = d(j'_r)$. Moreover, Mod $\subset \ker d$, so $\beta_{(ap^m/r)} = j'_r g i'_r$, $\beta_{(tp^n/s)} = j'_s f i'_s$ all belong to ker d which is a commutative subring of $[\Sigma^*M, M]$.

Since $\alpha^{d} j'_{s} f i'_{s} \delta = j'_{s-d} \rho_{s,s-d} f i'_{s} i j$, there exists $\overline{f} \in \text{Mod} \cap [\Sigma^{*} K_{s-d}, K_{s-d}]$ such that $\rho_{s,s-d} f i'_{s} i = \overline{f} i'_{s-d} i$ and $\overline{f}_{*} = v_{2}^{tp^{n}}$; then $\alpha^{d} \beta_{(tp^{n}/s)} \delta = \alpha^{d} j'_{s} f i'_{s} \delta = j'_{s-d} \overline{f} i'_{s-d} \delta = \beta_{(tp^{n}/s-d)} \delta$. Suppose that $\beta_{(ap^{m}/r)} \cdot \beta_{(tp^{n}/s)} = 0$. Then

$$\begin{aligned} \beta_{(ap^m/r-c)}\beta_{(tp^n/s-d)}\delta &= \beta_{(ap^m/r-c)}\alpha^d\beta_{(tp^n/s)}\delta \\ &= -\alpha^d\beta_{(tp^n/s)}\beta_{(ap^m/r-c)}\delta = \alpha^{c+d}\beta_{(ap^m/r)}\beta_{(tp^n/s)}\delta = 0. \end{aligned}$$

By applying the derivation d to the above equation we have $\beta_{(ap^m/r-c)}\beta_{(tp^n/s-d)} = 0$ which contradicts case (A) when one of the conditions (i)-(iii) holds.

Hence we have $\beta_{(ap^m/r)}\beta_{(tp^n/s)} \neq 0$ for $r+s \geq p^n + p^{n-1}$ and one of the conditions (i)-(iii) holds. $\beta_{(ap^m/r)}\beta_{(tp^n/s)} \neq 0$ implies $\beta_{(ap^m/r)}\delta\beta_{(tp^n/s)} \neq 0$ since by applying the derivation d to the equation $\beta_{(ap^m/r)}\delta\beta_{(tp^n/s)} = 0$ we will have $\beta_{(ap^m/r)}\beta_{(tp^n/s)} = 0$. \Box

3. Structure of nonsplit ring spectra. In this section, we will develop some technical results on nonsplit ring spectra K_r and prove Theorem II.

We first recall some facts on K_r given in [4]. A spectrum X is called a Z_p spectrum if there are two maps $m_X: M \wedge X \to X$, $\overline{m}_X: \Sigma X \to M \wedge X$ such that

(3.1)
$$m_X(i \wedge 1_X) = 1_X$$
, $(j \wedge 1_X)\overline{m}_X = 1_X$,
 $m_X\overline{m}_X = 0$, $(i \wedge 1_X)m_X + \overline{m}_X(j \wedge 1_X) = 1_{M \wedge X}$

where M is the mod p Moore spectrum and m_X is called an Mmodule action of X. For Z_p spectra X, Y, Z, we define $d: [\Sigma^r X, Y] \rightarrow [\Sigma^{r+1}X, Y]$ to be $d(f) = m_Y(1_M \wedge f)\overline{m}_X$. If m_X is associative, then d is a derivation, i.e.

(3.2)
$$d^2 = 0, \quad d(fg) = (-1)^t d(f)g + f d(g)$$

for $g \in [\Sigma^* X, Y]$, $f \in [\Sigma^* Y, Z]$ and deg g = t.

We briefly write K_r , i'_r , j'_r as K, i', j'. Since $p \wedge 1_K = 0: S \wedge K \rightarrow S \wedge K$, then there is a homotopy equivalence $M \wedge K = K \vee \Sigma K$. From [4, p. 432], there is an associative *M*-module action $m: M \wedge K \rightarrow K$ and $\overline{m}: \Sigma K \rightarrow M \wedge K$ is an associated element such that

(3.3)
$$m(i \wedge 1_K) = 1_K, \quad (j \wedge 1_K)\overline{m} = 1_K,$$

$$m\overline{m} = 0$$
, $(i \wedge 1_K)m + \overline{m}(j \wedge 1_K) = 1_{M \wedge K}$.

So (3.2) also holds in case X = Y = Z = K.

Let $\phi = \alpha^r \in [\Sigma^{rq}M, M]$ and $\phi_1 = j\alpha^r i \in \pi_{rq-1}S$, $\overline{\phi} = \phi_1 \wedge 1_K \in [\Sigma^{rq-1}K, K]$, then [4, p. 431 (5.14) and p. 432 Remark 5.7] showed that

(3.4)
$$\overline{\phi} = r\overline{\alpha}^{r-1}\alpha', \quad \overline{\phi}i' = i'\delta\phi, \\ j'\overline{\phi} = -\phi\delta j', \quad \overline{\phi}\delta_0 = \delta_0\overline{\phi},$$

where $\delta = ij \in [\Sigma^{-1}M, M]$, $\delta_0 = i'ijj' \in [\Sigma^{-rq-2}K, K]$, $\overline{\alpha} = \lambda(\alpha\delta) \in [\Sigma^q K, K]$, $\alpha' = \lambda(\delta\alpha\delta) \in [\Sigma^{q-1}K, K]$ and $\lambda: [\Sigma^r M, M] \rightarrow [\Sigma^{r+1}K, K]$ is defined to be $\lambda(f) = m(f \wedge 1_K)\overline{m}$. [4, p. 432 (6.2)] also showed that

(3.5)
$$\phi \wedge 1_K = \overline{m}\overline{\phi}m.$$

Then there is a homotopy equivalence

(3.6)
$$K \wedge K = K \vee \Sigma L \wedge K \vee \Sigma^{rq+1} K$$

where L is the cofibre of $\phi_1 = j\phi i$ given by the cofibration

(3.7)
$$\Sigma^{rq-1}S \xrightarrow{\phi_1} S \xrightarrow{i''} L \xrightarrow{j''} \Sigma^{rq}S$$

and there exist

$$\mu: K \wedge K \to K, \quad \mu_2: K \wedge K \to \Sigma L \wedge K, \quad \mu_3: K \wedge K \to \Sigma^{rq+2} K$$
$$\nu_3: K \to K \wedge K, \quad \nu_2: \Sigma L \wedge K \to K \wedge K, \quad \nu: \Sigma^{rq+2} K \to K \wedge K$$

such that (cf. [4, p. 433])

(3.8) (A)
$$\mu(i' \wedge i_K) = m$$
, $(j' \wedge 1_K)\nu = \overline{m}$,
(B) $\mu_2(i' \wedge 1_K) = (i'' \wedge 1_K)(j \wedge 1_K)$,
 $(j' \wedge 1_K)\nu_2 = (i \wedge 1_K)(j'' \wedge 1_K)$,
(C) $(j'' \wedge 1_K)\mu_2 = m(j' \wedge 1_K)$, $\nu_2(i'' \wedge 1_K) = (i' \wedge 1_K)\overline{m}$,
(D) $\mu\nu_2 = 0$, $\mu\nu = 0$, $\mu_2\nu = 0$, $\mu_2\nu_2 = 1_{L \wedge K}$.

Let $\mu_3 = jj' \wedge 1_K$, $\nu_3 = i'i \wedge 1_K$, (A) and (B) imply

(3.9)
(A)'
$$\mu\nu_3 = 1_K, \quad \mu_3\nu = 1_K,$$

(B)' $\mu_2\nu_3 = 0, \quad \mu_3\nu_2 = 0,$
(C)' $\nu\mu_3 + \nu_2\mu_2 + \nu_3\mu = 1_{K\wedge K}$

Recall that $\delta' = i'j' \in [\Sigma^{-rq-1}K, K]$, $\delta_0 = i'ijj' \in [\Sigma^{-rq-2}K, K]$ and $\delta = ij \in [\Sigma^{-1}M, M]$; they satisfy (cf. [4, p. 434])

(3.10)
$$d(\delta) = -1_M, \quad d(\delta') = 0, \quad d(\delta_0) = \delta'.$$

LEMMA 3.11 ([4, p. 434 Lemma 6.2]). There exist elements

$$\widetilde{\Delta} \in [\Sigma^{-1}K, L \wedge K], \quad \overline{\Delta} \in [\Sigma^{-rq-1}L \wedge K, K]$$

such that

(i)
$$(j'' \wedge 1_K)\widetilde{\Delta} = \delta', \ \overline{\Delta}(i'' \wedge 1_K) = \delta',$$

(ii) $\widetilde{\Delta}i' = (i'' \wedge 1_K)i'\delta, \ j'\overline{\Delta} = \delta j'(j'' \wedge 1_K),$
(iii) $(1_L \wedge j')\widetilde{\Delta} = -(i'' \wedge 1_M)\delta j', \ \overline{\Delta}(1_L \wedge i') = -i'\delta(j'' \wedge 1_M),$
(iv) $\overline{\Delta}\widetilde{\Delta} = 2\delta_0.$

THEOREM 3.12 ([4, p. 438 Theorems 6.5 and 6.6]). There is a choice of (μ, μ_2, ν, ν_2) such that

$$\mu T = \mu, \qquad T\nu = \nu,$$

$$\mu_2 T = -\mu_2 + \widetilde{\Delta}\mu, \quad T\nu_2 = -\nu_2 + \nu\overline{\Delta}$$

and any such μ is an associative multiplication of K, where $T: K \wedge K \rightarrow K \wedge K$ is the switching map.

DEFINITION 3.13 ([4, p. 423 Def. 2.2)].

$$Mod = \{ f \in [\Sigma^* K, K] | \mu(f \land 1_K) = f\mu \}, Der = \{ f \in [\Sigma^* K, K] | f\mu = \mu(f \land 1_K) + \mu(1_K \land f) \}.$$

That is, Mod consists of right K-module maps and Der consists of elements which behave as a derivation on the cohomology defined by K.

THEOREM 3.14 ([4, p. 424 Remark 2.4 and p. 423 Lemma 2.3]). There is a direct summand decomposition

$$[\Sigma^*K, K] = \operatorname{Mod} \oplus \operatorname{Der} \oplus \operatorname{Mod} \delta_0$$

and ker $i_0^* = \text{Der} \oplus \text{Mod } \delta_0$, [Der, Mod] $\subset \text{Mod}$, where $i_0 = i'i: S \to K$ is injection of the bottom cell and [f, g] denotes the graded commutator $fg - (-1)^{|f| \cdot |g|}gf$.

By using Theorem 3.12 and (3.8) (A) (B) (D), we can easily check that $h\nu = 0$, $h\nu_2 = 0$, $h\nu_3 = 0$ for $h = \mu(\delta' \wedge 1_K) + \mu(1_K \wedge \delta') - \delta'\mu$. Hence it follows from (3.9)(C)' that $\delta'\mu = \mu(\delta' \wedge 1_K) + \mu(1_K \wedge \delta')$ and

so $\delta' \in \text{Der}$. From Theorem 3.14, $[\delta', f] \in \text{Mod for } f \in \text{Mod and}$ in particular we have $\delta' f^p = f^p \delta'$ for $f \in \text{Mod having even degree.}$

Now we consider further properties of $[\Sigma^* K, K]$ which are not in [4]. Define

$$d_0: [\Sigma^s K, K] \rightarrow [\Sigma^{s+rq+2} K, K]$$

to be $d_0(f) = \mu(f \wedge 1_K)\nu$. d_0 has the following important properties.

PROPOSITION 3.15. (1) $d_0(\delta_0) = 1_K$, $d_0(g\delta_0) = g$ for $g \in \text{Mod}$. (2) ker $d_0 = \text{Mod} \oplus \text{Der}$, im $d_0 \subset \text{Mod}$.

Proof. (1) From (3.9) (A)',

$$d_0(\delta_0) = \mu(\delta_0 \wedge 1_K)\nu = \mu(i'i \wedge 1_K)(jj' \wedge 1_K)\nu = 1_K$$

and $d_0(g\delta_0) = \mu(g\delta_0 \wedge 1_K)\nu = g\mu(\delta_0 \wedge 1_K)\nu = g$. (2) It is easily seen that Mod $\subset \ker d_0$ and for $f \in \text{Der}$

$$d_0(f) = \mu(f \wedge 1_K)\nu = f \mu \nu - \mu(1_K \wedge f)\nu = -\mu T(1_K \wedge f)\nu = -\mu(f \wedge 1_K)\nu = -d_0(f) = 0;$$

then $\text{Der} \subset \ker d_0$. On the other hand, if $f \in \ker d_0$, let $f = f_1 + f_2 + f_3 \delta_0$ with $f_1, f_3 \in \text{Mod}$ and $f_2 \in \text{Der}$, (cf. Thm. 3.14), then $0 = d_0(f) = d_0(f_3 \delta_0) = f_3$ and so $f \in \text{Der} \oplus \text{Mod}$. im $d_0 \subset \text{Mod}$ is immediate.

PROPOSITION 3.16. (1) If $h \in Mod$, $u \in Der$, then $hu \in Der$; in particular, $Mod \delta' \subset Der$.

(2) $d_0(\delta'g) = (-1)^{t+1}d(g) + \delta'd_0(g)$, $d_0(g\delta') = -d(g_2)$, where $t = \deg g$ and g_2 is the component of g in Der in the decomposition in Theorem 3.14.

Proof. (1) If $h \in Mod$ and $u \in Der$, then $h\mu = \mu(h \wedge 1_K)$ and $u\mu = \mu(u \wedge 1_K) + \mu(1_K \wedge u)$. Hence

$$hu\mu = h\mu(u \wedge 1_K) + h\mu(1_K \wedge u)$$

= $\mu(hu \wedge 1_K) + h\mu T(1_K \wedge u)$, ($\mu T = \mu$ from Thm. 3.12)
= $\mu(hu \wedge 1_K) + \mu(h \wedge 1_K)T(1_K \wedge u)$
= $\mu(hu \wedge 1_K) + \mu T(1_K \wedge hu)$
= $\mu(hu \wedge 1_K) + \mu(1_K \wedge hu)$

and so $hu \in \text{Der}$. Since $\delta' \in \text{Der}$, then $\text{Mod}\,\delta' \subset \text{Der}$.

(2) If $g_1 \in \text{Mod}$, then $d_0(g_1\delta') = \mu(g_1\delta' \wedge 1_K)\nu = g_1\mu(\delta' \wedge 1_K)\nu = 0$. Since $[\delta', g_1] \in \text{Mod}$, then $d_0(\delta'g_1) = d_0(g_1\delta') = 0$. Let $g = g_1 + g_2 + g_3\delta_0$ with $g_1, g_3 \in \text{Mod}$ and $g_2 \in \text{Der}$; then

$$d_0(\delta'g) = d_0(\delta'g_2) + d_0(\delta'g_3\delta_0) = d_0(\delta'g_2) + \delta'g_3 - (-1)^t g_3\delta'.$$

Moreover,

$$\begin{split} d_{0}(\delta'g_{2}) &= \mu(1_{K} \wedge \delta')\nu\mu_{3}(1_{K} \wedge g_{2})\nu + \mu(1_{K} \wedge \delta')\nu_{2}\mu_{2}(1_{K} \wedge g_{2})\nu \\ &+ \mu(1_{K} \wedge \delta')\nu_{3}\mu(1_{K} \wedge g_{2})\nu , \quad (\text{cf. } (3.9)(\text{C})') \\ &= \mu(\delta' \wedge 1_{K})T\nu_{2}\mu_{2}(1_{K} \wedge g_{2})\nu , \quad (\text{since 1st and 3rd terms are zero}) \\ &= -\mu(\delta' \wedge 1_{K})\nu_{2}\mu_{2}(1_{K} \wedge g_{2})\nu , \quad (T\nu_{2} = -\nu_{2} + \nu\overline{\Delta}) \\ &= -m(i \wedge 1_{K})(j'' \wedge 1_{K})\mu_{2}(1_{K} \wedge g_{2})\nu , \quad ((j' \wedge 1_{K})\nu_{2} = (ij'' \wedge 1_{K})) \\ &= (-1)^{t+1}m(1_{M} \wedge g_{2})\overline{m}, \quad (\overline{m} = (j' \wedge 1_{K})\nu) \\ &= (-1)^{t+1}d(g_{2}). \end{split}$$

Hence

$$d_0(\delta'g) = (-1)^{t+1}d(g_2) + \delta'g_3 - (-1)^t g_3 \delta'$$

= $(-1)^{t+1}d(g) + \delta'(d_0(g);$

note that $d(g) = d(g_2) + g_3 \delta'$ and $d_0(g) = g_3$. The proof of $d_0(g\delta') = -d(g_2)$ is similar.

PROPOSITION 3.17. If $g \in \text{Der}$, then $g\delta' \in \text{Mod } \delta_0$ and $d(g) \in \text{Mod}$. Moreover, $g \in \text{Mod } \delta'$ if d(g) = 0.

Proof. Since $g \in \text{Der}$, then gi'i = 0 (cf. Thm. 3.14) and so $gi' = \eta j$ for some $\eta \in \pi_*K$. η can be extended to $\overline{\eta} \in [\Sigma^*K, K]$ such that $\eta = \overline{\eta}i'i$ and $\overline{\eta} \in \text{Mod}$. Then $g\delta' = \overline{\eta}i'ijj' = \overline{\eta}\delta_0 \in \text{Mod} \delta_0$.

On the other hand, $\overline{\eta} = d_0(\overline{\eta}\delta_0) = d_0(g\delta') = -d(g)$, so $d(g) \in Mod$. Moreover, if d(g) = 0, then $gi' = \overline{\eta}i'ij = -d(g)i'ij = 0$ and so $g = \overline{g}j'$ for some $\overline{g} \in [\Sigma^*M, K]$. Since $g\delta_0 = 0$, then

138

$$\begin{split} 0 &= \mu(1_{K} \land g)(1_{K} \land \delta_{0})\nu \\ &= \mu(1_{K} \land g)\nu\mu_{3}(1_{K} \land \delta_{0})\nu \\ &+ \mu(1_{K} \land g)\nu_{2}\mu_{2}(1_{K} \land \delta_{0})\nu + \mu(1_{K} \land g)\nu_{3}\mu(1_{K} \land \delta_{0})\nu \\ &= \mu(1_{K} \land g)\nu_{2}\mu_{2}(1_{K} \land \delta_{0})\nu + g \\ &\qquad (\mu(1_{K} \land g)\nu = 0, \ \mu(1_{K} \land \delta_{0})\nu = 1_{K}) \\ &= \mu(1_{K} \land g)\nu_{2}\mu_{2}T(\delta_{0} \land 1_{K})\nu + g \\ &\qquad (T\nu = \nu) \\ &= -\mu(1_{K} \land g)\nu_{2}\mu_{2}(\delta_{0} \land 1_{K})\nu + \mu(1_{K} \land g)\nu_{2}\tilde{\Delta}\mu(\delta_{0} \land 1_{K})\nu + g \\ &\qquad (\mu_{2}T = -\mu_{2} + \tilde{\Delta}\mu) \\ &= g + \mu(1_{K} \land g)\nu_{2}\tilde{\Delta} \quad (\mu_{2}(\delta_{0} \land 1_{K}) = (i''j \land 1_{K})(ijj' \land 1_{K}) = 0) \\ &= g - \mu(g \land 1_{K})\nu_{2}\tilde{\Delta} \qquad (\mu T = \mu, \ T\nu_{2} = -\nu_{2} + \nu\bar{\Delta}) \\ &= g - \mu(\overline{g} \land 1_{K})(j' \land 1_{K})\nu_{2}\tilde{\Delta} \quad ((j' \land 1_{K})\nu_{2} = (ij'' \land 1_{K})) \\ &= g - \mu(\overline{g} \land 1_{K})(i \land 1_{K})(j'' \land 1_{K})\tilde{\Delta} \qquad ((j'' \land 1_{K})\tilde{\Delta} = \delta'). \end{split}$$

Thus $g = u\delta'$, where $u = \mu(\overline{g}i \wedge 1_K) \in Mod$.

PROPOSITION 3.18. $\overline{\phi} \in \text{Mod and there exists } \varepsilon \in \text{Der such that} d(\varepsilon) = \overline{\phi}$.

Proof. Recall (3.4), $\overline{\phi} = r\overline{\alpha}^{r-1}\alpha'$, where $\overline{\alpha} = \lambda(\alpha\delta)$ and $\alpha' = \lambda(\delta\alpha\delta)$. Hence, it follows from im $\lambda \subset Mod$ that $\overline{\phi} \in Mod$.

From Lemma 3.11(i) and (3.4), $\overline{\phi\Delta}(i'' \wedge 1_K) = \overline{\phi}\delta' = i'\delta\phi j' = 0$; then $\overline{\phi\Delta} = u(j'' \wedge 1_K)$ for some $u \in [\Sigma^*K, K]$. Hence it follows from Lemma 3.11(iv) and (i) that

$$2\overline{\phi}\delta_0 = \overline{\phi}\overline{\Delta}\overline{\Delta} = u(j'' \wedge 1_K)\overline{\Delta} = u\delta'$$

and so $2\overline{\phi} = 2d_0(\overline{\phi}\delta_0) = d_0(u\delta') = -d(u_2)$ (cf. Prop. 3.16(2)). Thus $\overline{\phi} = d(\varepsilon)$ if we let $\varepsilon = -\frac{1}{2}u_2$.

PROPOSITION 3.19. (1) If $g \in \text{Mod}$ and $g\delta' = 0$ (resp. $\delta'g = 0$), then $g = \eta \overline{\phi}$ resp. $g = \overline{\phi} \eta$) for some $\eta \in \text{Mod}$.

(2) If $\eta \in Mod$, then $\eta \overline{\phi} = 0$ if and only if $\eta = d(u)$ for some $u \in Der$.

Proof. (1) Since $g\delta_0(j'' \wedge 1_K) = gi'\delta j'(j'' \wedge 1_K) = gi'j'\overline{\Delta} = 0$ (cf. Lemma 3.11(ii)), then $g\delta_0 = \overline{\eta}(j\phi i \wedge 1_K) = \overline{\eta}\phi$ for some $\overline{\eta} \in [\Sigma^*K, K]$. Let $\overline{\eta} = \eta_1 + \eta_2 + \eta_3\delta_0$ with $\eta_1, \eta_3 \in \text{Mod and } \eta_2 \in \text{Der.}$ Then $g\delta_0 = \eta_1\overline{\phi} + \eta_2\overline{\phi} + \eta_3\delta_0\overline{\phi}$ and $g = d_0(g\delta_0) = d_0(\eta_2\overline{\phi}) + d_0(\eta_3\delta_0\overline{\phi})$. However, $d_0(\eta_3\delta_0\overline{\phi}) = d_0(\eta_3\overline{\phi}\delta_0) = \eta_3\overline{\phi}$ (cf. (3.4)) and

 $\eta_2 \overline{\phi} - (-1)^t \overline{\phi} \eta_2 \in \text{Mod}, \ d_0(\eta_2 \overline{\phi}) = \pm d_0(\overline{\phi} \eta_2) = 0 \text{ (note that } \overline{\phi} \eta_2 \in \text{Der from Prop. 3.16(1)); then } g = \eta_3 \overline{\phi} \text{ with } \eta_3 \in \text{Mod}.$

If $g \in Mod$ and $\delta'g = 0$, then $g\delta' = g\delta' - (-1)^{|g|}\delta'g \in Mod \cap Mod \delta' \subset Mod \cap Der = 0$. So $g = \eta \overline{\phi} = \pm \overline{\phi} \eta$ for some $\eta \in Mod$.

(2) $d(u)\overline{\phi}m = m(1_M \wedge u)\overline{m}\overline{\phi}m = m(1_M \wedge u)(\phi \wedge 1_K) = m(\phi \wedge \cdot 1_K) \cdot (1_K \wedge u) = 0$. Then $d(u)\overline{\phi} = d(u)\overline{\phi}m(i \wedge 1_K) = 0$.

Conversely, if $\eta \overline{\phi} = 0$ for $\eta \in \text{Mod}$, then $\eta \overline{\phi} i'i = 0 = \eta i'ij\phi i$ and so $\eta i'ij\phi = uj$ for some $u \in \pi_*K$. u can be extended to $\overline{u} \in [\Sigma^*K, K]$ such that $\overline{u}i'i = u$ and $\overline{u} \in \text{Mod}$. Then $\eta i'ij\phi = \overline{u}i'ij$ and $\overline{u}\delta_0 = 0$, $\overline{u} = d_0(\overline{u}\delta_0) = 0$. Hence $\eta i'ij\phi = 0$ and $\eta i'ij = wi'$ for some $w \in [\Sigma^*K, K]$. Thus $\eta \delta_0 = w\delta'$, $\eta = d_0(\eta \delta_0) = d_0(w\delta') = -d(w_2)$, where w_2 is the component of w in Der, see Proposition 3.16(2).

PROPOSITION 3.20. If $g \in Mod$, then $d_0(\delta_0 g) = g$ and $\delta_0 g - g\delta_0 \in Mod \oplus Der$.

Proof.

$$d_{0}(\delta_{0}g) = \mu(\delta_{0} \wedge 1_{K})(g \wedge 1_{K})\nu$$

$$= \mu(\delta_{0} \wedge 1_{K})T\nu\mu_{3}(1_{K} \wedge g)\nu + \mu(\delta_{0} \wedge 1_{K})T\nu_{2}\mu_{2}(1_{K} \wedge g)\nu$$

$$+ \mu(\delta_{0} \wedge 1_{K})T\nu_{3}\mu(1_{K} \wedge g)\nu \quad (cf. (3.9)(C)')$$

$$= (jj' \wedge 1_{K})(1_{K} \wedge g)\nu - \mu(\delta_{0} \wedge 1_{K})\nu_{2}\mu_{2}(1_{K} \wedge g)\nu$$

$$+ \mu(\delta_{0} \wedge 1_{K})\nu\overline{\Delta}\mu_{2}(1_{K} \wedge g)\nu$$

$$(since \ \mu(1_{K} \wedge g)\nu = 0, \ T\nu_{2} = -\nu_{2} + \nu\overline{\Delta})$$

$$= g + \overline{\Delta}\mu_{2}(1_{K} \wedge g)\nu \quad (since \ \mu(\delta_{0} \wedge 1_{K})\nu_{2} = 0, \ cf. (3.8)).$$
Let $h = d_{1}(\delta_{1} g) = g - \overline{\Delta}\mu_{1}(1 - \Lambda g)\nu$. Then $h \in Mod$ and

Let $h = d_0(\delta_0 g) - g = \Delta \mu_2(1_K \wedge g)\nu$. Then $h \in Mod$ and

$$j'h = j'\Delta\mu_2(1_K \wedge g)\nu = \delta j'(j'' \wedge 1_K)\mu_2(1_K \wedge g)\nu$$

= $\delta j'm(j' \wedge 1_K)(1_K \wedge g)\nu = \delta j'm(1_M \wedge g)\overline{m} = j'd(g) = 0.$

So $\delta' h = 0$ and from Prop. 3.19(1) we have $h = \overline{\phi}g_1$ for some $g_1 \in \text{Mod}$, i.e. there is some $g_1 \in \text{Mod}$ such that

$$d_0(\delta_0 g) - g = \overline{\phi}g_1$$
 and $j'\overline{\phi}g_1 = 0.$

Thus inductively we have g_s , $g_{s+1} \in \text{Mod}$ $(s \ge 0 \text{ with } g_0 = g)$ such that $d_0(\delta_0 g_s) - g_s = \overline{\phi} g_{s+1}$ and $j' \overline{\phi} g_{s+1} = 0$ $(s \ge 0)$. It is easily seen for degree reasons that $g_{s+1} = 0$ for s large and so $d_0(\delta_0 g_s) = g_s$ for some fixed large s.

Since $j'\overline{\phi}g_s = 0$, then $\phi\delta j'g_s = 0$ (cf. (3.4)) and so $\delta j'g_s = j'k$ for some $k \in [\Sigma^*K, K]$. Hence $\delta_0g_x = \delta'k$ and $g_s = d_0(\delta_0g_s) = d_0(\delta'k) = \pm d(k) + \delta'd_0(k)$ (cf. Prop. 3.16(2)). Thus $\overline{\phi}g_s = 0$ since $\overline{\phi}d(k) = 0$ and $\overline{\phi}\delta' = 0$ (cf. Prop. 3.19(2) and (3.4)). Hence $d_0(\delta_0g_{s-1}) - g_{s-1} = \overline{\phi}g_s = 0$ and inductively we have $d_0(\delta_0g) = g$.

Since $d_0(\delta_0 g - g\delta_0) = g - g = 0$, then $\delta_0 g - g\delta_0 \in \ker d_0 = Mod \oplus Der$.

Now we are ready to prove Theorem II stated in §1.

Proof of Theorem II. Let $f, g \in \text{Mod} \cap [\Sigma^* K_r, K_r]$ and $r \neq 0$ (mod p). From Prop. 3.20 we may assume $\delta_0 f^p - f^p \delta_0 = h_1 + h_2$ with $h_1 \in \text{Mod}$ and $h_2 \in \text{Der}$. By applying the derivation d, $d(h_2) = d(\delta_0 f^p - f^p \delta_0) = \delta' f^p - f^p \delta' = 0$ (cf. Thm. 3.14). Hence $h_2 = u\delta'$ for some $u \in \text{Mod}$ (cf. Prop. 3.17). Hence

$$g^{p}(\delta_{0}f^{p} - f^{p}\delta_{0}) = g^{p}h_{1} + g^{p}u\delta' = (-1)^{|f| \cdot |g|}(h_{1} + u\delta)g^{p}$$
$$= (-1)^{|f| \cdot |g|}(\delta_{0}f^{p} - f^{p}\delta_{0})g^{p}$$

since g^p commutes with δ' and $h_1, u \in Mod$.

Moreover, if f has even degree, $f^p(\delta_0 f^p - f^p \delta_0) = (\delta_0 f^p - f^p \delta_0) f^p$ and by induction we have $f^{kp} \delta_0 - \delta_0 f^{kp} = k(f^{kp} \delta_0 - f^{(k-1)p} \delta_0 f^p)$ for $k \ge 1$. In particular we have $f^{p^2} \delta_0 \equiv \delta_0 f^{p^2}$.

If $r \equiv 0 \pmod{p}$, [6] showed that there exists $\overline{\delta} \in [\Sigma^{-1}K_r, K_r]$ such that $\overline{\delta}i'_r = i'_r ij$, $j'_r \overline{\delta} = -ijj'_r$ and apart from the derivation $d: [\Sigma^s K_r, K_r] \to [\Sigma^{s+1}K_r, K_r]$ there is another derivation $d': [\Sigma^s K_r, K_r] \to [\Sigma^{s+rq+1}K_r, K_r]$ such that

$$d'(\delta') = -1_{K_r}, \quad d'(\overline{\delta}) = 0, \quad d(\overline{\delta}) = -1_{K_r}, \quad d(\delta') = 0.$$

Moreover, there is a direct summand decomposition

$$[\Sigma^*K_r, K_r] = \mathscr{C}_* \oplus \mathscr{C}_*\overline{\delta} \oplus \mathscr{C}_*\delta' \oplus \mathscr{C}_*\overline{\delta}\delta'$$

such that $\mathscr{C}_* = \ker d \cap \ker d'$ is a commutative subring (cf. [6, p. 297 Thm. 5.5, 5.6]) and $\overline{\delta} f^p = f^p \overline{\delta}$, $\delta' f^p = f^p \delta'$ for $f \in \mathscr{C}_*$ having even degree (cf. [6, p. 298 Cor. 5.7]).

Hence $\delta_0 = \overline{\delta}\delta'$, $d(\delta_0 f^p - f^p \delta_0) = \delta' f^p - f^p \delta' = 0$, $d'(\delta_0 f^p - f^p \delta_0) = \overline{\delta}f^p - f^p \overline{\delta} = 0$ and so $\delta_0 f^p - f^p \delta_0 \in \ker d \cap \ker d' = \mathscr{C}_*$.

Acknowledgments. I would like to thank the referee for pointing out a gap in the original manuscript and making some grammatical and stylistic suggestions. His comments are included in this revised version. Also I would like to thank the Mathematical Sciences Research Institute, Berkeley, for its hospitality during my stay in the fall 1989.

References

- [1] H. R. Miller and W. S. Wilson, On Novikov's Ext¹ modulo an invariant prime ideal, Topology, 15 (1976), 131-141.
- [2] H. R. Miller, D. C. Ravenel and W. S. Wilson, *Periodic phenomena in the Adams-Novikov spectral sequence*, Ann. of Math., **106** (1977), 469-516.
- [3] S. Oka, A new family in the stable homotopy of spheres, Hiroshima Math. J., 5 (1975), 87–114.
- [4] ____, Multiplicative structure of finite ring spectra and stable homotopy of spheres, Algebraic Topology, (Aarhus 1982) Lect. Notes in Math., 1051 p. 418-441. Springer-Verlag 1984.
- [5] ____, Realizing some cyclic BP_{*} modules and applications to stable homotopy of spheres, Hiroshima Math. J., 7 (1977), 427–447.
- [6] ____, Small ring spectra and p-rank of the stable homotopy of spheres, Contemp. Math., **19** (1983), 267–308.
- [7] D. C. Ravenel, *The nonexistence of odd primary Arf invariant elements in stable homotopy*, Math. Proc. Phil. Soc., **83** (1978), 429–443.
- [8] Jinkun Lin, Split ring spectra and second periodicity families in stable homotopy of spheres, Topology, **29** no. 4, (1990), 389–407.
- [9] ____, Detection of second periodicity families in stable homotopy of spheres, Amer. J. Math., 112 (1990), 595-610.

Received December 9, 1990 and in revised form July 15, 1991.

Nankai University Tianjin Peoples Republic of China

AND

MSRI Berkeley, CA 94720