New Families in the Stable Homotopy of Spheres Revisited

LIN Jin Kun

Department of Mathematics, Nankai University, Tianjin 300071, P. R. China
E-mail: jklin@nankai.edu.cn

Abstract

This paper constructs a new family in the stable homotopy of spheres $\pi_{t-6} S$ represented by $h_{n} g_{0} \gamma_{3} \in E_{2}^{6, t}$ in the Adams spectral sequence which revisits the $b_{n-1} g_{0} \gamma_{3}$-elements $\in \pi_{t-7} S$ constructed in [3], where $t=2 p^{n}(p-1)+6\left(p^{2}+p+1\right)(p-1)$ and $p \geq 7$ is a prime, $n \geq 4$.

Keywords Stable homotopy of spheres, Adams spectral sequence, Toda-Smith spectrum, Adams resolution
2000 MR Subject Classification 55Q45

1 Introduction

Let A be the $\bmod p$ Steenrod algebra and S the sphere spectrum localized at an odd prime p. To determine the stable homotopy groups of spheres $\pi_{*} S$ is one of the central problems in homotopy theory. One of the main tools to reach it is the Adams spectral sequence (ASS) $E_{2}^{s, t}=\operatorname{Ext}_{A}^{s, t}\left(Z_{p}, Z_{p}\right) \Longrightarrow \pi_{t-s} S$, where the $E_{2}^{s, t}$-term is the cohomology of A.

From [1], $\operatorname{Ext}_{A}^{1, *}\left(Z_{p}, Z_{p}\right)$ has the Z_{p}-base consisting of $a_{0} \in \operatorname{Ext}_{A}^{1,1}\left(Z_{p}, Z_{p}\right), h_{i} \in \operatorname{Ext}_{A}^{1, p^{i} q}$ $\left(Z_{p}, Z_{p}\right)$ for all $i \geq 0$ and $\operatorname{Ext}_{A}^{2, *}\left(Z_{p}, Z_{p}\right)$ has the Z_{p}-base consisting of $\alpha_{2}, a_{0}^{2}, a_{0} h_{i}(i>0), g_{i}(i \geq$ $0), k_{i}(i \geq 0), b_{i}(i \geq 0)$ and $h_{i} h_{j}(j \geq i+2, i \geq 0)$ whose internal degrees are $2 q+1,2, p^{i} q+$ $1, p^{i+1} q+2 p^{i} q, 2 p^{i+1} q+p^{i} q, p^{i+1} q$ and $p^{i} q+p^{j} q$, respectively, where $q=2(p-1)$. From [2, p.110, Table 8.1], the Z_{p}-base of $\operatorname{Ext}_{A}^{3, *}\left(Z_{p}, Z_{p}\right)$ has been completely listed and there is a generator $\gamma_{3} \in \operatorname{Ext}_{A}^{3,\left(3 p^{2}+2 p+1\right) q}\left(Z_{p}, Z_{p}\right)$ whose name in [2] is $h_{0,1,2,3}$.

In [3], a family in $\pi_{*} S$, which is represented by $b_{n-1} g_{0} \gamma_{3} \in \operatorname{Ext}_{A}^{7, p^{n} q+3\left(p^{2}+p+1\right) q}\left(Z_{p}, Z_{p}\right)$ in the ASS, has been detected. The main purpose of this paper is to construct a new family in $\pi_{*} S$ revisited [3]. Our result is the following theorem:

Theorem I Let $p \geq 7, n \geq 4$. Then the product

$$
h_{n} g_{0} \gamma_{3} \neq 0 \in \operatorname{Ext}_{A}^{6, p^{n} q+3\left(p^{2}+p+1\right) q}\left(Z_{p}, Z_{p}\right)
$$

and it converges in the ASS to a nontrivial element in $\pi_{p^{n} q+3\left(p^{2}+p+1\right) q-6} S$ of order p.
The construction of the above $h_{n} g_{0} \gamma_{3}$-element is parallel to that of $b_{n-1} g_{0} \gamma_{3}$-element given in [3]. That is, Theorem I will also be proved on the basis of the following Theorem II revisited [3, Theorem II].

Let M be the Moore spectrum modulo a prime $p \geq 3$ given by the cofibration

$$
\begin{equation*}
S \xrightarrow{p} S \xrightarrow{i} M \xrightarrow{j} \Sigma S . \tag{1.1}
\end{equation*}
$$

Let $\alpha: \Sigma^{q} M \longrightarrow M$ be the Adams map and K be its cofibre given by the cofibration

$$
\begin{equation*}
\Sigma^{q} M \xrightarrow{\alpha} M \xrightarrow{i^{\prime}} K \xrightarrow{j^{\prime}} \Sigma^{q+1} M, \tag{1.2}
\end{equation*}
$$

where $q=2(p-1)$. This spectrum, which we briefly write as K, is known as the Toda-Smith spectrum $\mathrm{V}(1)$. Theorem I will be proved on basis of the following theorem:

Theorem II Let $p \geq 5, n \geq 3$. Then

$$
h_{n} g_{0} \in \operatorname{Ext}_{A}^{3, p^{n} q+p q+2 q}\left(H^{*} K, Z_{p}\right),
$$

the reduction of $h_{n} g_{0} \in \operatorname{Ext}_{A}^{3, p^{n}}{ }^{q+p q+2 q}\left(Z_{p}, Z_{p}\right)$, converges in the ASS to a nontrivial homotopy element in $\pi_{p^{n} q+p q+2 q-3} K$.

Parallel to the detection of the element $\zeta_{n-1}^{\prime \prime} \in\left[\Sigma^{p^{n} q+q-4} K, K\right]$ in [3], we will find an element $\eta_{n}^{\prime \prime} \in\left[\Sigma^{p^{n} q+q-3} K, K\right]$ (given in Prop. 3.4) so that $j^{\prime} \eta_{n}^{\prime \prime} \in\left[\Sigma^{p^{n} q-4} K, M\right]$ is represented by $\left(j j^{\prime}\right)^{*} i_{*}\left(h_{0} h_{n}\right) \in \operatorname{Ext}_{A}^{2, p^{n} q-2}\left(H^{*} M, H^{*} K\right)$ in the ASS. Then $\eta_{n}^{\prime \prime} \beta i^{\prime} i \in \pi_{p^{n} q+(p+2) q-3} K$ is our desired map in Theorem II and $j j^{\prime} \bar{j} \gamma^{3} \bar{i} \eta_{n}^{\prime \prime} \beta i^{\prime} i \in \pi_{p^{n} q+3\left(p^{2}+p+1\right) q-6} S$ is the $h_{n} g_{0} \gamma_{3}$-element, where $\beta \in\left[\Sigma^{(p+1) q} K, K\right]$ and $\gamma \in\left[\Sigma^{\left(p^{2}+p+1\right) q} V(2), V(2)\right]$ are the known v_{2} - and v_{3}-periodicity elements, respectively.

Note that the proof, in [3, Theorem II], of detecting $\zeta_{n-1}^{\prime \prime}$ relies on the fact that $a_{0} b_{n-1} \in$ $\operatorname{Ext}_{A}^{3, p^{n} q+1}\left(Z_{p}, Z_{p}\right)$ is hit by a differential $d_{2}\left(h_{n}\right)$ and this no longer holds for $a_{0} h_{n} \in \operatorname{Ext}_{A}^{2, p^{n} q+1}$ $\left(Z_{p}, Z_{p}\right)$. So, the arguments in [3] are not valid for proving the existence of $\eta_{n}^{\prime \prime}$ here. However,we can say that the proof of the existence of $\eta_{n}^{\prime \prime}$ given in this paper will be valid to prove the existence of $\zeta_{n-1}^{\prime \prime}$ in [3].

Some techniques on the derivation of maps between M-module spectra will play an important role in the proof of Theorem II and especially of Prop. 3.4. After giving some preliminaries on it and some low-dimensional Ext groups in Section 2, the proof of the main theorems will be given in Section 3.

2 Some Preliminaries on Derivations and Low-dimensional Ext Groups

In this section, we first recall some results on derivations of maps between M-module spectra developed in [4]. From [4, p. 204-206], the Moore spectrum M is a commutative ring spectrum
with multiplication $m_{M}: M \wedge M \rightarrow M$ and there is $\bar{m}_{M}: \Sigma M \rightarrow M \wedge M$ such that

$$
\begin{align*}
& m_{M}\left(i \wedge 1_{M}\right)=1_{M}, \quad\left(j \wedge 1_{M}\right) \bar{m}_{M}=1_{M} \\
& m_{M} \bar{m}_{M}=0, \quad \bar{m}_{M}\left(j \wedge 1_{M}\right)+\left(i \wedge 1_{M}\right) m_{M}=1_{M \wedge M} \tag{2.1}
\end{align*}
$$

and

$$
\begin{equation*}
m_{M} T=-m_{M}, \quad T \bar{m}_{M}=\bar{m}_{M}, \quad m_{M}\left(1_{M} \wedge i\right)=-1_{M}, \quad\left(1_{M} \wedge j\right) \bar{m}_{M}=1_{M}, \tag{2.2}
\end{equation*}
$$

where $T: M \wedge M \rightarrow M \wedge M$ is the switching map.
A spectrum X is called an M-module spectrum if $p \wedge 1_{X}=0 \in[X, X]$, and consequently, the cofibration $X \xrightarrow{p \wedge 1_{X}} X \xrightarrow{i \wedge 1_{X}} M \wedge X \xrightarrow{j \wedge 1_{X}} \Sigma X$ splits, i.e. there is a homotopy equivalence $M \wedge X=X \vee \Sigma X$ and there are maps $m_{X}: M \wedge X \rightarrow X, \bar{m}_{X}: \Sigma X \rightarrow M \wedge X$ satisfying

$$
\begin{aligned}
& m_{X}\left(i \wedge 1_{X}\right)=1_{X}, \quad\left(j \wedge 1_{X}\right) \bar{m}_{X}=1_{X} \\
& m_{X} \bar{m}_{X}=0, \quad \bar{m}_{X}\left(j \wedge 1_{X}\right)+\left(i \wedge 1_{X}\right) m_{X}=1_{M \wedge X}
\end{aligned}
$$

The M-module actions m_{X}, \bar{m}_{X} are called associative if there are commutativities $m_{X}\left(1_{M} \wedge m_{X}\right)=-m_{X}\left(m_{M} \wedge 1_{X}\right)$ and $\left(1_{M} \wedge \bar{m}_{X}\right) \bar{m}_{X}=\left(\bar{m}_{M} \wedge 1_{X}\right) \bar{m}_{X}$.

Let X and X^{\prime} be M-module spectra. Then we define a homomorphism $d:\left[\Sigma^{s} X^{\prime}, X\right]$ $\rightarrow\left[\Sigma^{s+1} X^{\prime}, X\right]$ by $d(f)=m_{X}\left(1_{M} \wedge f\right) \bar{m}_{X^{\prime}}$ for $f \in\left[\Sigma^{s} X^{\prime}, X\right]$. This operation d is called a derivation (of maps between M-module spectra) which has the following properties:

Proposition 2.3 [4, p. 210, Theorem 2.2] (i) d is derivative: $d(f g)=f d(g)+(-1)^{|g|} d(f) g$ for $f \in\left[\Sigma^{s} X^{\prime}, X\right], g \in\left[\Sigma^{t} X^{\prime \prime}, X^{\prime}\right]$, where $X, X^{\prime}, X^{\prime \prime}$ are M-module spectra.
(ii) Let W^{\prime}, W be arbitrary spectra and $h \in\left[\Sigma^{r} W^{\prime}, W\right]$. Then $d(h \wedge f)=(-1)^{|h|} h \wedge d(f)$ for $f \in\left[\Sigma^{s} X^{\prime}, X\right]$.
(iii) $d^{2}=0:\left[\Sigma^{s} X^{\prime}, X\right] \rightarrow\left[\Sigma^{s+2} X^{\prime}, X\right]$ for associative spectra X^{\prime}, X.

From [4, p. 217, (3.4)], K is an M-module spectrum, i.e. there are M-module actions $m_{K}: K \wedge M \rightarrow K, \bar{m}_{K}: \Sigma K \rightarrow K \wedge M$ satisfying

$$
\begin{align*}
& m_{K}\left(1_{K} \wedge i\right)=1_{K}, \quad\left(1_{K} \wedge j\right) \bar{m}_{K}=1_{K} \\
& m_{K} \bar{m}_{K}=0, \quad\left(1_{K} \wedge i\right) m_{K}+\left(1_{K} \wedge j\right) \bar{m}_{K}=1_{K \wedge M} \tag{2.4}
\end{align*}
$$

Moreover, from [4, p. 218, (3.7)] we have

$$
\begin{equation*}
d(i j)=-1_{M}, \quad d(\alpha)=0, \quad d\left(i^{\prime}\right)=0, \quad d\left(j^{\prime}\right)=0 \tag{2.5}
\end{equation*}
$$

The following proposition is a generalization of Theorem $\mathrm{A}(\mathrm{c})$ in [5]:
Proposition 2.6 Let V, V^{\prime} be arbitrary spectra. Then there is a direct sum decomposition

$$
\left[\Sigma^{*} V \wedge M, V^{\prime} \wedge M\right]=(\operatorname{ker} d) \oplus\left(1_{V^{\prime}} \wedge i j\right)(\operatorname{ker} d)
$$

where $\operatorname{ker} d=\left[\Sigma^{*} V \wedge M, V^{\prime} \wedge M\right] \cap(\operatorname{ker} d)$.

Proof The proof is a modification of the proof of Theorem A(c) in [5, p. 631]. Let $\delta_{L}(f)=$ $\left(1_{V^{\prime}} \wedge i j\right) f$ for $f \in\left[\Sigma^{*} V \wedge M, V^{\prime} \wedge M\right]$. Then we have exact sequences

$$
\begin{aligned}
& {\left[\Sigma^{s} V \wedge M, V^{\prime} \wedge M\right] \stackrel{d}{\longleftrightarrow}\left[\Sigma^{s+1} V \wedge M, V^{\prime} \wedge M\right] \stackrel{d}{\longleftrightarrow}\left[\Sigma^{s+2} V \wedge M, V^{\prime} \wedge M\right]} \\
& {\left[\Sigma^{s} V \wedge M, V^{\prime} \wedge M\right] \stackrel{\delta_{L}}{\longleftrightarrow}\left[\Sigma^{s+1} V \wedge M, V^{\prime} \wedge M\right] \stackrel{\delta_{L}}{\longleftrightarrow}\left[\Sigma^{s+2} V \wedge M, V^{\prime} \wedge M\right]}
\end{aligned}
$$

which split each other. To prove this, we claim that $V \wedge M, V^{\prime} \wedge M$ are associative M-module spectra, then $d^{2}=0$ and $\delta_{L}^{2}=0$, since $i j i j=0$. On the other hand, by Prop. 2.3(i) and $d\left(1_{V^{\prime}} \wedge i j\right)=-1_{V^{\prime} \wedge M}$, we have $d\left(\left(1_{V^{\prime}} \wedge i j\right) f\right)= \pm f+\left(1_{V^{\prime}} \wedge i j\right) d(f)$, then if $d(f)=0$, $f= \pm d\left(\left(1_{V^{\prime}} \wedge i j\right) f\right)$ and if $\delta_{L}(f)=0, f= \pm\left(1_{V^{\prime}} \wedge i j\right) d(f)$, which shows the result.

To prove the claim, we need to show that $m_{V \wedge M}\left(1_{M} \wedge m_{V \wedge M}\right)=-m_{V \wedge M}\left(m_{M} \wedge 1_{V \wedge M}\right)$ and $\left(1_{M} \wedge \bar{m}_{V \wedge M}\right) \bar{m}_{V \wedge M}=\left(\bar{m}_{M} \wedge 1_{V \wedge M}\right) \bar{m}_{V \wedge M}$, where $m_{V \wedge M}=\left(1_{V} \wedge m_{M}\right)\left(T_{M, V} \wedge 1_{M}\right):$ $M \wedge V \wedge M \xrightarrow{T_{M, V} \wedge 1_{M}} V \wedge M \wedge M \xrightarrow{1_{V} \wedge m_{M}} V \wedge M$ and $\bar{m}_{V \wedge M}=\left(T_{V, M} \wedge 1_{M}\right)\left(1_{V} \wedge \bar{m}_{M}\right):$ $\Sigma V \wedge M{ }^{1_{V} \wedge \bar{m}_{M}} V \wedge M \wedge M \xrightarrow{T_{V, M \wedge 1_{M}}} M \wedge V \wedge M$ are the M-module action of $V \wedge M$ in which $T_{M, V}: M \wedge V \rightarrow V \wedge M, T_{V, M}: V \wedge M \rightarrow M \wedge V$ are the switching maps. In fact, we have

$$
\begin{aligned}
& m_{V} \wedge M\left(1_{M} \wedge m_{V \wedge M}\right)=\left(1_{V} \wedge m_{M}\right)\left(T_{M, V} \wedge 1_{M}\right)\left(1_{M} \wedge 1_{V} \wedge m_{M}\right)\left(1_{M} \wedge T_{M, V} \wedge 1_{M}\right) \\
& \quad=\left(1_{V} \wedge m_{M}\right)\left(1_{V} \wedge 1_{M} \wedge m_{M}\right)\left(T_{M \wedge M, V} \wedge 1_{M}\right) \text { with } T_{M \wedge M, V}:(M \wedge M) \wedge V \rightarrow V \wedge(M \wedge M) \\
& \quad=-\left(1_{V} \wedge m_{M}\right)\left(1_{V} \wedge m_{M} \wedge 1_{M}\right)\left(T_{M \wedge M, V} \wedge 1_{M}\right), \text { by the associativity of } m_{M} \\
& \quad=-\left(1_{V} \wedge m_{M}\right)\left(T_{M, V} \wedge 1_{M}\right)\left(m_{M} \wedge 1_{V} \wedge 1_{M}\right) \\
& \quad=-m_{V \wedge M}\left(m_{M} \wedge 1_{V \wedge M}\right) .
\end{aligned}
$$

This shows the first associativity of the M-module spectrum $V \wedge M$, while the proof of the second one is similar. Q.E.D.

Corollary 2.7 Let X, V, V^{\prime} and $V^{\prime \prime}$ be arbitrary spectra and $g: V \rightarrow V^{\prime}, g^{\prime}: V^{\prime} \rightarrow V^{\prime \prime}$ be maps. If $\left[V^{\prime \prime} \wedge M, X \wedge M\right] \xrightarrow{\left(g^{\prime} \wedge 1_{M}\right)^{*}}\left[V^{\prime} \wedge M, X \wedge M\right] \xrightarrow{\left(g \wedge 1_{M}\right)^{*}}[V \wedge M, X \wedge M]$ is an exact sequence, then $\operatorname{ker} d \cap\left[V^{\prime \prime} \wedge M, X \wedge M\right] \xrightarrow{\left(g^{\prime} \wedge 1_{M}\right)^{*}} \operatorname{ker} d \cap\left[V^{\prime} \wedge M, X \wedge M\right] \xrightarrow{\left(g \wedge 1_{M}\right)^{*}} \operatorname{ker} d \cap[V \wedge M, X \wedge M]$ is also exact, where d is the derivation defined on the corresponding group.

Proof For any $f \in \operatorname{ker} d \cap\left[V^{\prime} \wedge M, X \wedge M\right]$ such that $f \in \operatorname{ker}\left(g \wedge 1_{M}\right)^{*}$, there is $f^{\prime} \in\left[V^{\prime \prime} \wedge\right.$ $M, X \wedge M]$ so that $f^{\prime}\left(g^{\prime} \wedge 1_{M}\right)=f$. By Prop. 2.6, $f^{\prime}=f_{1}^{\prime}+\left(1_{X} \wedge i j\right) f_{2}^{\prime}$ with $f_{1}^{\prime} \in \operatorname{ker} d \cap$ [$\left.V^{\prime \prime} \wedge M, X \wedge M\right]$ and $f_{2}^{\prime} \in \operatorname{ker} d \cap\left[\Sigma V^{\prime \prime} \wedge M, X \wedge M\right]$. Then, by applying d on the equation $f=f_{1}^{\prime}\left(g^{\prime} \wedge 1_{M}\right)+\left(1_{X} \wedge i j\right) f_{2}^{\prime}\left(g^{\prime} \wedge 1_{M}\right)$ we have $f_{2}^{\prime}\left(g^{\prime} \wedge 1_{M}\right)=0$ and so $f=f_{1}^{\prime}\left(g^{\prime} \wedge 1_{M}\right)$ with $f_{1}^{\prime} \in \operatorname{ker} d \cap\left[V^{\prime \prime} \wedge M, X \wedge M\right]$ as desired. Q.E.D.

Now we turn to considering some results on low-dimensional Ext groups which will be used in the proof of the main theorems and especially of Prop. 3.4.
Proposition 2.8 Let $p \geq 7, n \geq 4$. Then the product $h_{n} g_{0} \gamma_{3} \neq 0 \in \operatorname{Ext}_{A}^{6, p^{n} q+3\left(p^{2}+2 p+1\right) q}$ $\left(Z_{p}, Z_{p}\right)$, where $\gamma_{3}=h_{0,1,2,3} \in \operatorname{Ext}_{A}^{3,\left(3 p^{2}+2 p+1\right) q}\left(Z_{p}, Z_{p}\right)$ as in [2, Table 8.1].
Proof The proof is similar to that given in the proof of [3, Prop. 2.2] and is omitted here.
Proposition 2.9 Let $p \geq 3, n \geq 2$. Then $\operatorname{Ext}_{A}^{2, p^{n} q+q}\left(H^{*} M, H^{*} M\right) \cong Z_{p}\left\{(i j)_{*} \alpha_{*}\left(\tilde{h}_{n}\right), \alpha_{*}(i j)^{*}\right.$
$\left.\left(\tilde{h}_{n}\right)\right\}$ and $\operatorname{Ext}_{A}^{2, p^{n} q+q}\left(H^{*} K, H^{*} M\right) \cong Z_{p}\left\{i_{*}^{\prime}(i j)_{*} \alpha_{*}\left(\tilde{h}_{n}\right)=i_{*}^{\prime}\left(\alpha_{1} \wedge 1_{M}\right)_{*}\left(\tilde{h}_{n}\right)\right\}$, where $\alpha_{1}=j \alpha i$: $\Sigma^{q-1} S \rightarrow S$ and \tilde{h}_{n} is the unique generator of $\operatorname{Ext}_{A}^{1, p^{n} q}\left(H^{*} M, H^{*} M\right)$ stated in [3, Prop. 2.4(2)].
Proof Since $\operatorname{Ext}_{A}^{2, p^{n} q+q}\left(Z_{p}, Z_{p}\right)$ has the unique generator $h_{0} h_{n}=j_{*} \alpha_{*} i_{*}\left(h_{n}\right)=j_{*} \alpha_{*} i^{*}\left(\tilde{h}_{n}\right)$, then the first result follows from the following exact sequence:

$$
\xrightarrow{p^{*}} \operatorname{Ext}_{A}^{2, p^{n} q+q+1}\left(H^{*} M, Z_{p}\right) \xrightarrow{j^{*}} \operatorname{Ext}_{A}^{2, p^{n} q+q}\left(H^{*} M, H^{*} M\right) \xrightarrow{i^{*}} \operatorname{Ext}_{A}^{2, p^{n} q+q}\left(H^{*} M, Z_{p}\right) \xrightarrow{p^{*}}
$$

induced by (1.1), where the right group has the unique generator $i^{*}(i j)_{*} \alpha_{*}\left(\tilde{h}_{n}\right)=(i j)_{*} \alpha_{*} i_{*}\left(h_{n}\right)$ satisfying $p^{*}(i j)_{*} \alpha_{*} i_{*}\left(h_{n}\right)=(i j)_{*} \alpha_{*} i_{*} p_{*}\left(h_{n}\right)=0$ and the left group has the unique generator $\alpha_{*} i_{*}\left(h_{n}\right)=i^{*} \alpha_{*}\left(\tilde{h}_{n}\right)$ (cf. [3, Prop. 2.4(2)]).

Look at the following exact sequence:

$$
\operatorname{Ext}_{A}^{2, p^{n} q+q}\left(H^{*} M, H^{*} M\right) \xrightarrow{i_{*}^{\prime}} \operatorname{Ext}_{A}^{2, p^{n} q+q}\left(H^{*} K, H^{*} M\right) \xrightarrow{j_{*}^{\prime}} \operatorname{Ext}_{A}^{2, p^{n} q-1}\left(H^{*} M, H^{*} M\right) \xrightarrow{\alpha_{*}}
$$

induced by (1.2). Since $\operatorname{Ext}_{A}^{2, p^{n} q-r}\left(Z_{p}, Z_{p}\right)=0$ for $r=1,2$ and has the unique generator b_{n-1} for $r=0$, then the right group has the unique generator $(i j)^{*}\left(\tilde{b}_{n-1}\right)$ satisfying $\alpha_{*}(i j)^{*}\left(\tilde{b}_{n-1}\right)=$ $j^{*} \alpha_{*} i_{*}\left(b_{n-1}\right) \neq 0 \in \operatorname{Ext}_{A}^{3, p^{n} q+q}\left(H^{*} M, H^{*} M\right)(c f .[3, \operatorname{Prop} .2 .4(1)]) . S o \operatorname{Ext}_{A}^{2, p^{n} q+q}\left(H^{*} K, H^{*} M\right)$ $=i_{*}^{\prime} \operatorname{Ext}_{A}^{2, p^{n} q+q}\left(H^{*} M, H^{*} M\right)$ has the unique generator $\left(i^{\prime}\right)_{*}(i j)_{*} \alpha_{*} \tilde{h}_{n}=i_{*}^{\prime}\left(\alpha_{1} \wedge 1_{M}\right)_{*}\left(\tilde{h}_{n}\right)$, since $\left(\alpha_{1} \wedge 1_{M}\right)_{*}\left(\tilde{h}_{n}\right)=(i j)_{*} \alpha_{*}\left(\tilde{h}_{n}\right)-\alpha_{*}(i j)_{*}\left(\tilde{h}_{n}\right)$ by the fact that $\alpha_{1} \wedge 1_{M}=i j \alpha-\alpha i j$ (cf. [6, p. 428, (5.1)]). Q.E.D.

Proposition 2.10 Let $p \geq 3, n \geq 2$. Then:
(1) $\operatorname{Ext}_{A}^{2, p^{n} q+2 q+r}\left(H^{*} K, H^{*} M\right)=0$ for $r=0,1,2, \operatorname{Ext}_{A}^{2, p^{n} q+2 q+1}\left(H^{*} K, Z_{p}\right)=0$;
(2) $\operatorname{Ext}_{A}^{2, p^{n} q+q+r}\left(H^{*} K, Z_{p}\right)=0$ for $r=1,2,3, \operatorname{Ext}_{A}^{2, p^{n} q+q+r}\left(H^{*} K, H^{*} M\right)=0$ for $r=1,2$;
(3) $\operatorname{Ext}_{A}^{2, p^{n} q+q}\left(H^{*} K, H^{*} K\right) \cong Z_{p}\left\{\left(h_{0} h_{n}\right)^{\prime}\right\}$ with $\left(i^{\prime}\right)^{*}\left(h_{0} h_{n}\right)^{\prime}=\left(i^{\prime} i j \alpha\right)_{*}\left(\tilde{h}_{n}\right)$.

Proof (1) Look at the following exact sequence:

$$
\begin{aligned}
& \operatorname{Ext}_{A}^{2, p^{n} q+2 q+r}\left(H^{*} M, H^{*} M\right) \xrightarrow{i_{*}^{\prime}} \operatorname{Ext}_{A}^{2, p^{n} q+2 q+r}\left(H^{*} K, H^{*} M\right) \\
& \quad{ }_{\rightarrow}^{j_{*}^{\prime}} \operatorname{Ext}_{A}^{2, p^{n} q+q+r-1}\left(H^{*} M, H^{*} M\right) \xrightarrow{\alpha_{*}}
\end{aligned}
$$

induced by (1.2). The left group is zero since $\operatorname{Ext}_{A}^{2, p^{n} q+2 q+t}\left(Z_{p}, Z_{p}\right)=0$ for $t=-1,0,1,2,3$ (cf. [1]). The right group has the unique generator $(i j)^{*}(i j)_{*} \alpha_{*}\left(\tilde{h}_{n}\right)$ for $r=0$, and has two generators $(i j)_{*} \alpha_{*}\left(\tilde{h}_{n}\right)$ and $(i j)^{*} \alpha_{*}\left(\tilde{h}_{n}\right)$ for $r=1$ and has the unique generator $\alpha_{*}\left(\tilde{h}_{n}\right)$ for $r=2$ (cf. [3, Prop. 2.4 (2)]). We claim that (i) $\alpha_{*}(i j)^{*}(i j)_{*} \alpha_{*}\left(\tilde{h}_{n}\right) \neq 0$; (ii) $\alpha_{*}\left[\lambda_{1}(i j)_{*} \alpha_{*}\left(\tilde{h}_{n}\right)+\right.$ $\left.\lambda_{2} \alpha_{*}(i j)^{*}\left(\tilde{h}_{n}\right)\right] \neq 0$; (iii) $\alpha_{*} \alpha_{*}\left(\tilde{h}_{n}\right) \neq 0$. Then the above α_{*} is monic and so $i m j_{*}^{\prime}=0$. This shows that $\operatorname{Ext}_{A}^{2, p^{n} q+2 q+r}\left(H^{*} K, H^{*} M\right)=0$ for $r=0,1,2$ and consequently we have $\operatorname{Ext}_{A}^{2, p^{n} q+2 q+1}$ $\left(H^{*} K, Z_{p}\right)=0$.

To prove the claim, we recall from [2, Table 8.1] that $\alpha_{2} h_{n}=j_{*} \alpha_{*} \alpha_{*} i_{*}\left(h_{n}\right) \neq 0 \in \operatorname{Ext}_{A}^{3, p^{n} q+2 q+1}$ $\left(Z_{p}, Z_{p}\right)$, then $i_{*}\left(\alpha_{2} h_{n}\right) \neq 0 \in \operatorname{Ext}_{A}^{3, p^{n} q+2 q+1}\left(H^{*} M, Z_{p}\right)$ since $\operatorname{Ext}_{A}^{2, p^{n} q+2 q}\left(Z_{p}, Z_{p}\right)=0$ (cf. [1]). We also have $j^{*} i_{*}\left(\alpha_{2} h_{n}\right) \neq 0 \in \operatorname{Ext}_{A}^{3, p^{n} q+2 q}\left(H^{*} M, H^{*} M\right)$ since $\operatorname{Ext}_{A}^{2, p^{n} q+2 q}\left(H^{*} M, Z_{p}\right)=0$. Hence, by $2 \alpha i j \alpha=i j \alpha^{2}+\alpha^{2} i j$ (cf. [6, p. 428 line 20]),

$$
\begin{equation*}
\alpha_{*}(i j)^{*}(i j)_{*} \alpha_{*}\left(\tilde{h}_{n}\right)=j^{*} \alpha_{*}(i j)_{*} \alpha_{*} i_{*}\left(h_{n}\right)=\frac{1}{2} j^{*}(i j)_{*} \alpha_{*} \alpha_{*} i_{*}\left(h_{n}\right)=\frac{1}{2} j^{*} i_{*}\left(\alpha_{2} h_{n}\right) \neq 0 . \tag{2.11}
\end{equation*}
$$

This shows (i). For the claim (ii),

$$
\alpha_{*}\left[\lambda_{1}(i j)_{*} \alpha_{*}\left(\tilde{h}_{n}\right)+\lambda_{2} \alpha_{*}(i j)^{*}\left(\tilde{h}_{n}\right)\right]=\frac{1}{2} \lambda_{1}(i j)_{*} \alpha_{*} \alpha_{*}\left(\tilde{h}_{n}\right)+\left(\frac{1}{2} \lambda_{1}+\lambda_{2}\right) \alpha_{*} \alpha_{*}(i j)^{*}\left(\tilde{h}_{n}\right) \neq 0
$$

since the two terms are linearly independent by the fact that $(i j)_{*} \alpha_{*} \alpha_{*}(i j)^{*}\left(\tilde{h}_{n}\right) \neq 0$ (cf. (2.11)). The claim (iii) is self-evident since $i^{*} j_{*} \alpha_{*} \alpha_{*}\left(\tilde{h}_{n}\right)=j_{*} \alpha_{*} \alpha_{*} i_{*}\left(h_{n}\right)=\alpha_{2} h_{n} \neq 0$.
(2) Consider the following exact sequence $(r=1,2,3)$:

$$
\operatorname{Ext}_{A}^{2, p^{n} q+q+r}\left(H^{*} M, Z_{p}\right) \xrightarrow{i_{*}^{\prime}} \operatorname{Ext}_{A}^{2, p^{n} q+q+r}\left(H^{*} K, Z_{p}\right) \xrightarrow{j_{*}^{\prime}} \operatorname{Ext}_{A}^{2, p^{n} q+r-1}\left(H^{*} M, Z_{p}\right) \xrightarrow{\alpha_{*}}
$$

induced by (1.2). The left group is zero for $r=2,3$ since $\operatorname{Ext}_{A}^{2, p^{n} q+q+t}\left(Z_{p}, Z_{p}\right)=0$ for $t=1,2,3$ (cf. [1]) and has the unique generator $\alpha_{*} i_{*}\left(h_{n}\right)$ for $r=1$ so that im $i_{*}^{\prime}=0$. The right group is zero for $r=2,3$ (cf. [3, Prop. 2.3(1)]) and has the unique generator $i_{*}\left(b_{n-1}\right)$ for $r=1$ satisfying $\alpha_{*} i_{*}\left(b_{n-1}\right) \neq 0 \in \operatorname{Ext}_{A}^{3, p^{n} q+q+1}\left(H^{*} M, Z_{p}\right)$ so that im $j_{*}^{\prime}=0$ and so the result follows.
(3) Consider the following exact sequence:

$$
\operatorname{Ext}_{A}^{2, p^{n} q+2 q+1}\left(H^{*} K, H^{*} M\right) \xrightarrow{\left(j^{\prime}\right)^{*}} \operatorname{Ext}_{A}^{2, p^{n} q+q}\left(H^{*} K, H^{*} K\right) \xrightarrow{\left(i^{\prime}\right)^{*}} \operatorname{Ext}_{A}^{2, p^{n} q+q}\left(H^{*} K, H^{*} M\right)
$$

induced by (1.2). The left group is zero by (1) and the right group has the unique generator $i_{*}^{\prime}(i j)_{*} \alpha_{*}\left(\tilde{h}_{n}\right)$ by Prop. 2.9 which satisfies $\alpha^{*} i_{*}^{\prime}(i j)_{*} \alpha_{*}\left(\tilde{h}_{n}\right)=i_{*}^{\prime}(i j)_{*} \alpha_{*} \alpha^{*}\left(\tilde{h}_{n}\right)=i_{*}^{\prime}(i j)_{*} \alpha_{*} \alpha_{*}\left(\tilde{h}_{n}\right)$ $=0$ since $i^{\prime} i j \alpha^{2}=2 i^{\prime} \alpha i j \alpha-i^{\prime} \alpha^{2} i j=0 \in\left[\Sigma^{2 q-1} M, K\right]$. Then the result follows. Q.E.D.
Proposition 2.12 Let $p \geq 3, n \geq 2$. Then $\operatorname{Ext}_{A}^{2, p^{n} q+q-1}\left(H^{*} K, H^{*} K\right) \cong Z_{p}\left\{\left(h_{0} h_{n}\right)^{\prime \prime}\right\}$ with $\left(i^{\prime}\right)^{*}\left(h_{0} h_{n}\right)^{\prime \prime}=i_{*}^{\prime}(i j)_{*}\left(\alpha_{1} \wedge 1_{M}\right)_{*}\left(\tilde{h}_{n}\right)$.

Proof Look at the following exact sequence:

$$
\operatorname{Ext}_{A}^{2, p^{n} q+2 q}\left(H^{*} K, H^{*} M\right) \xrightarrow{\left(j^{\prime}\right)^{*}} \operatorname{Ext}_{A}^{2, p^{n} q+q-1}\left(H^{*} K, H^{*} K\right) \xrightarrow{\left(i^{\prime}\right)^{*}} \operatorname{Ext}_{A}^{2, p^{n} q+q-1}\left(H^{*} K, H^{*} M\right)
$$

induced by (1.2). The left group is zero by Prop. 2.10(1) and similarly to Prop. 2.9, the right group has the unique generator $(i j)^{*} i_{*}^{\prime}(i j)_{*} \alpha_{*}\left(\tilde{h}_{n}\right)=i_{*}^{\prime}(i j)_{*}\left(\alpha_{1} \wedge 1_{M}\right)_{*}\left(\tilde{h}_{n}\right)$ satisfying $\alpha^{*} i_{*}^{\prime}(i j)_{*}\left(\alpha_{1} \wedge 1_{M}\right)_{*}\left(\tilde{h}_{n}\right)=i_{*}^{\prime}(i j)_{*}\left(\alpha_{1} \wedge 1_{M}\right)_{*} \alpha_{*}\left(\tilde{h}_{n}\right)=0 \in \operatorname{Ext}_{A}^{3, p^{n} q+2 q}\left(H^{*} K, H^{*} M\right)$ since $i^{\prime} i j\left(\alpha_{1} \wedge 1_{M}\right) \alpha=0 \in\left[\Sigma^{2 q-2} M, K\right]$. Then the result follows. Q.E.D.

Let K^{\prime} be the cofibre of $j j^{\prime}: \Sigma^{-1} K \rightarrow \Sigma^{q+1} S$ given by the cofibration

$$
\begin{equation*}
\Sigma^{-1} K \xrightarrow{j j^{\prime}} \Sigma^{q+1} S \xrightarrow{z} K^{\prime} \xrightarrow{x} K . \tag{2.13}
\end{equation*}
$$

As stated in [3, pp. 191-192], K^{\prime} is also the cofibre of $\alpha i: \Sigma^{q} S \rightarrow M$ given by the cofibration

$$
\begin{equation*}
\Sigma^{q} S \xrightarrow{\alpha i} M \xrightarrow{v} K^{\prime} \xrightarrow{y} \Sigma^{q+1} S, \tag{2.14}
\end{equation*}
$$

and we also have another cofibration

$$
\begin{equation*}
\Sigma^{-1} K \xrightarrow{\alpha i j j^{\prime}} \Sigma M \xrightarrow{\psi} K^{\prime} \wedge M \xrightarrow{\rho} K \tag{2.15}
\end{equation*}
$$

with the relation that $\left(1_{K^{\prime}} \wedge j\right) \psi=v, \rho\left(1_{K^{\prime}} \wedge i\right)=x$. (cf. [3, (2.9), (2.10)]).

Since $\left(1_{K^{\prime}} \wedge j\right)\left(v \wedge 1_{M}\right) \bar{m}_{M}=v\left(1_{M} \wedge j\right) \bar{m}_{M}=v=\left(1_{K^{\prime}} \wedge j\right) \psi$, then $\left(v \wedge 1_{M}\right) \bar{m}_{M}=\psi$ since $\left[\Sigma M, K^{\prime}\right]=0$ by the fact that $[\Sigma M, M]=0,\left[\Sigma M, \Sigma^{q+1} S\right]=0$. So we have $d(\psi)=0 \in$ $\left[\Sigma^{2} M, K^{\prime} \wedge M\right]$ since $d\left(v \wedge 1_{M}\right)=v \wedge d\left(1_{M}\right)=0$ and $d\left(\bar{m}_{M}\right) \in\left[\Sigma^{2} M, M \wedge M\right] \cong\left[\Sigma^{2} M, M\right]+$ $[\Sigma M, M]=0$. Since $m_{K}\left(x \wedge 1_{M}\right)\left(1_{K^{\prime}} \wedge i\right)=m_{K}\left(1_{K} \wedge i\right) x=x=\rho\left(1_{K^{\prime}} \wedge i\right)$, then $\rho=m_{K}\left(x \wedge 1_{M}\right)$ since $\left[\Sigma K^{\prime}, K\right]=0$ by the fact that $[\Sigma M, K]=0$ and $\left[\Sigma^{q+2} S, K\right]=0$ (cf. [7, Theorem 5.2]). So we have $d(\rho)=0$ since $d\left(x \wedge 1_{M}\right)=x \wedge d\left(1_{M}\right)=0$ and $d\left(m_{K}\right) \in[\Sigma K \wedge M, K] \cong[\Sigma K, K]+$ $\left[\Sigma^{2} K, K\right]=0(c f .[4$, Theorem 3.6]). That is, up to a sign we have

$$
\begin{equation*}
\rho=m_{K}\left(x \wedge 1_{M}\right), \quad \psi=\left(v \wedge 1_{M}\right) \bar{m}_{M}, \quad d(\rho)=0, \quad d(\psi)=0 . \tag{2.16}
\end{equation*}
$$

Let $\alpha^{\prime}=\alpha_{1} \wedge 1_{K} \in\left[\Sigma^{q-1} K, K\right]$, where $\alpha_{1}=j \alpha i \in \pi_{q-1} S$. Then $j^{\prime} \alpha^{\prime} \alpha^{\prime}=0$ and so by (2.15) there is $\alpha_{K^{\prime} \wedge M}^{\prime} \in\left[\Sigma^{q-1} K, K^{\prime} \wedge M\right]$ such that $\rho \alpha_{K^{\prime} \wedge M}^{\prime}=\alpha^{\prime}$. Moreover, $d\left(\alpha_{K^{\prime} \wedge M}^{\prime}\right) \in$ $\left[\Sigma^{q} K, K^{\prime} \wedge M\right]=0$ since $\left[\Sigma^{q} K, K\right]=0$ (cf. [4]) and $\left[\Sigma^{q-1} K, M\right]=0$ by the following exact sequence:

$$
\begin{equation*}
\left[\Sigma^{2 q} M, M\right] \xrightarrow{\left(j^{\prime}\right)^{*}}\left[\Sigma^{q-1} K, M\right] \xrightarrow{\left(i^{\prime}\right)^{*}}\left[\Sigma^{q-1} M, M\right] \xrightarrow{(\alpha)^{*}}, \tag{2.17}
\end{equation*}
$$

where the left group has the unique generator α^{2} so that im $\left(j^{\prime}\right)^{*}=0$ and the right group has two generators $i j \alpha$ and $\alpha i j$ so that the above $(\alpha)^{*}$ is monic. Then $\rho \alpha_{K^{\prime} \wedge M}^{\prime} i^{\prime}=\alpha^{\prime} i^{\prime}=$ $i^{\prime}\left(\alpha_{1} \wedge 1_{M}\right)=\rho\left(v i \wedge 1_{M}\right)\left(\alpha_{1} \wedge 1_{M}\right)$ and we have $\alpha_{K^{\prime} \wedge M}^{\prime} i^{\prime}=\left(v i \wedge 1_{M}\right)\left(\alpha_{1} \wedge 1_{M}\right)+\lambda \psi(i j \alpha i j)$ for some $\lambda \in Z_{p}$ since $\left[\Sigma^{q-2} M, M\right] \cong Z_{p}\{i j \alpha i j\}$. Since $d\left(\alpha_{K^{\prime} \wedge M}^{\prime}\right)=0, d\left(i^{\prime}\right)=0, d\left(v i \wedge 1_{M}\right)=$ $0, d\left(\alpha_{1} \wedge 1_{M}\right)=0, d(\psi)=0$ and $d(i j \alpha i j)=-\alpha_{1} \wedge 1_{M}$, then by applying d to the above equation we have $\lambda \psi\left(\alpha_{1} \wedge 1_{M}\right)=0$ and the scalar $\lambda=0$. So $\alpha_{K^{\prime} \wedge M} i^{\prime}=\left(v i \wedge 1_{M}\right)\left(\alpha_{1} \wedge 1_{M}\right)$. Moreover, $\rho\left(1_{K^{\prime}} \wedge i j\right) \alpha_{K^{\prime} \wedge M} \neq 0 \in\left[\Sigma^{q-2} K, K\right] \cong Z_{p}\left\{\alpha^{\prime \prime}\right\}$ (cf. [6, p. 431, Lemma 5.6 (ii) and (5.12)]) since $d\left(\rho\left(1_{K^{\prime}} \wedge i j\right) \alpha_{K^{\prime} \wedge M}\right)=\rho \alpha_{K^{\prime} \wedge M}=\alpha^{\prime} \neq 0$. Then, in conclusion we have a map $\alpha_{K^{\prime} \wedge M}^{\prime} \in\left[\Sigma^{q-1} K, K^{\prime} \wedge M\right]$ satisfying

$$
\begin{align*}
& \rho \alpha_{K^{\prime} \wedge M}^{\prime}=\alpha^{\prime}, \quad \alpha_{K^{\prime} \wedge M}^{\prime} i^{\prime}=\left(v i \wedge 1_{M}\right)\left(\alpha_{1} \wedge 1_{M}\right) \\
& d\left(\alpha_{K^{\prime} \wedge M}^{\prime}\right)=0, \quad \rho\left(1_{K^{\prime}} \wedge i j\right) \alpha_{K^{\prime} \wedge M}^{\prime}=-\alpha^{\prime \prime} \tag{2.18}
\end{align*}
$$

since $d\left(\alpha^{\prime \prime}\right)=-\alpha^{\prime}($ cf. $[6$, p. 430, (5.10)]).
Proposition 2.19 Let $p \geq 5$ and $f: \Sigma^{t} K^{\prime} \rightarrow K$ be any map. Then $f \cdot z=0 \in\left[\Sigma^{t+q+1} S, K\right]$.
Proof From [6, p. 433], there is a commutative multiplication $\mu: K \wedge K \rightarrow K$ such that $\mu\left(i^{\prime} i \wedge 1_{K}\right)=1_{K}=\mu\left(1_{K} \wedge i^{\prime} i\right)$ and there is an injection $\nu: \Sigma^{q+2} K \rightarrow K \wedge K$ such that $\left(j j^{\prime} \wedge 1_{K}\right) \nu=1_{K}$. Then by (2.13) we have $z \wedge 1_{K}=\left(z \wedge 1_{K}\right)\left(j j^{\prime} \wedge 1_{K}\right) \nu=0$ and so $f \cdot z=$ $\mu\left(1_{K} \wedge i^{\prime} i\right) f \cdot z=\mu\left(f \cdot z \wedge 1_{K}\right) i^{\prime} i=0$. Q.E.D.

Proposition 2.20 Let $p \geq 3, n \geq 2$. Then

$$
\operatorname{Ext}_{A}^{2, p^{n} q+q+1}\left(H^{*} K^{\prime} \wedge M, H^{*} M\right) \cong Z_{p}\left\{\psi_{*}(i j)_{*} \alpha_{*}\left(\tilde{h}_{n}\right), \psi_{*}(i j)^{*} \alpha_{*}\left(\tilde{h}_{n}\right)\right\}
$$

Proof Look at the following exact sequence:

$$
\begin{aligned}
& \operatorname{Ext}_{A}^{2, p^{n} q+q}\left(H^{*} M, H^{*} M\right) \xrightarrow{\psi_{*}} \operatorname{Ext}_{A}^{2, p^{n} q+q+1}\left(H^{*} K^{\prime} \wedge M, H^{*} M\right) \\
& \quad \xrightarrow{\rho_{*}} \operatorname{Ext}_{A}^{2, p^{n} q+q+1}\left(H^{*} K, H^{*} M\right)=0
\end{aligned}
$$

induced by (2.15). The result follows from Prop. 2.9 and 2.10(2). Q.E.D.
Proposition 2.21 Let $p \geq 3, n \geq 2$. Then $\operatorname{Ext}_{A}^{1, p^{n} q}\left(H^{*} K, H^{*} K\right) \cong Z_{p}\left\{\left(h_{n}\right)^{\prime}\right\}$ with $\left(i^{\prime}\right)^{*}\left(h_{n}\right)^{\prime}=$ $\left(i^{\prime}\right)_{*}\left(\tilde{h}_{n}\right)$.

Proof Consider the following exact sequence:

$$
\operatorname{Ext}_{A}^{1, p^{n} q+q+1}\left(H^{*} K, H^{*} M\right) \xrightarrow{\left(j^{\prime}\right)^{*}} \operatorname{Ext}_{A}^{1, p^{n} q}\left(H^{*} K, H^{*} K\right) \xrightarrow{\left(i^{\prime}\right)^{*}} \operatorname{Ext}_{A}^{1, p^{n} q}\left(H^{*} K, H^{*} M\right)
$$

induced by (1.2). Since $j_{*}^{\prime} \operatorname{Ext}_{A}^{1, p^{n} q+q+1}\left(H^{*} K, H^{*} M\right) \subset \operatorname{Ext}_{A}^{1, p^{n} q}\left(H^{*} M, H^{*} M\right) \cong Z_{p}\left\{\tilde{h}_{n}\right\} \quad(c f$. [3, Prop. 2.4(2)]) and $\alpha_{*}\left(\tilde{h}_{n}\right) \neq 0 \in \operatorname{Ext}_{A}^{2, p^{n} q+q+1}\left(H^{*} M, H^{*} M\right)$, then $\operatorname{Ext}_{A}^{1, p^{n} q+q+1}\left(H^{*} K, H^{*} M\right)$ $=i_{*}^{\prime} \operatorname{Ext}_{A}^{1, p^{n} q+q+1}\left(H^{*} M, H^{*} M\right)=0$ by the fact that $\operatorname{Ext}_{A}^{1, p^{n} q+q+r}\left(Z_{p}, Z_{p}\right)=0$ for $r=0,1,2$ (cf. [2]). Moreover, it is clear that $\operatorname{Ext}_{A}^{1, p^{n} q}\left(H^{*} K, H^{*} M\right)$ has the unique generator $i_{*}^{\prime}\left(\tilde{h}_{n}\right)$ and it satisfies $\alpha^{*} i_{*}^{\prime}\left(\tilde{h}_{n}\right)=i_{*}^{\prime} \alpha_{*}\left(\tilde{h}_{n}\right)=0$. Then the result follows. Q.E.D.

From [6, p. 430], there is $\alpha^{\prime \prime} \in\left[\Sigma^{q-2} K, K\right]$ satisfying $\alpha^{\prime \prime} i^{\prime}=i^{\prime} i j \alpha i j$. Let X be the cofibre of $\alpha^{\prime \prime}: \Sigma^{q-2} K \rightarrow K$ given by the cofibration

$$
\begin{equation*}
\Sigma^{q-2} K \xrightarrow{\alpha^{\prime \prime}} K \xrightarrow{w} X \xrightarrow{u} \Sigma^{q-1} K . \tag{2.22}
\end{equation*}
$$

Then $\alpha^{\prime \prime}$ induces a boundary homomorphism $\left(\alpha^{\prime \prime}\right)^{*}: \operatorname{Ext}_{A}^{1, p^{n} q}\left(H^{*} K, H^{*} K\right) \rightarrow \operatorname{Ext}_{A}^{2, p^{n} q+q-1}$ $\left(H^{*} K, H^{*} K\right)$. Since $\alpha^{\prime \prime} i^{\prime}=i^{\prime} i j \alpha i j=i^{\prime} i j\left(\alpha_{1} \wedge 1_{M}\right)$, then $\left(i^{\prime}\right)^{*}\left(\alpha^{\prime \prime}\right)^{*}\left(h_{n}\right)^{\prime}=\left(\alpha^{\prime \prime} i^{\prime}\right)^{*}\left(h_{n}\right)^{\prime}=$ $\left(i^{\prime} i j\left(\alpha_{1} \wedge 1_{M}\right)\right)^{*}\left(h_{n}\right)^{\prime}=\left(\alpha_{1} \wedge 1_{M}\right)^{*}(i j)^{*}\left(i^{\prime}\right)^{*}\left(h_{n}\right)^{\prime}=\left(i^{\prime} i j\right)_{*}\left(\alpha_{1} \wedge 1_{M}\right)_{*}\left(\tilde{h}_{n}\right)=\left(i^{\prime}\right)^{*}\left(h_{0} h_{n}\right)^{\prime \prime}(\operatorname{cf}$. Prop. 2.21 and 2.12). So, we have

$$
\begin{equation*}
\left(h_{0} h_{n}\right)^{\prime \prime}=\left(\alpha^{\prime \prime}\right)^{*}\left(h_{n}\right)^{\prime} \in \operatorname{Ext}_{A}^{2, p^{n} q+q-1}\left(H^{*} K, H^{*} K\right) \tag{2.23}
\end{equation*}
$$

since the above $\left(i^{\prime}\right)^{*}$ is monic by $\operatorname{Ext}_{A}^{2, p^{n} q+2 q}\left(H^{*} K, H^{*} M\right)=0$ (cf. Prop. 2.10(1)).

3 Proof of the Main Theorems

We will first prove Theorem II by an argument presented in the Adams resolution of certain spectra related to K. Recall from [3, p. 193] that

$$
\cdots \xrightarrow{\bar{a}_{2}} \begin{array}{ccccc}
\Sigma^{-2} E_{2} & \xrightarrow{\bar{a}_{1}} & \Sigma^{-1} E_{1} & \xrightarrow{\bar{a}_{0}} & E_{0}=S \tag{3.1}\\
& \downarrow \bar{b}_{2} & & \downarrow \bar{b}_{1} & \\
& & & & \\
& \Sigma^{-2} K G_{2} & & \Sigma^{-1} K G_{1} & \\
& & & K G_{0}
\end{array}
$$

is the minimal Adams resolution of S satisfying the conditions (1)(2)(3) stated in [3, p. 194]. An Adams resolution of arbitrary spectrum V can be obtained by smashing V on (3.1). We first prove the following lemmas:

Lemma 3.2 Let $p \geq 5$ and $n \geq 2$. Then there exist $\tilde{\eta}_{n, 2} \in\left[\Sigma^{p^{n} q+q} M, E_{2} \wedge M\right]$ and $\eta_{n, 2}^{\prime} \in$ $\left[\Sigma^{p^{n} q+q} K, E_{2} \wedge K\right]$ such that $\left(\bar{b}_{2} \wedge 1_{M}\right) \tilde{\eta}_{n, 2}=h_{0} h_{n} \wedge 1_{M}$ and $\left(\bar{b}_{2} \wedge 1_{K}\right) \eta_{n, 2}^{\prime}=h_{0} h_{n} \wedge 1_{K}$, where $h_{0} h_{n} \in \pi_{p^{n} q+q} K G_{2} \cong \operatorname{Ext}_{A}^{2, p^{n} q+q}\left(Z_{p}, Z_{p}\right)$.

Proof From [8, Theorem IV (b)(c)], a map $\bar{\zeta}_{n-1} \in\left[\Sigma^{p^{n} q+q-3} M, S\right]$ was constructed and shown to satisfy:
(i) The composition $\zeta_{n-1}=\bar{\zeta}_{n-1} i: \Sigma^{p^{n} q+q-3} S \xrightarrow{i} \Sigma^{p^{n} q+q-3} M \xrightarrow{\bar{\zeta}_{n-1}} S$ is represented by $h_{0} b_{n-1} \in \operatorname{Ext}_{A}^{3, p^{n} q+q}\left(Z_{p}, Z_{p}\right)$ in the ASS;
(ii) $\bar{\zeta}_{n-1}: \Sigma^{p^{n} q+q-3} M \rightarrow S$ is represented by $j^{*}\left(h_{0} h_{n}\right) \in \operatorname{Ext}_{A}^{2, p^{n} q+q-1}\left(Z_{p}, H^{*} M\right)$ with $h_{0} h_{n} \in \operatorname{Ext}_{A}^{2, p^{n} q+q}\left(Z_{p}, Z_{p}\right)$.

So, in the Adams resolution, there is $\bar{\zeta}_{n-1,2} \in\left[\Sigma^{p^{n} q+q-1} M, E_{2}\right]$ such that $\bar{a}_{0} \bar{a}_{1} \bar{\zeta}_{n-1,2}=\bar{\zeta}_{n-1}$ and $\bar{b}_{2} \bar{\zeta}_{n-1,2}=h_{0} h_{n} \cdot j \in\left[\Sigma^{p^{n} q+q-1} M, K G_{2}\right]$, where $h_{0} h_{n} \in \pi_{p^{n} q+q} K G_{2} \cong \operatorname{Ext}_{A}^{2, p^{n} q+q}\left(Z_{p}, Z_{p}\right)$. It follows that $\bar{c}_{2}\left(h_{0} h_{n}\right) j=0$ and we have $\bar{c}_{2}\left(h_{0} h_{n}\right)=f_{0} \cdot p$ for some $f_{0} \in \pi_{p^{n} q+q} E_{3}$. So, $\left(\bar{c}_{2} \wedge 1_{M}\right)\left(h_{0} h_{n} \wedge 1_{M}\right)=0$ and $\left(\bar{c}_{2} \wedge 1_{K}\right)\left(h_{0} h_{n} \wedge 1_{K}\right)=0$ and the result follows. Q.E.D.

Lemma 3.3 Let $p \geq 3, n \geq 2$ and $\left(h_{0} h_{n}\right)^{\prime \prime} \in\left[\Sigma^{p^{n} q+q-1} K, K G_{2} \wedge K\right]$ be the d_{1}-cycle which represents the element $\left(h_{0} h_{n}\right)^{\prime \prime}=\left(\alpha^{\prime \prime}\right)^{*}\left(h_{n}\right)^{\prime} \in \operatorname{Ext}_{A}^{2, p^{n} q+q-1}\left(H^{*} K, H^{*} K\right)$ stated in Prop. 2.12 and (2.23). Then $\left(\bar{c}_{2} \wedge 1_{K}\right)\left(h_{0} h_{n}\right)^{\prime \prime}=\left(1_{E_{3}} \wedge \alpha^{\prime \prime}\right)\left(\kappa \wedge 1_{K}\right)$, where κ is an element in $\pi_{p^{n} q+1} E_{3}$ satisfying $\bar{a}_{2} \kappa=\bar{c}_{1} h_{n}$ with $h_{n} \in \pi_{p^{n} q} K G_{1} \cong \operatorname{Ext}_{A}^{1, p^{n} q}\left(Z_{p}, Z_{p}\right)$.

Proof Recall that X is the cofibre of $\alpha^{\prime \prime}: \Sigma^{q-2} K \rightarrow K$ given by the cofibration (2.22). Since $\left(h_{0} h_{n}\right)^{\prime \prime} \in\left[\Sigma^{p^{n} q+q-1} K, K G_{2} \wedge K\right]$ represents $\left(h_{0} h_{n}\right)^{\prime \prime}=\left(\alpha^{\prime \prime}\right)^{*}\left(h_{n}\right)^{\prime} \in \operatorname{Ext}_{A}^{2, p^{n} q+q-1}\left(H^{*} K\right.$, $\left.H^{*} K\right)$, then $\left(h_{0} h_{n}\right)^{\prime \prime} u \in\left[\Sigma^{p^{n} q} X, K G_{2} \wedge K\right]$ is a d_{1}-boundary and so $\left(\bar{c}_{2} \wedge 1_{K}\right)\left(h_{0} h_{n}\right)^{\prime \prime} u=0$ and $\left(\bar{c}_{2} \wedge 1_{K}\right)\left(h_{0} h_{n}\right)^{\prime \prime}=f^{\prime} \alpha^{\prime \prime}$ with $f^{\prime} \in\left[\Sigma^{p^{n} q+1} K, E_{3} \wedge K\right]$. It follows that $\left(\bar{a}_{2} \wedge 1_{K}\right) f^{\prime} \alpha^{\prime \prime}=0$ and $\left(\bar{a}_{2} \wedge 1_{K}\right) f^{\prime}=f_{2}^{\prime} w$ with $f_{2}^{\prime} \in\left[\Sigma^{p^{n} q} X, E_{2} \wedge K\right]$. Hence, $\left(\bar{b}_{2} \wedge 1_{K}\right) f_{2}^{\prime} w=0$ and $\left(\bar{b}_{2} \wedge 1_{K}\right) f_{2}^{\prime}=g^{\prime} \cdot u$ with $g^{\prime} \in\left[\Sigma^{p^{n} q+q-1} K, K G_{2} \wedge K\right]$. This g^{\prime} is a d_{1}-cycle since $\left(\bar{b}_{3} \bar{c}_{2} \wedge 1_{K}\right) g^{\prime}=g_{2}^{\prime} \alpha^{\prime \prime}$ (with $g_{2}^{\prime} \in$ $\left.\left[\Sigma^{p^{n} q+1} K, K G_{3} \wedge K\right]\right)=0$ by the fact that $\alpha^{\prime \prime}$ induces zero homomorphism in Z_{p}-cohomology. So, by Prop. 2.12 and (2.23), g^{\prime} represents $\left(h_{0} h_{n}\right)^{\prime \prime}=\left(\alpha^{\prime \prime}\right)^{*}\left(h_{n}\right)^{\prime} \in \operatorname{Ext}_{A}^{2, p^{n} q+q-1}\left(H^{*} K, H^{*} K\right)$ and so $g^{\prime} \cdot u$ is a d_{1}-boundary, i.e. $g^{\prime} \cdot u=\left(\bar{b}_{2} \bar{c}_{1} \wedge 1_{K}\right) g_{3}^{\prime}$ with $g_{3}^{\prime} \in\left[\Sigma^{p^{n} q} X, K G_{1} \wedge K\right]$. It follows from $\left(\bar{b}_{2} \wedge 1_{K}\right) f_{2}^{\prime}=\left(\bar{b}_{2} \bar{c}_{1} \wedge 1_{K}\right) g_{3}^{\prime}$ that $f_{2}^{\prime}=\left(\bar{c}_{1} \wedge 1_{K}\right) g_{3}^{\prime}+\left(\bar{a}_{2} \wedge 1_{K}\right) f_{3}^{\prime}$ with $f_{3}^{\prime} \in\left[\Sigma^{p^{n} q+1} X, E_{3} \wedge K\right]$ and we have $\left(\bar{a}_{2} \wedge 1_{K}\right) f^{\prime}=f_{2}^{\prime} w=\left(\bar{c}_{1} \wedge 1_{K}\right) g_{3}^{\prime} w+\left(\bar{a}_{2} \wedge 1_{K}\right) f_{3}^{\prime} w$. Clearly, $g_{3}^{\prime} w \in\left[\Sigma^{p^{n} q} K, K G_{1} \wedge K\right]$ is a d_{1}-cycle which represents an element in $\operatorname{Ext}_{A}^{1, p^{n} q}\left(H^{*} K, H^{*} K\right) \cong Z_{p}\left\{\left(h_{n}\right)^{\prime}\right\}$ (cf. Prop. 2.21). Then $g_{3}^{\prime} w=h_{n} \wedge 1_{K}$ up to a scalar with $h_{n} \in \pi_{p^{n} q} K G_{1} \cong \operatorname{Ext}_{A}^{1, p^{n} q}\left(Z_{p}, Z_{p}\right)$. So we have $\left(\bar{a}_{2} \wedge 1_{K}\right) f^{\prime}=\left(\bar{c}_{1} \wedge 1_{K}\right)\left(h_{n} \wedge 1_{K}\right)+\left(\bar{a}_{2} \wedge 1_{K}\right) f_{3}^{\prime} w=\left(\bar{a}_{2} \wedge 1_{K}\right)\left(\kappa \wedge 1_{K}\right)+\left(\bar{a}_{2} \wedge 1_{K}\right) f_{3}^{\prime} w$, where $\kappa \in \pi_{p^{n} q+1} E_{3}$ satisfies $\bar{a}_{2} \kappa=\bar{c}_{1} h_{n}$. It follows that $f^{\prime}=\kappa \wedge 1_{K}+f_{3}^{\prime} w+\left(\bar{c}_{2} \wedge 1_{K}\right) g_{4}^{\prime}$ for some $g_{4}^{\prime} \in$ $\left[\Sigma^{p^{n} q+1} K, K G_{2} \wedge K\right]$ and we have $\left(\bar{c}_{2} \wedge 1_{K}\right)\left(h_{0} h_{n}\right)^{\prime \prime}=f^{\prime} \alpha^{\prime \prime}=\left(\kappa \wedge 1_{K}\right) \alpha^{\prime \prime}=\left(1_{E_{3}} \wedge \alpha^{\prime \prime}\right)\left(\kappa \wedge 1_{K}\right)$. Q.E.D.

Proposition 3.4 Let $p \geq 5, n \geq 2$ and $\left(h_{0} h_{n}\right)^{\prime \prime} \in\left[\Sigma^{p^{n} q+q-1} K, K G_{2} \wedge K\right]$ be the d_{1}-cycle as in Lemma 3.3. Then $\left(\bar{c}_{2} \wedge 1_{K}\right)\left(h_{0} h_{n}\right)^{\prime \prime}=0$.

Proof By Lemma 3.3, it suffices to prove that $\left(1_{E_{3}} \wedge \alpha^{\prime \prime}\right)\left(\kappa \wedge 1_{K}\right)=0$. Note that, by $\bar{a}_{2} \kappa=\bar{c}_{1} h_{n}$, we have $\bar{a}_{2}\left(1_{E_{3}} \wedge \alpha_{1}\right) \kappa=\bar{c}_{1}\left(1_{K G_{1}} \wedge \alpha_{1}\right) h_{n}=0$ and $\left(1_{E_{3}} \wedge \alpha_{1}\right) \kappa=\bar{c}_{2}\left(h_{0} h_{n}\right)$ (up to a scalar) since $\pi_{p^{n} q+q} K G_{2} \cong \operatorname{Ext}_{A}^{2, p^{n} q+q}\left(Z_{p}, Z_{p}\right) \cong Z_{p}\left\{h_{0} h_{n}\right\}$. Hence, by Lemma 3.2 we have

$$
\begin{equation*}
\left(1_{E_{3}} \wedge \alpha_{1} \wedge 1_{M}\right)\left(\kappa \wedge 1_{M}\right)=0, \quad\left(1_{E_{3}} \wedge \alpha_{1} \wedge 1_{K}\right)\left(\kappa \wedge 1_{K}\right)=0 \tag{3.5}
\end{equation*}
$$

Moreover, from (2.18) we have

$$
\begin{aligned}
\left(1_{E_{3}}\right. & \left.\wedge \alpha_{K^{\prime} \wedge M}^{\prime}\right)\left(\kappa \wedge 1_{K}\right) \rho\left(v \wedge 1_{M}\right) \\
= & \left(1_{E_{3}} \wedge \alpha_{K^{\prime} \wedge M}^{\prime}\right)\left(\kappa \wedge 1_{K}\right) \rho\left(v \wedge 1_{M}\right)\left(i \wedge 1_{M}\right) m_{M} \\
& +\left(1_{E_{3}} \wedge \alpha_{K^{\prime} \wedge M}^{\prime}\right)\left(\kappa \wedge 1_{K}\right) \rho\left(v \wedge 1_{M}\right) \bar{m}_{M}\left(j \wedge 1_{M}\right) \\
= & \left(\kappa \wedge 1_{K^{\prime} \wedge M}\right) \alpha_{K^{\prime} \wedge M}^{\prime} i^{\prime} m_{M}\left(\text { since } \rho\left(v \wedge 1_{M}\right) \bar{m}_{M}=0, \rho\left(v i \wedge 1_{M}\right)=i^{\prime}\right) \\
= & \left(\kappa \wedge 1_{K^{\prime} \wedge M}\right)\left(v i \wedge 1_{M}\right)\left(\alpha_{1} \wedge 1_{M}\right) m_{M} \quad \text { by }(2.18) \\
= & \left(1_{E_{3}} \wedge v i \wedge 1_{M}\right)\left(\kappa \wedge 1_{M}\right)\left(\alpha_{1} \wedge 1_{M}\right) m_{M}=0 \quad \text { by }(3.5),
\end{aligned}
$$

and so by (2.14) and Cor. 2.7, $\left(1_{E_{3}} \wedge \alpha_{K^{\prime} \wedge M}^{\prime}\right)\left(\kappa \wedge 1_{K}\right) \rho=f\left(y \wedge 1_{M}\right)$ for some $f \in\left[\Sigma^{p^{n} q+2 q+1} M, E_{3}\right.$ $\left.\wedge K^{\prime} \wedge M\right] \cap \operatorname{ker} d$.

It follows that $\left(\bar{a}_{2} \wedge 1_{K^{\prime} \wedge M}\right) f\left(y \wedge 1_{M}\right)=\left(\bar{a}_{2} \wedge 1_{K^{\prime} \wedge M}\right)\left(1_{E_{3}} \wedge \alpha_{K^{\prime} \wedge M}^{\prime}\right)\left(\kappa \wedge 1_{K}\right) \rho=\left(\bar{c}_{1} \wedge\right.$ $\left.1_{K^{\prime} \wedge M}\right)\left(1_{K G_{1}} \wedge \alpha_{K^{\prime} \wedge M}^{\prime}\right)\left(h_{n} \wedge 1_{K}\right) \rho=0$, then by (2.14) and Cor. 2.7 we have

$$
\begin{equation*}
\left(\bar{a}_{2} \wedge 1_{K^{\prime} \wedge M}\right) f=f_{2}\left(\alpha i \wedge 1_{M}\right) \tag{3.6}
\end{equation*}
$$

for some $f_{2} \in\left[\Sigma^{p^{n} q+q} M \wedge M, E_{2} \wedge K^{\prime} \wedge M\right] \cap \operatorname{ker} d$.
Observe that $\left(\bar{b}_{2} \wedge 1_{K^{\prime} \wedge M}\right) f_{2}=\left(\bar{b}_{2} \wedge 1_{K^{\prime} \wedge M}\right) f_{2}\left(i \wedge 1_{M}\right) m_{M}+\left(\bar{b}_{2} \wedge 1_{K^{\prime} \wedge M}\right) f_{2} \bar{m}_{M}\left(j \wedge 1_{M}\right)$ and we claim that $\left(\bar{b}_{2} \wedge 1_{K^{\prime} \wedge M}\right) f_{2}\left(i \wedge 1_{M}\right)=\lambda_{1}\left(1_{K G_{2}} \wedge v i \wedge 1_{M}\right)\left(h_{0} h_{n} \wedge 1_{M}\right)$ and $\left(\bar{b}_{2} \wedge 1_{K^{\prime} \wedge M}\right) f_{2} \bar{m}_{M}=$ $\lambda_{2}\left(1_{K G_{2}} \wedge\left(v \wedge 1_{M}\right) \bar{m}_{M}\right)\left(h_{0} h_{n} \wedge 1_{M}\right)$ modulo d_{1}-boundary with $\lambda_{1}, \lambda_{2} \in Z_{p}$.

To prove this, note that the d_{1}-cycle $\left(\bar{b}_{2} \wedge 1_{K^{\prime} \wedge M}\right) f_{2}\left(i \wedge 1_{M}\right)$ represents an element $\left[\left(\bar{b}_{2} \wedge\right.\right.$ $\left.\left.1_{K^{\prime} \wedge M}\right) f_{2}\left(i \wedge 1_{M}\right)\right] \in \operatorname{Ext}_{A}^{2, p^{n} q+q}\left(H^{*} K^{\prime} \wedge M, H^{*} M\right)$ and $\left[\left(\bar{b}_{2} \wedge 1_{K}\right)\left(1_{E_{2}} \wedge \rho\right) f_{2}\left(i \wedge 1_{M}\right)\right] \in$ $\operatorname{Ext}_{A}^{2, p^{n} q+q}\left(H^{*} K, H^{*} M\right) \cong Z_{p}\left\{\left[\left(1_{K G_{2}} \wedge i^{\prime}\right)\left(h_{0} h_{n} \wedge 1_{M}\right)\right]\right\}$ (cf. Prop. 2.9). Then $\left(\bar{b}_{2} \wedge 1_{K}\right)\left(1_{E_{2}} \wedge\right.$ $\rho) f_{2}\left(i \wedge 1_{M}\right)=\lambda_{1}\left(1_{K G_{2}} \wedge \rho\left(v i \wedge 1_{M}\right)\right)\left(h_{0} h_{n} \wedge 1_{M}\right)+\left(\bar{b}_{2} \bar{c}_{1} \wedge 1_{K}\right) g$ for some $g \in\left[\Sigma^{p^{n} q+q} M, K G_{1} \wedge K\right]$. Since $\left(1_{K G_{1}} \wedge j^{\prime} \alpha^{\prime}\right) g=0$, then $g=\left(1_{K G_{1}} \wedge \rho\right) g_{2}$ with $g_{2} \in\left[\Sigma^{p^{n} q+q} M, K G_{1} \wedge K^{\prime} \wedge M\right]$. It follows that $\left(\bar{b}_{2} \wedge 1_{K^{\prime} \wedge M}\right) f_{2}\left(i \wedge 1_{M}\right)=\lambda_{1}\left(1_{K G_{2}} \wedge v i \wedge 1_{M}\right)\left(h_{0} h_{n} \wedge 1_{M}\right)+\left(\bar{b}_{2} \bar{c}_{1} \wedge 1_{K^{\prime} \wedge M}\right) g_{2}+\left(1_{K G_{2}} \wedge \psi\right) g_{3}$ for some $g_{3} \in\left[\Sigma^{p^{n} q+q-1} M, K G_{2} \wedge M\right] \cong Z_{p}\left\{\left(h_{0} h_{n} \wedge 1_{M}\right) i j\right\}$, then $g_{3}=\lambda^{\prime}\left(h_{0} h_{n} \wedge 1_{M}\right) i j$ for some $\lambda^{\prime} \in Z_{p}$. However, $d\left(i \wedge 1_{M}\right)=0$ and $d\left(f_{2}\right)=0$ implies that $d\left(f_{2}\left(i \wedge 1_{M}\right)\right)=0$, then by applying d to the above equation we have $\left(1_{K G_{2}} \wedge \psi\right) d\left(g_{3}\right)+\left(\bar{b}_{2} \bar{c}_{1} \wedge 1_{K^{\prime} \wedge M}\right) d\left(g_{2}\right)=0$, i.e. $\lambda^{\prime}\left(1_{K G_{2}} \wedge \psi\right)\left(h_{0} h_{n} \wedge 1_{M}\right)=\left(\bar{b}_{2} \bar{c}_{1} \wedge 1_{K^{\prime} \wedge M}\right) d\left(g_{2}\right)$ and this means that the scalar $\lambda^{\prime}=0$ since $\psi_{*}\left[h_{0} h_{n} \wedge 1_{M}\right] \neq 0 \in \operatorname{Ext}_{A}^{2, p^{n} q+q+1}\left(H^{*} K^{\prime} \wedge M, H^{*} M\right)$. This shows that $\left(\bar{b}_{2} \wedge 1_{K^{\prime} \wedge M}\right) f_{2}(i \wedge$ $\left.1_{M}\right)=\lambda_{1}\left(1_{K G_{2}} \wedge v i \wedge 1_{M}\right)\left(h_{0} h_{n} \wedge 1_{M}\right)$ modulo d_{1}-boundary. In addition, since $d\left(\bar{m}_{M}\right)$ $\in\left[\Sigma^{2} M, M \wedge M\right] \cong\left[\Sigma^{2} M, M\right]+[\Sigma M, M]=0$, then, similarly, by Prop. 2.20 and $d\left(f_{2} \bar{m}_{M}\right)=0$ we have $\left(\bar{b}_{2} \wedge 1_{K^{\prime} \wedge M}\right) f_{2} \bar{m}_{M}=\lambda_{2}\left(1_{K G_{2}} \wedge \psi\right)\left(h_{0} h_{n} \wedge 1_{M}\right)$ modulo d_{1}-boundary. This shows the claim.

Hence we have

$$
\begin{aligned}
\left(\bar{b}_{2}\right. & \left.\wedge 1_{K^{\prime} \wedge M}\right) f_{2}=\left(\bar{b}_{2} \wedge 1_{K^{\prime} \wedge M}\right) f_{2}\left(i \wedge 1_{M}\right) m_{M}+\left(\bar{b}_{2} \wedge 1_{K^{\prime} \wedge M}\right) f_{2} \bar{m}_{M}\left(j \wedge 1_{M}\right) \\
& =\lambda_{1}\left(1_{K G_{2}} \wedge v i \wedge 1_{M}\right)\left(h_{0} h_{n} \wedge 1_{M}\right) m_{M}+\lambda_{2}\left(1_{K G_{2}} \wedge \psi\right)\left(h_{0} h_{n} \wedge 1_{M}\right)\left(j \wedge 1_{M}\right) \\
& =\lambda_{1}\left(h_{0} h_{n} \wedge 1_{K^{\prime} \wedge M}\right)\left(v \wedge 1_{M}\right)\left(i \wedge 1_{M}\right) m_{M}+\lambda_{2}\left(h_{0} h_{n} \wedge 1_{K^{\prime} \wedge M}\right)\left(v \wedge 1_{M}\right) \bar{m}_{M}\left(j \wedge 1_{M}\right)
\end{aligned}
$$

modulo d_{1}-boundary. Moreover, $\left(1_{K G_{2}} \wedge \rho\left(1_{K^{\prime}} \wedge i j\right)\right)\left(h_{0} h_{n} \wedge 1_{K^{\prime} \wedge M}\right)\left(v \wedge 1_{M}\right)=\left(h_{0} h_{n} \wedge\right.$ $\left.1_{K}\right) \rho\left(1_{K^{\prime}} \wedge i j\right)\left(v \wedge 1_{M}\right)=\left(h_{0} h_{n} \wedge 1_{K}\right) \rho\left(1_{K^{\prime}} \wedge i\right) v\left(1_{M} \wedge j\right)=\left(h_{0} h_{n} \wedge 1_{K}\right) i^{\prime}\left(1_{M} \wedge j\right)$ (Note:
$\rho\left(1_{K^{\prime}} \wedge i\right) v=x v=i^{\prime}$, cf. (2.15)). Then modulo a d_{1}-boundary $\left(\bar{b}_{2} \bar{c}_{1} \wedge 1_{K}\right) g_{4}$ we have

$$
\begin{aligned}
\left(\bar{b}_{2}\right. & \left.\wedge 1_{K}\right)\left(1_{E_{2}} \wedge \rho\left(1_{K^{\prime}} \wedge i j\right)\right) f_{2} \\
& =\lambda_{1}\left(h_{0} h_{n} \wedge 1_{K}\right) i^{\prime}\left(1_{M} \wedge j\right)\left(i \wedge 1_{M}\right) m_{M}+\lambda_{2}\left(h_{0} h_{n} \wedge 1_{K}\right) i^{\prime}\left(1_{M} \wedge j\right) \bar{m}_{M}\left(j \wedge 1_{M}\right) \\
& =\lambda_{1}\left(\bar{b}_{2} \wedge 1_{K}\right) \eta_{n, 2}^{\prime} i^{\prime}\left(1_{M} \wedge j\right)\left(i \wedge 1_{M}\right) m_{M}+\lambda_{2}\left(\bar{b}_{2} \wedge 1_{K}\right) \eta_{n, 2}^{\prime} i^{\prime}\left(1_{M} \wedge j\right) \bar{m}_{M}\left(j \wedge 1_{M}\right)
\end{aligned}
$$

by Lemma 3.2. It follows that $\left(1_{E_{2}} \wedge \rho\left(1_{K^{\prime}} \wedge i j\right)\right) f_{2}=\left(\bar{a}_{2} \wedge 1_{K}\right) f_{3}+\lambda_{1} \eta_{n, 2}^{\prime} i^{\prime}\left(1_{M} \wedge j\right)(i \wedge$ $\left.1_{M}\right) m_{M}+\lambda_{2} \eta_{n, 2}^{\prime} i^{\prime}\left(1_{M} \wedge j\right) \bar{m}_{M}\left(j \wedge 1_{M}\right)+\left(\bar{c}_{1} \wedge 1_{K}\right) g_{4}$ for some $f_{3} \in\left[\Sigma^{p^{n} q+q} M \wedge M, E_{3} \wedge K\right]$ and we have $\left(\bar{a}_{2} \wedge 1_{K}\right)\left(1_{E_{3}} \wedge \rho\left(1_{K^{\prime}} \wedge i j\right)\right) f=\left(1_{E_{2}} \wedge \rho\left(1_{K^{\prime}} \wedge i j\right)\right) f_{2}\left(\alpha i \wedge 1_{M}\right)=\left(\bar{a}_{2} \wedge 1_{K}\right) f_{3}(\alpha i \wedge$ $\left.1_{M}\right)+\lambda_{1} \eta_{n, 2}^{\prime} i^{\prime}\left(1_{M} \wedge j\right)\left(i \wedge 1_{M}\right) m_{M}\left(\alpha i \wedge 1_{M}\right)+\lambda_{2} \eta_{n, 2}^{\prime} i^{\prime}\left(1_{M} \wedge j\right) \bar{m}_{M}\left(j \wedge 1_{M}\right)\left(\alpha i \wedge 1_{M}\right)$.
$\operatorname{By}(2.2), m_{M}\left(\alpha \wedge 1_{M}\right)\left(1_{M} \wedge i\right)=m_{M}\left(1_{M} \wedge i\right) \alpha=-\alpha=\alpha m_{M}\left(1_{M} \wedge i\right)$, then $m_{M}\left(\alpha \wedge 1_{M}\right)=$ αm_{M} since $\left[\Sigma^{q+1} M, M\right]=0$. So $m_{M}\left(\alpha i \wedge 1_{M}\right)=\alpha m_{M}\left(i \wedge 1_{M}\right)=\alpha$ and we have

$$
\begin{aligned}
& \sigma_{1}=\eta_{n, 2}^{\prime} i^{\prime}\left(1_{M} \wedge j\right)\left(i \wedge 1_{M}\right) m_{M}\left(\alpha i \wedge 1_{M}\right)=\eta_{n, 2}^{\prime} i^{\prime} i j \alpha=\eta_{n, 2}^{\prime} \alpha^{\prime} i^{\prime}, \\
& \sigma_{2}=\eta_{n, 2}^{\prime} i^{\prime}\left(1_{M} \wedge j\right) \bar{m}_{M}\left(j \alpha i \wedge 1_{M}\right)=\eta_{n, 2}^{\prime} i^{\prime}\left(\alpha_{1} \wedge 1_{M}\right)=\eta_{n, 2}^{\prime} \alpha^{\prime} i^{\prime} .
\end{aligned}
$$

So, $\lambda_{1} \sigma_{1}+\lambda_{2} \sigma_{2}=\left(\lambda_{1}+\lambda_{2}\right) \eta_{n, 2}^{\prime} \alpha^{\prime} i^{\prime}$. On the other hand, $\lambda_{1} \sigma_{1}+\lambda_{2} \sigma_{2}=\left(\lambda_{1}-\lambda_{2}\right) \sigma_{1}+$ $\lambda_{2} \eta_{n, 2}^{\prime} i^{\prime}\left(1_{M} \wedge j\right)\left(\left(i \wedge 1_{M}\right) m_{M}+\bar{m}_{M}\left(j \wedge 1_{M}\right)\right)\left(\alpha i \wedge 1_{M}\right)=\left(\lambda_{1}-\lambda_{2}\right) \eta_{n, 2}^{\prime} \alpha^{\prime} i^{\prime}+\lambda_{2} \eta_{n, 2}^{\prime} i^{\prime} \alpha i j=$ $\left(\lambda_{1}-\lambda_{2}\right) \eta_{n, 2}^{\prime} \alpha^{\prime} i^{\prime}$ and similarly $\lambda_{1} \sigma_{1}+\lambda_{2} \sigma_{2}=\left(\lambda_{2}-\lambda_{1}\right) \sigma_{2}=\left(\lambda_{2}-\lambda_{1}\right) \eta_{n, 2}^{\prime} \alpha^{\prime} i^{\prime}$. This shows that $\lambda_{1} \sigma_{1}+\lambda_{2} \sigma_{2}=\left(\lambda_{1}+\lambda_{2}\right) \eta_{n, 2}^{\prime} \alpha^{\prime} i^{\prime}=\left(\lambda_{1}-\lambda_{2}\right) \eta_{n, 2}^{\prime} \alpha^{\prime} i^{\prime}=\left(\lambda_{2}-\lambda_{1}\right) \eta_{n, 2}^{\prime} \alpha^{\prime} i^{\prime}=0$, so we have

$$
\left(\bar{a}_{2} \wedge 1_{K}\right)\left(1_{E_{3}} \wedge \rho\left(1_{K^{\prime}} \wedge i j\right)\right) f=\left(\bar{a}_{2} \wedge 1_{K}\right) f_{3}\left(\alpha i \wedge 1_{M}\right)
$$

It follows that $\left(1_{E_{3}} \wedge \rho\left(1_{K^{\prime}} \wedge i j\right)\right) f=f_{3}\left(\alpha i \wedge 1_{M}\right)+\left(\bar{c}_{2} \wedge 1_{K}\right) g_{5}$ for some $g_{5} \in\left[\Sigma^{p^{n} q+2 q} M\right.$, $\left.K G_{2} \wedge K\right]$, then we have

$$
\begin{aligned}
-\left(1_{E_{3}} \wedge \alpha^{\prime \prime}\right)\left(\kappa \wedge 1_{K}\right) \rho & =\left(\left(1_{E_{3}} \wedge \rho\left(1_{K^{\prime}} \wedge i j\right)\right) \alpha_{K^{\prime} \wedge M}^{\prime}\right)\left(\kappa \wedge 1_{K}\right) \rho(\mathrm{cf.}(2.18)) \\
& =\left(1_{E_{3}} \wedge \rho\left(1_{K^{\prime}} \wedge i j\right)\right) f\left(y \wedge 1_{M}\right)=\left(\bar{c}_{2} \wedge 1_{K}\right) g_{5}\left(y \wedge 1_{M}\right)
\end{aligned}
$$

This g_{5} is a d_{1}-cycle since $\left(\bar{b}_{3} \bar{c}_{2} \wedge 1_{K}\right) g_{5}\left(y \wedge 1_{M}\right)=0$ and so $\left(\bar{b}_{3} \bar{c}_{2} \wedge 1_{K}\right) g_{5}=g_{6}\left(\alpha i \wedge 1_{M}\right)=0$ (with $\left.g_{6} \in\left[\Sigma^{p^{n} q+q} M \wedge M, K G_{3} \wedge K\right]\right)$. Then g_{5} represents an element in $\operatorname{Ext}_{A}^{2, p^{n} q+2 q}\left(H^{*} K, H^{*} M\right)$ $=0$ (cf. Prop. 2.10(1)). That is, g_{5} is a d_{1}-boundary and we have $\left(1_{E_{3}} \wedge \alpha^{\prime \prime}\right)\left(\kappa \wedge 1_{K}\right) \rho=$ $\left(\bar{c}_{2} \wedge 1_{K}\right) g_{5}\left(y \wedge 1_{M}\right)=0$.

It follows that $\left(1_{E_{3}} \wedge \alpha^{\prime \prime}\right)\left(\kappa \wedge 1_{K}\right)=f_{4} \alpha i j j^{\prime}$ with $f_{4} \in\left[\Sigma^{p^{n} q+q+1} M, E_{3} \wedge K\right]$ and $\left(\bar{a}_{2} \wedge\right.$ $\left.1_{K}\right) f_{4} \alpha i j j^{\prime}=\left(\bar{a}_{2} \wedge 1_{K}\right)\left(1_{E_{3}} \wedge \alpha^{\prime \prime}\right)\left(\kappa \wedge 1_{K}\right)=\left(\bar{c}_{1} \wedge 1_{K}\right)\left(1_{K G_{1}} \wedge \alpha^{\prime \prime}\right)\left(h_{n} \wedge 1_{K}\right)=0$. Then, by (2.13), we have $\left(\bar{a}_{2} \wedge 1_{K}\right) f_{4} \alpha i=f_{5} z$ with $f_{5} \in\left[\Sigma^{p^{n} q+q-1} K^{\prime}, E_{2} \wedge K\right]$. From Prop. 2.19, $\left(\bar{a}_{0} \bar{a}_{1} \wedge 1_{K}\right) f_{5} z$ $=0$, then $f_{5} z=\left(\bar{c}_{1} \wedge 1_{K}\right) g_{7}=0$ since the d_{1}-cycle $g_{7} \in\left[\Sigma^{p^{n} q+2 q} S, K G_{1} \wedge K\right]$ represents an element in $\operatorname{Ext}_{A}^{1, p^{n} q+2 q}\left(H^{*} K, Z_{p}\right)=0$. Hence $\left(\bar{a}_{2} \wedge 1_{K}\right) f_{4} \alpha i=0, f_{4} \alpha i=\left(\bar{c}_{2} \wedge 1_{K}\right) g_{8}$ for some $g_{8} \in\left[\Sigma^{p^{n} q+2 q+1} S, K G_{2} \wedge K\right]$ and we have $\left(1_{E_{3}} \wedge \alpha^{\prime \prime}\right)\left(\kappa \wedge 1_{K}\right)=f_{4} \alpha i j j^{\prime}=\left(\bar{c}_{2} \wedge 1_{K}\right) g_{8} j j^{\prime}$. This g_{8} is a d_{1}-cycle since $\left(\bar{b}_{3} \bar{c}_{2} \wedge 1_{K}\right) g_{8} j j^{\prime}=0,\left(\bar{b}_{3} \bar{c}_{2} \wedge 1_{K}\right) g_{8}=g_{9} z=0\left(\right.$ with $\left.g_{9} \in\left[\Sigma^{p^{n} q+q} K^{\prime}, K G_{3} \wedge K\right]\right)$, then g_{8} represents an element in $\operatorname{Ext}_{A}^{2, p^{n}}{ }^{q+2 q+1}\left(H^{*} K, Z_{p}\right)=0$ (cf. Prop. 2.10(1)). That is, g_{8} is a d_{1}-boundary and so $\left(1_{E_{3}} \wedge \alpha^{\prime \prime}\right)\left(\kappa \wedge 1_{K}\right)=\left(\bar{c}_{2} \wedge 1_{K}\right) g_{8} j j^{\prime}=0$. This shows the lemma. Q.E.D.

Proof of Theorem II From Prop. 3.4, we have $\left(\bar{c}_{2} \wedge 1_{K}\right)\left(h_{0} h_{n}\right)^{\prime \prime}=0$, then there is $\eta_{n, 2}^{\prime \prime} \in$ $\left[\Sigma^{p^{n} q+q-1} K, E_{2} \wedge K\right]$ such that $\left(\bar{b}_{2} \wedge 1_{K}\right) \eta_{n, 2}^{\prime \prime}=\left(h_{0} h_{n}\right)^{\prime \prime} \in\left[\Sigma^{p^{n} q+q-1} K, K G_{2} \wedge K\right]$. Let
$\eta_{n}^{\prime \prime}=\left(\bar{a}_{0} \bar{a}_{1} \wedge 1_{K}\right) \eta_{n, 2}^{\prime \prime} \in\left[\Sigma^{p^{n} q+q-3} K, K\right]$ and consider the map $\eta_{n}^{\prime \prime} \beta i^{\prime} i \in \pi_{p^{n} q+p q+2 q-3} K$, where $\beta \in\left[\Sigma^{(p+1) q} K, K\right]$ is the known v_{2}-map (cf. [6, p. 426]) which has filtration 1 in the ASS. Since $\eta_{n}^{\prime \prime}$ is represented by $\left(h_{0} h_{n}\right)^{\prime \prime} \in \operatorname{Ext}_{A}^{2, p^{n} q+q-1}\left(H^{*} K, H^{*} K\right)$ in the ASS, then similarly to that is given at the bottom of [3, p. 202], $\eta_{n}^{\prime \prime} \beta i^{\prime} i$ is represented by $\left(\beta i^{\prime} i\right)^{*}\left(h_{0} h_{n}\right)^{\prime \prime}=\left(\beta i^{\prime} i\right)^{*} \alpha_{*}^{\prime \prime}\left(h_{n}\right)^{\prime}=$ $\left(\alpha^{\prime \prime}\right)_{*}\left(\beta i^{\prime} i\right)^{*}\left(h_{n}\right)^{\prime}=\left(\alpha^{\prime \prime}\right)_{*}\left(\beta i^{\prime} i\right)_{*}\left(h_{n}\right)=\left(i^{\prime} i\right)_{*}\left(h_{n} g_{0}\right) \neq 0 \in \operatorname{Ext}_{A}^{3, p^{n} q+p q+2 q}\left(H^{*} K, Z_{p}\right)$. Moreover, $\left(i^{\prime} i\right)_{*}\left(g_{0} h_{n}\right) \in \operatorname{Ext}_{A}^{3, p^{n}}{ }^{q+p q+2 q}\left(H^{*} K, Z_{p}\right)$ cannot be hit by a differential since $\operatorname{Ext}_{A}^{3-r, p^{n} q+p q+2 q-r+1}\left(H^{*} K, Z_{p}\right)=0$ for $r \geq 2$ by several steps of exact sequences induced by (1.2) (1.1) and using [3, Prop. 2.1 (3)]. This finishes the proof of the theorem. Q.E.D.

Proof of Theorem I Let $V(2)$ be the cofibre of $\beta: \Sigma^{(p+1) q} K \rightarrow K$ given by the cofibration

$$
\Sigma^{(p+1) q} K \xrightarrow{\beta} K \xrightarrow{\bar{i}} V(2) \xrightarrow{\bar{j}} \Sigma^{(p+1) q+1} K .
$$

From Theorem II, there is $\eta_{n}^{\prime \prime} \beta i^{\prime} i \in \pi_{p^{n} q+p q+2 q-3} K$, which is represented by $\left(i^{\prime} i\right)_{*}\left(h_{n} g_{0}\right) \in$ $\operatorname{Ext}_{A}^{3, p^{n} q+p q+2 q}\left(H^{*} K, Z_{p}\right)$. Let $\gamma: \Sigma^{\left(p^{2}+p+1\right) q} V(2) \rightarrow V(2)$ be the v_{3}-map for $p \geq 7$ (cf. [6, p. 426]) and consider the following composition ($\left.t=p^{n} q+p q+2 q-3\right)$:

$$
\tilde{f}: \Sigma^{t} S \xrightarrow{\bar{i} \eta_{n}^{\prime \prime} \beta i^{\prime} i} V(2) \xrightarrow{\gamma^{3}} \Sigma^{-3\left(p^{2}+p+1\right) q} V(2) \xrightarrow{j j^{\prime} \bar{j}} \Sigma^{-3\left(p^{2}+p+1\right) q+(p+2) q+3} S
$$

Since $\eta_{n}^{\prime \prime} \beta i^{\prime} i$ is represented by $\left(i^{\prime} i\right)_{*}\left(h_{n} g_{0}\right) \in \operatorname{Ext}_{A}^{3, p^{n} q+p q+2 q}\left(H^{*} K, Z_{p}\right)$, then the above \tilde{f} is represented by

$$
c=\left(j j^{\prime} \bar{j}\right)_{*}\left(\gamma_{*}\right)^{3}\left(\bar{i} i^{\prime} i\right)_{*}\left(h_{n} g_{0}\right) \in \operatorname{Ext}_{A}^{6, p^{n} q+3\left(p^{2}+p+1\right) q}\left(Z_{p}, Z_{p}\right)
$$

Similarly to what is given in [1, p. 203], $\tilde{f} \in \pi_{*} S$ is represented by $c=h_{n} g_{0} \gamma_{3} \neq 0 \in$ $\operatorname{Ext}_{A}^{6, p^{n} q+3\left(p^{2}+p+1\right) q}\left(Z_{p}, Z_{p}\right)$ (up to a nonzero scalar) in the ASS. Moreover, from [1, Prop. 2.1(3)], $\operatorname{Ext}_{A}^{6-r, p^{n} q+3\left(p^{2}+p+1\right) q-r+1}\left(Z_{p}, Z_{p}\right)=0$ for $r \geq 2$, then $h_{n} g_{0} \gamma_{3}$ cannot be hit by differentials in the ASS and so $\tilde{f} \in \pi_{*} S$ is nontrivial and of order p. Q.E.D.

Acknowledgment The author would like to thank the referee for his suggestion on the present new title and on trimming the original manuscript to highlight the proof of Prop. 3.4.

References

[1] Liulevicius A., The factorizations of cyclic reduced powers by secondary cohomology operations, Memoirs of Amer. Math. Soc., 1962, 42.
[2] Aikawa T., 3-Dimensional cohomology of the mod p Steenrod algebra, Math. Scand., 1980, 47: 91-115.
[3] Lin J. K., Zheng Q. B., A new family of filtration seven in the stable homotopy of spheres, Hiroshima Math. J., 1998, 28: 183-205.
[4] Toda H., Algebra of stable homotopy of Z_{p}-spaces and applications, J. Math. Kyoto Univ., 1971, 11: 197-251.
[5] Hoffman P., Relations in the stable homotopy ring of Moore spaces, Proc. London Math. Soc., 1968, 18: 621-634.
[6] Oka S., Multiplicative structure of finite ring spectra and stable homotopy of spheres, Algebraic Topology (Aarhus), Lect. Notes in Math., 1984, 1051, Springer-Verlag.
[7] Toda H., On spectra realizing exterior part of the Steenrod algebra, Topology, 1971, 10: 53-65.
[8] Cohen R., Odd primary families in stable homotopy theory, Memoirs of Amer. Math. Soc., 1981, 242.

