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1 Introduction

Let A be the mod p Steenrod algebra and S the sphere spectrum localized at an odd prime
p. To determine the stable homotopy groups of spheres 7,5 is one of the central problems
in homotopy theory. One of the main tools to reach it is the Adams spectral sequence (ASS)
Ey' = Ext%'(Z,, Z,) = m;—sS, where the E5'-term is the cohomology of A.

From [1], Ext}*(Z,, Z,) has the Z,-base consisting of ag € Ext}'(Z,, Z,), hi € Extkpiq
(Zy, Z,) for all i > 0 and Ext%*(Z,, Z,) has the Z,-base consisting of a, a3, agh;(i > 0), gi(i >
0),k;(i > 0),b;(i > 0) and h;h;j(j > i+ 2,7 > 0) whose internal degrees are 2¢ + 1,2,p’q +
1, pitlg+2piq, 2pit gL piq, pitl
Table 8.1], the Z,-base of Ext'i{*(Zp, Zp) has been completely listed and there is a generator
Y3 € Exti{@pz”p“)q(Zp, Z,) whose name in [2] is hg1,2,3.

L4

q and p’q+p’q, respectively, where ¢ = 2(p—1). From [2, p.110,

n 2
In [3], a family in 7,.S, which is represented by b,_1g07y3 € Extz"p a3 Hptla (Zy, Zp) in
the ASS, has been detected. The main purpose of this paper is to construct a new family in

7S revisited [3]. Our result is the following theorem:
Theorem I Letp > 7,n > 4. Then the product

hngovs #0 € EXt,Ga{pan(pZerH)q(Zpa Zp)
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and it converges in the ASS to a nontrivial element in Tyn g4 3(p24p+1)q—6S of order p.

The construction of the above h,, ggys-element is parallel to that of b,,_1gpvy3-element given
in [3]. That is, Theorem I will also be proved on the basis of the following Theorem II revisited
[3, Theorem IIJ.

Let M be the Moore spectrum modulo a prime p > 3 given by the cofibration
SN IR Y QNG 3/°) (1.1)
Let a: X9M — M be the Adams map and K be its cofibre given by the cofibration
SN - M S i L ey (1.2)

where ¢ = 2(p — 1). This spectrum, which we briefly write as K, is known as the Toda-Smith

spectrum V(1). Theorem I will be proved on basis of the following theorem:

Theorem II  Letp > 5,n > 3. Then
hngo € Ext®P P2 (K 7)),

the reduction of hngo € Ext?;{panrqurQq(Zp, Z,), converges in the ASS to a nontrivial homotopy

element in Tpn q4pg+29—35.

Parallel to the detection of the element ¢/, € [ZP"9 44K K] in [3], we will find an
element 7!/ € [ZP"9T9-3 K K] (given in Prop. 3.4) so that j/n/! € [ZP"9-*K, M] is represented
by (j5")*ix(hohn) € Ext3”" T 2(H*M, H*K) in the ASS. Then n//3i'i € Tyngt(pra)g_skK is
our desired map in Theorem IT and jj'jv3in)3i'i € Tpngi3p2+p+1)q—6S is the hpgoys-clement,
where 3 € [RPTDIK K] and v € [S@*+P+Day(2), V(2)] are the known vs- and vs-periodicity
elements, respectively.

Note that the proof, in [3, Theorem II], of detecting (//_; relies on the fact that agb,—1 €
Exti’{pan(Zp, Z,) is hit by a differential da(h,,) and this no longer holds for agh,, € Extil’pnqu1
(Zy, Z,). So, the arguments in [3] are not valid for proving the existence of 1/, here. However,we
can say that the proof of the existence of 7!/ given in this paper will be valid to prove the
existence of ¢J/_; in [3].

Some techniques on the derivation of maps between M-module spectra will play an impor-
tant role in the proof of Theorem II and especially of Prop. 3.4. After giving some preliminaries
on it and some low-dimensional Ext groups in Section 2, the proof of the main theorems will

be given in Section 3.

2 Some Preliminaries on Derivations and Low-dimensional Ext Groups

In this section, we first recall some results on derivations of maps between M-module spectra

developed in [4]. From [4, p. 204-206], the Moore spectrum M is a commutative ring spectrum
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with multiplication mpa; : M A M — M and there is mp; : XM — M A M such that

mM(i/\lM)le, (j/\]-M)mM:]-Ma

mymy =0, WM(j/\ljvj)—‘y-(i/\lM)mM:lM/\M (2.1)
and
myT = —mpr, Ty =, mar(Iy Ai) = —1ar,  (Lu A j)mar = 1ar, (2.2)

where T': M N M — M A M is the switching map.

A spectrum X is called an M-module spectrum if p A 1x = 0 € [X, X], and consequently,
the cofibration X P22¥ x ¥ apa x A wx splits, i.e. there is a homotopy equivalence
MAX =X VXX and there are maps mx : M AN X — X, mx : ¥X — M A X satisfying

mx(i/\lx):].x, (j/\lx)mlex,
mxmx =0, Mx(GAlx)+(EALx)mx = lyax.
The M-module actions mx,mx are called associative if there are commutativities
mx(lM A mx) = —mX(mM A 1)() and (1]\/[ /\mx)mx = (mM A 1x)mx.
Let X and X’ be M-module spectra. Then we define a homomorphism d : [L5X’, X]
— [Z5HLX7 X] by d(f) = mx(1y A f)mx for f € [¥*X’, X]. This operation d is called a

derivation (of maps between M-module spectra) which has the following properties:

Proposition 2.3 [4, p. 210, Theorem 2.2] (i) d is derivative: d(fg) = fd(g) + (—1)19! d(f)g
for fe[25X', X], g € [XtX", X'], where X, X', X" are M-module spectra.

(ii) Let W', W be arbitrary spectra and h € [S"W', W]. Then d(h A f) = (=) Ad(f) for
fe[Ex, X

(iii) 4> = 0: [25X’, X]| — [2*T2X’, X] for associative spectra X', X.

From [4, p. 217, (3.4)], K is an M-module spectrum, i.e. there are M-module actions
mg: KANM — K, mg : XK — K N M satisfying

mg(1x Ni) =1k, (Ix Aj)mg = 1k,

mgmi =0, (lK/\i)mK+(1K /\j)szlKAM. (2.4)
Moreover, from [4, p. 218, (3.7)] we have
d(ij) = —1m, d(a)=0, d(i')=0, d(j')=0. (2.5)

The following proposition is a generalization of Theorem A(c) in [5]:

Proposition 2.6  Let V.V’ be arbitrary spectra. Then there is a direct sum decomposition
[S*VAM, V' AM] = (kerd) & (1y Aij)(kerd),

where kerd = [S*V A M, V' A M| N (kerd).
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Proof The proof is a modification of the proof of Theorem A(c) in [5, p. 631]. Let d.(f) =
(1y: Aig)f for f € [X*V AM, V' A M]. Then we have exact sequences

S5V A M, V' AM] -5 2550V A M, V! A M] -5 [2572V A M, V! A M),
S5V AM, V! AM] &5 (2575 A M, VA M) 25 8572V A M,V A M],

which split each other. To prove this, we claim that V' A M, V' A M are associative M-module
spectra, then d* = 0 and 4% = 0, since ijij = 0. On the other hand, by Prop. 2.3(i) and
d(ly: Nig) = —=lyian, we have d((1y: Aij)f) = £f + (v A if)d(f), then if d(f) = 0,
f==2d((1y Nig)f) and if 6r.(f) = 0, f = £(1y+ Aij)d(f), which shows the result.

To prove the claim, we need to show that myan(1a A myan) = —myane(mar A Lyanr)
and (I1as A My anv)Myvam = (M A Ly anv)Myvanm, where myane = (Iv Amar) (T A L)
MAVAM ™Yy A M A M YA VA M and Tivay = (Tyar A La)(Ly A iar)
SV AM VAT Y A MAM TS M AV A M are the M-module action of V A M in which
Ty :MANV - VAM,Tyy :VAM— MAV are the switching maps. In fact, we have

myam (I Amyan) = v Amar)(Tarv ALar)(Iar ALy Amag)(Iag ATy A lpr)
= Ly Ampr)(Ly ALy Amag) (Tarana,v Alpg) with Tagansy - (MAM)AV — VA(MAM)
—(y Amar)(Iv Amar Alar)(Taam,v A lar), by the associativity of may
—(Ly Amar)(Tarv A lag)(mar Ay Alyy)

= —myam(mum A Lvan).

This shows the first associativity of the M-module spectrum V A M, while the proof of the

second one is similar. Q.E.D.

Corollary 2.7 Let X, V,V' and V" be arbitrary spectra and g : V — V', g : V! — V" be
maps. If V" ANM, X ANM)] @ MM) [V AM, X AM] (s7120)" [VAM, X AM] is an exact sequence,
then kerd N [V A M, X A M] 22 werd [V A M, X A M] U kerd 0 [V A M, X A M) ds

also exact, where d is the derivation defined on the corresponding group.

Proof For any f € kerd N [V’ A M, X A M] such that f € ker(g A 1p)*, there is f € [V A
M, X A M] so that f'(¢’ AN1py) = f. By Prop. 2.6, f/ = fi + (1x Aij)fs with f{ € kerd N
[V ANM,X ANM] and f} € kerd N [EV" A M, X A M]. Then, by applying d on the equation
£ = Fi(g' A ar) + (1x A i) f4(g' A Tar) we have f5(g’ A Tar) = 0 and so f = £{(g' A L) with
fl €kerdN [V A M, X N M] as desired. Q.E.D.

Now we turn to considering some results on low-dimensional Ext groups which will be used

in the proof of the main theorems and especially of Prop. 3.4.

Proposition 2.8 Let p > 7,n > 4. Then the product h,goys # 0 € Extipanrg(p?HpH)q
(Zp, Zy), where y3 = ho 123 € Ext), 3,(3p%+2p+ 1) UZ,, Zy) as in [2, Table 8.1].

Proof The proof is similar to that given in the proof of [3, Prop. 2.2] and is omitted here.

Proposition 2.9  Letp > 3,n > 2. Then Ext3? T (H*M, H*M) = Z,{(ij) st (hy), . (i5)*
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(hn)} and Exti’pnﬁq(H*K, H*M) 22 Z,{i(i5)wte (b)) = .1 Aar)w(hn)}, where ay = jovi :
29718 — S and hy, is the unique generator of Ext?"(H* M, H* M) stated in [3, Prop. 2.4(2)].

Proof Since Ext%?"979(Z,, Z,) has the unique generator hohy = jyasis(hn) = jeoni*(hy),

then the first result follows from the following exact sequence:

2 B3P M, 7)) D Bxt (M, M) S Bxt 3P (HE M, Z,) 2

induced by (1.1), where the right group has the unique generator i*(ij) .. (hn) = (i)« xis(hn)
satistying p*(ij)«sis(hn) = (i)« sispe(hn) = 0 and the left group has the unique generator

i (hy) = i*aw(hy) (cf. [3, Prop. 2.4(2)]).

Look at the following exact sequence:
Exct%?" 9 (H* M, H* M) 5 Ext3?" 9 (H* |, H* M) 2 Ext?" 0! (H* M, H* M) 2

induced by (1.2). Since E:)cti"p"q*r(Zp7 Zp) = 0 for r = 1,2 and has the unique generator b,,_;
for r = 0, then the right group has the unique generator (ij)*(b,—1) satisfying . (ij)*(bn—1) =
% Quin(by_1) # 0 € Ext3P U H* M, H* M) (cf. [3, Prop. 2.4(1)]). So Ext%? T (H*K, H* M)
= i;Exti"panrq(H*M, H*M) has the unique generator ('), (ij)xaxhy = i’ (cy Alas)«(hn), since

(a1 A 1pr)s(hy) = (i) ws(hn) — (i)« (hy) by the fact that oy A 1y = ija — aij (cf. [6, p.
428, (5.1)]). Q.E.D.

Proposition 2.10 Let p > 3,n > 2. Then:
(1) Ext3?" T2 (H* K, H* M) =0 for r=0, 1, 2, Ext3? """ (H*K, Z,) = 0;
(2) Ext3P" 1T Y(HAK, Z,) =0 for r =1, 2, 3, Ext3? Y (HAK, H*M) =0 for r = 1,2;
(3) Ext3? 1M H* K, H*K) = Z,{(hohn)'} with (i')* (hohn)' = (i'ij).(hn).

Proof (1) Look at the following exact sequence:

Ext%?" T2 (M M) S Ext3P O (K M)
2 Ext%P e (N M) %S

induced by (1.2). The left group is zero since Exti’pnq”q“(Zp, Z,) =0fort =-1,0,1,2,3

(c¢f. [1]). The right group has the unique generator (ij)*(ij)scs(hy) for r = 0, and has two
generators (ij)yax(hyn) and (ij)*ay(hy,) for ¥ = 1 and has the unique generator a(h,) for

r =2 (cf. [3, Prop. 2.4 (2)]). We claim that (i) a.(i5)* (i§) st (hn) # 0; (ii) @u[A1 (i) w0t (hn) +
A2y (i5)* (hn)] # 05 (iii) cyory (By) # 0. Then the above v, is monic and so #m;j’. = 0. This shows
that Exti{pn‘1+2q+7"(H*K7 H*M) = 0 for r = 0,1,2 and consequently we have E){‘ci{pnq'ﬂ(ﬁ1
(H*K, Z,) = 0.

To prove the claim, we recall from [2, Table 8.1] that ashy, = je iy (hy)£0E E)(‘cijpn'ﬁqur1
(Zy, Z,), then i, (azhy,) # 0 € Ext3 9208 (=0, 7)) since Ext3P"9724(Z,, Z,) = 0 (cf. [1)).
We also have j*i,(ashy) # 0 € Ext%P 929 M, H* M) since Ext%? 74 (H*M, Z,) = 0.
Hence, by 2aija = ija® + o?ij (cf. [6, p. 428 line 20]),

0 (19)" (19)00s ) = 700 (1)t () = 7 (1) 00000k () = 5770 (aoha) £ 0. (211)
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This shows (i). For the claim (ii),
.. - N 1 . - 1 N
01 M 7). () + Ao (1) ()] = S0 (i7).0n00 ) + (5A1 n A2)a*a*<m (h) £0,

since the two terms are linearly independent by the fact that (ij).c.a, (i7)* (k) # 0 (cf. (2.11)).

The claim (iii) is self-evident since i*j,. s (hy) = jeeyic(hy) = agh, # 0.

(2) Counsider the following exact sequence (r =1,2,3) :
Bxt%?" THT(H* M, Z,) 5 ExtP (YK, Z,) 25 Bxt 3P T (HM, 2,) 2

induced by (1.2). The left group is zero for r = 2, 3 since Exti{p"q"'q“(Zp, Z,)=0fort=1,2,3
(cf. [1]) and has the unique generator a.i.(hy) for » = 1 so that im i/, = 0. The right group
is zero for r = 2,3 (cf. [3, Prop. 2.3(1)]) and has the unique generator i.(b,_1) for r = 1
satisfying a iy (bp_1) # 0 € E){t‘i{pnq"’q“(H*M7 Z,) so that im j, = 0 and so the result follows.

(3) Consider the following exact sequence:
Ext? 00200 (e ey Y5 Bxt?? (0K, UK Yl Exty? T (HK, H M)

induced by (1.2). The left group is zero by (1) and the right group has the unique generator

i’ (i7)x s (hy) by Prop. 2.9 which satisfies a*i’, (i)« vs (hy) = (1)) ssa® (hy) = 7 (4) s tucrs (hy)
= 0 since i'ija? = 2i'aija — i'a?ij = 0 € [X2¢7 1M, K]. Then the result follows. Q.E.D.

Proposition 2.12  Let p > 3,n > 2. Then Exti’pnqﬂ*l(H*K, H*K) = Z,{(hohy)"} with
(@) (hohn)" = @4 (i) (a1 A 1ar)u ().
Proof Look at the following exact sequence:

ExtX?" 20 )¢, 1 M) Y05 Ext%? o (1 ke HE ) Y Bxt 3 (K HE M)

induced by (1.2). The left group is zero by Prop. 2.10(1) and similarly to Prop. 2.9, the

right group has the unique generator (i7)*,(ij)so(hn) = i%(ij)« (01 A 1ar)s(hy) satisfying
a*i (i5)w(ar A Lag)u(n) = iL(if)e(0r A Tar)sas(hy) = 0 € Ext3?"9729(H*K H*M) since
i'ij(a1 A lpyr)a = 0 € [X2972M, K]. Then the result follows. Q.E.D.

Let K’ be the cofibre of jj' : ¥ ~'K — %9+1S given by the cofibration

sl 2 yatlg 2L gL (2.13)
As stated in [3, pp. 191-192], K’ is also the cofibre of ai : 395 — M given by the cofibration
248 2 M s K Y watlg, (2.14)

and we also have another cofibration
S e Y KAM K (2.15)

with the relation that (1x A j) = v, p(1g: Ad) = z. (cf. [3, (2.9), (2.10)]).
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Since (1x Aj)(v A1y My = vl Ay = v = (1gr A §), then (v A 1y)my = ¥
since [SM, K'] = 0 by the fact that [SM, M] = 0, [XM,%9"1S] = 0. So we have d(¢)) =0 €
[Y2M, K’ A M] since d(v Alpy) =v Ad(ly) = 0 and d(myy) € [22M, M A M| = [$2M, M] +
[XM,M]=0. Since mg (xA1p)(1g Ai) = mi(1xg ANi)x = x = p(1g/ Ai), then p = mi(xAly)
since [XK’, K] = 0 by the fact that [Y¥M, K] = 0 and [£972S, K] = 0 (cf. [7, Theorem 5.2]).
So we have d(p) = 0 since d(z Alpy) =2 Ad(lp) =0 and dimg) € [EKAM, K| 2 2K, K| +
[Y2K, K] = 0 (cf. [4, Theorem 3.6]). That is, up to a sign we have

pme(l‘/\lM), Y= (’U/\lM)mM, d(p) =0, d(’(/)) =0. (2.16)

Let o/ = oy A 1g € [971K, K], where a; = jai € m;—1S. Then j'a’a’ = 0 and so by
(2.15) there is o/ p € [Z771K, K' A M] such that pa’y .y, = o'. Moreover, d(aii ) €
[LIK,K' A M] = 0 since [L9K, K] = 0 (cf. [4]) and [Z97'K, M] = 0 by the following exact
sequence:

20, M) 95 e, ) Y8 setag, v 9l (2.17)

where the left group has the unique generator a? so that im (j)* = 0 and the right group
has two generators ija and «ij so that the above ()* is monic. Then pal, ., = o'i' =
i'(aq AN 1pr) = p(vi A 1ar) (a1 A 1ar) and we have o/ x50 = (Vi A lar)(0q A 1ag) + Mp(ijady)
for some \ € Z, since [X972M, M| = Z,{ijaij}. Since d(alyi,y) = 0,d(i") = 0,d(vi A 1p) =
0,d(a; A1pr) = 0,d(®) = 0 and d(ijaij) = —aq A 1y, then by applying d to the above
equation we have A\p(a; A lpr) = 0 and the scalar A = 0. So agapi’ = (vi Alpr)(ag Alag).
Moreover, p(1x' Aij)aganm # 0 € [S972K, K] = Z,{a"} (cf. [6, p. 431, Lemma 5.6 (ii) and
(5.12)]) since d(p(1xs A ij)argan) = pagam = & # 0. Then, in conclusion we have a map
Aeran € [BITIK, K' A M| satisfying

P = Aeppt = (Vi A Lar) (o Alar),

d(rpnng) =0, p(lrr Nig)adgipp = —a”, (2.18)
since d(a") = —a’ (cf. [6, p. 430, (5.10)]).
Proposition 2.19 Letp > 5 and f : S K’ — K be any map. Then f-z =0 € [StH9H1S K].

Proof From [6, p. 433], there is a commutative multiplication p : K A K — K such that
pu(i'i ANg) = 1g = p(lx Ad'i) and there is an injection v : L9"2K — K A K such that
(ji' N1g)v = 1k. Then by (2.13) we have z Alx = (2 A1g)(ji' ANlg)y =0and so f-z =
p(lge Ai'i)f -z = p(f -2 Alg)i'i = 0. Q.E.D.

Proposition 2.20 Letp>3,n > 2. Then

EXtQAaP“'q-Fq-Fl(H*KI A ]\47 H*M) o~ Zp{’l/J*(Z])*OZ*(?ln),Z[J*(Z])*Q*(iln)}

Proof Look at the following exact sequence:
Ext%?" 17 (H* M, H* M) 25 Ext3?" T (K A M, H* M)
Loy Bxt P Y HA K, H M) = 0
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induced by (2.15). The result follows from Prop. 2.9 and 2.10(2). Q.E.D.

Proposition 2.21  Letp > 3,n > 2. Then Exti{pnq(H*K, H*K)=Z,{(hy)"} with (i')*(h,) =
(@) ().

Proof Consider the following exact sequence:

Ext Pt (i M) Y Bxt (K K D Ext (K M)
induced by (1.2). Since j/ExtY? " (H*K, H* M) c Ext}"{(H*M, H*M) = Z,{h,} (cf.
3, Prop. 2.4(2)]) and a,(hy) #0€Ext3? T (H* M, H* M), then Ext}?" 7" (H* K, H* M)
= L Exty? Y (H* M, H* M) = 0 by the fact that Ext}? 977" (Z,, Z,) = 0 for r = 0,1,2
(cf. [2]). Moreover, it is clear that Exti’pnq(H*K, H*M) has the unique generator i’.(h,,) and
it satisfies a*i, (hy,) = i".cts(hy,) = 0. Then the result follows. Q.E.D.

From [6, p. 430], there is o’ € [2972K, K| satisfying o’’’ = iijaij. Let X be the cofibre
of /' : ¥972K — K given by the cofibration

ni2) O g v, x Uyl (2.22)

Then " induces a boundary homomorphism (a//)* : Exti{pnq(H*K, H*K) — Extil’pnqﬂ*1
(H*K, H*K). Since o' = i'ijaij = i'ij(a1 A 1), then ()*(@”)*(hn) = (a"i')*(hn) =
(¢ (e A Lan)*(ha)' = (a1 A Lar)* (i) () (ha) = ('5)(01 A Lag)e(hn) = ()" (hohn)” (ct.
Prop. 2.21 and 2.12). So, we have

(hohn)" = (a")*(hy)" € Ext3?" MY (H*K, H*K), (2.23)

since the above (i')* is monic by Ext3? 1t 4(H*K, H* M) = 0 (cf. Prop. 2.10(1)).

3 Proof of the Main Theorems

We will first prove Theorem II by an argument presented in the Adams resolution of certain
spectra related to K. Recall from [3, p. 193] that

L2, yw2p, 4 oyl & pi=g
b2 b1 b0 (3.1)
2K G, SIKGy KGy

is the minimal Adams resolution of S satisfying the conditions (1)(2)(3) stated in [3, p. 194].
An Adams resolution of arbitrary spectrum V' can be obtained by smashing V on (3.1). We

first prove the following lemmas:
Lemma 3.2 Letp > 5 and n > 2. Then there exist fly 2 € [SP"7IM, Ey A M] and 1), 5 €

[Zp”quqK, EQ A K] SUCh that (62 A 1M)T~]n72 = hoh,n A lM and (62 N ]‘K)TI;L,Q = hohn A 1K; where
hohn € TpnqrqdKGy = Ext3? (2, Z,).
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Proof From [8, Theorem IV (b)(c)], a map (,,_; € [EP 493 M, S] was constructed and shown
to satisfy:

(i) The composition ¢, = (,_ i : LP 4ta-38 4, yptata=s g Cnst S is represented by
hobn_1 € Ext3P"97(Z, Z) in the ASS;

(ii) ¢, : ZP"9ta=30M — S is represented by j*(hohy,) € Exti’pnﬁq_l(Zp,H*M) with
hohy, € Exty? (7, Z,).

So, in the Adams resolution, there is {,,_; , € [SP"9+971 M, Ey] such that 081G, 19 =Cp 1
and boC,,_y 5 = hohy, - j € [SP"TH UM, K Go), where hohy, € Tyngq KGo 22 Ext3? 17(Z,, Z,).
It follows that ¢3(hohy)j = 0 and we have ¢z(hohy) = fo - p for some fo € TpngtqEs. So,
(e2 A 1pp)(hohn Alpr) = 0 and (é2 A 1) (hohn A lg) = 0 and the result follows. Q.E.D.

Lemma 3.3 Let p > 3,n > 2 and (hohy,)" € [YP 919" K, KGy A K| be the dy-cycle which
represents the element (hohy)” = (a”)*(hy)’ € Extipnq+q_1(H*K, H*K) stated in Prop. 2.12
and (2.23). Then (2 A 1x)(hohyn)” = (1g, Na”)(k A1k ), where k is an element in Tpngi1 B3
satisfying ok = €1hy, with hy, € TpnKGy = Exti"p”q(Zp, Zp).

Proof Recall that X is the cofibre of o’ : $972K — K given by the cofibration (2.22). Since
(hohy)" € [SP"9H91K KGy A K] represents (hohy)” = (a”)*(hy)' € Ext3? 771 (H*K,
H*K), then (hohy,)"u € [2P"9X, KGy A K] is a d-boundary and so (2 A 1x)(hohy)”"u = 0 and
(G2 A1k )(hohn)" = f'a with f/ € [SP"9T K, By A K]. Tt follows that (az A 1x)f’a” = 0 and
(g AN g)f' = fhw with f5 € [SP"9X, By AK]. Hence, (bo Al ) fow =0 and (bg Alg)fs =g -u
with ¢/ € [RP"9H9" 1K KGy A K]. This ¢’ is a dy-cycle since (bzéa A 1x)g’ = gha!" (with g} €
[YP"at K, KG3AK]) = 0 by the fact that o’ induces zero homomorphism in Z,-cohomology. So,
by Prop. 2.12 and (2.23), ¢’ represents (hoh,)” = (&”)*(hy)' € Exti{p"q"’q_l(H*K, H*K) and
s0 ¢'-u is a di-boundary, i.e. ¢'-u = (baé; Al )gh with g5 € [XP"9X, KGy A K]. Tt follows from
(ba A1g) fy = (bat1 A1k )gh that fy = (61 Alg)gh+ (az Alg) fy with f5 € [BP"9H1 X E3 AK] and
we have (ax A1) f = fow = (61 ANl g)ghw + (aa Al ) fyw. Clearly, ghw € [ZP"IK, KGy A K] is
a dy-cycle which represents an element in Exti{pnq(H*K'7 H*K) = Z,{(hy)'} (cf. Prop. 2.21).
Then gsw = h, A 1 up to a scalar with h,, € mmKG = Extz’pnq(Zpr). So we have
(@2 AN 1g)f =@ A1) (hy Alg) + (G2 Alg) fow = (@2 A1) (kA lg) + (G2 A 1k ) fiw, where
K € Tpnq4+1E3 satisfies sk = €1hy,. It follows that f' = k A1k + fow+ (2 Al )g) for some g) €
[YP T K, KGy A K] and we have (¢a A1) (hohn)” = f'a” = (kA 1g)a” = (1g, Aa”) (kA 1g).
Q.E.D.

Proposition 3.4 Let p > 5,n > 2 and (hoh,)"” € [Epnq‘*‘q_lK, KGy A K] be the dy-cycle as
in Lemma 3.3. Then (22 A 1) (hohy)” = 0.

Proof By Lemma 3.3, it suffices to prove that (1g,Aa”)(kAlg) = 0. Note that, by aek = ¢1hn,
we have az(1p, A a1)k = ¢1(lkg, AN aq)hy, = 0 and (1g, A a1)k = E2(hohy,) (up to a scalar)
since mpngqKGo = E){’ci{pnq's'q(Zp7 Zy) = Zy,{hohy}. Hence, by Lemma 3.2 we have

(1E3/\041/\1M)(K,/\ 1M):O, (1E3/\041/\1K)(K,/\1K):O. (35)
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Moreover, from (2.18) we have

(1gy A ainn) (K A L) p(v Adar)
= (1gy A iang) (KAL) p(v A lpr) (@ A Lpr)may
+ (Lgs A &erang) (8 A L )p(v A Lar)miar (5 A 1ar)
= (KA LA )0 pprimas (since p(v A 1p)mar = 0, p(vi A lpg) = i)
= (KA lganr) (Wi Alpg)(ar A lpr)mas by (2.18)
= (g, ANviAlpy) (kA Lla)(cr Alpr)mar =0 by (3.5),

and so by (2.14) and Cor. 2.7, (1 g, A/ pps) (KA LK) p=Ff (yAlas) for some f € [SP"a+2a+1 ) By
A K’ A M] O kerd.

It follows that (G2 A lgranm)f(y Alp) = (@2 A Lioanm) (e, A dginps) (KA LK)p = (61 A
Tiam) (e, AN &yrnpr) (B Alg)p =0, then by (2.14) and Cor. 2.7 we have

(a2 AN lgam) f = faai A lar) (3.6)

for some fo € [XP"THINM A M, Ey A K' A M] N kerd.

Observe that (by Algrans)fo = (ba Algrang) f2(i A ag)mag + (b2 Al g ang) fomiag (j A 1as) and
we claim that (bo Algrang) f2(iA1pr) = A (1, AViATpr) (hohn Alpr) and (b ALl ng) foTmiang =
X2(1ga, A (v A La)Tar) (hohn A 1) modulo dq-boundary with Ay, Ay € Z,,.

To prove this, note that the di-cycle (ba A 1x/anr)f2(i A 1a7) represents an element [(by A
Licoans) f2(i A 1a7)] € Ext3P U H*K' A M, H*M) and [(by A 1x)(1g, A p)fa(i A 1a1)] €
Exti’pn“q(H*K7 H*M) 2 Z,{[(1kG, ANi')(hohyn A1ar)]} (cf. Prop. 2.9). Then (ba Alg)(1g, A
p) f2(in1ar) = M (L Ap(vinag)) (hohn Alag)+(ba& Al )g for some g € [P 9HIM, KG1AK).
Since (1xa, Aj'a’)g = 0, then g = (1xg, Ap)ge with go € [XP 9N, KG1 AK' A M]. Tt follows
that (ba Algrans) f2(iA1ar) = M (1, AViA L) (hohn Alag) 4 (261 AL anr)go + (1, A1) gs
for some g3 € [SP MM KGy A M| 22 Z,{(hohy A 1ar)ij}, then gs = N (hohy, A 1pr)ij for
some X' € Z,. However, d(i A 1pr) = 0 and d(f2) = 0 implies that d(f2(i A 1a7)) = 0, then
by applying d to the above equation we have (1xq, A )d(gs) + (b2€1 A 1x/aar)d(ga) = 0, i.e.
N(1gg, A ) (hohn Alar) = (baey A 1granr)d(ge) and this means that the scalar A’ = 0 since
Uulhohn A 1y] # 0 € Ext3? TN (H*K' A M, H*M). This shows that (by A 1grans)fa(i A
1v) = M(Ika, A vi A 1py)(hohn A 1p) modulo dj-boundary. In addition, since d(mias)
€ [¥2M, M A M) =2 [$2M, M] + [XM, M] = 0, then, similarly, by Prop. 2.20 and d(famas) = 0
we have (ba A Lgranr) fomar = Aa(1xay, A ) (hohn A 1a7) modulo di-boundary. This shows the
claim.

Hence we have
(ba A Lgcrane) fo = (ba A Lgrans) f2(i A Lnr)mag + (ba A Lerang) foming (5 A Lar)
= )\1(]—KG2 Avi A ]-M)(hohn A\ 1M)mM + )\2(1[{@2 /\’l/))(hohn A\ ]-M)(] A\ ]-M)
= Al(hohn A 1K’AM)(U A 1M)(Z A 1M)mM + )\Q(hohn A 1K’/\M)('U A\ 1M)WM(3 A 1]»[)

modulo dj-boundary. Moreover, (1xag, A p(1x: A ij))(hohn A 1gian)(w A 1ar) = (hohn A
1K)p(1K’ A ’L])(’U A\ 1M) = (hohn A\ 1K)p(1K’ A i)’l)(l]v[ /\]) = (hohn A 1K)7;l(1M A\ ]) (Note:
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p(1g: ANi)v = xv =4', cf. (2.15)). Then modulo a d;-boundary (ba¢; A 1x)g4 we have

(ba A g )(1g, A p(1xr Aig)) fo
= M(hoha AL )i (Lar A §)(i A Lag)mar + Ao (hoha A Lic)d' (Lar A )0as (7 A Lar)
= A1 (b2 A 1K)77;z,27;/(1M A G)(i A dpr)mag + Xa(be A 1K)77;’L72i/(1M A J)mi (5 A 1ar)

by Lemma 3.2. Tt follows that (1g, A p(1x+ A ij))fo = (G2 A 1k)f3 + My (1ar A §)(E A
Lar)mar 4 Aonly o8 (Iag A §)ar (5 A 1ag) + (€1 A 1 )ga for some f3 € [SP"9HIM A M, E3 A K]
and we have (G2 A1) (1g, Ap(Lxr ANij))f = (1g, A p(Lie Nig)) fa(ai Alpr) = (G2 Alk) fa(ai A
Lar) + Amp, 08" (Tar A J) (A Lag)mag (@i A 1ag) + Xamy, o8 (Tar A J)Tar (5 A 1ar) (o A Lar).

By (2.2), mpr(aAlp)(1ar AE) = mpr(1ag Ad)a = —a = ampr (1p Ad), then mpr (A1) =
amyy since [SIHIM, M) = 0. So mps(ai Alps) = ampr(i Aly) =  and we have

o1 =100 (Iag AJ)(E A Lap)mar (i Alag) = 1, 9" ijoc = 1), 507,
o2 = 1,00 (Iag A J)ar(Gai A Lag) = 1y, 00 (a1 A lag) =1y, 007

So, AMo1 + A2oa = (M + )\2)77%720/2". On the other hand, Ajo1 + A202 = (A1 — Ag)oq +
)\277;%22"(11\/[ ANJEATp)mar +ar(G A 1)) (i Alpr) = (A — )\2)77%’20/2" + )\277;1722'/04%']' =
(M — )\2)77;72&2" and similarly Ajo1 + Aaoa = (A2 — A1)og = (A2 — Al)n;72a'i’. This shows that
A1o1 + A0z = (A1 + A2)np, 201 = (A1 — A2)m, 207" = (A2 — A1), 20/i" = 0, so we have

((_12 AN 1K)(1E'3 A\ P(]-K’ AN Z]))f = ((7,2 A\ 1K)f3(ai A\ ]-M)

It follows that (1, A p(1gr Aij))f = fa(ai A lpr) + (G2 A 1) gs for some g5 € [LP 924N,
KGs A K], then we have

—(1ms Na") (kA )p = ((1es A p(Lrer Nig)) e ang) (5 A 1) p (cf. (2.18))
= (1g; Ap(Ixr Nig)) fy Aar) = (C2 A Lk)gs(y Alar).

This g5 is a dy-cycle since (b3éa Al )gs(yAlar) = 0 and so (b3G2Alg)gs = gs(iAlyr) = 0 (with
g6 € [ZP"9TIM A M, KG3 A K]). Then g5 represents an element in Ext?q’pnq'mq(H*K7 H*M)
= 0 (cf. Prop. 2.10(1)). That is, g5 is a di-boundary and we have (1g, A &”)(k A 1g)p =
(2 AN1g)gs(y Alar) = 0.

It follows that (1z, A o”)(k A 1) = fiaijj’ with f; € [EP 991N By A K] and (ag A
1x) faaiji’ = (@ A1g)(1g A" ) (kA1K) = (1A 1K) (1kg, A’ ) (hyAlk) = 0. Then , by (2.13),
we have (ap Al ) faci = fsz with f5 € [SP 991K’ By A K]. From Prop. 2.19, (agai Alk)fs2
= 0, then fsz = (¢1 A 1g)gr = 0 since the di-cycle g; € [RP"9724S, KGy A K| represents an
element in Exti’pnqwq(H*K, Z,) = 0. Hence (as A 1g)faai = 0, faovi = (¢2 A 1k )gs for some
gs € [XP"at20t1 8 KGyAK] and we have (1, Aa”)(kA1k) = faijj’ = (€aA1k)gsjj’. This gg is
a dy-cycle since (bséa Al )gsij’ =0, (b3ca Al )gs = goz = 0 (with go € [EP MK’ KG3 AK]),
then gg represents an element in Exti’pnqﬁqﬂ(H*K, Zp) =0 (cf. Prop. 2.10(1)). That is, gs is
a dy-boundary and so (1g, Aa”)(kAlg) = (G2 Alk)gsjj’ = 0. This shows the lemma. Q.E.D.

Proof of Theorem 11 From Prop. 3.4, we have (¢a A 1x)(hohy)” = 0, then there is n;;@ €
[xrata-1K By A K] such that (by A L))o = (hohn)" € (Bt K KGy A K. Let
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i = (aoay A 1g)n 5 € [SP P73 K, K] and consider the map n)/3i'i € Tpnqipg+2q—3K, where

B € [EPtDIK K] is the known vo-map (cf. [6, p. 426]) which has filtration 1 in the ASS. Since
nlr is represented by (hohy,)” € Exti’pn“q*l(H*K, H*K) in the ASS, then similarly to that is
given at the bottom of [3, p. 202], ./ 3i'i is represented by (5i'i)* (hohy)” = (Bi'1)* ! (hy) =
(@), (Bi'))* (hn) = (a")u(Bi'1)s(hn) = (i'i)x(hngo) # 0 € Ext% P24 (=K 7). More-
over, (') (gohn) € Ext? TTPIT2(H* K 7)) cannot be hit by a differential since
Extiﬂ’pnﬁpqwq%ﬂ(H*K, Z,) = 0 for r > 2 by several steps of exact sequences induced by
(1.2) (1.1) and using [3, Prop. 2.1 (3)]. This finishes the proof of the theorem. Q.E.D.

Proof of Theorem1  Let V(2) be the cofibre of 3 : »P+Da — K given by the cofibration
s+ P E V(2) g, np+g+1

From Theorem II, there is 1/ 31"t € Tpnqypg+2q—3K, which is represented by (i'%).(hngo) €
Ext’? P2 H K 7)), Let y : @ TPHD7y(2) — V(2) be the vg-map for p > 7 (cf. [6, p.
426]) and consider the following composition (¢ = p"q + pq + 2q — 3):

f:xts znﬁ/i V(2) 7_3> 273(p2+p+1)qv(2) 37’3 N3 +p+a+(p+2)a+3 g

Since n)/3i'i is represented by (1) (hngo) € Exti"pnq+pq+2q(H*K7 Z,), then the above f is
represented by

— — n - 2
¢ = (j5'7)«(7:)? (@'0) (hngo) € ExtP T3W P07 7).

Similarly to what is given in [1, p. 203], f € m,S is represented by ¢ = hpgoys # 0 €
Extipnq+3(p2+p+l)q (Zp, Z,) (up to a nonzero scalar) in the ASS. Moreover, from [1, Prop.
2.1(3)], Extg_r’pnq+3(p2+p+1)q_T+1 (Zy, Zp) = 0 for r > 2, then hy,go7ys cannot be hit by differ-
entials in the ASS and so f € 7,5 is nontrivial and of order p. Q.E.D.

Acknowledgment The author would like to thank the referee for his suggestion on the

present new title and on trimming the original manuscript to highlight the proof of Prop. 3.4.

References

[1] Liulevicius A., The factorizations of cyclic reduced powers by secondary cohomology operations, Memoirs
of Amer. Math. Soc., 1962, 42.

[2] Aikawa T., 3-Dimensional cohomology of the mod p Steenrod algebra, Math. Scand., 1980, 47: 91-115.

[3] Lin J. K., Zheng Q. B., A new family of filtration seven in the stable homotopy of spheres, Hiroshima Math.
J., 1998, 28: 183-205.

[4] Toda H., Algebra of stable homotopy of Zp,-spaces and applications, J. Math. Kyoto Univ., 1971, 11:
197-251.

[5] Hoffman P., Relations in the stable homotopy ring of Moore spaces, Proc. London Math. Soc., 1968, 18:
621-634.

[6] Oka S., Multiplicative structure of finite ring spectra and stable homotopy of spheres, Algebraic Topology
(Aarhus), Lect. Notes in Math., 1984, 1051, Springer-Verlag.

[7] Toda H., On spectra realizing exterior part of the Steenrod algebra, Topology, 1971, 10: 53—65.

[8] Cohen R., Odd primary families in stable homotopy theory, Memoirs of Amer. Math. Soc., 1981, 242.



