On the Convergence of Products $\tilde{\gamma}_{s} h_{1} h_{n}$ in the Adams Spectral Sequence

Xiu Gui LIU
School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, P. R. China
E-mail: mathelxg@yahoo.com.cn

Abstract

Let A be the mod p Steenrod algebra and S the sphere spectrum localized at p, where p is an odd prime. In 2001 Lin detected a new family in the stable homotopy of spheres which is represented by $\left(b_{0} h_{n}-h_{1} b_{n-1}\right) \in \operatorname{Ext}_{A}^{3,\left(p^{n}+p\right) q}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ in the Adams spectral sequence. At the same time, he proved that $i_{*}\left(h_{1} h_{n}\right) \in \operatorname{Ext}_{A}^{2,\left(p^{n}+p\right) q}\left(H^{*} M, \mathbb{Z}_{p}\right)$ is a permanent cycle in the Adams spectral sequence and converges to a nontrivial element $\xi_{n} \in \pi_{\left(p^{n}+p\right) q-2} M$. In this paper, with Lin's results, we make use of the Adams spectral sequence and the May spectral sequence to detect a new nontrivial family of homotopy elements $j j^{\prime} \bar{j} \gamma^{s} i^{\prime} \xi_{n}$ in the stable homotopy groups of spheres. The new one is of degree $p^{n} q+s p^{2} q+s p q+(s-2) q+s-6$ and is represented up to a nonzero scalar by $h_{1} h_{n} \tilde{\gamma}_{s}$ in the $E_{2}^{s+2, *}$-term of the Adams spectral sequence, where $p \geq 7, q=2(p-1), n \geq 4$ and $3 \leq s<p$.

Keywords stable homotopy groups of spheres, Adams spectral sequence, May spectral sequence
MR(2000) Subject Classification 55Q45

1 Introduction and the Main Results

Homotopy groups of spheres are among the most fundamental algebraic invariants of topological spaces. The higher homotopy groups of spheres are very difficult to compute and all known methods of computation apply only to limited classes. All the homotopy groups of spheres are not known. Since homotopy groups carry substantial amount of information, their computation often results in nontrivial interesting applications. For example, Adams's partial computation of certain homotopy groups of spheres implies that \mathbb{R}^{n} is not a normed algebra for $n \neq 1,2,4,8$.

Throughout this paper, p will denote an odd prime. Let A be the $\bmod p$ Steenrod algebra and S be the sphere spectrum localized at p. So far, not so many families of homotopy elements in $\pi_{*} S$ have been detected. Recently, Lin got a series of results and detected some new families in $\pi_{*} S$. Let $q=2(p-1)$.

In [1], Lin and Zheng obtained the following theorem:
Theorem 1.1 Let $p \geq 7, n \geq 4$. Then the product $b_{n-1} g_{0} \gamma_{3} \neq 0 \in \operatorname{Ext}_{A}^{7, p^{n} q+3\left(p^{2}+p+1\right) q}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ and it converges in the Adams spectral sequence to a nontrivial element in $\pi_{p^{n} q+3\left(p^{2}+p+1\right) q-7} S$ of order p.

Lin [2] detected a new family in $\pi_{*} S$ and proved the following theorem:
Theorem 1.2 Let $p \geq 7, n \geq 4$. Then the product $h_{n} g_{0} \gamma_{3} \neq 0 \in \operatorname{Ext}_{A}^{6, p^{n} q+3\left(p^{2}+p+1\right) q}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ and it converges in the Adams spectral sequence to a nontrivial element in $\pi_{p^{n} q+3\left(p^{2}+p+1\right) q-6} S$ of order p.

In 2001, Lin gave the following theorem in [3]:

[^0]Theorem 1.3 Let $p \geq 5, n \geq 3$. Then:
(1) $i_{*}\left(h_{1} h_{n}\right) \neq 0 \in \operatorname{Ext}_{A}^{2, p^{n} q+p q}\left(H^{*} M, \mathbb{Z}_{p}\right)$ is a permanent cycle in the Adams spectral sequence and converges to a nontrivial element $\xi_{n} \in \pi_{p^{n} q+p q-2} M$;
(2) For $\xi_{n} \in \pi_{p^{n} q+p q-2} M$ obtained in (1), $j \xi_{n} \in \pi_{p^{n} q+p q-3} S$ is a nontrivial element of order p which is represented (up to a nonzero scalar) by $\left(b_{0} h_{n}+h_{1} b_{n-1}\right) \in \operatorname{Ext}_{A}^{3, p^{n} q+p q}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ in the Adams spectral sequence.

In this paper, we make use of Lin's results in Theorem 1.3 to detect a new family in $\pi_{*} S$. Our result is the following theorem:
Theorem 1.4 Let $p \geq 7, n \geq 4$. Then $\tilde{\gamma}_{s} h_{1} h_{n} \neq 0 \in \operatorname{Ext}_{A}^{s+2, p^{n} q+s p^{2} q+s p q+(s-2) q+s-3}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ is a permanent cycle in the Adams spectral sequence and converges to a nontrivial element $j j^{\prime} \bar{j} \gamma^{s} \overline{i i^{\prime}} \xi_{n} \in \pi_{p^{n} q+s p^{2} q+s p q+(s-2) q-5} S$ of order p, where $3 \leq s<p, q=2(p-1)$.
Remark The element $\tilde{\gamma}_{s} h_{1} h_{n}$ obtained in Theorem 1.4 is an indecomposable element in the stable homotopy groups of spheres $\pi_{*} S$, i.e., it is not a composition of elements of lower filtration in $\pi_{*} S$, because $h_{n}(n>0)$ is known to die in the Adams spectral sequence.

Our method is to use the Adams spectral sequence. We also use the May spectral sequence to determine $\operatorname{Ext}_{A}^{s, t}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$.

The paper is arranged as follows. After recalling some useful knowledge about our methods in Section 2, we will make use of the May spectral sequence and the Adams spectral sequence to prove the existence of a new nontrivial family in the stable homotopy groups of spheres in Section 3.

2 The Adams Spectral Sequence and the May Spectral Sequence

In this section, we first recall some knowledge on the Adams spectral sequence and the May spectral sequence. One of the main tools for determining the stable homotopy groups of spheres $\pi_{*} S$ is the Adams spectral sequence.

Let p be a prime, X a spectrum of finite type and Y a finite-dimensional spectrum. Then there is a natural spectral sequence $\left\{E_{r}^{s, t}, d_{r}\right\}$, which is called the Adams spectral sequence

$$
\begin{equation*}
E_{2}^{s, t}=\operatorname{Ext}_{A}^{s, t}\left(\left(H^{*} X ; \mathbb{Z}_{p}\right), H^{*}\left(Y ; \mathbb{Z}_{p}\right)\right) \Rightarrow\left([Y, X]_{t-s}\right)_{p}, \tag{2.1}
\end{equation*}
$$

where $d_{r}: E_{r}^{s, t} \rightarrow E_{r}^{s+r, t+r-1}$.
If X and Y are sphere spectra S, then the Adams spectral sequence

$$
\begin{equation*}
E_{2}^{s, t}=\operatorname{Ext}_{A}^{s, t}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right) \Rightarrow\left(\pi_{t-s} S\right)_{p} \tag{2.2}
\end{equation*}
$$

If S is localized at p, then the Adams spectral sequence

$$
\begin{equation*}
E_{2}^{s, t}=\operatorname{Ext}_{A}^{s, t}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right) \Rightarrow \pi_{t-s} S . \tag{2.3}
\end{equation*}
$$

There are three problems in using the Adams spectral sequence: calculation of the E_{2}-term, computation of the differentials and determination of the nontrivial extensions from E_{∞} to $\pi_{*} S$. So, for computing the stable homotopy groups of spheres with the Adams spectral sequence, we must compute the E_{2}-term of the Adams spectral sequence, $\operatorname{Ext}_{A}^{*, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$. The most successful method for computing $\operatorname{Ext}_{A}^{* * *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ is the May spectral sequence.

From [4], there is a May spectral sequence $\left\{E_{r}^{s, t, *}, d_{r}\right\}$ which converges to $\operatorname{Ext}_{A}^{s, t}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ with E_{1}-term

$$
\begin{equation*}
E_{1}^{*, *, *}=E\left(h_{m, i} \mid m>0, i \geq 0\right) \bigotimes P\left(b_{m, i} \mid m>0, i \geq 0\right) \bigotimes P\left(a_{n} \mid n \geq 0\right) \tag{2.4}
\end{equation*}
$$

where E is the exterior algebra, P is the polynomial algebra, and $h_{m, i} \in E_{1}^{1,2\left(p^{m}-1\right) p^{i}, 2 m-1}$, $b_{m, i} \in E_{1}^{2,2\left(p^{m}-1\right) p^{i+1}, p(2 m-1)}, a_{n} \in E_{1}^{1,2 p^{n}-1,2 n+1}$. One has $d_{r}: E_{r}^{s, t, u} \rightarrow E_{r}^{s+1, t, u-r}$ and if $x \in E_{r}^{s, t, *}$ and $y \in E_{r}^{s^{\prime}, t^{\prime}, *}$, then $d_{r}(x \cdot y)=d_{r}(x) \cdot y+(-1)^{s} x \cdot d_{r}(y), x \cdot y=(-1)^{s s^{\prime}+t t^{\prime}} y \cdot x$ for $x, y=h_{m, i}, b_{m, i}$ or a_{n}. The first May differential d_{1} is given by

$$
\begin{equation*}
d_{1}\left(h_{i, j}\right)=\sum_{0<k<i} h_{i-k, k+j} h_{k, j}, \quad d_{1}\left(a_{i}\right)=\sum_{0 \leq k<i} h_{i-k, k} a_{k}, \quad d_{1}\left(b_{i, j}\right)=0 . \tag{2.5}
\end{equation*}
$$

For any element $x \in E_{1}^{s, t, *}$, define $\operatorname{dim} x=s, \operatorname{deg} x=t$. Then we have

$$
\begin{align*}
& \operatorname{dim} h_{i, j}=\operatorname{dim} a_{i}=1, \operatorname{dim} b_{i, j}=2 \\
& \operatorname{deg} h_{i, j}=2\left(p^{i}-1\right) p^{j}=2(p-1)\left(p^{i+j-1}+\cdots+p^{j}\right) \\
& \operatorname{deg} b_{i, j}=2\left(p^{i}-1\right) p^{j+1}=2(p-1)\left(p^{i+j}+\cdots+p^{j+1}\right), \tag{2.6}\\
& \operatorname{deg} a_{i}=2 p^{i}-1=2(p-1)\left(p^{i-1}+\cdots+1\right)+1, \\
& \operatorname{deg} a_{0}=1
\end{align*}
$$

where $i \geq 1, j \geq 0$.
Note By the knowledge of the p-adic expression, for any integral $t \geq 0, t$ can be always expressed as $t=q\left(c_{n} p^{n}+c_{n-1} p^{n-1}+\cdots+c_{1} p+c_{0}\right)+e$, where $0 \leq c_{i}<p(0 \leq i<n), c_{n}>0$, $0 \leq e<q, q=2(p-1)$.

3 The Products $\tilde{\gamma}_{s} h_{1} h_{n}$

From [5], $\operatorname{Ext}_{A}^{1, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ has \mathbb{Z}_{p}-bases consisting of $a_{0} \in \operatorname{Ext}_{A}^{1,1}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right), h_{i} \in \operatorname{Ext}_{A}^{1, p^{i} q}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ for all $i \geq 0$ and $\operatorname{Ext}_{A}^{2, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ has \mathbb{Z}_{p}-bases consisting of $\alpha_{2}, a_{0}^{2}, a_{0} h_{i}(i>0), g_{i}(i \geq 0), k_{i}(i \geq 0)$, $b_{i}(i \geq 0)$, and $h_{i} h_{j}(j \geq i+2, i \geq 0)$ whose internal degrees are $2 q+1,2, p^{i} q+1, p^{i+1} q+2 p^{i} q$, $2 p^{i+1} q+p^{i} q, p^{i+1} q$ and $p^{i} q+p^{j} q$, respectively.

Let M be the Moore spectrum modulo a prime $p \geq 5$ given by the cofibration

$$
\begin{equation*}
S \xrightarrow{p} S \xrightarrow{i} M \xrightarrow{j} \Sigma S . \tag{3.1}
\end{equation*}
$$

Let $\alpha: \Sigma^{q} M \rightarrow M$ be the Adams map and K be its cofibre given by the cofibration

$$
\begin{equation*}
\Sigma^{q} M \xrightarrow{\alpha} M \xrightarrow{i^{\prime}} K \xrightarrow{j^{\prime}} \Sigma^{q+1} M, \tag{3.2}
\end{equation*}
$$

where $q=2(p-1)$. This spectrum, which we write for short as K, is known to be the TodaSmith spectrum $V(1)$. Let $V(2)$ be the cofibre of $\beta: \Sigma^{(p+1) q} K \rightarrow K$ given by the cofibration

$$
\begin{equation*}
\Sigma^{(p+1) q} K \xrightarrow{\beta} K \xrightarrow{\bar{i}} V(2) \xrightarrow{\bar{j}} \Sigma^{(p+1) q+1} K . . \tag{3.3}
\end{equation*}
$$

Let $\gamma: \Sigma^{q\left(p^{2}+p+1\right)} V(2) \rightarrow V(2)$ be the v_{3}-map. As we know, in the Adams spectral sequence, for $p \geq 7$ the γ-element $\gamma_{t}=j j^{\prime} \bar{j} \gamma^{\dagger} \bar{i} i^{\prime} i$ is a nontrivial element of order p in $\pi_{t q\left(p^{2}+p+1\right)-q(p+2)-3} S$ (see [6, Theorem 2.12]).

In [7], the following theorem was given:
Theorem 3.1 Let $p \geq 7,0 \leq s<p-3$. Then the permanent cycle $a_{3}^{s} h_{3,0} h_{2,1} h_{1,2} \in E_{r}^{s+3, t, *}$ converges to the third Greek letter family element $\tilde{\gamma}_{s+3} \in \operatorname{Ext}_{A}^{s+3, t}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ in the May spectral sequence, where $r \geq 1, t=(s+3) p^{2} q+(s+2) p q+(s+1) q+s$ and $\tilde{\gamma}_{s+3}$ converges to the γ-element $\gamma_{s+3} \in \pi_{(s+3) p^{2} q+(s+2) p q+(s+1) q-3} S$ in the Adams spectral sequence, where $\gamma_{s+3}=$ $j j^{\prime} \bar{j} \gamma^{s+3} \bar{i}^{\prime} i \in \pi_{t-s-3} S, \tilde{\gamma}_{s+3}$ is given in [8].
Lemma 3.1 Let $p \geq 7, n \geq 4$. Then in the May spectral sequence we have
(1) If $0 \leq s<p-4, E_{1}^{s+4, p^{n} q+(s+3) p^{2} q+(s+3) p q+(s+1) q+s, *}=0$;
(2) $E_{1}^{p, p^{n} q+(p-1) p^{2} q+(p-1) p q+(p-3) q+(p-4), *}= \begin{cases}0 & n=4, \\ \mathbb{Z}_{p}\left\{a_{n}^{p-4} h_{n, 0} h_{n-1,1} h_{n-3,3} h_{3,1}\right\} & n>4 .\end{cases}$

Proof (1) Let $t=p^{n} q+(s+3) p^{2} q+(s+3) p q+(s+1) q+s$. Suppose that $h=x_{1} x_{2} \cdots x_{m}$ is a generator of $E_{1}^{s+4, t, *}$, where $m \leq s+4, x_{i}$ is one of $a_{k}, h_{l, j}$ or $b_{u, z}, 0 \leq k \leq n+1$, $0 \leq l+j \leq n+1,0 \leq u+z \leq n, l>0, j \geq 0, u>0, z \geq 0$. Assume that deg $x_{i}=$ $q\left(c_{i, n} p^{n}+c_{i, n-1} p^{n-1}+\cdots+c_{i, 0}\right)+e_{i}$, where $c_{i, j}=0$ or $1, e_{i}=1$ if $x_{i}=a_{k_{i}}$, or $e_{i}=0$. Then

$$
\begin{align*}
\operatorname{deg} h=\sum_{i=1}^{m} \operatorname{deg} x_{i} & =q\left(\left(\sum_{i=1}^{m} c_{i, n}\right) p^{n}+\cdots+\left(\sum_{i=1}^{m} c_{i, 2}\right) p^{2}+\left(\sum_{i=1}^{m} c_{i, 1}\right) p+\left(\sum_{i=1}^{m} c_{i, 0}\right)\right)+\left(\sum_{i=1}^{m} e_{i}\right) \\
& =q\left(p^{n}+(s+3) p^{2}+(s+3) p+(s+1)\right)+s . \tag{3.4}
\end{align*}
$$

Note that $0 \leq s, s+1, s+3<p-1$. So from (3.4), we have

$$
\begin{cases}\sum_{i=1}^{m} e_{i}=s+\lambda_{-1} q, & \lambda_{-1} \geq 0 \tag{3.5}\\ \sum_{i=1}^{m} c_{i, 0}+\lambda_{-1}=s+1+\lambda_{0} p, & \lambda_{0} \geq 0 \\ \sum_{i=1}^{m} c_{i, 1}+\lambda_{0}=s+3+\lambda_{1} p, & \lambda_{1} \geq 0 \\ \sum_{i=1}^{m} c_{i, 2}+\lambda_{1}=s+3+\lambda_{2} p, & \lambda_{2} \geq 0 \\ \sum_{i=1}^{m} c_{i, 3}+\lambda_{2}=0+\lambda_{3} p, & \lambda_{3} \geq 0 \\ \cdots & \cdots \\ \sum_{i=1}^{m} c_{i, n-1}+\lambda_{n-2}=0+\lambda_{n-1} p, & \lambda_{n-1} \geq 0 \\ \sum_{i=1}^{m} c_{i, n}+\lambda_{n-1}=1 & \end{cases}
$$

Noting that $0 \leq \sum_{i=1}^{m} e_{i}, \sum_{i=1}^{m} c_{i, j} \leq m \leq s+4<p$, it is easy to know that the sequence $\left(\lambda_{-1}, \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{n-2}, \lambda_{n-1}\right)$ must equal the sequence $(0,0,0,0,0, \ldots, 0,0)$. Thus, from (3.5), we get that

$$
\begin{align*}
& \sum_{i=1}^{m} e_{i}=s, \quad \sum_{i=1}^{m} c_{i, 0}=s+1, \quad \sum_{i=1}^{m} c_{i, 1}=s+3, \\
& \sum_{i=1}^{m} c_{i, 2}=s+3, \quad \sum_{i=1}^{m} c_{i, 3}=\cdots=\sum_{i=1}^{m} c_{i, n-1}=0, \quad \sum_{i=1}^{m} c_{i, n}=1 . \tag{3.6}
\end{align*}
$$

From (3.6), it is easy to know that there exists a factor $h_{1, n}$ or $b_{1, n-1}$ among x_{i} 's. By the graded commutativity of $E_{1}^{*, *, *}$, we can denote the factor $h_{1, n}$ or $b_{1, n-1}$ by x_{m}, then $h=$ $x_{1} x_{2} \cdots x_{m-1} h_{1, n}$ or $h=x_{1} x_{2} \cdots x_{m-1} b_{1, n-1}$.

If $h=x_{1} x_{2} \cdots x_{m-1} b_{1, n-1}, h^{\prime \prime}=x_{1} x_{2} \cdots x_{m-1} \in E_{1}^{s+2, t-p^{n} q, *}$ we have $\sum_{i=1}^{m-1} e_{i}=s$, $\sum_{i=1}^{m-1} c_{i, 0}=s+1, \sum_{i=1}^{m-1} c_{i, 1}=s+3, \sum_{i=1}^{m-1} c_{i, 2}=s+3$. From $\sum_{i=1}^{m-1} c_{i, 2}=s+3$, we would have that $m-1 \geq s+3$. Noting that $\operatorname{dim} x_{i}=1$ or 2 , we would have that $\operatorname{dim} h^{\prime \prime}=$ $\sum_{i=1}^{m-1} \operatorname{dim} x_{i} \geq m-1 \geq s+3$. This contradicts $\operatorname{dim} h^{\prime \prime}=s+2$. So we know that it is impossible for the generator $h^{\prime \prime}$ to exist, and then it is impossible for the generator $h=x_{1} x_{2} \cdots x_{m-1} b_{1, n-1}$ to exist.

If $h=x_{1} x_{2} \cdots x_{m-1} h_{1, n}, h^{\prime}=x_{1} x_{2} \cdots x_{m-1} \in E_{1}^{s+3, t-p^{n} q, *}$ we have $\sum_{i=1}^{m-1} e_{i}=s$, $\sum_{i=1}^{m-1} c_{i, 0}=s+1, \sum_{i=1}^{m-1} c_{i, 1}=s+3, \sum_{i=1}^{m-1} c_{i, 2}=s+3$. By an argument similar to that used in the proof of Theorem 3.1 (see [7]), it is easy to show that $E_{1}^{s+3, t-p^{n} q, *}=0$, so it is impossible for the generator $h=x_{1} x_{2} \cdots x_{m-1} h_{1, n}$ to exist.

From the above discussion, we get that, for $s+4<p, E_{1}^{s+4, t, *}=0$. This completes the proof of the first part of Lemma 3.1.
(2) Let $t^{\prime}=p^{n} q+(p-1) p^{2} q+(p-1) p q+(p-3) q+(p-4)$. Suppose that $h=x_{1} x_{2} \cdots x_{m}$ is a generator of $E_{1}^{p, t^{\prime}, *}$, where $m \leq p, x_{i}$ is one of $a_{k}, h_{l, j}$ or $b_{u, z}, 0 \leq k \leq n+1,0 \leq l+j \leq n+1,0 \leq$ $u+z \leq n, l>0, j \geq 0, u>0, z \geq 0$. Assume that $\operatorname{deg} x_{i}=q\left(c_{i, n} p^{n}+c_{i, n-1} p^{n-1}+\cdots+c_{i, 0}\right)+e_{i}$, where $c_{i, j}=0$ or $1, e_{i}=1$ if $x_{i}=a_{k_{i}}$, or $e_{i}=0$. Then

$$
\operatorname{deg} h=\sum_{i=1}^{m} \operatorname{deg} x_{i}=q\left(\left(\sum_{i=1}^{m} c_{i, n}\right) p^{n}+\cdots+\left(\sum_{i=1}^{m} c_{i, 2}\right) p^{2}+\left(\sum_{i=1}^{m} c_{i, 1}\right) p+\left(\sum_{i=1}^{m} c_{i, 0}\right)\right)+\left(\sum_{i=1}^{m} e_{i}\right)
$$

$$
\begin{equation*}
=q\left(p^{n}+(p-1) p^{2}+(p-1) p+(p-3)\right)+p-4 \tag{3.7}
\end{equation*}
$$

Note that $0 \leq p-4, p-3, p-1<p$, so, from (3.7), we have

$$
\begin{cases}\sum_{i=1}^{m} e_{i}=p-4+\lambda_{-1} q, & \lambda_{-1} \geq 0 \tag{3.8}\\ \sum_{i=1}^{m} c_{i, 0}+\lambda_{-1}=p-3+\lambda_{0} p, & \lambda_{0} \geq 0 \\ \sum_{i=1}^{m} c_{i, 1}+\lambda_{0}=p-1+\lambda_{1} p, & \lambda_{1} \geq 0 \\ \sum_{i=1}^{m} c_{i, 2}+\lambda_{1}=p-1+\lambda_{2} p, & \lambda_{2} \geq 0 \\ \sum_{i=1}^{m} c_{i, 3}+\lambda_{2}=0+\lambda_{3} p, & \lambda_{3} \geq 0 \\ \cdots & \ldots \\ \sum_{i=1}^{m} c_{i, n-1}+\lambda_{n-2}=0+\lambda_{n-1} p, & \lambda_{n-1} \geq 0 \\ \sum_{i=1}^{m} c_{i, n}+\lambda_{n-1}=1 . & \end{cases}
$$

Noting that $0 \leq \sum_{i=1}^{m} e_{i}, \sum_{i=1}^{m} c_{i, j} \leq m \leq p$, it is easy to know that the sequence $\left(\lambda_{-1}, \lambda_{0}, \lambda_{1}, \lambda_{2},\right)$ must equal the sequence $(0,0,0,0)$. From (3.8) we have that $\sum_{i=1}^{m} c_{i, 3}=\lambda_{3} p$. Note that $0 \leq \sum_{i=1}^{m} c_{i, 3} \leq m \leq p$. Thus we have that λ_{3} may equal 0 or 1 .
Case 1 If $\lambda_{3}=0$, then $\sum_{i=1}^{m} c_{i, 3}=0$.
When $n=4$, we have that $\sum_{i=1}^{m} c_{i, 4}=1$. From the above results, it follows that there exists a factor $h_{1,4}$ or $b_{1,3}$ among x_{i} 's.

When $n>4$, we can similarly discuss and obtain that λ_{4} may equal 0 or 1 . We claim that $\lambda_{4}=0$, for otherwise, we would have that $\lambda_{4}=1$ and $\sum_{i=1}^{m} c_{i, 4}=p$, then $m=p$. For any $1 \leq i \leq m$, deg $x_{i}=$ higher terms $+p^{4} q+$ lower terms. Since $\sum_{i=1}^{p} e_{i}=p-4 \equiv p-4(\bmod q)$, $\operatorname{deg} a_{i} \equiv 1(\bmod q)(i \geq 0)$ and $\operatorname{deg} h_{i, j} \equiv 0(\bmod q)(i>0, j \geq 0)$, then there exists a factor $a_{j_{1}} a_{j_{2}} \cdots a_{j_{p-4}}\left(0 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{p-4} \leq n+1\right)$ among x_{i} 's with, for any $1 \leq i \leq p-4, j_{i} \geq 5$ and deg $a_{j_{i}}=$ higher terms $+p^{4} q+p^{3} q+p^{2} q+p q+q+1$. It is obvious that $\sum_{i=1}^{m} c_{i, 3} \geq p-4$, which contradicts $\sum_{i=1}^{m} c_{i, 3}=0$, thus the claim is proved. By induction on j, we can get that $\lambda_{j}=0(4 \leq j \leq n-1)$. Thus we have that $\sum_{i=1}^{m} c_{i, j}=0(4 \leq j \leq n-1)$ and $\sum_{i=1}^{m} c_{i, n}=1$. It follows that there is a factor $h_{1, n}$ or $b_{1, n-1}$ among x_{i} 's .

All in all, at this time, for $n \geq 4$, there is a factor $h_{1, n}$ or $b_{1, n-1}$ among x_{i} 's. We can denote the factor $h_{1, n}$ or $b_{1, n-1}$ by x_{m}, then $h=x_{1} x_{2} \cdots x_{m-1} h_{1, n}$ or $h=x_{1} x_{2} \cdots x_{m-1} b_{1, n-1}$. By the same argument as the proof of (1), we can show that at this time it is impossible for the generator h to exist.
Case 2 If $\lambda_{3}=1$, then $\sum_{i=1}^{m} c_{i, 3}=p$.
Note that $c_{i, 3}=0$ or 1 and $m \leq p$. It is easy to get that $m=p$. Noting that $\operatorname{dim} h=p$, we can easily see that, for any $i, \operatorname{dim} x_{i}=1$ and $h=x_{1} x_{2} \cdots x_{p} \in E\left(h_{m, i} \mid m>0, i \geq\right.$ 0) $\bigotimes P\left(a_{n} \mid n \geq 0\right)$.

For $n=4$, we can easily get that $\sum_{i=1}^{p} c_{i, 3}=p, \sum_{i=1}^{p} c_{i, 4}=\cdots=\sum_{i=1}^{p} c_{i, n}=0$.
For $n>4$, from (3.8), we have that $\sum_{i=1}^{p} c_{i, 4}+1=0+\lambda_{4} p$; by the fact that $c_{1,4}=0$ or 1 we have that $\lambda_{4}=1$. By induction on j, we have that $\lambda_{j}=1,4 \leq j \leq n-1$. And then we have that $\sum_{i=1}^{p} c_{i, 3}=p, \sum_{i=1}^{p} c_{i, 4}=\cdots=\sum_{i=1}^{p} c_{i, n-1}=p-1$ and $\sum_{i=1}^{p} c_{i, n}=0$.

When $n=4$, by the fact that $\sum_{i=1}^{p} e_{i}=p-4, \sum_{i=1}^{p} c_{i, 0}=p-3, \sum_{i=1}^{p} c_{i, 1}=p-1$, $\sum_{i=1}^{p} c_{i, 2}=p-1$ and $\sum_{i=1}^{p} c_{i, 3}=p$, we can prove that it is impossible for $h=x_{1} x_{2} \cdots x_{p}$ to
exist by an argument similar to that used in the proof of Theorem 3.1.
When $n>4$, by the fact that $\sum_{i=1}^{p} c_{i, 3}=p, \sum_{i=1}^{p} c_{i, 4}=\cdots=\sum_{i=1}^{p} c_{i, n-1}=p-1$, $\operatorname{deg} h_{k, j}=q\left(p^{k+j-1}+\cdots+p^{j}\right)(k \geq 1, j \geq 0)$ and $\operatorname{deg} a_{i}=q\left(p^{i-1}+\cdots+p+1\right)+1(i>0)$, we can divide the $p x_{i}$'s into two disjoint sets S_{1} and S_{2}. The two disjoint sets are given by

$$
\begin{aligned}
& S_{1}=\left\{x \mid \operatorname{deg} x=q\left(p^{n-1}+p^{n-2}+\cdots+p^{3}\right)+\text { lower terms }\right\} \\
& S_{2}=\left\{x \mid \operatorname{deg} x=q p^{3}+\text { lower terms }\right\}
\end{aligned}
$$

For a set S, define the number of elements in S by $N(S)$, then we can get $N\left(S_{1}\right)=p-1$ and $N\left(S_{2}\right)=1$. Similarly, by the fact that $\sum_{i=1}^{p} e_{i}=p-4, \sum_{i=1}^{p} c_{i, 0}=p-3, \sum_{i=1}^{p} c_{i, 1}=p-1$, $\sum_{i=1}^{p} c_{i, 2}=p-1, \sum_{i=1}^{p} c_{i, 3}=p, \operatorname{deg} h_{k, j}=q\left(p^{k+j-1}+\cdots+p^{j}\right)(k \geq 1, j \geq 0)$ and $\operatorname{deg} a_{i}=$ $q\left(p^{i-1}+\cdots+p+1\right)+1(i>0)$, we can also divide the $p x_{i}$'s into four disjoint sets. The four sets are given by

$$
\begin{aligned}
S_{3} & =\left\{x \mid \operatorname{deg} x=q\left(\text { higher terms }+p^{3}+p^{2}+p+1\right)+1\right\}, N\left(S_{3}\right)=p-4 \\
S_{4} & =\left\{x \mid \operatorname{deg} x=q\left(\text { higher terms }+p^{3}+p^{2}+p+1\right)\right\}, N\left(S_{4}\right)=1 \\
S_{5} & =\left\{x \mid \operatorname{deg} x=q\left(\text { higher terms }+p^{3}+p^{2}+p\right)\right\}, N\left(S_{5}\right)=2 \\
S_{6} & =\left\{x \mid \operatorname{deg} x=q\left(\text { higher terms }+p^{3}\right)\right\}, N\left(S_{6}\right)=1
\end{aligned}
$$

If $S_{5} \subset S_{1}$, then there will be two $h_{n-1,1}$'s with $\operatorname{deg} h_{n-1,1}=q\left(p^{n-1}+\cdots+p^{3}+p^{2}+p\right)$. This is impossible since $h_{n-1,1}^{2}=0$, so one of the two elements in S_{5} must be in S_{2}. This one is $h_{3,1}$ with $\operatorname{deg} h_{3,1}=q\left(p^{3}+p^{2}+p\right)$. Since $S_{1} \bigcup S_{2}=S_{3} \bigcup S_{4} \bigcup S_{5} \bigcup S_{6}$, then we have that $S_{3} \subset S_{1}$, $S_{4} \subset S_{1}, S_{6} \subset S_{1}$ and the other element of S_{5} is in S_{1}. By these results, we can easily get that the set S_{3} is made up of $p-4 a_{n}$'s with $\operatorname{deg} a_{n}=q\left(p^{n-1}+\cdots+p^{3}+p^{2}+p+1\right)+1$, the set S_{4} is made up of a $h_{n, 0}$ with deg $h_{n, 0}=q\left(p^{n-1}+\cdots+p^{3}+p^{2}+p+1\right)$, the set S_{5} is made up of a $h_{3,1}$ and a $h_{n-1,1}$ with deg $h_{3,1}=q\left(p^{3}+p^{2}+p\right)$ and $\operatorname{deg} h_{n-1,1}=q\left(p^{n-1}+\cdots+p^{3}+p^{2}+p\right)$ and the set S_{6} is made up of an $h_{n-3,3}$ with $\operatorname{deg} h_{n-3,3}=q\left(p^{n-1}+\cdots+p^{3}\right)$. Therefore we have that, for $n>4$, the generator h will exist and h can equal $a_{n}^{p-4} h_{n, 0} h_{n-1,1} h_{n-3,3} h_{3,1}$ up to a sign.

From the above discussion, we get that

$$
E_{1}^{p, t^{\prime}, *}= \begin{cases}\mathbb{Z}_{p}\left\{a_{n}^{p-4} h_{n, 0} h_{n-1,1} h_{n-3,3} h_{3,1}\right\} & n>4 \\ 0 & n=4\end{cases}
$$

This completes the proof of (2).
Lemma 3.2 Let $p \geq 7, n \geq 4,0 \leq s<p-3$. Then the product

$$
h_{1} h_{n} \tilde{\gamma}_{s+3} \neq 0 \in \operatorname{Ext}_{A}^{s+5, p^{n} q+(s+3) p^{2} q+(s+3) p q+(s+1) q+s}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)
$$

Proof It is known that $h_{1, n}, a_{3}^{s} h_{3,0} h_{2,1} h_{1,2} \in E_{1}^{*, *, *}$ are permanent cycles in the May spectral sequence and converge nontrivially to $h_{n}, \tilde{\gamma}_{s+3} \in \operatorname{Ext}_{A}^{*, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ for $n \geq 0$, respectively (cf. Theorem 3.1). Thus $a_{3}^{s} h_{3,0} h_{2,1} h_{1,2} h_{1,1} h_{1, n} \in E_{1}^{s+5, t, *}$ is a permanent cycle in the May spectral sequence and converges to $\tilde{\gamma}_{s+3} h_{1} h_{n} \in \operatorname{Ext}_{A}^{s+5, t}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$, where $t=p^{n} q+(s+3) p^{2} q+(s+3) p q+$ $(s+1) q+s$.
Case 1 When $0 \leq s<p-4$ and $n \geq 4$ or $s=p-4$ and $n=4$, from Lemma 3.1, we know that, in the May spectral sequence, $E_{1}^{s+4, t, *}=0$. Then we have $E_{r}^{s+4, t, *}=0 \quad(r \geq 1)$. It follows that the permanent cycle $a_{3}^{s} h_{3,0} h_{2,1} h_{1,2} h_{1,1} h_{1, n} \in E_{r}^{s+5, t, *}$ is not bounded and converges nontrivially to $\tilde{\gamma}_{s+3} h_{1} h_{n} \in \operatorname{Ext}_{A}^{s+5, t}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ in the May spectral sequence, then $\tilde{\gamma}_{s+3} h_{1} h_{n} \neq 0 \in$ $\operatorname{Ext}_{A}^{s+5, t}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$.
Case 2 When $s=p-4$ and $n>4$, from Lemma 3.5, we have that $E_{1}^{p, t, *}$ $=\mathbb{Z}_{p}\left\{a_{n}^{p-4} h_{n, 0} h_{n-1,1} h_{n-3,3} h_{3,1}\right\}$. By the use of the first May differential, we can get that

$$
d_{1}\left(a_{n}^{p-4} h_{n, 0} h_{n-1,1} h_{n-3,3} h_{3,1}\right)= \begin{cases}a_{n}^{p-4} h_{n, 0} h_{n-1,1} h_{1,3} h_{1,4} h_{3,1}+\cdots \neq 0 & \text { if } n=5 \\ -a_{n}^{p-4} h_{n, 0} h_{n-1,1} h_{n-3,3} h_{1,1} h_{2,2}+\cdots \neq 0 & \text { if } n \geq 6\end{cases}
$$

Thus $E_{r}^{p, t, *}=0(r \geq 2)$. Meanwhile, it is easy to see that the first May differential of $a_{n}^{p-4} h_{n, 0} h_{n-1,1} h_{n-3,3} h_{3,1}$ does not equal $a_{3}^{p-4} h_{3,0} h_{2,1} h_{1,2} h_{1,1} h_{1, n}$ up to a sign. From the above results we know that the permanent cycle $a_{3}^{p-4} h_{3,0} h_{2,1} h_{1,2} h_{1} h_{n} \in E_{r}^{p+1, t, *}$ is not bounded and converges nontrivially to $\tilde{\gamma}_{p-1} h_{1} h_{n} \in \operatorname{Ext}_{A}^{p+1, t}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$. That is to say, $\tilde{\gamma}_{p-1} h_{1} h_{n} \neq 0 \in$ $\operatorname{Ext}_{A}^{p+1, t}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$.

From Case 1 and Case 2, the lemma follows.
Lemma 3.3 Let $p \geq 7, n \geq 4,0 \leq s<p-3$ and $r \geq 2$. Then we have that the groups

$$
\operatorname{Ext}_{A}^{s+5-r, p^{n} q+(s+3) p^{2} q+(s+3) p q+(s+1) q+s-r+1}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)=0
$$

Proof If $r>s+5$, it is obvious.
Now we assume that $2 \leq r \leq s+5$. Let $t^{\prime \prime}=q\left(p^{n}+(s+3) p^{2}+(s+3) p+(s+1)\right)+$ $(s-r+1)$. To prove $\operatorname{Ext}_{A}^{s+5-r, t^{\prime \prime}}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)=0$, it suffices to show that in the May spectral sequence $E_{1}^{s+5-r, t^{\prime \prime}, *}=0$. Suppose that $h=x_{1} x_{2} \cdots x_{m}$ is a generator of $E_{1}^{s+5-r, t^{\prime \prime}, *}$, where $m \leq s+5-r, x_{i}$ is one of $a_{k}, h_{l, j}$ or $b_{u, z}, 0 \leq k \leq n+1,0 \leq l+j \leq n+1,0 \leq u+z \leq n$, $l>0, j \geq 0, u>0, z \geq 0$. Assume that deg $x_{i}=q\left(c_{i, n} p^{n}+c_{i, n-1} p^{n-1}+\cdots+c_{i, 0}\right)+e_{i}$, where $c_{i, j}=0$ or $1, e_{i}=1$ if $x_{i}=a_{k_{i}}$, or $e_{i}=0$. Then

$$
\begin{aligned}
\operatorname{deg} h & =\sum_{i=1}^{m} \operatorname{deg} x_{i} \\
& =q\left(\left(\sum_{i=1}^{m} c_{i, n}\right) p^{n}+\cdots+\left(\sum_{i=1}^{m} c_{i, 2}\right) p^{2}+\left(\sum_{i=1}^{m} c_{i, 1}\right) p+\left(\sum_{i=1}^{m} c_{i, 0}\right)\right)+\left(\sum_{i=1}^{m} e_{i}\right) \\
& =q\left(p^{n}+(s+3) p^{2}+(s+3) p+(s+1)\right)+s-r+1 .
\end{aligned}
$$

We claim that $s-r+1 \geq 0$; otherwise, we would have $p>\sum_{i=1}^{m} e_{i}=q+(s-r+1) \geq q-4>p$. That is impossible. The claim follows.

Note the suppositions that $c_{i, j}=0$ or $1, e_{i}=0$ or 1 and $m \leq s+5-r \leq s+5-2=s+3<p$. By the same argument as in the proof of (1) in Lemma 3.1, we can get

$$
\begin{array}{lll}
\sum_{i=1}^{m} e_{i}=s-r+1, & \sum_{i=1}^{m} c_{i, 0}=s+1, & \sum_{i=1}^{m} c_{i, 1}=s+3, \\
\sum_{i=1}^{m} c_{i, 2}=s+3, & \sum_{i=1}^{m} c_{i, 3}=\cdots=\sum_{i=1}^{m} c_{i, n-1}=0, & \sum_{i=1}^{m} c_{i, n}=1 .
\end{array}
$$

It is easy to see that there exists a factor $h_{1, n}$ or $b_{1, n-1}$ among x_{i} 's. By the graded commutativity of $E_{1}^{*, *, *}$, we can denote the factor $h_{1, n}$ or $b_{1, n-1}$ by x_{m}, then $h=x_{1} x_{2} \cdots x_{m-1} h_{1, n}$ or $h=$ $x_{1} x_{2} \cdots x_{m-1} b_{1, n-1}$.
Case 1 If $h=x_{1} x_{2} \cdots x_{m-1} h_{1, n}$, then $h^{\prime}=x_{1} x_{2} \cdots x_{m-1} \in E_{1}^{s+4-r, t^{\prime \prime}-p^{n} q, *}$ and we have

$$
\begin{array}{ll}
\sum_{i=1}^{m-1} e_{i}=s-r+1, & \sum_{i=1}^{m-1} c_{i, 0}=s+1,
\end{array} \sum_{\substack{i=1 \\
m-1}} c_{i, 1}=s+3,
$$

From $\sum_{i=1}^{m-1} c_{i, 2}=s+3$, we can get that $m-1 \geq s+3$. Then $\operatorname{dim} h^{\prime} \geq s+3$. On the other hand, we also have that $\operatorname{dim} h^{\prime}=s+4-r \leq s+2$. There is a contradiction. Thus it is impossible for a generator of the form $h=x_{1} x_{2} \cdots x_{m-1} h_{1, n}$ to exist.
Case 2 If $h=x_{1} x_{2} \cdots x_{m-1} b_{1, n-1}$, then $h^{\prime \prime}=x_{1} x_{2} \cdots x_{m-1} \in E_{1}^{s+3-r, t^{\prime \prime}-p^{n} q, *}$ and we have $\sum_{i=1}^{m-1} e_{i}=s-r+1, \sum_{i=1}^{m-1} c_{i, 0}=s+1, \sum_{i=1}^{m-1} c_{i, 1}=s+3, \quad \sum_{i=1}^{m-1} c_{i, 2}=s+3, \quad \sum_{i=1}^{m-1} c_{i, 3}=$ $\cdots=\sum_{i=1}^{m-1} c_{i, n-1}=0, \sum_{i=1}^{m-1} c_{i, n}=0$. By the same argument as in Case 1, we can show that it is impossible for a generator of the form $h=x_{1} x_{2} \cdots x_{m-1} b_{1, n-1}$ to exist either.

From Case 1 and Case 2, we see that $E_{1}^{s+5-r, t^{\prime \prime}, *}=0$, so $\operatorname{Ext}_{A}^{s+5-r, t^{\prime \prime}}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)=0$. This finishes the proof of the lemma.

Now we give the proof of Theorem 1.4.
To prove Theorem 1.4, it is equivalent to proving the following:
Theorem 3.2 Let $p \geq 7, n \geq 4$ and $0 \leq s<p-3$. Then the product $\tilde{\gamma}_{s+3} h_{1} h_{n} \neq$ $0 \in \operatorname{Ext}_{A}^{s+5, p^{n} q+(s+3) p^{2} q+(s+3) p q+(s+1) q+s}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ is a permanent cycle in the Adams spectral sequence and converges to a nontrivial element $j j^{\prime} \bar{j} \gamma^{s+3} \bar{i}^{\prime} \xi_{n} \in \pi_{p^{n} q+(s+3) p^{2} q+(s+3) p q+(s+1) q-5} S$ of order p, where $q=2(p-1)$.
Proof From Theorem 1.3, we see that $i_{*}\left(h_{1} h_{n}\right) \in \operatorname{Ext}_{A}^{2, p^{n} q+p q}\left(H^{*} M, \mathbb{Z}_{p}\right)$ is a permanent cycle in the Adams spectral sequence and converges to a nontrivial element $\xi_{n} \in \pi_{p^{n} q+p q-2} M$. Let $\gamma: \Sigma^{q\left(p^{2}+p+1\right)} V(2) \rightarrow V(2)$ be the v_{3}-map and consider the following composition:

$$
\begin{aligned}
& \bar{f}=j j^{\prime} \bar{j} \gamma^{s+3} \bar{i} i^{\prime} \xi_{n}: \Sigma^{p^{n} q+p q-2} S \xrightarrow{\xi_{n}} M \xrightarrow{i^{\prime}} K \xrightarrow{\bar{i}} V(2) \\
& \xrightarrow{\gamma^{s+3}} \Sigma^{-(s+3)\left(p^{2}+p+1\right) q} V(2) \xrightarrow{j j^{\prime} \bar{j}} \Sigma^{-(s+3)\left(p^{2}+p+1\right) q+(p+2) q+3} S .
\end{aligned}
$$

Since ξ_{n} is represented by $i_{*}\left(h_{1} h_{n}\right) \in \operatorname{Ext}_{A}^{2, p^{n} q+p q}\left(H^{*} M, \mathbb{Z}_{p}\right)$ in the Adams spectral sequence, then the above \bar{f} is represented by $\left.\bar{c}=\left(j j^{\prime} \bar{j}\right)_{*}\left(\gamma_{*}\right)^{s+3}(\bar{i})_{*}\left(i^{\prime}\right)_{*} i_{*}\left(h_{1} h_{n}\right)=\left(j j^{\prime} \bar{j} \gamma^{s+3} \bar{i}^{\prime}\right)^{\prime}\right)_{*}\left(h_{1} h_{n}\right)$ in the Adams spectral sequence.

From Theorem 3.1 and the knowledge of Yoneda products we know that the composition

$$
\operatorname{Ext}_{A}^{0,0}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right) \xrightarrow{\stackrel{\left(\bar{i} \prime^{\prime} i\right)_{*}}{\longrightarrow}} \operatorname{Ext}_{A}^{0,0}\left(H^{*} V(2), \mathbb{Z}_{p}\right)
$$

is a multiplication (up to a nonzero scalar) by $\tilde{\gamma}_{s+3} \in \operatorname{Ext}_{A}^{s+3,(s+3) p^{2} q+(s+2) p q+(s+1) q+s}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$. Hence, \bar{f} is represented (up to a nonzero scalar) by

$$
\bar{c}=\tilde{\gamma}_{s+3} h_{1} h_{n} \neq 0 \in \operatorname{Ext}_{A}^{s+5, p^{n} q+(s+3) p^{2} q+(s+3) p q+(s+1) q+s}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)
$$

in the Adams spectral sequence (cf. Lemma 3.2).
Moreover, from Lemma 3.3, we know that $\tilde{\gamma}_{s+3} h_{1} h_{n}$ cannot be hit by the differentials in the Adams spectral sequence and so the corresponding homotopy element $\bar{f}=j j^{\prime} \bar{j} \gamma^{s+3} \bar{i} i^{\prime} \xi_{n} \in \pi_{*} S$ is nontrivial and of order p. This finishes the proof of the theorem.

References

[1] Lin, J. K., Zheng, Q. B.: A new family of filtration seven in the stable homotopy of spheres. Hiroshima Math. J., 28, 183-205 (1998)
[2] Lin, J. K.: New families in the stable homotopy of spheres revisited. Acta Mathematica Sinica, English Series, 18(1), 95-106 (2002)
[3] Lin, J. K.: A new family of filtration three in the stable homotopy of spheres. Hiroshima Math. J., 31, 477-492 (2001)
[4] Ravenel, D. C.: Complex cobordism and stable homotopy groups of spheres, Academic Press, Orlando, 1986
[5] Liulevicius, A.: The factorizations of cyclic reduced powers by secondary cohomology operations. Memoirs of the American Mathematical Society, 42, 1962
[6] Miller, H. R., Ravenel, D. C., Wilson, W. S.: Periodic phenomena in the Adams-Novikov spectral sequence. Annals of Mathematics, 106, 469-516 (1977)
[7] Liu, X. G.: A nontrivial product in the stable homotopy groups of spheres. Sci. China Ser. A, 47, 831-841 (2004)
[8] Cohen, R.: Odd primary families in stable homotopy theory. Memoirs of the American Mathematical Society, 242, (1981)
[9] Wang, X. J., Zheng, Q. B.: The convergence of $\tilde{\alpha}_{s}^{(n)} h_{0} h_{k}$. Sci. China Ser. A, 41, 622-628 (1998)
[10] Wang, X. J.: Some notes on the Adams spectral sequence. Acta Mathematica Sinica, English Series, 10(1), 4-10 (1994)

[^0]: Received May 21, 2004, Accepted January 11, 2005
 Supported by the National Natural Science Foundation of China (No. 10501045, 10426028), the China Postdoctoral Science Foundation and the Fund of the Personnel Division of Nankai University

