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On the Convergence of Products 7,hh,

in the Adams Spectral Sequence
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Abstract Let A be the mod p Steenrod algebra and S the sphere spectrum localized at p, where
p is an odd prime. In 2001 Lin detected a new family in the stable homotopy of spheres which is
represented by (boh, — h1b,—1) € Exti‘@n"Lp)q(Zp,Zp) in the Adams spectral sequence. At the same
time, he proved that i.(hih,) € Exti’(pmrp)q(H*M, Z,) is a permanent cycle in the Adams spectral
sequence and converges to a nontrivial element &, € m(pnip)q—2M. In this paper, with Lin’s results,
we make use of the Adams spectral sequence and the May spectral sequence to detect a new nontrivial
family of homotopy elements j;'jv°%i'¢, in the stable homotopy groups of spheres. The new one is of
degree p"q + sp?q + spq + (s —2)q+ s — 6 and is represented up to a nonzero scalar by hih,9s in the
E§+2’*—term of the Adams spectral sequence, where p > 7, ¢=2(p—1),n >4 and 3 < s < p.
Keywords stable homotopy groups of spheres, Adams spectral sequence, May spectral sequence
MR(2000) Subject Classification 55Q45

1 Introduction and the Main Results

Homotopy groups of spheres are among the most fundamental algebraic invariants of topological
spaces. The higher homotopy groups of spheres are very difficult to compute and all known
methods of computation apply only to limited classes. All the homotopy groups of spheres are
not known. Since homotopy groups carry substantial amount of information, their computation
often results in nontrivial interesting applications. For example, Adams’s partial computation
of certain homotopy groups of spheres implies that R™ is not a normed algebra for n # 1,2,4,8.
Throughout this paper, p will denote an odd prime. Let A be the mod p Steenrod algebra
and S be the sphere spectrum localized at p. So far, not so many families of homotopy elements
in m,S have been detected. Recently, Lin got a series of results and detected some new families
in 7,.S. Let ¢ =2(p — 1).
In [1], Lin and Zheng obtained the following theorem:
Theorem 1.1 Letp > 7, n > 4. Then the product b,_1govys #OEExtz"pnq+3(p2+p+1)q(Zp,Zp)

and it converges in the Adams spectral sequence to a nontrivial element in Tynqy3(p24p+1)q—75
of order p.

Lin [2] detected a new family in 7,.S and proved the following theorem:
n 2
Theorem 1.2 Letp > 7, n > 4. Then the product h,goys # 0 € Exti{p a+3(p +p"rl)q(Zp,Zp)

and it converges in the Adams spectral sequence to a nontrivial element in Tpnqi3(p2+pt1)g—6S
of order p.

In 2001, Lin gave the following theorem in [3]:
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Theorem 1.3 Letp>5,n>3. Then:

(1) ix(hihy) # 0 € Ext3? T"PUH*M,Z,) is a permanent cycle in the Adams spectral
sequence and converges to a nontrivial element &, € Tpngypq—2M;

(2) For &, € Tpngipq—2M obtained in (1), j&, € Tpngipq—3S is a nontrivial element of
order p which is represented (up to a nonzero scalar) by (bohy +hib,_1) € Ext%? 1747, 7,)
in the Adams spectral sequence.

In this paper, we make use of Lin’s results in Theorem 1.3 to detect a new family in 7, S.
Our result is the following theorem:

Theorem 1.4 Letp > 7, n > 4. Then Yshih, #0 ¢ Extf4+2’pnq+8p2q+5pq+(s_2)q+s_3(Zp,Zp)
18 a permanent cycle in the Adams spectral sequence and converges to a montrivial element
33" 3751 §n € Tpn g sp2qtspat(s—2)q—59 of order p, where 3 < s <p, ¢ =2(p —1).

Remark  The element Jshih, obtained in Theorem 1.4 is an indecomposable element in
the stable homotopy groups of spheres 7S, i.e., it is not a composition of elements of lower
filtration in 7,5, because h,, (n > 0) is known to die in the Adams spectral sequence.

Our method is to use the Adams spectral sequence. We also use the May spectral sequence
to determine Ext%'(Z,, Z,).

The paper is arranged as follows. After recalling some useful knowledge about our methods
in Section 2, we will make use of the May spectral sequence and the Adams spectral sequence
to prove the existence of a new nontrivial family in the stable homotopy groups of spheres in
Section 3.

2 The Adams Spectral Sequence and the May Spectral Sequence

In this section, we first recall some knowledge on the Adams spectral sequence and the May
spectral sequence. One of the main tools for determining the stable homotopy groups of spheres
.S is the Adams spectral sequence.

Let p be a prime, X a spectrum of finite type and Y a finite-dimensional spectrum. Then
there is a natural spectral sequence {E$, d,.}, which is called the Adams spectral sequence

By = Exty (H"X;Z,), H* (Y; Zp)) = ([Y: X]t—s)ps (2.1)

where d, : E$t — Estritr—1

If X and Y are sphere spectra S, then the Adams spectral sequence

Eyt = Exty (2, Z,) = (mi—s9),. (2.2)
If S is localized at p, then the Adams spectral sequence
Ey' = Ext'(Zy, Zp) = T1—sS. (2.3)

There are three problems in using the Adams spectral sequence: calculation of the Fo-term,
computation of the differentials and determination of the nontrivial extensions from E, to 7,S.
So, for computing the stable homotopy groups of spheres with the Adams spectral sequence, we
must compute the Es-term of the Adams spectral sequence, Ext’y*(Z,, Z,). The most successful
method for computing Ext’y*(Z,,Z,) is the May spectral sequence.

From [4], there is a May spectral sequence {E®"*, d,} which converges to Ext%'(Z,,Z,)
with F;-term

By = E(hilm > 0,4 > 0) Q) P(bm.ilm > 0,i > 0) Q) Plan|n > 0), (2.4)

where I is the exterior algebra, P is the polynomial algebra, and hy,,; € E11’2(pm_1)p1’2m_1,

bm,i c E,f,2(p"”‘,1)pi+1,p(mel)7 a, € E11,2pn71,2n+1. One has d, : Eﬁ’t’u _ Ef—H’t’u_T and if
ze Bt and y € BS0U* then d,(z - y) = dp(z) -y + (=1)%z - dp(y), -y = (=1)%5 Ty . & for
Z,Y = hpy i, bni o ap. The first May differential d; is given by

dy(hij) = > hickriiheg, dilai) = > higrar, di(bij)=0. (2.5)

0<k<i 0<k<i
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For any element z € """

dim hi,j = dim a; = 1,dlIIl b@j = 2,
deg hij =2(p' = 1)p? =2(p— (P~ + - +p),

, define dim = = s, deg © = t. Then we have

deg bi; =2(p" — Dp/*' =2(p = ("™ + - + /), (2.6)
dega;=2p' —1=2(p—-1)(p" ' +---+1)+1,
deg ap =1,

where ¢ > 1, j > 0.

Note By the knowledge of the p-adic expression, for any integral ¢ > 0, ¢t can be always
expressed as t = q(c,p" +cp_1p" L+ +ciptco) +e, where 0 < ¢; < p (0<i <n), e, >0,
0<e<gqg qg=2p—1).

3 The Products Ashih,

From [5], Ext';*(Z,, Z,) has Z,-bases consisting of ag € Ext}"(Z,,Z,), h; € Exti{piq(Zp, Zy) for
all i > 0 and Exti’*(Zp,Zp) has Z,-bases consisting of as, a3, agh;(i > 0), _gi(i > O_), ki(i > O),
b;(i > 0), and h;hj(j > i+ 2,i > 0) whose internal degrees are 2¢q + 1, 2, p'q + 1, p"*1q + 2p'q,

2t g + piq, p'Tq and p'q + piq, respectively.
Let M be the Moore spectrum modulo a prime p > 5 given by the cofibration
s2simiys. (3.1)
Let a: X9M — M be the Adams map and K be its cofibre given by the cofibration
30 VRN VRN eI ST Y V) (3.2)

where ¢ = 2(p — 1). This spectrum, which we write for short as K, is known to be the Toda—
Smith spectrum V(1). Let V(2) be the cofibre of §: L(PTD4K — K given by the cofibration

w(p+)a B K L V(2) i ne+Datlpe (3.3)

Let v : 4@’ +P+DV/(2) — V(2) be the vz-map. As we know, in the Adams spectral sequence,
for p > 7 the ~-element v, = j;5'5~%44’i is a nontrivial element of order p in Tq(p?+p+1)—q(p+2)—35
(see [6, Theorem 2.12]).

In [7], the following theorem was given:

Theorem 3.1 Letp>7,0<s<p—3. Then the permanent cycle ajhs oha1hy o € EST30*
converges to the third Greek letter family element Y543 € Exts+3 t(Z Zy) in the May spectral
sequence, where v > 1, t = (s + 3)p*q + (s + 2)pg + (s + 1)q + s and Jsy3 converges to the
y-element vs13 € 7r(s+3)p2q+(S+2)pq+(s+1)q_35 in the Adams spectral sequence, where ys43 =
G533 € mi_s_3S, Fsy3 is given in [8].
Lemma 3.1 Letp>7,n>4. Then in the May spectral sequence we have

(1) If0<s<p—4, Es+4p g+ (s+3)p? g+ (s+3)pg+(s+1)gts,x _ 0;

(2) Ef,p"q+(p—1)p q+(p—1)pa+(p—3)g+(p—4)* _ 0 n=4,
{2 *hp ohn-11hn-33h31} n > 4.

Proof (1) Lett=p" q + (s 4+ 3)p%q + (s + 3)pg + (s + 1)q + 5. Suppose that h = zyz9-- -

is a generator of E‘S+ t*, where m < s + 4, x; is one of ag, hyj or by ., 0 < k < n+1,
0<I+j<n+1,0<u+2<n,1>0,57>0 u>0,22>0. Assume that deg z; =
q(Cinp™ + Cin—1D" "t + -+ cio) +ei, where ¢; ; =0 or 1, ¢; = 1 if z; = ay,, orei:O Then

deg h = Zdeng—q(zcznp—i— +<Zczzp+<2c“ < CzO )
i=1 i=1

=q("+ (s+3)p* + (s +3)p+(s+1)) +s. (3.4)
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Note that 0 < s,s+1,s+3 <p—1. So from (3.4), we have

Y oei=s+Aag, A1 20,

Y ciotAa=s+14+Xp, Ao >0,

i=1
m
Zci,1+)\0=8+3+)\1p; A1 >0,

ci2+ A1 =5+ 3+ Aap, A2 >0,
2 55
D cist A =0+ Asp, Az 20,

=1
Zci,nfl + >\n72 =0+ An71p7 )\nfl > 07

m
Zci,n + )\n—l =1
i=1

Noting that 0 < Z;Zl ey i <m < s+4 < p,itiseasy to know that the sequence
(A—1, A0, A1, A2, A3y ..oy Ap—2, Ap—1) must equal the sequence (0,0,0,0,0,...,0,0). Thus, from
(3.5), we get that

m m

Zeizs, ch:s—i—l, Zcm:s—i-?),

i=1 i=1

> cia=s+3 chg_ =Y i1 =0, Zcm—l (3.6)
i=1 i=1

From (3.6), it is easy to know that there exists a factor hj, or b17n71 among x;’s. By the
graded commutativity of E;"™", we can denote the factor hi, or by ,—1 by Z,, then h =
1T " - 'xm—lhl,n or h=zyzo-- 'xm—1b1,n—1

If h = zza Typ_1b1n—1, K" = 2129 xm 1 € Es+2t PU0% e have POy Le, = s,
Z;’;lcw = s+1, ZZ’;ICM = s+ 3, 21:1 ¢i2 = s+ 3. From Zi:1 Ciag = s+ 3, we
would have that m — 1 > s + 3. Noting that dim x; = 1 or 2, we would have that dim h” =
E:’:ll dim x; > m—1 > s+3. This contradicts dim k" = s+2. So we know that it is impossible
for the generator h” to exist, and then it is impossible for the generator h = z122 - - - Tp—1b1 n—1
to exist.

If h = z120- ®p_1han, B = z122- Typ—1 € Es+3 =P o have > le, = s,
ZZ’;I cio=s5+1, ZZ’;I ci1=8+3, Ei:l ¢i2 = s+ 3. By an argument similar to that used
in the proof of Theorem 3.1 (see [7]), it is easy to show that E{+¢=P" ¢
for the generator h = z122 - - &y —1h1 ,, to exist.

= 0, so it is impossible

From the above discussion, we get that, for s +4 < p, Ef+4’t’*
proof of the first part of Lemma 3.1.

(2) Lett' =p"q+(p—1)p*q+(p—1)pg+(p—3)g+(p—4). Suppose that h = z123 -z, is a
generator of Ef’t/’*, where m < p, z;isone of ag, hyjorb, ., 0 <k <n+1,0<14+5 <n+1,0<
u+z<n,l>0,57>0,u>0,z>0. Assume that deg x; = q(ci’np"—i—ci,n,lp"_l—i—- cFci0)te,
Wherecijzoorl e; =11if ; = ag,, or ¢, = 0. Then

deg h = Zdeg x; —q< Zc“)p +- Zci,g)pQ—i- Zci,l)p—i— Zcia)-i- Ze)
— — — —

i=1

= 0. This completes the
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=q("+ (- +(p-p+(—3) +p—4 (3.7)
Note that 0 <p—4,p —3,p — 1 < p, so, from (3.7), we have
Z&‘:p—‘l-&-)\,ﬂ], A1 20,

i=1

m
Y cio+Aa=p=3+Xip, Ao >0,

i=1
m

ZC¢,1+)\OZP*1+/\1P7 A1 >0,
i=1
Cig+A=p—1+ Aap, A2 >0,
2 .
D ciz+ A =0+ Asp, Az = 0,

i=1

Zci,n—l + /\n—2 =0 + An—lpy >\n—1 Z 07

i=1
m

Zci,n + A1 =1,

i=1

Noting that 0< 37" e;, >0 | ¢; ; <m <p, it is easy to know that the sequence (A_1, Ao, A1, A2, )
must equal the sequence (0,0,0,0). From (3.8) we have that >.", ¢;3 = Agp. Note that
0< Z:’ll ¢i,3 <m < p. Thus we have that A3 may equal 0 or 1.

Case 1 If \3 =0, then 1" ¢; 3 = 0.

When n = 4, we have that Z:il ci,s = 1. From the above results, it follows that there
exists a factor h; 4 or by 3 among x;’s.

When n > 4, we can similarly discuss and obtain that A4 may equal 0 or 1. We claim that
Ay = 0, for otherwise, we would have that Ay = 1 and 2211 ¢i,4 = p, then m = p. For any
1 <i < m, deg x; = higher terms +p*q+lower terms. Since > 7  e; =p —4 = p — 4(mod q),
deg a; = 1(mod ¢) (i > 0) and deg h; ; = 0(mod ¢) (¢ > 0,5 > 0), then there exists a factor
ajaj,--aj,_, (0<j1 < jo <o <jpg <n+1)among z;’s with, forany 1 <i <p—4,j; >5
and deg a;, =higher terms +p*q + p*>q + p>q + pg + ¢ + 1. It is obvious that 2211 ciz>p—4,
which contradicts 221 ¢;,3 = 0, thus the claim is proved. By induction on j, we can get that
Aj=0(4<j<n—1). Thus we have that > /" ;¢;; =0 (4 <j<n—1)and }[* ¢;in = 1.
It follows that there is a factor hy,, or by ,—1 among x;’s .

All in all, at this time, for n > 4, there is a factor hy ,, or b ,,—1 among z;’s. We can denote
the factor hy, or by ,—1 by Zp,, then h = 122 Tp—1h1,, O b = 2122 - Zp—1b1,—1. By
the same argument as the proof of (1), we can show that at this time it is impossible for the
generator h to exist.

Case 2 If A3 =1, then > " ¢;3=p.
Note that ¢;3 =0 or 1 and m < p. It is easy to get that m = p. Noting that dim h = p,

we can easily see that, for any 4, dim z; = 1 and h = z122---2p € E(hms|m > 0,1 >
0) @ P(ap|n > 0).
For n = 4, we can easily get that >0 ¢;is=p, > b _jcia=-=> 1 ¢in=0.

For n > 4, from (3.8), we have that >©_; ¢;4 +1 = 0+ A\yp; by the fact that ¢;4 = 0 or
1 we have that Ay = 1. By induction on j, we have that A\; = 1,4 < j <n — 1. And then we
have that >0, cis=p, >0 jcia=-=>" Cin1=p—1land > ¢, =0.

When n = 4, by the fact that >0 e, =p—4, 3" jcio=p—-3, 3" jci1 =p—1,
S cia=p—1and > | ¢;3 = p, we can prove that it is impossible for h = zyz9 -z, to
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exist by an argument similar to that used in the proof of Theorem 3.1.

When n > 4, by the fact that >0 ¢35 = p, Db jcia = = >0 [ Cn1 =p—1,
deg hij = q(p" 1+ +p7) (k> 1,5 > 0) and deg a; = q(p' ' +---+p+ 1)+ 1 (i > 0),
we can divide the p x;’s into two disjoint sets S7 and S;. The two disjoint sets are given by

Sy = {x|deg x = q(p" L +p" 2+ --- + p3) + lower terms},
Sy = {z|deg x = qp® + lower terms}.

For a set S, define the number of elements in S by N(S), then we can get N(S1) = p— 1 and
N(S;) = 1. Similarly, by the fact that Y7 e, =p—4, >0 jcio=p—3,>" ;1 =p—1,
S icia=p—1,20 ciz=p, deg hy; =q(p" I+ +p7) (k> 1,5 > 0) and deg a; =
gt +---+p+1)+1 (i >0), we can also divide the p x;’s into four disjoint sets. The four
sets are given by

S3 = {x|deg x = g(higher terms + p> + p*> + p+ 1) + 1}, N(S3) = p — 4,

S, = {z|deg x = g(higher terms + p®> + p> + p+ 1)}, N(S,) = 1,

S5 = {z|deg * = q(higher terms + p® + p? + p)}, N(S5) = 2,

S¢ = {x|deg x = g(higher terms + p3)}, N(Ss) = 1.
If S5 C S1, then there will be two hy,_1.1’s with deg h,,_11 = q(p" ' + -+ +p* + p*> + p). This
is impossible since h?km = 0, so one of the two elements in S5 must be in Sy. This one is hs ;
with deg h3 1 = q(p* +p* + p). Since S1 U S2 = S3J S+ S5 U Se, then we have that S3 C Si,
Sy C S1, S¢ C 51 and the other element of S5 is in S;. By these results, we can easily get that
the set S3 is made up of p — 4 a,,’s with deg a,, = q(p" ' +--- +p> +p? +p+1)+1, the set S,
is made up of a h,, o with deg hp o= q(p" ! +---+p> +p* +p+1), the set S5 is made up of a
hs1 and a hy,_11 with deg hs1 = q(p® +p? +p) and deg hp_1,1 = q(p" ' + - +p* +p* + p)
and the set S¢ is made up of an h,,_33 with deg h,_33 = q(p"~t + -+ p3). Therefore we
have that, for n > 4, the generator h will exist and h can equal aﬁ74hn,0hn_171hn_373h371 up to
a sign.

From the above discussion, we get that

ot _ Zp{al ™ *hp ohp—11hn—33h31} n >4,
! 0 n = 4.
This completes the proof of (2).
Lemma 3.2 Letp>7,n>4,0<s<p—3. Then the product

hihners 20 € Extf4+5,p"q+(5+3)p2q+(S+3)pq+(8+1)q+s(Zp, Z,).

Proof 1t is known that hy ,,, a§hsoho1h12 € E}"™" are permanent cycles in the May spectral
sequence and converge nontrivially to hy,, Js+3 € Exty"(Z,,Z,) for n > 0, respectively (cf.
Theorem 3.1). Thus a3hs ohz1h12h11h1n € Ef“”t’* is a permanent cycle in the May spectral
sequence and converges to Ysy3hih, € Extf4+5’t(Zp, Zy), where t = p"q+ (s+3)p*q+ (s+3)pg+
(s+1)g+s.

Case 1 When0<s<p—4andn>4or s=p—4andn=4, from Lemma 3.1, we know
that, in the May spectral sequence, EST"* = 0. Then we have Est4t* = 0 (r > 1). It
follows that the permanent cycle a3hs oho 101,201,101, € Ef+5’t7* is not bounded and converges
nontrivially to 4sy3hih, € Extf“r”t(Zp, Zy) in the May spectral sequence, then ¥s3hihy, # 0 €
Ext%(Z,, Z,).

Case 2 When s =p—4 and n > 4, from Lemma, 3.5, we have that Ef’t’*

= Zp{a? *hp ohn—11hn—33h31}. By the use of the first May differential, we can get that
ag_4hn70hn_1,1h1,3h1,4h3,1 +---#0 if n=25,
—aﬁ74hn10hn,171hn,3’3h1’1h2’2 + - 75 0 if n>6.

d1 (aﬁ_élhn,ohnf1,1hn73,3h3,1) = {
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Thus EP™* = 0 (r > 2). Meanwhile, it is easy to see that the first May differential of
a’;*4hn,0hn,171hn,3,3h3’1 does not equal a§74h370h271h172h171h1,n up to a sign. From the above
results we know that the permanent cycle a§_4h3,0h2’1h1’2h1hn S E}?‘H’t’* is not bounded
and converges nontrivially to J,_1h1hy, € Ext’;fl’t(Zp,Zp). That is to say, Yp—1h1hn # 0 €

+1,t
Ext)""(Zy, Zy).

From Case 1 and Case 2, the lemma follows.
Lemma 3.3 Letp>7,n>4,0<s<p—3 andr > 2. Then we have that the groups

n 2
EXtZ+57T7p q+(s+3)p q+(8+3)pq+(8+1)q+sfr+1(Zp’Z ) =0.

Proof Ifr > s+ 5, it is obvious.

Now we assume that 2 < r < s+5. Let t/ = q(p" + (s +3)p? + (s +3)p+ (s + 1)) +
(s—r+1). To prove Ext " it (Z,,Z,) = 0, it suffices to show that in the May spectral
sequence Ft5T nthE ), Suppose that h = x5 - - - x,, is a generator of Ef+5_r’t”’*, where
m<s+5—1r,x; isoneofak, hijorb,., 0<k<n+1,0<I4+j<n+1,0<u+2<n,
[1>0,7>0,u>0,z>0. Assume that deg z; = g(ci np" + Cin—1p" "' + -+ + cio) + €;, where
cij=0or1l, e =1if x; = ay,, or e = 0. Then

deg h = Zdeg x;

i=1

((Ee)e e (S (B ()« (5)

=qp"+(s+3)p°+ (s+3)p+(s+1)+s—7r+1.
We claim that s —r+1 > 0; otherwise, we would have p > 7" e, = g+ (s—r+1) > ¢—4 > p.
That is impossible. The claim follows.
Note the suppositions that ¢; ; =0or1,e; =0orland m < s+5—7r < s5+5-2=s5+3 < p.
By the same argument as in the proof of (1) in Lemma 3.1, we can get

m m
Zei:s—r—&—l, Zczo—s—kl Zcm:s—i—?},
i=1

m

26172:54’3, 261‘73: —ZCZH 1—0 chn—l

i=1 i=1
It is easy to see that there exists a factor h; ,, or b1,n71 among x;’s. By the graded commutativity
of E{"™", we can denote the factor hy, or by ,—1 by @, then h = 129 - @pm_1h1, or b =
T1x2 - Im—lbl,n—l-

s+4—nrt"" —p"q,x

Case 1l Ifh=uz122 - Tm_1h1p, then B =129 - - - 21 € EY and we have

m—1 m—1
Zez s—r+1, Zci,ozs—l—l, Zcm:s—i—?),
m— 1 m—1
D cia=s5+3, ZCzS— = Cin1=0, Zczn—o
Z 1 =1

From > 7" clg = s+ 3, we can get that m — 1 > s+ 3. Then d1m h’ > s+ 3. On the other
hand, we also have that dim A’ = s +4 — r < s + 2. There is a contradiction. Thus it is
impossible for a generator of the form h = z1x3 - xpm—_1h1,, to exist.

3_ t//_ n
Case 2 Ifh=uzx22- xm 1b1,p—1, then b = x129 -+ 21 € ESJr Tt TPD* and we have

Zﬁ;le, s—r+1, ZZ 1 01,0 s+1, Y cllfs+3 S c,2f5+3 DOy 613—
.= mllcm 1 =0, Z -1 cln—O. By the same argument as in Case 1, we can show that

it is impossible for a generator of the form h = x123 - - Ty—1 b1 n—1 to exist either.
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From Case 1 and Case 2, we see that ES+° """ = 0, so EX‘GZJFS_T’t” (Z,,Z,) = 0. This
finishes the proof of the lemma.

Now we give the proof of Theorem 1.4.

To prove Theorem 1.4, it is equivalent to proving the following:

Theorem 3.2 Letp > 7, n > 4 and 0 < s < p— 3. Then the product Jsyshih, #

n 2
0 e Extf4+5’p o+(s+3)p q+(s+3)pq+(s+1)q+s(Zp,Zp) is a permanent cycle in the Adams spectral

sequence and converges to a nontrivial element jj'jy*1344'E, € Tpn g (s4+3)p2 g+ (s43)pg+(s+1)g—59
of order p, where ¢ =2(p — 1).

Proof From Theorem 1.3, we see that i,(hih,) € Extipnq+pq(H*M, Z,) is a permanent cycle
in the Adams spectral sequence and converges to a nontrivial element &, € mpngqpq—2M. Let

~ : 24PV (2) - V(2) be the vs-map and consider the following composition:
F =iy o,  sphatra=2g S U gy (2)

LA E—(S+3)(p2+p+1)qv(2) 3T 51— (s+3) (P +p+1)a+(p+2)a+3 g
Since &, is represented by i.(hih,) € Exti{fnﬂpq(H*M, Zp) in the Adams spectral sequence,
then the above f is represented by ¢ = (57'7)«(7+) T2(1)« (i) sin(h1hyn) = (j5'575134i'7)« (h1hy)
in the Adams spectral sequence.
From Theorem 3.1 and the knowledge of Yoneda products we know that the composition

Ext}’(Z,, Zy) 2 Ext%O(H*V (2),Z,)

= 543
(45 ])*ﬁ;) Exti;rii,(er?))p?qu(s+2)Pqu(SJrl)qus(Zp7 Zp)

2
is a multiplication (up to a nonzero scalar) by .43 € Ext’ 3 (P at(st2pat(sthiats 7 7
Hence, f is represented (up to a nonzero scalar) by

= Fsrahihy 20 € Exti—l—&?”Q+(3+3)P2‘Z+(S+3)PQ+(S+1)Q+S(ZI” Z,)
in the Adams spectral sequence (cf. Lemma 3.2).
Moreover, from Lemma 3.3, we know that 75 3h1h, cannot be hit by the differentials in the
Adams spectral sequence and so the corresponding homotopy element f = jj'jv**+3i'E, € 7.8
is nontrivial and of order p. This finishes the proof of the theorem.
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