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Abstract Let A be the mod p Steenrod algebra and S the sphere spectrum localized at p, where

p is an odd prime. In 2001 Lin detected a new family in the stable homotopy of spheres which is

represented by (b0hn − h1bn−1) ∈ Ext
3,(pn+p)q
A (Zp, Zp) in the Adams spectral sequence. At the same

time, he proved that i∗(h1hn) ∈ Ext
2,(pn+p)q
A (H∗M, Zp) is a permanent cycle in the Adams spectral

sequence and converges to a nontrivial element ξn ∈ π(pn+p)q−2M . In this paper, with Lin’s results,

we make use of the Adams spectral sequence and the May spectral sequence to detect a new nontrivial

family of homotopy elements jj′j̄γsīi′ξn in the stable homotopy groups of spheres. The new one is of

degree pnq + sp2q + spq + (s − 2)q + s − 6 and is represented up to a nonzero scalar by h1hnγ̃s in the

Es+2,∗
2 -term of the Adams spectral sequence, where p ≥ 7, q = 2(p − 1), n ≥ 4 and 3 ≤ s < p.
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1 Introduction and the Main Results

Homotopy groups of spheres are among the most fundamental algebraic invariants of topological
spaces. The higher homotopy groups of spheres are very difficult to compute and all known
methods of computation apply only to limited classes. All the homotopy groups of spheres are
not known. Since homotopy groups carry substantial amount of information, their computation
often results in nontrivial interesting applications. For example, Adams’s partial computation
of certain homotopy groups of spheres implies that R

n is not a normed algebra for n �= 1, 2, 4, 8.
Throughout this paper, p will denote an odd prime. Let A be the mod p Steenrod algebra

and S be the sphere spectrum localized at p. So far, not so many families of homotopy elements
in π∗S have been detected. Recently, Lin got a series of results and detected some new families
in π∗S. Let q = 2(p − 1).

In [1], Lin and Zheng obtained the following theorem:

Theorem 1.1 Let p ≥ 7, n ≥ 4. Then the product bn−1g0γ3 �=0∈Ext7,pnq+3(p2+p+1)q
A (Zp,Zp)

and it converges in the Adams spectral sequence to a nontrivial element in πpnq+3(p2+p+1)q−7S
of order p.

Lin [2] detected a new family in π∗S and proved the following theorem:

Theorem 1.2 Let p ≥ 7, n ≥ 4. Then the product hng0γ3 �= 0 ∈ Ext6,pnq+3(p2+p+1)q
A (Zp, Zp)

and it converges in the Adams spectral sequence to a nontrivial element in πpnq+3(p2+p+1)q−6S
of order p.

In 2001, Lin gave the following theorem in [3]:
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Theorem 1.3 Let p ≥ 5, n ≥ 3. Then :
(1) i∗(h1hn) �= 0 ∈ Ext2,pnq+pq

A (H∗M, Zp) is a permanent cycle in the Adams spectral
sequence and converges to a nontrivial element ξn ∈ πpnq+pq−2M ;

(2) For ξn ∈ πpnq+pq−2M obtained in (1), jξn ∈ πpnq+pq−3S is a nontrivial element of
order p which is represented (up to a nonzero scalar) by (b0hn +h1bn−1) ∈ Ext3,pnq+pq

A (Zp, Zp)
in the Adams spectral sequence.

In this paper, we make use of Lin’s results in Theorem 1.3 to detect a new family in π∗S.
Our result is the following theorem:

Theorem 1.4 Let p ≥ 7, n ≥ 4. Then γ̃sh1hn �= 0 ∈ Exts+2,pnq+sp2q+spq+(s−2)q+s−3
A (Zp, Zp)

is a permanent cycle in the Adams spectral sequence and converges to a nontrivial element
jj′j̄γsīi′ξn ∈ πpnq+sp2q+spq+(s−2)q−5S of order p, where 3 ≤ s < p, q = 2(p − 1).
Remark The element γ̃sh1hn obtained in Theorem 1.4 is an indecomposable element in
the stable homotopy groups of spheres π∗S, i.e., it is not a composition of elements of lower
filtration in π∗S, because hn (n > 0) is known to die in the Adams spectral sequence.

Our method is to use the Adams spectral sequence. We also use the May spectral sequence
to determine Exts,t

A (Zp, Zp).
The paper is arranged as follows. After recalling some useful knowledge about our methods

in Section 2, we will make use of the May spectral sequence and the Adams spectral sequence
to prove the existence of a new nontrivial family in the stable homotopy groups of spheres in
Section 3.

2 The Adams Spectral Sequence and the May Spectral Sequence

In this section, we first recall some knowledge on the Adams spectral sequence and the May
spectral sequence. One of the main tools for determining the stable homotopy groups of spheres
π∗S is the Adams spectral sequence.

Let p be a prime, X a spectrum of finite type and Y a finite-dimensional spectrum. Then
there is a natural spectral sequence {Es,t

r , dr}, which is called the Adams spectral sequence
Es,t

2 = Exts,t
A ((H∗X; Zp), H∗(Y ; Zp)) ⇒ ([Y, X]t−s)p, (2.1)

where dr : Es,t
r → Es+r,t+r−1

r .
If X and Y are sphere spectra S, then the Adams spectral sequence

Es,t
2 = Exts,t

A (Zp, Zp) ⇒ (πt−sS)p. (2.2)
If S is localized at p, then the Adams spectral sequence

Es,t
2 = Exts,t

A (Zp, Zp) ⇒ πt−sS. (2.3)
There are three problems in using the Adams spectral sequence: calculation of the E2-term,

computation of the differentials and determination of the nontrivial extensions from E∞ to π∗S.
So, for computing the stable homotopy groups of spheres with the Adams spectral sequence, we
must compute the E2-term of the Adams spectral sequence, Ext∗,∗

A (Zp, Zp). The most successful
method for computing Ext∗,∗

A (Zp, Zp) is the May spectral sequence.
From [4], there is a May spectral sequence {Es,t,∗

r , dr} which converges to Exts,t
A (Zp, Zp)

with E1-term
E∗,∗,∗

1 = E(hm,i|m > 0, i ≥ 0)
⊗

P (bm,i|m > 0, i ≥ 0)
⊗

P (an|n ≥ 0), (2.4)

where E is the exterior algebra, P is the polynomial algebra, and hm,i ∈ E
1,2(pm−1)pi,2m−1
1 ,

bm,i ∈ E
2,2(pm−1)pi+1,p(2m−1)
1 , an ∈ E1,2pn−1,2n+1

1 . One has dr : Es,t,u
r → Es+1,t,u−r

r and if
x ∈ Es,t,∗

r and y ∈ Es′,t′,∗
r , then dr(x · y) = dr(x) · y + (−1)sx · dr(y), x · y = (−1)ss′+tt′y · x for

x, y = hm,i, bm,i or an. The first May differential d1 is given by

d1(hi,j) =
∑

0<k<i

hi−k,k+jhk,j , d1(ai) =
∑

0≤k<i

hi−k,kak, d1(bi,j) = 0. (2.5)
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For any element x ∈ Es,t,∗
1 , define dim x = s, deg x = t. Then we have

dim hi,j = dim ai = 1, dim bi,j = 2,

deg hi,j = 2(pi − 1)pj = 2(p − 1)(pi+j−1 + · · · + pj),

deg bi,j = 2(pi − 1)pj+1 = 2(p − 1)(pi+j + · · · + pj+1),
deg ai = 2pi − 1 = 2(p − 1)(pi−1 + · · · + 1) + 1,

deg a0 = 1,

(2.6)

where i ≥ 1, j ≥ 0.

Note By the knowledge of the p-adic expression, for any integral t ≥ 0, t can be always
expressed as t = q(cnpn + cn−1p

n−1 + · · ·+ c1p + c0) + e, where 0 ≤ ci < p (0 ≤ i < n), cn > 0,
0 ≤ e < q, q = 2(p − 1).

3 The Products γ̃sh1hn

From [5], Ext1,∗
A (Zp, Zp) has Zp-bases consisting of a0 ∈ Ext1,1

A (Zp, Zp), hi ∈ Ext1,piq
A (Zp, Zp) for

all i ≥ 0 and Ext2,∗
A (Zp, Zp) has Zp-bases consisting of α2, a2

0, a0hi(i > 0), gi(i ≥ 0), ki(i ≥ 0),
bi(i ≥ 0), and hihj(j ≥ i + 2, i ≥ 0) whose internal degrees are 2q + 1, 2, piq + 1, pi+1q + 2piq,
2pi+1q + piq, pi+1q and piq + pjq, respectively.

Let M be the Moore spectrum modulo a prime p ≥ 5 given by the cofibration

S
p→ S

i→ M
j→ ΣS. (3.1)

Let α : ΣqM → M be the Adams map and K be its cofibre given by the cofibration

ΣqM
α→ M

i′→ K
j′
→ Σq+1M, (3.2)

where q = 2(p − 1). This spectrum, which we write for short as K, is known to be the Toda–
Smith spectrum V (1). Let V (2) be the cofibre of β : Σ(p+1)qK → K given by the cofibration

Σ(p+1)qK
β→ K

ī→ V (2)
j̄→ Σ(p+1)q+1K.. (3.3)

Let γ : Σq(p2+p+1)V (2) → V (2) be the v3-map. As we know, in the Adams spectral sequence,
for p ≥ 7 the γ-element γt = jj′j̄γt īi′i is a nontrivial element of order p in πtq(p2+p+1)−q(p+2)−3S
(see [6, Theorem 2.12]).

In [7], the following theorem was given:

Theorem 3.1 Let p ≥ 7, 0 ≤ s < p − 3. Then the permanent cycle as
3h3,0h2,1h1,2 ∈ Es+3,t,∗

r

converges to the third Greek letter family element γ̃s+3 ∈ Exts+3,t
A (Zp, Zp) in the May spectral

sequence, where r ≥ 1, t = (s + 3)p2q + (s + 2)pq + (s + 1)q + s and γ̃s+3 converges to the
γ-element γs+3 ∈ π(s+3)p2q+(s+2)pq+(s+1)q−3S in the Adams spectral sequence, where γs+3 =
jj′j̄γs+3īi′i ∈ πt−s−3S, γ̃s+3 is given in [8].

Lemma 3.1 Let p ≥ 7, n ≥ 4. Then in the May spectral sequence we have

(1) If 0 ≤ s < p − 4, E
s+4,pnq+(s+3)p2q+(s+3)pq+(s+1)q+s,∗
1 = 0;

(2) E
p,pnq+(p−1)p2q+(p−1)pq+(p−3)q+(p−4),∗
1 =

{
0 n = 4,

Zp{ap−4
n hn,0hn−1,1hn−3,3h3,1} n > 4.

Proof (1) Let t = pnq + (s + 3)p2q + (s + 3)pq + (s + 1)q + s. Suppose that h = x1x2 · · ·xm

is a generator of Es+4,t,∗
1 , where m ≤ s + 4, xi is one of ak, hl,j or bu,z, 0 ≤ k ≤ n + 1,

0 ≤ l + j ≤ n + 1, 0 ≤ u + z ≤ n, l > 0, j ≥ 0, u > 0, z ≥ 0. Assume that deg xi =
q(ci,npn + ci,n−1p

n−1 + · · · + ci,0) + ei, where ci,j = 0 or 1, ei = 1 if xi = aki
, or ei = 0. Then

deg h =
m∑

i=1

deg xi = q

(( m∑
i=1

ci,n

)
pn+· · · +

( m∑
i=1

ci,2

)
p2+

( m∑
i=1

ci,1

)
p+

( m∑
i=1

ci,0

))
+

( m∑
i=1

ei

)

= q(pn + (s + 3)p2 + (s + 3)p + (s + 1)) + s. (3.4)
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Note that 0 ≤ s, s + 1, s + 3 < p − 1. So from (3.4), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
i=1

ei = s + λ−1q, λ−1 ≥ 0,

m∑
i=1

ci,0 + λ−1 = s + 1 + λ0p, λ0 ≥ 0,

m∑
i=1

ci,1 + λ0 = s + 3 + λ1p, λ1 ≥ 0,

m∑
i=1

ci,2 + λ1 = s + 3 + λ2p, λ2 ≥ 0,

m∑
i=1

ci,3 + λ2 = 0 + λ3p, λ3 ≥ 0,

· · · · · · ,
m∑

i=1

ci,n−1 + λn−2 = 0 + λn−1p, λn−1 ≥ 0,

m∑
i=1

ci,n + λn−1 = 1.

(3.5)

Noting that 0 ≤ ∑m
i=1 ei,

∑m
i=1 ci,j ≤ m ≤ s + 4 < p, it is easy to know that the sequence

(λ−1, λ0, λ1, λ2, λ3, . . . , λn−2, λn−1) must equal the sequence (0, 0, 0, 0, 0, . . . , 0, 0). Thus, from
(3.5), we get that

m∑
i=1

ei = s,

m∑
i=1

ci,0 = s + 1,

m∑
i=1

ci,1 = s + 3,

m∑
i=1

ci,2 = s + 3,
m∑

i=1

ci,3 = · · · =
m∑

i=1

ci,n−1 = 0,
m∑

i=1

ci,n = 1. (3.6)

From (3.6), it is easy to know that there exists a factor h1,n or b1,n−1 among xi’s. By the
graded commutativity of E∗,∗,∗

1 , we can denote the factor h1,n or b1,n−1 by xm, then h =
x1x2 · · ·xm−1h1,n or h = x1x2 · · ·xm−1b1,n−1.

If h = x1x2 · · ·xm−1b1,n−1, h′′ = x1x2 · · ·xm−1 ∈ Es+2,t−pnq,∗
1 we have

∑m−1
i=1 ei = s,∑m−1

i=1 ci,0 = s + 1,
∑m−1

i=1 ci,1 = s + 3,
∑m−1

i=1 ci,2 = s + 3. From
∑m−1

i=1 ci,2 = s + 3, we
would have that m − 1 ≥ s + 3. Noting that dim xi = 1 or 2, we would have that dim h′′ =∑m−1

i=1 dim xi ≥ m−1 ≥ s+3. This contradicts dim h′′ = s+2. So we know that it is impossible
for the generator h′′ to exist, and then it is impossible for the generator h = x1x2 · · ·xm−1b1,n−1

to exist.
If h = x1x2 · · ·xm−1h1,n, h′ = x1x2 · · ·xm−1 ∈ Es+3,t−pnq,∗

1 we have
∑m−1

i=1 ei = s,∑m−1
i=1 ci,0 = s+1,

∑m−1
i=1 ci,1 = s+3,

∑m−1
i=1 ci,2 = s+3. By an argument similar to that used

in the proof of Theorem 3.1 (see [7]), it is easy to show that Es+3,t−pnq,∗
1 = 0, so it is impossible

for the generator h = x1x2 · · ·xm−1h1,n to exist.
From the above discussion, we get that, for s + 4 < p, Es+4,t,∗

1 = 0. This completes the
proof of the first part of Lemma 3.1.

(2) Let t′ = pnq+(p−1)p2q+(p−1)pq+(p−3)q+(p−4). Suppose that h = x1x2 · · ·xm is a
generator of Ep,t′,∗

1 , where m ≤ p, xi is one of ak, hl,j or bu,z, 0 ≤ k ≤ n+1, 0 ≤ l+j ≤ n+1, 0 ≤
u+z ≤ n, l > 0, j ≥ 0, u > 0, z ≥ 0. Assume that deg xi = q(ci,npn+ci,n−1p

n−1+· · ·+ci,0)+ei,
where ci,j = 0 or 1, ei = 1 if xi = aki

, or ei = 0. Then

deg h =
m∑

i=1

deg xi = q

(( m∑
i=1

ci,n

)
pn + · · · +

( m∑
i=1

ci,2

)
p2+

( m∑
i=1

ci,1

)
p+

( m∑
i=1

ci,0

))
+

( m∑
i=1

ei

)
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= q(pn + (p − 1)p2 + (p − 1)p + (p − 3)) + p − 4. (3.7)
Note that 0 ≤ p − 4, p − 3, p − 1 < p, so, from (3.7), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
i=1

ei = p − 4 + λ−1q, λ−1 ≥ 0,

m∑
i=1

ci,0 + λ−1 = p − 3 + λ0p, λ0 ≥ 0,

m∑
i=1

ci,1 + λ0 = p − 1 + λ1p, λ1 ≥ 0,

m∑
i=1

ci,2 + λ1 = p − 1 + λ2p, λ2 ≥ 0,

m∑
i=1

ci,3 + λ2 = 0 + λ3p, λ3 ≥ 0,

· · · · · ·
m∑

i=1

ci,n−1 + λn−2 = 0 + λn−1p, λn−1 ≥ 0,

m∑
i=1

ci,n + λn−1 = 1.

(3.8)

Noting that 0≤∑m
i=1 ei,

∑m
i=1 ci,j ≤m≤p, it is easy to know that the sequence (λ−1, λ0, λ1, λ2, )

must equal the sequence (0, 0, 0, 0). From (3.8) we have that
∑m

i=1 ci,3 = λ3p. Note that
0 ≤ ∑m

i=1 ci,3 ≤ m ≤ p. Thus we have that λ3 may equal 0 or 1.
Case 1 If λ3 = 0, then

∑m
i=1 ci,3 = 0.

When n = 4, we have that
∑m

i=1 ci,4 = 1. From the above results, it follows that there
exists a factor h1,4 or b1,3 among xi’s.

When n > 4, we can similarly discuss and obtain that λ4 may equal 0 or 1. We claim that
λ4 = 0, for otherwise, we would have that λ4 = 1 and

∑m
i=1 ci,4 = p, then m = p. For any

1 ≤ i ≤ m, deg xi = higher terms +p4q+lower terms. Since
∑p

i=1 ei = p − 4 ≡ p − 4(mod q),
deg ai ≡ 1(mod q) (i ≥ 0) and deg hi,j ≡ 0(mod q) (i > 0, j ≥ 0), then there exists a factor
aj1aj2 · · · ajp−4 (0 ≤ j1 ≤ j2 ≤ · · · ≤ jp−4 ≤ n+1) among xi’s with, for any 1 ≤ i ≤ p−4, ji ≥ 5
and deg aji

=higher terms +p4q + p3q + p2q + pq + q + 1. It is obvious that
∑m

i=1 ci,3 ≥ p− 4,
which contradicts

∑m
i=1 ci,3 = 0, thus the claim is proved. By induction on j, we can get that

λj = 0 (4 ≤ j ≤ n − 1). Thus we have that
∑m

i=1 ci,j = 0 (4 ≤ j ≤ n − 1) and
∑m

i=1 ci,n = 1.
It follows that there is a factor h1,n or b1,n−1 among xi’s .

All in all, at this time, for n ≥ 4, there is a factor h1,n or b1,n−1 among xi’s. We can denote
the factor h1,n or b1,n−1 by xm, then h = x1x2 · · ·xm−1h1,n or h = x1x2 · · ·xm−1b1,n−1. By
the same argument as the proof of (1), we can show that at this time it is impossible for the
generator h to exist.
Case 2 If λ3 = 1, then

∑m
i=1 ci,3 = p.

Note that ci,3 = 0 or 1 and m ≤ p. It is easy to get that m = p. Noting that dim h = p,
we can easily see that, for any i, dim xi = 1 and h = x1x2 · · ·xp ∈ E(hm,i|m > 0, i ≥
0)

⊗
P (an|n ≥ 0).

For n = 4, we can easily get that
∑p

i=1 ci,3 = p,
∑p

i=1 ci,4 = · · · =
∑p

i=1 ci,n = 0.
For n > 4, from (3.8), we have that

∑p
i=1 ci,4 + 1 = 0 + λ4p; by the fact that c1,4 = 0 or

1 we have that λ4 = 1. By induction on j, we have that λj = 1, 4 ≤ j ≤ n − 1. And then we
have that

∑p
i=1 ci,3 = p,

∑p
i=1 ci,4 = · · · =

∑p
i=1 ci,n−1 = p − 1 and

∑p
i=1 ci,n = 0.

When n = 4, by the fact that
∑p

i=1 ei = p − 4,
∑p

i=1 ci,0 = p − 3,
∑p

i=1 ci,1 = p − 1,∑p
i=1 ci,2 = p − 1 and

∑p
i=1 ci,3 = p, we can prove that it is impossible for h = x1x2 · · ·xp to
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exist by an argument similar to that used in the proof of Theorem 3.1.
When n > 4, by the fact that

∑p
i=1 ci,3 = p,

∑p
i=1 ci,4 = · · · =

∑p
i=1 ci,n−1 = p − 1,

deg hk,j = q(pk+j−1 + · · · + pj) (k ≥ 1, j ≥ 0) and deg ai = q(pi−1 + · · · + p + 1) + 1 (i > 0),
we can divide the p xi’s into two disjoint sets S1 and S2. The two disjoint sets are given by

S1 = {x|deg x = q(pn−1 + pn−2 + · · · + p3) + lower terms},
S2 = {x|deg x = qp3 + lower terms}.

For a set S, define the number of elements in S by N(S), then we can get N(S1) = p − 1 and
N(S2) = 1. Similarly, by the fact that

∑p
i=1 ei = p − 4,

∑p
i=1 ci,0 = p − 3,

∑p
i=1 ci,1 = p − 1,∑p

i=1 ci,2 = p − 1,
∑p

i=1 ci,3 = p, deg hk,j = q(pk+j−1 + · · · + pj) (k ≥ 1, j ≥ 0) and deg ai =
q(pi−1 + · · · + p + 1) + 1 (i > 0), we can also divide the p xi’s into four disjoint sets. The four
sets are given by

S3 = {x|deg x = q(higher terms + p3 + p2 + p + 1) + 1}, N(S3) = p − 4,

S4 = {x|deg x = q(higher terms + p3 + p2 + p + 1)}, N(S4) = 1,

S5 = {x|deg x = q(higher terms + p3 + p2 + p)}, N(S5) = 2,

S6 = {x|deg x = q(higher terms + p3)}, N(S6) = 1.

If S5 ⊂ S1, then there will be two hn−1,1’s with deg hn−1,1 = q(pn−1 + · · ·+ p3 + p2 + p). This
is impossible since h2

n−1,1 = 0, so one of the two elements in S5 must be in S2. This one is h3,1

with deg h3,1 = q(p3 + p2 + p). Since S1

⋃
S2 = S3

⋃
S4

⋃
S5

⋃
S6, then we have that S3 ⊂ S1,

S4 ⊂ S1, S6 ⊂ S1 and the other element of S5 is in S1. By these results, we can easily get that
the set S3 is made up of p− 4 an’s with deg an = q(pn−1 + · · ·+ p3 + p2 + p + 1) + 1, the set S4

is made up of a hn,0 with deg hn,0 = q(pn−1 + · · ·+ p3 + p2 + p + 1), the set S5 is made up of a
h3,1 and a hn−1,1 with deg h3,1 = q(p3 + p2 + p) and deg hn−1,1 = q(pn−1 + · · · + p3 + p2 + p)
and the set S6 is made up of an hn−3,3 with deg hn−3,3 = q(pn−1 + · · · + p3). Therefore we
have that, for n > 4, the generator h will exist and h can equal ap−4

n hn,0hn−1,1hn−3,3h3,1 up to
a sign.

From the above discussion, we get that

Ep,t′,∗
1 =

{
Zp{ap−4

n hn,0hn−1,1hn−3,3h3,1} n > 4,

0 n = 4.

This completes the proof of (2).

Lemma 3.2 Let p ≥ 7, n ≥ 4, 0 ≤ s < p − 3. Then the product

h1hnγ̃s+3 �= 0 ∈ Exts+5,pnq+(s+3)p2q+(s+3)pq+(s+1)q+s
A (Zp, Zp).

Proof It is known that h1,n, as
3h3,0h2,1h1,2 ∈ E∗,∗,∗

1 are permanent cycles in the May spectral
sequence and converge nontrivially to hn, γ̃s+3 ∈ Ext∗,∗

A (Zp, Zp) for n ≥ 0, respectively (cf.
Theorem 3.1). Thus as

3h3,0h2,1h1,2h1,1h1,n ∈ Es+5,t,∗
1 is a permanent cycle in the May spectral

sequence and converges to γ̃s+3h1hn ∈ Exts+5,t
A (Zp, Zp), where t = pnq+(s+3)p2q+(s+3)pq+

(s + 1)q + s.

Case 1 When 0 ≤ s < p − 4 and n ≥ 4 or s = p − 4 and n = 4, from Lemma 3.1, we know
that, in the May spectral sequence, Es+4,t,∗

1 = 0. Then we have Es+4,t,∗
r = 0 (r ≥ 1). It

follows that the permanent cycle as
3h3,0h2,1h1,2h1,1h1,n ∈ Es+5,t,∗

r is not bounded and converges
nontrivially to γ̃s+3h1hn ∈ Exts+5,t

A (Zp, Zp) in the May spectral sequence, then γ̃s+3h1hn �= 0 ∈
Exts+5,t

A (Zp, Zp).

Case 2 When s = p − 4 and n > 4, from Lemma 3.5, we have that Ep,t,∗
1

= Zp{ap−4
n hn,0hn−1,1hn−3,3h3,1}. By the use of the first May differential, we can get that

d1(ap−4
n hn,0hn−1,1hn−3,3h3,1) =

{
ap−4

n hn,0hn−1,1h1,3h1,4h3,1 + · · · �= 0 if n = 5,

−ap−4
n hn,0hn−1,1hn−3,3h1,1h2,2 + · · · �= 0 if n ≥ 6.
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Thus Ep,t,∗
r = 0 (r ≥ 2). Meanwhile, it is easy to see that the first May differential of

ap−4
n hn,0hn−1,1hn−3,3h3,1 does not equal ap−4

3 h3,0h2,1h1,2h1,1h1,n up to a sign. From the above
results we know that the permanent cycle ap−4

3 h3,0h2,1h1,2h1hn ∈ Ep+1,t,∗
r is not bounded

and converges nontrivially to γ̃p−1h1hn ∈ Extp+1,t
A (Zp, Zp). That is to say, γ̃p−1h1hn �= 0 ∈

Extp+1,t
A (Zp, Zp).
From Case 1 and Case 2, the lemma follows.

Lemma 3.3 Let p ≥ 7, n ≥ 4, 0 ≤ s < p − 3 and r ≥ 2. Then we have that the groups

Exts+5−r,pnq+(s+3)p2q+(s+3)pq+(s+1)q+s−r+1
A (Zp, Zp) = 0.

Proof If r > s + 5, it is obvious.
Now we assume that 2 ≤ r ≤ s + 5. Let t′′ = q(pn + (s + 3)p2 + (s + 3)p + (s + 1)) +

(s − r + 1). To prove Exts+5−r,t′′
A (Zp, Zp) = 0, it suffices to show that in the May spectral

sequence Es+5−r,t′′,∗
1 = 0. Suppose that h = x1x2 · · ·xm is a generator of Es+5−r,t′′,∗

1 , where
m ≤ s + 5 − r, xi is one of ak, hl,j or bu,z, 0 ≤ k ≤ n + 1, 0 ≤ l + j ≤ n + 1, 0 ≤ u + z ≤ n,
l > 0, j ≥ 0, u > 0, z ≥ 0. Assume that deg xi = q(ci,npn + ci,n−1p

n−1 + · · ·+ ci,0) + ei, where
ci,j = 0 or 1, ei = 1 if xi = aki

, or ei = 0. Then

deg h =
m∑

i=1

deg xi

= q

(( m∑
i=1

ci,n

)
pn + · · · +

( m∑
i=1

ci,2

)
p2 +

( m∑
i=1

ci,1

)
p +

( m∑
i=1

ci,0

))
+

( m∑
i=1

ei

)

= q(pn + (s + 3)p2 + (s + 3)p + (s + 1)) + s − r + 1.

We claim that s−r+1 ≥ 0; otherwise, we would have p >
∑m

i=1 ei = q+(s−r+1) ≥ q−4 > p.
That is impossible. The claim follows.

Note the suppositions that ci,j = 0 or 1, ei = 0 or 1 and m ≤ s+5−r ≤ s+5−2 = s+3 < p.
By the same argument as in the proof of (1) in Lemma 3.1, we can get

m∑
i=1

ei = s − r + 1,

m∑
i=1

ci,0 = s + 1,

m∑
i=1

ci,1 = s + 3,

m∑
i=1

ci,2 = s + 3,

m∑
i=1

ci,3 = · · · =
m∑

i=1

ci,n−1 = 0,

m∑
i=1

ci,n = 1.

It is easy to see that there exists a factor h1,n or b1,n−1 among xi’s. By the graded commutativity
of E∗,∗,∗

1 , we can denote the factor h1,n or b1,n−1 by xm, then h = x1x2 · · ·xm−1h1,n or h =
x1x2 · · ·xm−1b1,n−1.

Case 1 If h = x1x2 · · ·xm−1h1,n, then h′ = x1x2 · · ·xm−1 ∈ Es+4−r,t′′−pnq,∗
1 and we have

m−1∑
i=1

ei = s − r + 1,

m−1∑
i=1

ci,0 = s + 1,

m−1∑
i=1

ci,1 = s + 3,

m−1∑
i=1

ci,2 = s + 3,
m−1∑
i=1

ci,3 = · · · =
m−1∑
i=1

ci,n−1 = 0,
m−1∑
i=1

ci,n = 0.

From
∑m−1

i=1 ci,2 = s + 3, we can get that m − 1 ≥ s + 3. Then dim h′ ≥ s + 3. On the other
hand, we also have that dim h′ = s + 4 − r ≤ s + 2. There is a contradiction. Thus it is
impossible for a generator of the form h = x1x2 · · ·xm−1h1,n to exist.

Case 2 If h = x1x2 · · ·xm−1b1,n−1, then h′′ = x1x2 · · ·xm−1 ∈ Es+3−r,t′′−pnq,∗
1 and we have∑m−1

i=1 ei = s− r + 1,
∑m−1

i=1 ci,0 = s + 1,
∑m−1

i=1 ci,1 = s + 3,
∑m−1

i=1 ci,2 = s + 3,
∑m−1

i=1 ci,3 =
· · · =

∑m−1
i=1 ci,n−1 = 0,

∑m−1
i=1 ci,n = 0. By the same argument as in Case 1, we can show that

it is impossible for a generator of the form h = x1x2 · · ·xm−1 b1,n−1 to exist either.
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From Case 1 and Case 2, we see that Es+5−r,t′′,∗
1 = 0, so Exts+5−r,t′′

A (Zp, Zp) = 0. This
finishes the proof of the lemma.

Now we give the proof of Theorem 1.4.
To prove Theorem 1.4, it is equivalent to proving the following:

Theorem 3.2 Let p ≥ 7, n ≥ 4 and 0 ≤ s < p − 3. Then the product γ̃s+3h1hn �=
0 ∈ Exts+5,pnq+(s+3)p2q+(s+3)pq+(s+1)q+s

A (Zp, Zp) is a permanent cycle in the Adams spectral
sequence and converges to a nontrivial element jj′j̄γs+3īi′ξn ∈ πpnq+(s+3)p2q+(s+3)pq+(s+1)q−5S
of order p, where q = 2(p − 1).

Proof From Theorem 1.3, we see that i∗(h1hn) ∈ Ext2,pnq+pq
A (H∗M, Zp) is a permanent cycle

in the Adams spectral sequence and converges to a nontrivial element ξn ∈ πpnq+pq−2M . Let
γ : Σq(p2+p+1)V (2) → V (2) be the υ3-map and consider the following composition:

f̄ = jj′j̄γs+3īi′ξn : Σpnq+pq−2S
ξn−→ M

i′−→ K
ī−→ V (2)

γs+3

−→ Σ−(s+3)(p2+p+1)qV (2)
jj′ j̄−→ Σ−(s+3)(p2+p+1)q+(p+2)q+3S.

Since ξn is represented by i∗(h1hn) ∈ Ext2,pnq+pq
A (H∗M, Zp) in the Adams spectral sequence,

then the above f̄ is represented by c̄ = (jj′j̄)∗(γ∗)s+3(̄i)∗(i′)∗i∗(h1hn) = (jj′j̄γs+3īi′i)∗(h1hn)
in the Adams spectral sequence.

From Theorem 3.1 and the knowledge of Yoneda products we know that the composition

Ext0,0
A (Zp, Zp)

(̄ii′i)∗−→ Ext0,0
A (H∗V (2), Zp)

(jj′ j̄)∗(γ∗)s+3

−→ Exts+3,(s+3)p2q+(s+2)pq+(s+1)q+s
A (Zp, Zp)

is a multiplication (up to a nonzero scalar) by γ̃s+3 ∈ Exts+3,(s+3)p2q+(s+2)pq+(s+1)q+s
A (Zp, Zp).

Hence, f̄ is represented (up to a nonzero scalar) by

c̄ = γ̃s+3h1hn �= 0 ∈ Exts+5,pnq+(s+3)p2q+(s+3)pq+(s+1)q+s
A (Zp, Zp)

in the Adams spectral sequence (cf. Lemma 3.2).
Moreover, from Lemma 3.3, we know that γ̃s+3h1hn cannot be hit by the differentials in the

Adams spectral sequence and so the corresponding homotopy element f̄ = jj′j̄γs+3īi′ξn ∈ π∗S
is nontrivial and of order p. This finishes the proof of the theorem.
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