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Abstract In this paper, some groups Exts,t
A (Zp, Zp) with specialized s and t are first computed by the

May spectral sequence. Then we make use of the Adams spectral sequence to prove the existence of a

new nontrivial family of filtration s+5 in the stable homotopy groups of spheres πpnq+(s+3)pq+(s+1)q−5S

which is represented (up to a nonzero scalar) by β̃s+2b0hn ∈ Ext
s+5,pnq+(s+3)pq+(s+1)q+s
A (Zp, Zp) in the

Adams spectral sequence, where p ≥ 5 is a prime number, n ≥ 3, 0 ≤ s < p − 3, q = 2(p − 1).
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1 Introduction
Let A be the mod p Steenrod algebra and S be the sphere spectrum localized at an odd prime
number p. To determine the stable homotopy groups of spheres π∗S is one of the central
problems in homotopy theory. One of the main tools to reach it is the Adams spectral sequence
(ASS) Es,t

2 = Exts,t
A (Zp, Zp) ⇒ πt−sS, where the Es,t

2 -term is the cohomology of A. If a
family of homotopy generators xi in Es,∗

2 converges nontrivially in the ASS, then we get a
family of homotopy elements fi in π∗S and we say that fi is represented by xi ∈ Es,∗

2 and has
filtration s in the ASS. So far, not so many families of homotopy elements in π∗S have been
detected. For example, a family ζn−1 ∈ πpnq+q−3S for n ≥ 2 which has filtration 3 in the ASS
and is represented by h0bn−1 ∈ Ext3,pnq+q

A (Zp, Zp) has been detected in reference [1], where
q = 2(p−1). In this paper, we detect a family of homotopy elements in π∗S which has filtration
s + 5 in the ASS.

From reference [2], Ext1,∗
A (Zp, Zp) has Zp-bases consisting of a0 ∈ Ext1,1

A (Zp, Zp), hi ∈
Ext1,piq

A (Zp, Zp) for all i ≥ 0 and Ext2,∗
A (Zp, Zp) has Zp-bases consisting of α2, a2

0, a0hi(i > 0),
gi(i ≥ 0), ki(i ≥ 0), bi(i ≥ 0), and hihj(j ≥ i + 2, i ≥ 0) whose internal degrees are 2q + 1, 2,
piq + 1, pi+1q + 2piq, 2pi+1q + piq, pi+1q and piq + pjq, respectively.

Let M be the Moore spectrum modulo a prime number p ≥ 3 given by the cofibration

S
p→ S

i→ M
j→ ΣS.

Let α : ΣqM → M be the Adams map and K be its cofibre given by the cofibration

ΣqM
α→ M

i′→ K
j′
→ Σq+1M,

where q = 2(p−1). This spectrum which we write in brief as K is known to be the Toda–Smith
spectrum V (1). Let V (2) be the cofibre of β : Σ(p+1)qK → K given by the cofibration

Σ(p+1)qK
β→ K

i→ V (2)
j→ Σ(p+1)q+1K.
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As we know, in the classical Adams spectral sequence the β-element βt = jj′βti′i is a nontrivial
element of order p in π(p+1)tq−q−2S, where p ≥ 5.

In this paper, we will prove the following theorem.

Theorem 1.1 Let p ≥ 5, n ≥ 3. Then β̃s+2b0hn �= 0 ∈ Exts+5,pnq+(s+3)pq+(s+1)q+s
A (Zp, Zp)

is a permanent cycle in the Adams Spectral Sequence and converges to a nontrivial element in
πpnq+(s+3)pq+(s+1)q−5, where 0 ≤ s < p − 3, q = 2(p − 1).

Remark The β̃s+2b0hn-element obtained in Theorem 1.1 actually is the product of the
β-element βs+2 = jj′βs+2i′i ∈ π(s+2)(p+1)q−q−2S and the (b0hn + h1bn−1)-element jξn ∈
πpnq+pq−3S in reference [3].

After giving some preliminaries on Ext groups of lower dimension in Section 2, the proof of
Theorem 1.1 will be given in Section 3.

2 Some Preliminaries on Ext groups

In this section, we will first prove some results on Ext groups of lower dimension which will be
used in the proof of the main theorem.

From [4, Theorem 3.2.5], there is a May spectral sequence (MSS) {Es,t,∗
r , dr} which converges

to Exts,t
A (Zp, Zp) with E1-term

E∗,∗,∗
1 = E(hm,i|m > 0, i ≥ 0) ⊗ P (bm,i|m > 0, i ≥ 0) ⊗ P (an|n ≥ 0),

where E is the exterior algebra, P is the polynomial algebra, and hm,i ∈ E
1,2(pm−1)pi,2m−1
1 ,

bm,i ∈ E
2,2(pm−1)pi+1,p(2m−1)
1 , an ∈ E1,2pn−1,2n+1

1 . One has dr : Es,t,u
r → Es+1,t,u−r

r and if
x ∈ Es,t,∗

r ,y ∈ Es′,t′,∗
r , then dr(x · y) = dr(x) · y + (−1)sx · dr(y). xy = (−1)ss′+tt′yx for

x, y = hm,i, bm,i or an. The first May differential d1 is given by

d1(hi,j) =
∑

0<k<i

hi−k,k+jhk,j , d1(ai) =
∑

0≤k<i

hi−k,kak, d1(bi,j) = 0.

For any element x ∈ Es,t,∗
1 , define dim x = s, deg x = t. Then we have

dim hi,j = dim ai = 1, dim bi,j = 2,

deg hi,j = 2(pi − 1)pj = 2(p − 1)(pi+j−1 + · · · + pj),
deg bi,j = 2(pi − 1)pj+1 = 2(p − 1)(pi+j + · · · + pj+1),

deg ai = 2pi − 1 = 2(p − 1)(pi−1 + · · · + 1) + 1,

deg a0 = 1,

where i ≥ 1, j ≥ 0.

Lemma 2.1 Let t = q(cnpn+cn−1p
n−1+· · ·+c1p+c0)+e be a positive integer with 0 ≤ ci < p

(0 ≤ i ≤ n), 0 ≤ e < q, s be a positive integer with 0 < s < p. If for some j (0 ≤ j ≤ n),
s < cj, then in the MSS we have Es,t,∗

1 = 0.

Proof Suppose that h = x1x2 · · ·xm is the generator of Es,t,∗
1 , where xi is one of ak, hl,j or

bu,z, 0 ≤ k ≤ n + 1, 0 ≤ l + j ≤ n + 1, 0 ≤ u + z ≤ n, l > 0, j ≥ 0, u > 0, z ≥ 0. Assume that
deg xi = q(ai,npn + · · · + ai,1p + ai,0) + ei, where ai,j = 0 or 1, ei = 1 if xi = aki

, or ei = 0.
Then

deg h =
m∑

i=1

deg xi

= q

(( m∑

i=1

ai,n

)
pn + · · ·

( m∑

i=1

ai,1

)
p +

( m∑

i=1

ai,0

))
+

( m∑

i=1

ei

)

= q(cnpn + cn−1p
n−1 + · · · + c1p + c0) + e,
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dim h =
m∑

i=1

dim xi = s.

By the facts that dim hi,j = dim ai = 1 and dim bi,j = 2, we know that 0 < m ≤ s < p
from the equality

∑m
i=1 dim xi = s. Noting that ai,j = 0 or 1, ei = 0 or 1 and m < p, we

have:
∑m

i=1 ei = e,
∑m

i=1 ai,0 = c0,
∑m

i=1 ai,1 = c1, . . . ,
∑m

i=1 ai,j−1 = cj−1,
∑m

i=1 ai,j = cj ,. . .,∑m
i=1 ai,n = cn. Noting the supposition that ai,j = 0 or 1, from the equality

∑m
i=1 ai,j = cj , we

have m ≥ cj . But we also know that cj > s, so m > s. Therefore we have s ≥ m > s. That is
impossible. This finishes the proof of Lemma 2.1.

Theorem 2.2 For p ≥ 5, 0 ≤ s < p − 2, the element
a2a2 · · · a2︸ ︷︷ ︸

s

h2,0h1,1 ∈ Es+2,(s+2)pq+(s+1)q+s,∗
r

in the May spectral sequence converges to the second Greek letter family element β̃s+2 ∈
Exts+2,t

A (Zp, Zp), where r ≥ 1, t = (s + 2)pq + (s + 1)q + s, and β̃s+2 converges to the β-
element βs+2 ∈ π(s+2)pq+(s+1)q−2S in the Adams spectral sequence.

Proof From [5, Theorems 1 and 2], we know that the β-element βs+2 ∈ π(s+2)pq+(s+1)q−2S

is represented by the second Greek letter family element β̃s+2 ∈ Exts+2,t
A (Zp, Zp) in the

ASS, where t = (s + 2)pq + (s + 1)q + s. However in the MSS, E
s+2,(s+2)pq+(s+1)q+s,∗
1 =

Zp{a2a2 · · · a2︸ ︷︷ ︸
s

h2,0h1,1} (This will be proved later.), so in the MSS, β̃s+2 ∈ Exts+2,t
A (Zp, Zp) is

represented by a2a2 · · · a2︸ ︷︷ ︸
s

h2,0h1,1 ∈ Es+2,t,∗
1 .

Now our remaining work is to prove Es+2,t,∗
1 = Zp{a2a2 · · · a2︸ ︷︷ ︸

s

h2,0h1,1}. Suppose that

h = x1x2 · · ·xm is the generator of Es+2,t,∗
1 , where xi is one of ak, hl,j or bu,z, 0 ≤ k ≤ 2,

0 ≤ l+j ≤ 2, 0 ≤ u+z ≤ 1, l > 0, j ≥ 0, u > 0, z ≥ 0. Assume that deg xi = q(ai,1p+ai,0)+ei,
where ai,j = 0 or 1, ei = 1 if xi = aki

, or ei = 0. Then

deg h =
m∑

i=1

deg xi

= q

(( m∑

i=1

ai,1

)
p +

( m∑

i=1

ai,0

))
+

( m∑

i=1

ei

)

= q((s + 2)p + (s + 1)) + s,

dim h =
m∑

i=1

dim xi = s + 2.

By the facts that dim hi,j = dim ai = 1 and dim bi,j = 2, we know that 0 < m ≤ s + 2 from∑m
i=1 dim xi = s + 2. Noting that ai,j = 0 or 1, ei = 0 or 1 and m ≤ s + 2 < p, we have:∑m
i=1 ei = s,

∑m
i=1 ai,0 = s + 1 and

∑m
i=1 ai,1 = s + 2. From the equality

∑m
i=1 ai,1 = s + 2

and the fact that ai,2 = 0, or ai,2 = 1 , we see that m ≥ s + 2, so m = s + 2. Since
dim h =

∑s+2
i=1 dim xi = s + 2, then for any 1 ≤ i ≤ s + 2, dim xi = 1, so we get that

h ∈ P (an|n ≥ 0)
⊗

E(hm,i|m > 0, i ≥ 0).
Since

∑s+2
i=1 ei = s ≡ s (mod q), deg hi,j ≡ 0 (mod q) (i > 0, j ≥ 0) and deg ai ≡ 1 (mod q)

(i ≥ 0), then the generator h must have a factor aj1aj2 · · · ajs
. Noting the degrees of ai’s and

the commutativity of E∗,∗,∗
1 , we can suppose that h = a0 · · · a0︸ ︷︷ ︸

x

a1 · · · a1︸ ︷︷ ︸
y

a2 · · · a2︸ ︷︷ ︸
z

xs+1xs+2

(up to sign), where 0 ≤ x, y, z ≤ s, x + y + z = s. Then we get that x + y + z +
∑s+2

i=s+1 ei = s,
y+z+

∑s+2
i=s+1 ai,0 = s+1 and z+

∑s+2
i=s+1 ai,1 = s+2. From the equality z+

∑s+2
i=s+1 ai,1 = s+2,
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we can get that z = s + 2 − ∑s+2
i=s+1 ai,1 ≥ s + 2 − 2 = s. So z = s, x = y = 0, that is,

h = a2a2 · · · a2︸ ︷︷ ︸
s

xs+1xs+2. It is easy to show that xs+1xs+2 ∈ E2,2pq+q,∗
1

∼= Zp{h2,0h1,1}. It

follows that h = a2a2 · · · a2︸ ︷︷ ︸
s

h2,0h1,1 (up to sign) and Es+2,t,∗
1 = Zp{a2a2 · · · a2︸ ︷︷ ︸

s

h2,0h1,1}.

Proposition 2.3 Let p ≥ 5, n ≥ 3, 0 ≤ s < p − 3. Then

β̃s+2b0hn �= 0 ∈ Exts+5,pnq+(s+3)pq+(s+1)q+s
A (Zp, Zp).

Proof First consider the structure of Es+4,t′,∗
1 in the MSS, where t′ = pnq+(s+3)pq+(s+1)q+s.

Since 0 ≤ s < p − 3, then 4 ≤ s + 4 < p + 1. Suppose that h = x1x2 · · ·xm is the generator of
Es+4,t′,∗

1 , where xi is one of ak, hl,j or bu,z, 0 ≤ k ≤ n + 1, 0 ≤ l + j ≤ n + 1, 0 ≤ u + z ≤ n,
l > 0, j ≥ 0, u > 0, z ≥ 0. deg xi = q(ai,npn + ai,n−1p

n−1 + · · · + ai,0) + ei, where ai,j = 0 or
1, ei = 1 if xi = aki

, or ei = 0. Then

deg h =
m∑

i=1

deg xi

= q

(( m∑

i=1

ai,n

)
pn + · · · +

( m∑

i=1

ai,2

)
p2 +

( m∑

i=1

ai,1

)
p +

( m∑

i=1

ai,0

))
+

( m∑

i=1

ei

)

= q(pn + (s + 3)p + (s + 1)) + s,

dim h =
m∑

i=1

dim xi = s + 4.

Noting that dim xi = 1 or 2, we have m ≤ s + 4 ≤ p from
∑m

i=1 dim xi = s + 4. By the
knowledge about the p-adic expression in number theory and the suppositions that ai,j = 0 or
ai,j = 1, ei = 0 or 1, m ≤ s + 4 ≤ p, we have

m∑

i=1

ei = s,

m∑

i=1

ai,0 = s + 1,

m∑

i=1

ai,1 = s + 3,

( m∑

i=1

ai,2

)
p2 +

( m∑

i=1

ai,3

)
p3 + · · · +

( m∑

i=1

ai,n

)
pn = pn.

(♣)

Case 1 0 ≤ s < p − 4.
By the knowledge about the p-adic expression in number theory and (♣), we have

m∑

i=1

ei = s,

m∑

i=1

ai,0 = s + 1,

m∑

i=1

ai,1 = s + 3,

m∑

i=1

ai,2 = · · · =
m∑

i=1

ai,n−1 = 0,

m∑

i=1

ai,n = 1.

It easy to see that there exists a factor h1,n or b1,n−1 among xi’s. By the commutativity of
E∗,∗,∗

1 , we can denote h1,n or b1,n−1 by xm.
If h = x1x2 · · ·xm−1h1,n, h′ = x1x2 · · ·xm−1 ∈ Es+3,t′−pnq,∗

1 . By an argument similar to
that used in the proof of Theorem 2.2, we can show that Es+3,t′−pnq,∗

1 = 0, so h′ is impossible
to exist. Thus h is impossible to be of the form h = x1x2 · · ·xm−1h1,n.

If h = x1x2 · · ·xm−1b1,n−1, h′′ = x1x2x3 · · ·xm−1 ∈ Es+2,t′−pnq,∗
1 . By Lemma 2.1, we can

know that Ep−2,t′−pnq,∗
1 = 0, so h′′ = x1x2x3 · · ·xm−1 is impossible to exist and h is impossible

to be of the form h = x1x2 · · ·xm−1b1,n−1.
From the above discussion, we see that when 0 ≤ s < p − 4 = 0, Es+4,t′,∗

1 = 0. Thus
Es+4,t′,∗

r = 0 for r ≥ 1. It is known that h1,n, b1,n, a2a2 · · · a2︸ ︷︷ ︸
s

h2,0h1,1 ∈ E∗,∗,∗
1 are permanent
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cycles in the MSS and converge nontrivially to hn, bn, β̃s+2 ∈ Ext∗,∗
A (Zp, Zp) for n ≥ 0,

respectively (cf. Theorem 2.2), so at this time the permanent cycle a2a2 · · · a2︸ ︷︷ ︸
s

h2,0h1,1b1,0h1,n ∈

Es+5,t′,∗
r is not bounded and converges nontrivially to β̃s+2b0hn ∈ Exts+5,t′

A (Zp, Zp) in the MSS.
Thus β̃s+2b0hn �= 0 ∈ Exts+5,t′

A (Zp, Zp).

Case 2 s = p − 4
Es+4,t′,∗

1 = Ep,t′′,∗
1 , where t′′ = pnq+(p−1)pq+(p−3)q+(p−4). Noting that m ≤ s+4 = p,

from (♣) we have
( m∑

i=1

ai,2

)
p2 +

( m∑

i=1

ai,3

)
p3 + · · · +

( m∑

i=1

ai,n

)
pn = pn,

then ( m∑

i=1

ai,2

)
+

( m∑

i=1

ai,3

)
p + · · · +

( m∑

i=1

ai,n

)
pn−2 = pn−2,

so p|∑m
i=1 ai,2. Note that ai,2 = 0 or 1, m ≤ p. It is easy to know that

∑m
i=1 ai,2 = 0 or∑m

i=1 ai,2 = p.
Subcase 2.1

∑m
i=1 ai,2 = 0.

If n = 3, it is easy to get that
∑m

i=1 ai,3 = 1, so there exists a factor h1,n or b1,n−1 among
xi’s.

If n > 3, then (
∑m

i=1 ai,3)p3 + (
∑m

i=1 ai,4)p4 + · · · + (
∑m

i=1 ai,n)pn = pn, so
( m∑

i=1

ai,3

)
+

( m∑

i=1

ai,4

)
p +

( m∑

i=1

ai,5

)
p2 + · · · +

( m∑

i=1

ai,n

)
pn−3 = pn−3.

Similarly we know that
∑m

i=1 ai,3 = 0 or
∑m

i=1 ai,3 = p. We claim that
∑m

i=1 ai,3 = 0, for
otherwise, we would have

∑m
i=1 ai,3 = p, then m = p. Then for each 1 ≤ i ≤ p, dim xi = 1 and

deg xi = higher terms +p3q+lower terms. Since
∑p

i=1 ei = p − 4, deg ai ≡ 1 (mod q) (i ≥ 0)
and deg hi,j ≡ 0 (mod q) (i > 0, j ≥ 0), then there exists a factor aj1aj2 · · · ajp−4 among xi’s
such that for each 1 ≤ i ≤ p− 4, ji ≥ 4 and deg aji

= higher terms +p3q + p2q + pq + q + 1. It
is obvious that

∑m
i=1 ai,2 ≥ p − 4 which contradicts

∑m
i=1 ai,2 = 0, thus the claim follows. By

induction on j, we can get that
∑m

i=1 ai,j = 0 (3 ≤ j ≤ n− 1), so
∑m

i=1 ai,n = 1, that is to say,
there is a factor h1,n or b1,n−1 among xi’s.

All in all, at this time for n ≥ 3, there is a factor h1,n or b1,n−1 among xi’s. We denote
h1,n or b1,n−1 by xm, then h = x1x2 · · ·xm−1h1,n (up to sign) or h = x1x2 · · ·xm−1b1,n−1 (up
to sign).

If h = x1x2 · · ·xm−1h1,n, h′ = x1x2 · · ·xm−1 ∈ Ep−1,t′′−pnq,∗
1 . By an argument similar to

that used in the proof of Theorem 2.2, we can show that Es+3,t′′−pnq,∗
1 = 0, so h′ is impossible

to exist. Thus h is impossible to be of the form h = x1x2 · · ·xm−1h1,n.
If h = x1x2 · · ·xm−1b1,n−1, h′′ = x1x2x3 · · ·xm−1 ∈ Ep−2,t′′−pnq,∗

1 . By Lemma 2.1, we can
know that Ep−2,t′′−pnq,∗

1 = 0, so h′′ = x1x2x3 · · ·xm−1 is impossible to exist and h is impossible
to be of the form h = x1x2 · · ·xm−1b1,n−1.

Subcase 2.2 If
∑m

i=1 ai,2 = p, then m = p. Since dim h = p, we can easily see that for
each i, dim xi = 1 and h = x1x2 · · ·xp ∈ E(hm,i|m > 0, i ≥ 0)

⊗
P (an|n ≥ 0).

If n = 3, we can easily get that
∑p

i=1 ai,2 = p,
∑p

i=1 ai,1 = p − 1,
∑p

i=1 ai,0 = p − 3 and∑p
i=1 ei = p − 4.
If n > 3, from the equality (

∑p
i=1 ai,2)p2 + · · · + (

∑p
i=1 ai,n)pn = pn, we can have

( p∑

i=1

ai,3 + 1
)

+
( p∑

i=1

ai,4

)
p + · · · +

( p∑

i=1

ai,n

)
pn = pn.
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Then p|(∑p
i=1 ai,3 +1). Noting that ai,3 = 0 or 1, we have that

∑p
i=1 ai,3 = p−1. By induction

on j, we can prove that
∑p

i=1 ai,j = p − 1 (3 ≤ j ≤ n − 1). So
∑p

i=1 ai,n = 0.
When n = 3, by the facts that

∑p
i=1 ei = p − 4,

∑p
i=1 ai,0 = p − 3,

∑p
i=1 ai,1 = p − 1,∑p

i=1 ai,2 = p, we can prove that h = x1x2 · · ·xp is impossible to exist by an argument similar
to that used in the proof of Theorem 2.2.

When n > 3, by the facts that
∑p

i=1 ai,2 = p,
∑p

i=1 ai,3 = · · · =
∑p

i=1 ai,n−1 = p − 1,
deg hk,j = q(pk+j−1 + · · ·+ pj) (k ≥ 1, j ≥ 0) and deg ai = q(pi−1 + · · ·+ p + 1) + 1 (i > 0), we
can divide the p xi’s into two disjoint classes S1 and S2. The two disjoint classes are given by

S1 = {x|deg x = q(pn−1 + pn−2 + · · · + p2) + lower terms},
S2 = {x|deg x = qp2 + lower terms}.

For a class S, denote the number of elements in S by N(S), then we can get N(S1) = p−1 and
N(S2) = 1. Similarly, by the facts that

∑p
i=1 ei = p − 4,

∑p
i=1 ai,0 = p − 3,

∑p
i=1 ai,1 = p − 1,∑p

i=1 ai,2 = p, deg hk,j = q(pk+j−1+· · ·+pj) (k ≥ 1, j ≥ 0) and deg ai = q(pi−1+· · ·+p+1)+1
(i > 0), we can also divide the p xi’s into four disjoint classes. The four classes are given by

S3 = {x|deg x = q(higher terms + p2 + p + 1) + 1}, N(S3) = p − 4,

S4 = {x|deg x = q(higher terms + p2 + p + 1)}, N(S4) = 1,

S5 = {x|deg x = q(higher terms + p2 + p)}, N(S5) = 2,

S6 = {x|deg x = q(higher terms + p2)}, N(S6) = 1.

If S5 ⊂ S1 (i.e., all elements in S5 are in S1), then there would be two hn−1,1’s such that
deg hn−1,1 = q(pn−1 + · · · + p3 + p2 + p). This is impossible since h2

n−1,1 = 0. If S5 �⊂ S1

(i.e., not all elements in S5 are in S1), then one of the two elements in S5 must be in S2.
The element must be h2,1 such that deg h2,1 = q(p2 + p). For two classes A and B, define
A ∪ B = {x| x is in A or x is in B}. It follows that S1 ∪ S2 = S3 ∪ S4 ∪ S5 ∪ S6, so we
have S6 ⊂ S1,S4 ⊂ S1, S3 ⊂ S1 and another element in S5 must be in S1. We easily get
that S3 = {an, an, · · · , an︸ ︷︷ ︸

p−4

}, S4 = {hn,0}, S5 = {h2,1, hn−1,1} and S6 = {hn−2,2}. Thus h =

anan · · · an︸ ︷︷ ︸
p−4

hn,0hn−1,1hn−2,2h2,1 (up to sign).

From Subcase 2.1 and Subcase 2.2, we see that when s = p − 4,

Ep,t′′,∗
1 =

⎧
⎪⎨

⎪⎩

Zp{anan · · · an︸ ︷︷ ︸
p−4

hn,0hn−1,1hn−2,2h2,1}, if n > 3,

0, if n = 3.

When n = 3, Ep,t′′,∗
r = 0 (r ≥ 1), then dr(Ep,t′′,∗

r ) = 0.
When n > 3, consider the May filtration of elements a2 a2 · · · a2︸ ︷︷ ︸

p−4

h2,0 h1,1 b1,0 h1,n and

an an · · · an︸ ︷︷ ︸
p−4

hn,0 hn−1,1 hn−2,2 h2,1. We see that

M(a2a2 · · · a2︸ ︷︷ ︸
p−4

h2,0h1,1b1,0h1,n) = 6p − 15 = M,

M(anan · · · an︸ ︷︷ ︸
p−4

hn,0hn−1,1hn−2,2h2,1) = (2n + 1)p − 2n − 10 = M + r with r > 2.

Now
d1(anan · · · an︸ ︷︷ ︸

p−4

hn,0hn−1,1hn−2,2h2,1) = anan · · · an︸ ︷︷ ︸
p−4

hn,0hn−1,1hn−2,2h1,2h1,1 + · · · �= 0.

Thus Ep,t′′,∗
2 = 0 and no higher May differential hits a2a2 · · · a2︸ ︷︷ ︸

p−4

h2,0h1,1b1,0h1,n in the MSS.
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This shows that β̃p−2b0hn �= 0 ∈ Extp+1,t′′
A (Zp, Zp).

From Case 1 and Case 2, the proposition follows.
Proposition 2.4 Let p ≥ 5, n ≥ 3, 0 ≤ s < p − 3, 2 ≤ r ≤ s + 5. Then we have

Exts+5−r,q(pn+(s+3)p+(s+1))+(s−r+1)
A (Zp, Zp) = 0.

Proof It suffices to prove that in the MSS Es+5−r,t′′′,∗
1 = 0, where t′′′ = q(pn + (s + 3)p + (s +

1)) + (s− r + 1). Suppose that h = x1x2 · · ·xm is the generator of Es+5−r,t′′′,∗
1 , where xi is one

of ak, hl,j or bu,z, 0 ≤ k ≤ n + 1, 0 ≤ l + j ≤ n + 1, 0 ≤ u + z ≤ n, l > 0, j ≥ 0, u > 0, z ≥ 0.
Let deg xi = q(ai,npn + ai,n−1p

n−1 + · · · + ai,0) + ei, where ai,j = 0 or 1, ei = 1 if xi = aki
, or

ei = 0. Then

deg h =
m∑

i=1

deg xi

= q

(( m∑

i=1

ai,n

)
pn + · · · +

( m∑

i=1

ai,2

)
p2 +

( m∑

i=1

ai,1

)
p +

( m∑

i=1

ai,0

))
+

( m∑

i=1

ei

)

= q(pn + (s + 3)p + (s + 1)) + s − r + 1,

dim h =
m∑

i=1

dim xi = s + 5 − r.

Noting that dim xi = 1 or 2, we have that m ≤ s+5−r ≤ s+3 < p from
∑m

i=1 dim xi = s+5−r.
We claim that s−r+1 ≥ 0, otherwise, we would have p >

∑m
i=1 ei = q+(s−r+1) ≥ q−4 ≥ p.

That is impossible. The claim follows.
Noting the suppositions that ai,j = 0 or 1, ei = 0 or 1 and m < p, we have

m∑

i=1

ei = s − r + 1,

m∑

i=1

ai,0 = s + 1,

m∑

i=1

ai,1 = s + 3,

m∑

i=1

ai,2 = 0,
m∑

i=1

ai,3 = · · · =
m∑

i=1

ai,n−1 = 0,
m∑

i=1

ai,n = 1.

It is easy to see that there exists an h1,n or b1,n−1 among xi’s. We denote h1,n or b1,n−1 by
xm, then h = x1x2 · · ·xm−1h1,n or h = x1x2 · · ·xm−1b1,n−1.

If h = x1x2 · · ·xm−1h1,n, h′ = x1x2 · · ·xm−1 ∈ Es+4−r,t′′′−pnq,∗
1 = 0 by Lemma 2.1. Thus h

is impossible to be of the form h = x1x2 · · ·xm−1h1,n.
Similarly, we can show that h is impossible to be of the form h = x1x2 · · ·xm−1b1,n−1 by

Lemma 2.1.
From the above discussion we see that Es+5−r,t′′′,∗

1 = 0, so Exts+5−r,t′′′
A (Zp, Zp) = 0. This

finishes the proof of Proposition 2.4.
Proposition 2.5 Let p ≥ 5, n ≥ 3, 0 ≤ s < s − 3. Then we have

β̃s+2h1bn−1 = 0 ∈ Exts+5,pnq+(s+3)pq+(s+1)q+s
A (Zp, Zp).

Proof Since h2
1,1 = 0 ∈ E2,2pq,∗

1 , then

a2 · · · a2︸ ︷︷ ︸
s

h2,0h1,1h1,1b1,n−1 = 0 ∈ E
s+5,pnq+(s+3)pq+(s+1)q+s,∗
1 ,

so β̃s+2h1bn−1 = 0 ∈ Exts+5,pnq+(s+3)pq+(s+1)q+s
A (Zp, Zp).

3 Proof of Theorem 1.1
In this section, we will give the proof of Theorem 1.1.
Theorem 1.1 Let p ≥ 5, n ≥ 3. Then

β̃s+2b0hn �= 0 ∈ Exts+5,pnq+(s+3)pq+(s+1)q+s
A (Zp, Zp)
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is a permanent cycle in the Adams Spectral Sequence and converges to a nontrivial element in
πpnq+(s+3)pq+(s+1)q−5, where 0 ≤ s < p − 3, q = 2(p − 1).

Proof From [3, Theorem A], we get that i∗(h1hn) ∈ Ext2,pnq+pq
A (H∗M, Zp) is a permanent

cycle in the ASS and converges to a nontrivial element ξ ∈ πpnq+pq−2M . At the same time
jξn ∈ πpnq+pq−3S is a nontrivial element of order p which is represented (up to a nonzero scalar)
by (b0hn + h1bn−1) ∈ Ext3,pnq+pq

A (Zp, Zp) in the ASS.
Consider the following composition of maps:

f : Σpnq+pq−3S
jξn−→ S

jj′jβs+2i′i−→ Σ−2(s+2)(p2−1)+q+2S.

Since jξn is represented (up to a nonzero scalar) by (b0hn + h1bn−1) ∈ Ext3,pnq+pq
A (Zp, Zp),

then the above f is represented (up to a nonzero scalar) by c = (jj′βs+2i′i)∗(b0hn + h1bn−1).
From Theorem 2.2 and the knowledge of Yoneda products we know that the composition

Ext0,0
A (Zp, Zp)

(i′i)∗−→ Ext0,0
A (H∗M, Zp)

(jj′)∗(β∗)s+2

−→ Exts+2,(s+2)pq+(s+1)q+s
A (Zp, Zp)

is a multiplication (up to a nonzero scalar) by β̃s+2 ∈ Exts+2,(s+2)pq+(s+1)q+s
A (Zp, Zp). Hence,

f is represented (up to a nonzero scalar) by c = β̃s+2(b0hn + h1bn−1) = β̃s+2b0hn �= 0 ∈
Exts+5,q(pn+(s+3)p+(s+1))+s)

A (Zp, Zp) = 0 in the ASS (cf. Proposition 2.3 and Proposition 2.5).
Moreover, from Proposition 2.4, Exts+5−r,q(pn+(s+3)p+(s+1))+(s−r+1)

A (Zp, Zp) = 0 for r ≥ 2,
then β̃s+2b0hn cannot be hit by the differentials in the ASS, and so the corresponding homotopy
element f ∈ π∗S is nontrivial and of order p. This finishes the proof of Theorem 1.1.
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