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Abstract In this paper, some groups Exti{t(Zp7 Z,) with specialized s and ¢ are first computed by the
May spectral sequence. Then we make use of the Adams spectral sequence to prove the existence of a
new nontrivial family of filtration s+5 in the stab}e homotopy groups Sf spheres Tpn g4 (s4+3)pg+(s+1)q—55
which is represented (up to a nonzero scalar) by B42bohn € Ext’>? atetpatsthats 7 7 ) in the
Adams spectral sequence, where p > 5 is a prime number, n >3, 0<s<p—3,¢=2(p—1).
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1 Introduction

Let A be the mod p Steenrod algebra and S be the sphere spectrum localized at an odd prime
number p. To determine the stable homotopy groups of spheres m,S is one of the central
problems in homotopy theory. One of the main tools to reach it is the Adams spectral sequence
(ASS) E' = Ext%(Z,,Z,) = m_S, where the E5'-term is the cohomology of A. If a
family of homotopy generators z; in E5™ converges nontrivially in the ASS, then we get a
family of homotopy elements f; in .S and we say that f; is represented by z; € E3" and has
filtration s in the ASS. So far, not so many families of homotopy elements in 7S have been
detected. For example, a family (,,—1 € Tpngtq—35 for n > 2 which has filtration 3 in the ASS
and is represented by hob,—1 € Exti’pnﬁq(Zp,Zp) has been detected in reference [1], where
g = 2(p—1). In this paper, we detect a family of homotopy elements in .S which has filtration
s+ 5 in the ASS.

From reference [2], Exty*(Z,, Z,) has Z,-bases consisting of ag € Exty'(Z,,72,), h; €
Extzlq’plq(Zp7 Z,) for all i > 0 and Ext%*(Z,, Z,) has Z,-bases consisting of as, a3, agh,(i > 0),
gi(i > 0), k(¢ > 0), bi(¢ > 0), and h;h;(j > i+ 2,4 > 0) whose internal degrees are 2¢ + 1, 2,
pla+1,p" g+ 2p'q, 2p" g+ p'q, p'tlq and p'q + pg, respectively.

Let M be the Moore spectrum modulo a prime number p > 3 given by the cofibration

sEsLmLss
Let a: XM — M be the Adams map and K be its cofibre given by the cofibration
s & S g3 sty
where ¢ = 2(p—1). This spectrum which we write in brief as K is known to be the Toda—Smith
spectrum V(1). Let V(2) be the cofibre of §: RPTD9K — K given by the cofibration

yo+Dag B e KN V(2) 4, ne+a+1 g
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As we know, in the classical Adams spectral sequence the 3-element 3; = j5’3%4'i is a nontrivial
element of order p in 7(,11)1q—q—25, Wwhere p > 5.

In this paper, we will prove the following theorem.
Theorem 1.1  Let p > 5,n > 3. Then Bypobohn # 0 € Extf4+5’pnq+(s+3)pq+(s+1)q+s(Zp, Zp)
s a permanent cycle in the Adams Spectral Sequence and converges to a nontrivial element in
Tpng+(s+3)pa-+(s+1)q—5, where 0 < s <p—3, ¢ =2(p —1).
Remark The Bs+2bohn—element obtained in Theorem 1.1 actually is the product of the
f-element B0 = jj'B5%'i € T(si10)(pr1)g—q—25 and the (boh, + hib,_1)-element j&, €
Tpnq+pg—3S in reference [3].

After giving some preliminaries on Ext groups of lower dimension in Section 2, the proof of
Theorem 1.1 will be given in Section 3.

2 Some Preliminaries on Ext groups
In this section, we will first prove some results on Ext groups of lower dimension which will be
used in the proof of the main theorem.
From [4, Theorem 3.2.5], there is a May spectral sequence (MSS) { ES**, d,.} which converges
to Ext%*(Z,, Z,) with Ej-term
E7T"" = E(hpilm > 0,i > 0) @ P(by,;/m > 0,i > 0) ® P(a,|n > 0),

where I is the exterior algebra, P is the polynomial algebra, and hy,,; € E11’2(pm_1)pw’2m_l,

m_ i+1 _ __
bm,i c E1272(P 1)p" ™ ,p(2m 1), a, € E11,2P 1,2n+1. One has dr . Eﬁ’t’u N E;?Jrl,t,ufr and if
e B3ty e ESU* then do(x - y) = dp(z) -y + (=1)%z - dp(y). xy = (—1)5 T ya for
Z,Y = Ry i, b i oF ap. The first May differential d; is given by

di(hij) = Z Pk kP g, di(a;) = Z Pk 1Ok dy(biz5) = 0.
0<k<i 0<k<i

For any element x € Ef’t’*, define dim = = s, deg = t. Then we have

dlm h%] = dlm a; = 1, dlm bl,] = 27

deg hi,j = 2(]91 — l)p] = 2(p — ]_)(pH‘j_l + .. +p])’

deg b ; =2(p' — D)p' =2(p — 1) (p™ + -+ + pITY),

deg ag =1,
where ¢ > 1,7 > 0.
Lemma 2.1  Lett = q(c,p"+cp_1p" 1+ -+e1p+co)+e be a positive integer with 0 < ¢; < p
(0<i<n),0<e<q, s bea positive integer with 0 < s < p. If for some j (0 < j < n),
s < cj, then in the MSS we have E}"* = 0.
Proof Suppose that h = x1y - - - 2, is the generator of E}™"*, where x; is one of ay, hyj or
buz 0<k<n+4+1,0<I+j<n+1,0<u+2<n,1>0,j>0,u>0, z>0. Assume that

deg x; = q(a; np™ + -+ ai1p+ aip) +e;, where a; ; =0or 1, e;, = 1if x; = ay,, or e; = 0.
Then

deg h = ideg T;

i=1

((Evor e (Eorr (Bon)+ (£

= q(enp™ + o™+ Feptco) te,
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m
dim h = Zdim T; = 8.
i=1
By the facts that dim h;; = dim a; = 1 and dim b; ; = 2, we know that 0 <m < s <p
from themequality Z%} dim z; = s. nlL\Ioting that a; ; = 9nor 1,e,=0o0r1 ;annd m < p, we
have: Y .0 e; =€, > .01 Q0 =Coy D g Qi1 =Cly-nny D ioq Gij—1 = Cj—1, Zz 1 Qi = Cjyenny
>, ain = ¢p. Noting the supposition that a; j = 0 or 1, from the equality > ", a; ; = ¢;, we
have m > ¢;. But we also know that ¢; > s, so m > s. Therefore we have s > m > s. That is
impossible. This finishes the proof of Lemma 2.1.

Theorem 2.2 Forp>5,0<s<p—2, the element
asas -+ - Ao h2 Ohl 1 c Es+2,(s+2)pq+(s+1)q+s,*
) ] T

S

in the May spectral sequence converges to the second Greek letter family element 6g+2 €
Ext%"(Z,, Z,), where v > 1, t = (s + 2)pq + (s + 1)q + s, and 412 converges to the -
element Bsyo € 7r(s+2)pq+(s+1)q_25 in the Adams spectral sequence.
Proof From [5, Theorems 1 and 2], we know that the B-element (,y2 € T(s42)pgt(s+1)g—25
is represented by the second Greek letter family element [39+2 € ExtHZt(Z Zp) in the
ASS, where t = (s + 2)pg + (s + 1)g + s. However in the MSS, E{*% (D (s =
Zy{azas - - - az haohi1} (This will be proved later.), so in the MSS, ﬁs+2 € Ex‘cé'|r2 t(Z Zyp) is

—_—

S
represented by asag ---as haghi1 € Ef+2’t’*.
—_—
S
Now our remaining work is to prove Ef+2’t’* = Zp{agag -++aghaohi1}. Suppose that
—_—
S

h = z1x9- - Xy, is the generator of , where x; is one of ag, hy; or by ., 0 < k < 2,
0<I+5j<2,0<u+2<1,1>0,j>0,u>0,z>0. Assume that deg z; = g(a; 1p+a;0)+e;,
where a; ; =0or 1, e; =1 if z; = ay,, or ¢; = 0. Then

m

deg h = Zdeg T

=1

((Ee)rs (Bo) (5

=q((s+2)p+(s+1)) +s,

s+2,t,%
El

m
dimh:Zdimxi:s+2.
i=1
By the facts that dim h;; = dim a; = 1 and dim b; ; = 2, we know that 0 < m < s+ 2 from
Yot dim 2; = s+ 2. Noting that a;; = 0or 1, e, = 0 or 1 and m < s+ 2 < p, we have:
Z:’;l e; = s, 21:1 a;0 = s+ 1 and 21:1 a;1 = s+ 2. From the equality lel a1 =S+ 2
and the fact that a;» = 0, or a;2 = 1, we see that m > s+ 2, so m = s+ 2. Since
dim h = Zfif dim z; = s+ 2, then for any 1 < i < s+ 2, dim x; = 1, so we get that
h e Playn > 0) Q E(hp,ilm > 0,7 > 0).
Since Z:if e; = s = s(mod q), deg h; ; = 0(mod ¢) (¢ > 0,7 > 0) and deg a; = 1 (mod q)
(¢ > 0), then the generator h must have a factor a;, a;, - - a;,. Noting the degrees of a;’s and
L kK —
the commutativity of E{""", we can suppose that h = ag--- ap a1--- a1 az--- a2 Ts41Ts42
—_—— —— H/—’

z Y

(uptosign) where 0 < z,y,2 < s,z +y + 2z = s. Then we get that ur:—|—y—|—z—&—Z:z ot l
s+2

y+z+z:Z sp1@i0 = s+1and ZJFZZ':@-H a;1 = s+2. From the equality ZJFZz op1 @il = 5+2,

€, =S,
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H?_Hai’l >s5+2—-2=35 Soz=s,2 =y =0, that is,

=8

we can get that 2z = s +2 — )
. 2,2pq+a,% ~
h = agas - a3 Ts41Ts42. It is easy to show that 412542 € Ej PIte* o Zp{haohi1}. Tt

S

follows that h = asag - - a2 haohi 1 (up to sign) and Ef+2,t,*
H_/

= asasg - --ag hooghyq}.
plazas 2 haohi,1}
S S
Proposition 2.3 Letp>5,n>3,0<s<p—3. Then
Bs+2b0hn £0¢e Extz-i-&p"q+(8+3)pq+(s+1)q+s(Zp Z,)
; , .
Proof First consider the structure of E‘f+4’t/’* in the MSS, where t’ = p"q+(s+3)pg+(s+1)g+s.
Since 0 < s <p—3,then 4 <s+4 < p+ 1. Suppose that h = z129 - - -z, is the generator of
Byt where x; is one of ay, hyj or by ., 0<k<n+1,0<l+j<n+1,0<u+z<n,
1>0,7>0,u>0,z>0. deg z; = q(ainp™ + @ipn_1p" '+ +a;0) + €;, where a; ; = 0 or
1,e; =1if x; = ag,, or ¢, = 0. Then

deg h = ideg z;

i=1

((Eedres (B (B (£e)+ (£

g+ (s 4+ 3+ (s + 1)) + 5, B

m
dim h = Zdim T, =85+4.
i=1
Noting that dim 2; = 1 or 2, we have m < s +4 < p from ) ., dim z; = s + 4. By the
knowledge about the p-adic expression in number theory and the suppositions that a; ; = 0 or
a;;=1,e,=0o0r1, m<s+4<p, we have

m m

Zeizs, Zaw:s—i-l,

i=1 i=1 . . .

Z a1 = s+ 3, <Zai,2>p2 + (Z%s)p?’ +ot <Z az‘,n)]?n =p".
i=1 i=1 i=1 i=1

Casel 0<s<p-—4.
By the knowledge about the p-adic expression in number theory and (&), we have

m m m
E e; = s, E ajo=s+1, E a;1 = s+ 3,
=1 =1 =1

m m m

§ Q;2 =" "= E Ain—1= 07 E Qi n = 1.

=1 =1 =1

It easy to see that there exists a factor hy, or b; ,_; among z;’s. By the commutativity of
E7™™ we can denote hy p, or by ,—1 by @p,.

(%)

3,t'—p"q, ..
If h = 29 Tm—1hin, M = T122+ Tiy_1 € Eer P TP9¥ By an argument similar to

that used in the proof of Theorem 2.2, we can show that Ef+3’t,7pnq’* =0, so h/ is impossible
to exist. Thus h is impossible to be of the form h = 2122+ - 2m—_1h1 .

If h = 2129 Typ1bi o1, K = 212223 Ty € Ef“’t'_pnq’*. By Lemma 2.1, we can
know that E?_Q’t,_pnq’* =0, s0 h' = x129m3 - T, _1 is impossible to exist and h is impossible
to be of the form h = z122 - - Tym—1b1 p—1.

From the above discussion, we see that when 0 < s < p—4 = 0, E‘f+4’t/’* = 0. Thus
Est4t'* — 0 for r > 1. It is known that hi s b1, a2as---as haohi1 € B are permanent

———

S
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cycles in the MSS and converge nontrivially to hy,, by, Bsya € Exty*(Z,,Z,) for n > 0,
respectively (cf. Theorem 2.2), so at this time the permanent cycle agag - - - ag ha oh1,1b1,0h1 0 €
N———

Est5:1% is not bounded and converges nontrivially to s 2bohs, € Extsjs’t/ (Zy, Z,) in the MSS.
Thus Baiobohn # 0 € Ext5 > (Z,, Z,).
Case2 s=p—4

E‘f+4’t/’* = Ef’t”’*, where t” = p"q+(p—1)pg+ (p—3)q+ (p—4). Noting that m < s+4 = p,

from (&) we have
(Zai,2>p2+ ( ai}S)pf’)_A’_..._f_ (Zai,n)pn:pn7
i=1 i=1 i=1

then
(Z ai,2> + (Z ai,g)p + -+ (Z@i,n)pn_Q =p" 2
i=1 i=1 i—1

so p| >"  ai2. Note that a;o = 0 or 1, m < p. It is easy to know that > '~ a;» = 0 or
D iy G2 = p.

Subcase 2.1 > a;0 = 0.

If n = 3, it is easy to get that 221 a; 3 = 1, so there exists a factor h; ,, or by ,_1 among
x;’s.
Ifn > 37 then (ZZZl a'i,3)p3 + (Z:ll ai,4)p4 et (2221 ai,n)pn = pn7 S0

(Zai,3) + (2:%4)]3_F <Zai,5>p2 4t (Zai,n)pn_?’ = pn3,
i=1 i=1 i=1 i=1

Similarly we know that >..* a;3 = 0 or D", a;3 = p. We claim that Y ;" a;3 = 0, for
otherwise, we would have Z:’;l a;3 = p, then m = p. Then for each 1 <7 <p, dim 2; =1 and
deg z; = higher terms +p®q+lower terms. Since Y ©_, e; = p —4, deg a; = 1 (mod ¢q) (i > 0)
and deg h; ; = 0(mod ¢q) (¢ > 0,7 > 0), then there exists a factor aj,aj, ---a;,_, among ;s
such that for each 1 <i < p—4, j; > 4 and deg a;, = higher terms +p3q + p*q +pg+q+ 1. It
is obvious that Zgl a;2 > p — 4 which contradicts 221 a;2 = 0, thus the claim follows. By
induction on j, we can get that > . a;; =0 (3 <j<n-—1),s0 Y ", a;, =1, that is to say,
there is a factor hy , or by ,—1 among z;’s.

All in all, at this time for n > 3, there is a factor hy, or by ,—1 among z;’s. We denote
hiyn or bin_1 by Tp, then h = 2122+ - Tm—1h1,, (up to sign) or h = x129 -+ - Typ—1b1,n—1 (up
to sign).

If h=uzz0 - Tim—1h1p, M = 2122 Tpp1 € E{’_l’t”_pnq’*. By an argument similar to
that used in the proof of Theorem 2.2, we can show that Ef+3’tn_pnq’* =0, so h' is impossible
to exist. Thus h is impossible to be of the form h = 2122+ Zpm—1h1 .

If h=z120 - Tm—1b1n_1, B = 12023 Tpy—1 € Ef_z’t”_pnq’*. By Lemma 2.1, we can
know that Ef_Q’t”_pnq’* =0,s0 h' = x1T223 - - - Tpp_1 is impossible to exist and h is impossible
to be of the form h = x122 - - - Ty—1b1,n—1-

Subcase 2.2 If 31" a;2 = p, then m = p. Since dim h = p, we can easily see that for
each i, dim z; =1 and h = x122 - - - 2p € E(hymlm > 0,1 > 0) Q P(an|n > 0).

If n = 3, we can easily get that Y 7 a,o =p, >0 a1 =p—1,> "% a0 =p—3and
i ei=p—4

If n > 3, from the equality (}-7_; a;2)p® + -+ (34, a;n)p™ = p™, we can have

p p p
(Zai’3+1)+(Zaiv4>p+"'+(Zai,n>p"=p".
=1 i=1 i=1
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Then p|(}>-%_, a;3+1). Noting that a; 3 = 0 or 1, we have that ) %, a; 3 = p— 1. By induction
on j, we can prove that > & a;;=p—1B<j<n-1). SoY? a,=0.

When n = 3, by the facts that Y7 e, =p—4, D% ;a0 =p—3, > a1 =p—1,
> ¥ a2 =p, we can prove that h = x125 - - -z, is impossible to exist by an argument similar
to that used in the proof of Theorem 2.2.

When n > 3, by the facts that > 0 a;2 = p, Db @iz = -+ = >0 1 Gn-1 =p—1,
deg hi; = q(pF*7 1+ +p?) (k> 1,7 >0) and deg a; = g(p' ' +---+p+1)+1 (i > 0), we
can divide the p x;’s into two disjoint classes S7 and S5. The two disjoint classes are given by

Sy = {z|deg x = q(p" ' +p" % + -+ + p?) + lower terms},
Sy = {x|deg x = gp® + lower terms}.
For a class S, denote the number of elements in S by N(.5), then we can get N(S1) = p—1 and
N(S;) = 1. Similarly, by the facts that >% e, =p—4, > jai0=p—-3,> 5 ja,1=p—1,
Sy aig =p,deghyj = q(p" I - 4p7) (k> 1,5 > 0) and deg a; = q(p" ' +-- - +p+1)+1
(i > 0), we can also divide the p x;’s into four disjoint classes. The four classes are given by
S3 = {z|deg x = g(higher terms + p*> + p+ 1) + 1}, N(S3)=p—4,
S, = {z|deg x = g(higher terms + p? + p + 1)}, (Sy) =1,
S5 = {x|deg x = g(higher terms + p? + p)}, (S5) =2,
Se = {z|deg x = q(higher terms + p?)}, N(Se) =1.
If S5 € Sy (ie., all elements in S5 are in Sy), then there would be two h,_1,1’s such that
deg hy—11 = q(p" ' +--- +p* + p* + p). This is impossible since hifl,l =0 If S5 ¢ 51
(i.e., not all elements in S5 are in Sp), then one of the two elements in S; must be in Ss.
The element must be hy; such that deg ho = q(p* + p). For two classes A and B, define
AUB = {x|zisin Aor z isin B}. It follows that S; U Sy = S3 U Sy U S5 U Sg, so we
have Sg C 51,54 C S1, S3 C S7 and another element in S; must be in S;. We easily get
that Sg = {an,an,~~ ',CLn}, S4 = {hmo}, S5 = {hQ,l;hn—l,l} and SG = {hn_g,g}. Thus h =
—— ——
p—4
AnQp - Gp hn,Ohnfl,lhnf2,2h2,1 (up to Sign)'
—_———

N
N

p—4
From Subcase 2.1 and Subcase 2.2, we see that when s = p — 4,

Zp{anan 77 hn,Ohnfl,lhn72,2h2,1}a if n> 3a
Pt M
El = p—4
0, if n=3.
When n = 3, E,l”t”’* =0 (r>1), then dT(Ef’t//’*) =0.
When n > 3, consider the May filtration of elements a as--- ashoo hi11 b1 hi, and
—_———

p—4
Ap Ap c° Ap hn,O hn—l,l hn_272 h271. We see that
N————

p—4
M(a2a2 %) h2,0h1,1b1,0h1,n) =6p—15=M,
—_—
p—4
M(anan RN 7% hn,Ohn—l,lhn—2,2h2,l) = (277, + 1)p —2n—10=M +7r with r > 2.
———
p—4
Now
d1<anan crrlp hn,Ohnfl,lhn72,2h2,l> = QpQy - Ap hn,ohnflylhn7272h1’2h1’1 +---#£0.
———— ———
p—4 p—4

Thus Eg’t”’* = 0 and no higher May differential hits agas - --as haoh1,1b1,0h1,, in the MSS.
———

p—4
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This shows that 3,_sboh,, # 0 € Exti™ (2, Z,).
From Case 1 and Case 2, the proposition follows.
Proposition 2.4 Letp>5n>3,0<s<p—3,2<r <s+5. Then we have
EXtZ+5—7'7Q(iU"+($+3)P+(5+1))+(3—T+1)(Z A ) =0
ps4p) =Y.
Proof Tt suffices to prove that in the MSS Ef+57r’tm’* =0, where t" = q(p" + (s +3)p+ (s +

1))+ (s —r+1). Suppose that h = z122 - - - T, is the generator of Efﬁr’*r’tm’*, where z; is one

of ag, hijor by, 0<k<n+1,0<I+57<n+1,0<u+2<n,1>0,7>0,u>0,2>0.
Let deg z; :q(ai’np”—i—ai,n,lp"_l +---+a;0)+e;, where a;j=0or1, e =1if z; = ay,, or
e; = 0. Then

deg h = ideg T;

i1
= Q<(Zai,n>pn +. (Zam)pQ + (Zam)p-i- (Z%o)) + (Zei)

i1 i1 i=1 i=1 i=1
=q(p"+(s+3)p+(s+1)+s—r+1,

dimh:Zdimmi:s—i—E)—r.
i=1
Noting that dim z; = 1 or 2, we have that m < s+5—r < s+3 < p from Z:’;l dim x; = s+5—r.
We claim that s —r+1 > 0, otherwise, we would have p > Y7 e, = g+ (s—r+1) > ¢—4 > p.
That is impossible. The claim follows.

Noting the suppositions that a; ; =0 or 1, e; =0 or 1 and m < p, we have
m

m m
E e, =s—r+1, E a;o=s+1, E a;1 =8+ 3,
=1 i=1 i=1
m m m m
E a;2 =0, E a;3="+"= E ;-1 =0, E a;n = 1.
i=1 i=1 i=1 i=1

It is easy to see that there exists an hy, or by ,—1 among z;’s. We denote h; , or by ,—1 by
T, then h = x120- - Tp—1h1p O h = 2122 Typ—1b1 p—1.

Ifh=z  Tm_1h1p, M = 2122+ Tpyp_q € Ef+47r’t”’7pnq’* =0 by Lemma 2.1. Thus h
is impossible to be of the form h = z129 - - - T —1h1 .

Similarly, we can show that h is impossible to be of the form h = z122 - y—1b1,n—1 by
Lemma 2.1. 5 B

From the above discussion we see that B T°~"" * = 0, so Ext’">™""" (Z,, Z,) = 0. This
finishes the proof of Proposition 2.4.

Proposition 2.5 Letp>5,n>3,0<s<s—3. Then we have
Bs+2h1bn71 —0¢ EXt‘qurS,p”q+(S+3)pq+(8+1)q+s(Zp7 Z,).
Proof Since hi; =0¢€ E»?PT* then
Qg - - a9 h270h171h171b1’n71 — 0 c Eig+57p”q+(8+3)pQ+(S+1)q+s,*7
S

S0 ﬂ~5+2h1bn—1 —0e Exti‘+5,p"q+(s+3)Pq+(s+1)q+s(Zp, Z,).

3 Proof of Theorem 1.1
In this section, we will give the proof of Theorem 1.1.
Theorem 1.1 Letp > 5,n> 3. Then
Bosabohn # 0 € Ext’or crstdpatslats 7 7
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is a permanent cycle in the Adams Spectral Sequence and converges to a nontrivial element in
Tpn g+ (s+3)pg+(s+1)g—5, where 0 <s <p—3, ¢=2(p—1).

Proof From [3, Theorem A], we get that i.(h1h,) € Exti’panrpq(H*M, Zp) is a permanent
cycle in the ASS and converges to a nontrivial element { € mpngipq—2M. At the same time
J€n € Tpng4pg—3S is a nontrivial element of order p which is represented (up to a nonzero scalar)
by (bohn + hibn_1) € Ext%P 979(Z, Z,) in the ASS.

Consider the following composition of maps:

? .y atpa-3g Jin g 3g'3B* n-2(s+2)(p* ~Dta+2 g
Since j&, is represented (up to a nonzero scalar) by (bohy + hib,—1) € E)<;ti"pnq'~'pq(Zp,Zp)7

then the above f is represented (up to a nonzero scalar) by ¢ = (jj’3°72i'é).(bohn + h1bp_1).
From Theorem 2.2 and the knowledge of Yoneda products we know that the composition

i) i3 )« (Bx)° T2 s s s s
Extggo(Zp,Zp) (4 Extg’o(H*M, Z,) (43 )ﬂ}) ExtA+2’( +2)pg+(s+1)g+ (Zy, Z,)

is a multiplication (up to a nonzero scalar) by Bepo € Ext > F2Patsthats 7 7y Hence,

f is represented (up to a nonzero scalar) by ¢ = Bs+2(b0hn + hib,—1) = Bs+gbohn # 0 €

Extf4+5’q(pn+(S+3)p+(s+1))+s)(Zp, Zp) = 0 in the ASS (cf. Proposition 2.3 and Proposition 2.5).

Moreover, from Proposition 2.4, Extf:‘r’fr’qwn+(S+3)p+(s+l))+(s7T+1)(Zp, Z,) =0 for r > 2,

then BSJrzbohn cannot be hit by the differentials in the ASS,; and so the corresponding homotopy
element f € 7,5 is nontrivial and of order p. This finishes the proof of Theorem 1.1.
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