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Abstract In the year 2002, Lin detected a nontrivial family in the stable homotopy 
groups of spheres nt-6S which is represented by hng073 E Ext>t(Zp,Zp) in the Adams 
spectral sequence, where t = 2pn(p- 1) + 6 ( p z  + p +  l ) (p-  1) and p 2 7 is a prime number. 
This article generalizes the result and proves the existence of a new nontrivial family of 
filtration s + 6 in the stable homotopy groups of spheres rtl -s--6S which is represented by 
hngOTsf3 E Exti+6't1 (Z,, Z,) in the Adams spectral sequence, where n 2 4, 0 5 s < p - 4, 
t l  = 2pn(p - 1) + 2(p - l)((s + 3)p2  + (s + 3 ) p  + ( s  + 3)) + s. 
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1 Introduction 

The problem of understanding the stable homotopy groups of spheres has long been one 
of the touchstones of algebraic topology. Low dimensional computation has proceeded slowly 
and has given little insight into the general structure of T,S. Let A be the mod p Steenrod 
algebra and S be the sphere spectrum localized at an odd prime number p 1 7. One of the 
main tools to determine the stable homotopy groups of spheres 7r,S is the Adams spectral 
sequence (ASS) E,"lt = Ext2t(2p, 2,) + T ~ - ~ S ,  where the EiYt-term is the cohomology of A.  
If a family of homotopy generators 5% in Ell' converges nontrivially in the ASS, then we get a 
family of homotopy elements ft in T,S and we say that f, is represented by x, E E,"'* and has 
filtration s in the ASS. SO far, not so many families of homotopy elements in T,S have been 
detected. For example, a family cn-l E T , = ~ + ~ - ~ S  for n 2 2 which has filtration 3 in the ASS 
and is represented by hobn-l E Ext~P"q+q(2p ,  2,) has been detected in reference [l], where 
q = 2 ( p  - 1). In [2] Lin detected a new nontrivial family of homotopy elements in T,S. The 
purpose of this article is to generalize and improve his result. 

By reference [3] we have that Ext$*(Z,, 2,) has 2,-bases consisting of a0 E Exti1(ZP, Z,), 
h, E Ext~P 'q(Zp,  2,) for all i 2 0 and Exti*(2,, 2,) has &-bases consisting of cyz, a;, aoh,(i > 
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0), gi(i 2 0), ki( i  2 0 ) ,  bi(i 2 0), and h&(j 2 i + 2, i 2 0) whose internal degrees are 2q + 1, 
2, piq  + l,pif'q + 2piq, 2pi+' + piq ,  p i + l q  and piq  + p lq  respectively. 

Let M be the Moore spectrum modulo a prime number p 2 5 given by the the cofibration 

S 5 ,S'$ M %  CS. 

Let (I: : CqM + M be the Adams map and K be its cofibre given by the cofibration 

CqM 5 M 2 K L CQflM, 

where q = 2 ( p  - 1). This spectrum which we briefly write as K is known to be the Toda-Smith 
spectrum v(1).  Let v(2) be the cofibre of P : C(p+')QK + K given by the cofibration 

C(Pf ' )QK + B -  K 5 V(2) C(P+l)4+1K. 

We fix q = 2(p - 1). In this article, we will prove the following. 
Theorem Let p 2 7, n 2 4, then 

is a permanent cycle in the ASS and converges in the Adams spectral sequence to a nontrivial 

Note that the hngo?,+3-elernent obtained in the theorem is an indecomposable element 
in n*S, that is, it. is not a composition of elements of low filtration in T+S, because hn E 

ExtiPng(Zp, Z p ) ,  go E Ext~pq+2q(Zp, 2,) are known to die in the ASS. 
After giving some preliminaries on Ext groups of lower dimension in Section 2, the proof 

of the main theorem will be given in Section 3. 

in Tpnq+(s+3)pzq+(s+3)pq+(s+3)q-6, where 0 5 s < p - 4, q = 2(p - 1). 

2 Some Preliminaries on Ext Groups 

In this section, we will prove some results on Ext groups of lower dimension which will be 

From reference [4], therc is a May spectral sequence(MSS) { E : J Y * ~  d,} which converges to 
used in the proof of the main theorem. 

ExtSAt(ZP, 2,) with El-term 

E;'*'* = E(hm,ilm > 0,i 2 0 )  @P(b,,ilm > 0, i  2 0) @P(anln 2 0), 

where E is the exterior algebra, P is the polynomial algebra, and 
2,2(prn -l)p'+l,p(2,-1) 1,2pn - 1,2n+ 1 

,bm,i  E El ,an E El 
h . E f3~'2(pm-l)p'.2m-1 

One has d, : E;yt'* + E:+l.t.* and if z E E;Ji*, y E E:'J'i*l then d,(z.y) = d,(z) .y+ (T1)sx. 
d,(y) ( r  2 1). xy = (-l)Ss'+tt'yx for z,y = hm,i, bm,i or a,. The first May differential dl is 
given by d l ( h i , j )  = h i - k , k + j h k , j ,  dl(ai) = 

O<k<i O<k<i 
. h i - k , k a k  and dl(bi,j) = 0. 

For any element x E E:'t7*, define dimx = s and degx = t .  Then we have: 

dim hi,j = dim ai = 1, dim b,,j = 2, 

deg hi,j = 2(p' - 1)pl = 2 ( p  - l)W+j-' + . . . +$), 

degbi,j = 2(p i  - l)p'+' = 2(p - l)(pi+j + . . . + pl+'), 

d e g a i = 2 p i - 1 = 2 ( p - l ) ( p i - ' + . . . + 1 ) + l , d e g a o  = 1, 
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where i 2 1,j 2 0. 
Let t = q(c,pn + c,-1pn-l + . . . + clp + cg) + e be a positive integer 

with 0 5 ci < p (0 5 i 5 n), 0 5 e < q , s be a positive integer with 0 < s < p. If for some j 
(0 5 j 5 n), s < cj, then we have EfYt1* = 0. 

Proof Suppose that h = x1x2...xm is the generator of EfVt9*, where xi is one of a k ,  

h ~ , ~ o r b u , , , O ~ k ~ n + l , O ~ 1 + j ~ n + l , O ~ u + z ~ n , Z > 0 , ~ ~ 0 , u > 0 , z ~ 0 .  
degxi = q(ci,,pn +. . + ~ , l p  + c i , ~ )  + ei, where q,j = 0 or 1, ei = 1 if xi = a k i  , or ei = 0. Then 

Proposition 2.1 

i=l i=l i=l i=l i= I 

= q(c,pn + c,-1pn-l + . . . + q p  + co) + e, 
m 

dim h = C d' imxi = s. 
i=l 

By the facts that dimhij  = dimai = l,dirnbi,j = 2, we know that 0 < m 5 s. Note 

that ci,j = 0 or 1, bi = 0 or 1 and m < p ,  we have: C ei = e, c c i , ~  = co, C c i , ~  = c1, . ., 
m m m 

i= 1 i=l i= 1 
m m m 

i= 1 i=l i=l 
C Gf-1 = cj-1, c ci,j = cj, . . ., c qn = c,. 

m 

i=l 
Note the supposition that c i j  = 0 or 1, from the equality C c i j  = c j ,  we have m 2 cj. 

But we also know that cj > s for some j, so m > s. Therefore we have s 2 m > s. That is 
impossible. This finishes the proof of Proposition 2.1. 

Proposition 2.2 For 0 5 s < p - 3, the element a3a3. . 'a3 h3,0hZ,lh1,2 E E,"3't'' 

converges to ys+3 E E X ~ ~ + ~ ' ~ ( Z ~ , Z ~ )  in the MSS, wheret = ( s + 3 ) p 2 q + ( s + 2 ) p q + ( s + l ) q + s  
and ys+3 converges to ys+3 E . 1 r ( ~ + 3 ) ~ a ~ + ( ~ + 2 ) ~ ~ + ( ~ + l ) q - 3 S  (the third Greek letter family element 
in .Ir,S)in the Adams spectral sequence. 

- 
3 

Proof See [5]. 
Proposition 2.3 Let p 2 7, n 2 4, 0 5 s < p - 4, then 

(ZP, ZP). 
s+6,p"q+(s+3)p2q+(s+3)pq+(s+3)q+s hngO?s+3 # 0 E ExtA 

Proof First consider the structure of E,"+5't'* in the MSS, where t = p"q + ( s  + 3)p2q + 
(s + 3)pq + (s + 3)q + s. Since 0 5 s < p - 4, then 5 5 s + 5 < p + 1. 

Case 1: 5 I s + 5 < p .  Suppose that h = 21x2 3 .  '5, is the generator of E:+5,t1*, where 
m 5 s + 5, xi is one of a k ,  hl,j or b,,,, 0 5 k 5 n + 1, 0 5 1 + j  5 n + 1, 0 5 u + z 5 n, 1 > 0, 
j 2 0, u > 0, z 2 0. degxi = q(ci,,pn + ci,,-1pn-' + . . . + c i , ~ )  + ei, where ~ , j  = 0 or 1, ei = 1 
if xi = a k , ,  or ei = 0. Then 

m m m m m m 

i= 1 i=l i=l i= 1 i=l i=l 
= q(pn + (s + 3)p2 + ( s  + 3)p + (s + 1)) + s. 

Note that c i j  = 0 or ci,j = 1, ei = 0 or 1, m 5 s + 5 < p ,  so we have 
711 rn m .._ ... 

z e i = s ,  C c q J = s + 3 ,  & , 1 = s + 3 ,  
i=l i= 1 i=l 
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m m m m c ci,% = s + 3, c ci,3 = . . . = c Ci,n-l = 0, c Ci,n = 1. 
i= 1 i=l i=l i=l 

F’rom the above results. it is easy to know that there exists a factor hl,n or bl,n-l  among xi’s. We 
denote the factor hian or bl ,n- l  by x,, then h = ~ 1 x 2 . .  .xm-1 h1,n or h = 21x2 * * * 2,-lb1,n-1. 

and we have Subcase1.1: I f h = x ~ x ~ ~ ~ ~ ~ ~ - ~ h ~ , ~ ,  thenh’=slx2. . .xm-l  E El s+4,t-pnq,* 

i= 1 i=l i=l 

m- 1 m m-1 

C ci.2 = s + 3, 5 , 3  = . ’ . = c = 0. 
i= 1 i=l i= 1 

m-1 

i=l 
Note that Ci,2 = 0 or 1, we can see that m - 1 2 s + 3 from the equality C Q,Z = s + 3, then 

m 2 s+4.  Since m 5 s +  5 ,  then m = s + 4  or m = s +  5 .  
m-1 

Note the facts that C ei = s, degbi,j = O(modq) (i > 0 , j  2 0), deghi,j.= O(modq) 
i = l  _ _  

(i > 0 , j  2 0) and degai = l(modq) (i 2 0), then the generator h’ must have a factor 
aj,aj, . . .ujs (jl 5 j ,  5 .. . 5 js). Note the degrees of ai’s, we can suppose that h‘ = 

a0 . . -a0 a1 ... a1 a2 .. . a2 a3. . - a3  xs+1xs+2xs+3 .. . xm-l, where 0 5 x, y 1  z ,  k 5 s, z + y + z + k  = ---- 
X I/ 2 k 

s. Then we get that 

m-1 m-1 

x + : Y + z + ~ +  C e i = s ,  y + ~ + k +  C C i , o = ~ + 3 ,  
i=s+l i=s+l 

m-1 m- 1 

z + k +  C c i . i = ~ + 3 ,  k +  C C Q = S + ~ .  

i=s+l i=s+l 

s+3 

i=s+l 
If m = s + 4, we can get that Ic = s + 3 - ( C ci,2) 2 s + 3 - 3 = s from the equality 

k + C ~ , 2  = s + 3. At the same time, we also have that k 5 s, so k = s, x = y = z = 0. Then 

h’ = a3a3 * * * a3 XS+lXS+2XS+3 and XS+lXS+2XS+3 E E, 4’q(3p2+3p+1)’*. Note that there will exist 

a element of bi3j’sl or otherwise, we would have dimx,+1xs+2xs+3 = 3 < 4. That is impossible. 

On the other hand, there must exist a factor hl,ohz,oh3,0 in h’ by the facts that C c i , ~  = 3, 

deghi,j = O(modpq) (i 2 1 , j  > 0), deghi.0 = q(modpq) (i 2 1) and degbi,j = O(modpq) 
.(i 2 1,j 2 0). Note the above results, we can easily get that h’ is impossible to exist, so h is 
impossible to exist when m = s + 4. 

9+3 

i=s+l - 
S 

s+3 

i=s+l 

s+4 

i=s+l 
If m = s + 5 ,  we can get that k = s + 3 - C ci.2 2 s + 3 - 4 = s - 1 from the equality 

k + 1 ci,2 = s + 3 ,  so k = s or k = s - 1. When k = s , x  = y = t = 0, then we have 
s+4 

i=s+l 

s+4 s+4 s+4 s+4 
ei = 0, c C,,O = 3, c ci,l = 3 and ci,2 = 3. 

~ 

i=s+l i=s+l i=s+l i=s+l 
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Note that xs+1x,+~xs+~xs+4 E E;’*’*, we can show that h‘ is impossible to exist. When 
k = s - 1 ,z  = 1 , x  = y = 0, then we have 

s+4 s+4 s+4 sc4 

i=s+l i=s+l i=s+l i=s+l 

Note that z s + l z s + ~ x s + ~ x s + ~  E E;’*’*, it is easy to show that at this time h‘ is impossible 
to exist. Therefore at this time h is impossible to exist. Similarly, we can show that when 
k = s - l , y = l , x = y = O a n d  k = s - l , x = l , y = z = O ,  h’isimpossible toexist either. 

From the above discussion, we can get that the generators of the form h = 21x2 . . . xm-l hl,n 
is impossible to exist. 

Subcase 1.2: If h = 21x2. . . xm-lbl,,-l, h” = 21x2.. . xm-l E E,B+33t-p”q1* and we have 

m- 1 m- 1 m- 1 m- 1 C ei = S ,  C ci,o = s + 3, C ci,l = s + 3 and 
i=l i= 1 i=l i= 1 

C ci,2 = s + 3. 

m-1 

i= 1 
We can get that m L s + 4 from the equality C c i , ~  = s + 3. But m 5 s + 5, so m = s + 4 or 

m = s + 5 .  
When m = s + 5, h” = x1x2 “-xS+4 E Es+37t-pnq,*. But we have s + 3 = deg h” 2 s + 4, 

so when m = s + 5 h is impossible to exist. 

method in the proof of Proposition 2.2, we can show El 
From the above results, we get that the generator of the form h = 21x2.. . ~ ~ - - l b l , ~ - - l  is 

impossible to exist. 
From Subcase 1.1 and Subcase 1.2, we get that when 5 5 s + 5 < p ,  E:+51ty* = 0. So 

E:+57t1* = 0 and dr(ET+57t7*) = 0. Moreover, we also know that hl,,, h1,0h2,0, a303-..a3 - 
h3,0h2,lh1,2 E E,*’*’* are permanent cycles in the MSS and converge in the MSS nontrivially to 
h,,, go, ;Us+3 E Ext;*(Z,, 2,) for n 2 0 respectively (cf.Proposition 2.2), so hl,,hl,ohz,o a3a3 . . . a3 - 
h3,0h2,lh1,2 E E:+6’t’* is a permanent cycle in the MSS. From the above results, we see that the 

When m = s + 4, h” = 21x2 “.x,+3 E El s+3,q((s+3)Pz+(s+3)P+(s+1))+s,*. By the same 
s+3,q((s+3)P2+(s+3)P+(s+3))+s,* = 0. 

S 

S 

permanent cycle hl,,hl,oh2,0 0303 . . . a3 E E,”+61t7* does not bound and converges nontrivially - 
S 

to h,go%+3 E Ext>+6’t(Zp, 2,) in the MSS. That is to say, h,goys+3 # 0 E Ext>+6’t(Z,, 2,). 
Case 2: If s + 5 = p ,  then E;+5’t’* - - Ef’7t‘7r , where t’ = pnq + ( p  - 2)p2q + ( p  - 2)pq + ( p  - 

2)q + ( p  - 5). Suppose that h = 21x2 . . . x, is the generator of EY””*, where m 5 p ,  xi is one 
of a k ,  hi,j or b,,,, 0 5 k 5 n + 1, 0 5 1 + j I n + 1, 0 5 u + z 5 n, 1 > 0, j 2 0, u > 0, z 2 0. 
degxi = q(ci,npn + Ci,n-lpn-’ +. . . + Ci,o) + ei, where c i j  = 0 or 1, ei = 1 if xi = ak,, or ei = 0. 
Then 

m 

deg h = c deg xi 
i=l 

i=l i=l i=l i=l i=l 

= q(pn -t ( p  - 2)p2 + ( p  - 2)p + (p - 2)) + p - 5. 
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By the knowledge about padic expression in number theory and the suppositions that m 5 p ,  
C i , j  = 0 or 1, ei = 0 or 1, we have 

m m m 

i=l i=l i=l 

m m m 

i=l i= 1 i=l 
m m 

i=l i= 1 
From the above equality, we have that ( C  ci,3) + . . . + (C ~ i , ~ ) p ~ - '  = pn-3. Therefore, 

m m m 

i=l i=l i=l 
pl C q , 3 .  Note that ci,3 = 0 or 1, m f p ,  it is easy to know that C ci,3 = 0 or C ci,3 = p .  

m m 

i=l i=l 
Subcase 2.1: If C ci,3 = 0 and n = 4, i t  is easy to get that C ci,4 = 1,  so there exists a 

factor hl,n or b 1 , ~ - 1  among xi 's .  
m m m m m 

i=l i=l i=l i=l i=l 
I f n  > 4, then (C G,4)P4+"-+(c  ci,n)Pn = Pni SO ( C  C i . 4 ) + ( C  C i , 5 ) P . . . + ( c  Ci,n)pn-' 

m m 

i=l i=l 
= pn-4. Similarly we know that C ci.4 = 0 or C ci,4 = p .  

m m m 

i=l i=l i=l 
We claim that if C ~ , 3  = 0, then C ci,4 = 0 ,  for otherwise, we would have C ci,4 = p ,  

then m = p. Since dim h = C dimxi = p ,  then for any 1 I i f p ,  dimxi = 1. So we 

get that h E P(u,ln 2 0 )  8 E(hm,ilm > 0,i 2 0). For any 1 5 i 5 m = p ,  degxi = higher 

terms +p4q+lower terms. Since C ei = p - 5 ,  degai = l(modq) (i 2 0) and deg hi,j f O(modq) 

(i > 0, j 2 0), then there exists a factor aj, aj, . . . ajp-s (0 f j l  5 j z  I . . . 5 j P p 5  f n f l )  among 
xi 's  such that for any 1 5 i 5 p-5,j i  2 5 and degaj, =higher terms +p4q+p3q+p2q+pq+q+1. 

m 

i=l 

P 

i=l 

m m 

i= 1 i=l 
It is obvious that C ci,3 2 p - 5 which contradicts C ci,3 = 0,  thus the claim follows. 

m m 

i=l i=l 
By induction on j we can get that C ci,j = O(4 f j f n - l ) ,  so C ~ i , ~  = 1,  that is to 

say, there is a factor hl,, or b1 ,~ -1  among z2k. 
In all, at this time for n 2 4, there is a factor hl.n or bl,n-l among x2 ' s  (n 2 4). We 

denote the factor hl,n or b1,,-1 by xm, then h = 2 1 ~ 2 . . . x ~ - l h l , ~  or h = x 1 ~ 2 . - . 2 ~ - l b l , ~ - 1 .  
I f  h = 5 1 ~ 2 . . . 2 ~ - 1 h l , ~ ,  then h' = 21x2 . . -xm-l  E Ey-13t'-png'* . By the same discussion 

in Subcase 1.1, we can easily show that h' is impossible to exist. Thus at this time h' is 
impossible to exist. 

If h = x ~ x ~ ~ ~ ~ x m ~ ~ b ~ , n - ~ ,  then h" = x1x2x3...xm-1 E EY-2't'-png'* . By the same 
method in the proof of Proposition 2.2, we can get that EY-27t'-pnq,* = 0, so h" = 21x223. . . xm-l 
is impossible to exist and h = 51x2 . . . ~ , - l b l , ~ - - l  is also impossible to exist. 

m 

2=1 
Subcase 2.2: If C c,,g = p ,  then m = p. Since dimh = p ,  we can easily see that there cannot 

be b 2 , j 1 ~  among x Z 1 s  and h = x122...xp E E(hm.,Im > 0 , i  2 O)@P(a,(n 2 0). For n = 4, 

we can easily get that C c2,3 = p ,  C c,,4 = . . . = C = 0. For n > 4, from the equality 
P P P 

2=1 2=1 2=l 
P P P P P 

z= 1 2= 1 2=1 2=1 2=1 
(C  c 2 , 3 ) p 3 + . . . + ( C c 2  ,,)pn = p n ,  wecanhave ( C  C 2 , 4 + l ) + ( C  c2,5)P+"'+(C c ~ , ~ ) P ~ - ~  = 
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P P 

i=l i= 1 
pn-4. Then pl( C ci,4 + 1). Note that ci,4 = 0 or 1, then it is easy to get that C ci,4 = p - 1. 

By induction on j ,  we can prove that C cid = p - 1 (4 5 j 5 n - 1). So C G,, = 0. 
P P 

i=l i=l 
P P P P 

i=l i=l i=l i= 1 
When n = 4, by the facts that C ei = p-5, C ci,o = p-2, C ci,l = p-2, C = p-2, 

C ci,3 = p, we can prove that h = ~ 1 x 2 .  . - xp is impossible to exist by the same method in the 

proof of Proposition 2.2. 

P 

i=l 

P P P 

i=l i=l i=l 
When n > 4, by the facts that c ci,3 = p, c ci,4 = . . . = c = p - 1, deg hk>j = 

q(pk+j-l +. . .+p ' )  (k 2 1,j 2 0) and degai = q@-' + . . . + p +  1) + 1 (i > 0), we can divide 
the p xi's into two disjoint classes S1 and SZ. The two disjoint classes are given by 

S1 = { X I  degx = q(p3 + lower terms}, 

SZ = { X I  degx = q(pn-' + . . . + p3 + lower terms)}. 

For a class S, define the number of elements in S by N ( S ) ,  then we can get N(S1) = 1 and 

N(S2) = p - 1. Similarly, by the facts that C ei = p - 5, ,Z Ci,o = p - 2, C ci,l = p - 2, 

c Ci,2 = P - 27 c ci,3 = PI deghk,j = q(P k+j-l + + p')  (k 2 1,j 1 0) and degai = 

q(pi-l + . . . + p + 1) + 1 (i > 0), we can also divide the p xi's into three disjoint classes. The 
three classes are given by 

P P P 

i=l Z = 1  i=l 
P P 

i=l i=l 

S3 = {xi degx = q(higher terms + p3)}, N(S3) = 2, 

S 4  = {xldegx =q(higher terms+p3 +pz+p+l )} ,N(S4)  = 3 ,  

S5 = {~)degx=q(h ighe r  t erms+p3+p2+p+1)+1} ,N(S5)=p-5 .  

Since S1 U SZ = S3 U S 4  U S5, we have that S3 C SZ or S3 SZ. If S3 C SZ, then there will 
be two hn-3,3's such that degh,-3,3 = q.(P"-' + . . + p3). This is impossible since hi-3,3 = 0. 
If S3 p! SZ, then S4 c SZ. Thus there exist three h,,o's among xi's such that deghn,o = 

q(pn-' + . . . + 1). But this is impossible since hi,o = 0. This shows that Er7t"* = 0 for n > 4. 
F'rom the above discussion, we get that when s + 5 = p, E?""* = o (n  2 4). SO E:?~'>* = o 

and d,(E;vt'>*) = 0. 
Moreover, we know that h ~ , ~ ,  h1,0h2,O1 a3a3 . . . a3 h3,0hz,lh1,2 E E;'*'* are permanent cycles 

in the MSS and converge in the MSS to nontrivially h,, go, ;Ys+3 E Ext>*(Zp, 2,) for n 2 0 
respectively, so h l , , h l ,~hz ,~  a3a3 . . . a3 h3,0hz,lh1,2 E E;'*,* is a permanent cycle and converges 

nontrivially to h,go;Yp-2 E E X ~ ~ + ~ ' ~ ( Z ~ ,  2,) . That is, h,go;Yp-2 # 0 E Ext5+19t'(Zp, Zp). 

- 
S - 

P-5 

F'rom Case 1 and Case 2, the proposition follows. 
Proposition 2.4 Let p 2 7, n 2 4, 0 5 s < p - 4, 2 5 r 5 s + 6, then in the ASS, 

Proof We only need to  prove that Ext>+6-r't" (Zp,Zp) = 0, where t" = q(pn+(s+3)p2+ 
(s + 3 ) p  + (s + 3)) + (s - r + 1). Suppose that h = ~ 1 x 2 . .  -z, is the generator of Ef+6-T9t"7*, 
where m 5 s + 6 - r,  xi is one of ak, hl,j or b,,,, 0 5 k 5 n + 1,0 5 1 + j 5 n + 1,0 5 u + z 5 

P P I  ZP). 
s+~-T,~(P" + (s+3)p2 + (s+3)p+ (~+3))  + ( S-T+ 1) h,g0%+3 # d,(x) for any E ExtA 
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n,l > 0, j  2 0,u > 0,z 2 0. degxi = q(ci,,p" + ~,,-ip"-' +.  . . + c i ,~ )  + ei, where Ci,j = 0 or 1, 
ei = 1 if xi = ak , ,  or ei = 0. Then 

m 

deg h = C deg xi 
i=l 

m m m m m 

= q((C ci,n)pn + . . . + (C ci,z)P2 + (C ci,l)P + (C ci,o)) + (C ei) 

= q(p" + (s f 3)p2 + (s + 3)p + (s + 3)) + s - T + 1. 
i= 1 i= 1 i=l i= 1 i=l 

m 

i=l 
We claim that s - T + 1 2 0, or otherwise, we would have p > C ei = q + (s - r +  1) 2 q - 5 2 p .  

That is impossible. The claim follows. 
Note the suppositions that ci,j = 0 or 1, ei = 0 or 1 and m 5 s+6-r  5 s+6-2 = s+4 < p, 

m m m m 

i=l i=l i= 1 i= 1 
then we have that C ei = s - T + 1, C C ~ , O  = s + 3, C C i , l  = s + 3, C ci,2 = s + 3, 

i=l 

Xm 

i=l i=l 
It is easy to see that there exists a hl,, or b1,,-1 among xi's. We denote h1," or bl,n--l by 

m.-1 m- 1 m- 1 

i=l i= 1 i=l 

m-1 m- 1 m m- 1 

i=l i= 1 i= 1 i=l 

When r > 2, we have that s + 5 - T 5 s + 5 - 3 = s + 2 < s + 3, then we see that 
- 0 by Proposition 2.1. Thus at this time the generator h is impossible to S+5-T,t"-pnq,* - 

El 

exist. 
m-1 

When r = 2, from the equality C c,,2 = s + 3 we have that m - 1 2 s + 3, so m 2 
i= 1 

s + 4. But we also know m 5 s + 6 - 2 = s + 4 when T = 2. Therefore m = s + 4. Then 
h' = 21x2 .. .xs+3 E El s+3't"-pnq'*. By the same method in the proof of Proposition 2.2, we 
can show that E,9+39t"-pnq** - - 0. 

Case 2: If h = x1x2...xrn-lb1?,-1, then h" = x1x2...xm-1 E Ef"T't''-pnql* and we 
have 

m-1 m-1 m-l 

m-1 

i=l 
R.om the equality C c i , ~  = s + 3 and s + 4 - T 5 s + 4 - 2 = s + 2, we can know that at this 

time q+4-r,t"-pnq,* - - 0 by Proposition 2.1. 

finishes the proof of Proposition 2.4. 
From Case 1 and Case 2, we see that E~f6-T't" '*  - - 0, so ExtSf6-T't" A ( Z p ,  2,) = 0. This 
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3 Proof of the Theorem 

From Theorem I1 of [2], we get that (z'i)*(hngo) € Ext~"q+pq+24  (H*K,  2,) is a per- 
manent cycle in the ASS and converges to a nontrivial element E' E 7rpiq+pq+2q-3K. Let 

: Cq(p2+pf1)V(2) + V(2) be the v3-map and consider the following composition 

Since [' is represented by (i'i)*(h,go) E Ext~pnqfpq+2q(H*K, Z p ) ,  then the above .f is repre- 
sented by 

From Proposition 2.2 and the knowledge of Yoneda products we know that the composition 

is a multiplication (up to nonzero scalar) by 

Hence, f is represented (up to  nonzero scalar) by 

in the ASS (cf. Proposition 2.3). 
From Proposition 2.4, we know that h,g07~+3 cannot be hit by the differentials in the ASS 

and so the corresponding homotopy element f E r,S is nontrivial and of order p .  This finishes 
the proof of the theorem. 

For the above Theorem, if we take s = 0, then Theorem I of Reference [2] will 
be obtained. The theorem we obtained in this article generalizes and improves Theorem I of 
Reference [2]. 
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