Van Kampers Theorem
LET $X=A \cup B$ WITH $A \cap B, A, B$ and X ALL PATH CONNECTED, AND $x_{0} \in A \cap B$. WE HAVE DIAGRAM OF GROUPS

(4) EXAMPLE $X=$ TORUS
$A=$ NEIGHBORHOOD OF S'VS'
$B=X-\left(S^{\prime} \vee S^{\prime}\right)$
$A \cap B \approx S^{1} \times I$
CUTTING X ALONG The two cIrcles GIVES A RECTANGLE

$$
\begin{aligned}
& \pi_{1}(A \cap B) \approx Z
\end{aligned}
$$

$$
\begin{aligned}
& \text { GENERATOR } \\
& \pi_{1} B=0 \text { GENERATOR } \longrightarrow{ }^{1} \\
& B=\text { INTERIOR OF RECTANGLE }
\end{aligned}
$$

$A=N E I G H B O R H O O D$ OF BOUNDARY GREEN

$$
A \cap B=G R E E N \text { CIRCLE }
$$

GREEN CIRCLE
GENERATES

$$
\pi_{1}(A \cap B) \cong 2
$$

RED + BLUE CIRCLES GENERATE

$$
\pi_{1}(A) \cong F_{2}
$$

$$
\alpha(\gamma)=x y x^{-1} y^{-1} \approx:[x, y]=\operatorname{commdTATOR}
$$

$$
=e \operatorname{lN} \pi_{1}(x)
$$

CONCLUSION

$$
\pi_{1}(x)=\left[x, y: x y x^{-1} y^{-1}\right] \cong z \oplus z
$$

$x y x^{-1} y^{\prime \prime}=e$
$x y x^{-1}=y$
$x y=y x$

$$
X=\text { SURFACE OF }
$$

GENUS 2

$A=N B D$ OF s'vs'vs'vs'

$$
B=\text { COMPLIMENT }
$$

OF 4 CIRCLES $\simeq p t$
$A \cap B \simeq S^{1}$

CUTTING X AlONG 4 CIRCLES
YIELDS AN OCTAGON

$$
\begin{array}{r}
\pi_{1}(x)=\left[x_{1}, y_{1}, x_{2}, y_{2} ; x_{1} y_{1} x_{1}^{\prime \prime} y_{1}^{-1} x_{2} y_{2}, x_{2}^{-1} y_{2}^{-1}\right] \\
{\left[x_{1}^{\prime \prime}, y_{1}\right]\left[x_{2}, y_{2}\right]}
\end{array}
$$

$$
X=\text { KLEIN BOTTLE }
$$

$$
\alpha(\gamma)=x y x^{-1} y
$$

$$
\begin{aligned}
& \pi_{1} x=\left[x, y: x y x^{-1} y\right] \text { NON } \\
& \text { ROBELIAN }
\end{aligned}
$$

WANT TO SHOW £ IS I-I AND ONTO
TO SHOW IT IS ONTO, LET W BE a closed path in X

CAN CHOOSE A FINITE \# OF POINTS $p_{1}, \cdots p_{n-1} \in A \cap B$ LET $p_{0}=x_{0}=p_{n}$ SUCH THAT FOR EACH, THE PORTION OF w GOING FROM p pi-1 to pi LIES EITHER IN A OR IN B FOR $1 \leq i \leq n-1$, LET w_{i} BE A PATH

IN A nB FROM x_{0} TO p_{1}^{\prime} NOTATION: LET $0=s_{0}<s_{1}<\cdots<s_{n-1}<s_{n}=1$

SO THAT OUR SUBPATHS ARE

$$
w\left(\left[s_{i-1}, s_{i}\right]\right) \quad w\left(s_{i}\right)=p_{i}
$$

CONSIDER THE CLOSED PATHS

$$
\theta_{i}:=\omega_{i-1} * \omega\left(\left[s_{i-1}, s_{i}\right]\right) * \omega_{i}^{-1} \quad \text { FOR } \quad \leqslant i \leqslant n .
$$

EACH LIE IN A OR B.
The element

$$
\begin{aligned}
& \theta_{1} * \theta_{2} * \cdots * \theta_{n} \quad \text { is IN } \Phi(P) \\
& =\frac{\omega_{0}+\omega\left[0_{1}, s_{1}\right] * \omega_{1}^{-1} * \omega_{1} * \omega\left[0_{1}, \Delta_{2}\right] * \omega_{2}^{-1} \cdots \omega_{n-1} \omega\left[d_{n-1},\right] \times \theta_{n}^{*}+\theta_{2}}{\theta_{1}} \\
& \simeq \omega\left[0, \Delta_{1}\right] * \omega\left[\Delta_{1}, \Delta_{2}\right] \cdots+\omega\left[s_{n-1}, 1\right]=\omega \\
& \text { so } w \in \operatorname{lm} \Phi \text {. } \Phi \text { is ONTO. }
\end{aligned}
$$

TO SHOW Φ is $1-1$, CONSIDER A MOMOTOPY BETWEEN CLOSED BATHS IN X, IE. A MAP $h: I^{2} \longrightarrow X$ WITH CERTAIN CONDITIONS WE CAN FIND \#

$$
0=D_{0}<A_{1}<\cdots<A_{m}=1
$$

PATH PARAMETER
AND $0=x_{0}<t_{1}<\cdots<t_{m}=1$
HOMOTOPV PARAMEtER
SUCH THAT h SENDS EACH RECTANGLE $\left[\Delta_{i-1}, \Delta_{i}\right] \times\left[x_{j-1}, y_{j}\right]$ TO EITHER A OR B.

PICTURE WITH $m=n=4$

RED EDGES $\mapsto x_{0}$

WE GET $M n$ RECTANGLES FOR EACH $0 \leq k \leq m n$ LET p_{k} BE THE LINE WITH THE FIRST k REC MANGLES BELOW IT AND THE OTHERS ABOVE MI
$p_{0}=B O T T O M$ EDGE OF I I

$$
P_{m n}=T O P \quad E D G E
$$

THEY REPRESENT MOMOTOPIC CLOSED PATM IN 区
THE HOMOTOPY BETWEEN $p_{k y}$ AND β_{k} LIES IN k th RECTANGLE, WHICH MAPS TO A OR B
HENCE EACH HOMOTOPY BETWEEN CLOSED PATHS IN X IS

THE "COMPOSITE" OF HOMOTOPIES IN A AND B.
THIS MEANS Ф IS H.
$Q E D$
NEXT TOPIC: COVERINGS
FOR A "NICE" SPACE X,
FOR EACH SUBGROUP

$$
H \subset G=\pi, X
$$

THERE is A COVERING $\widetilde{X} \rightarrow X$
WITH $\pi_{1}\left(\tilde{X}_{H}\right) \cong H$
$\left(\begin{array}{l}\text { THE MAP } \pi, \tilde{X} \longrightarrow \pi_{1} X \\ \text { ANY COVERING } \\ \tilde{X} \rightarrow X\end{array}\right.$ is $\left.1-1.1\right)$
\exists BIJECTION BETWEEN PATH CONNECTED COVERING OF THE PATH CONNECTED SPACE X
AND SUBGROUPS $H \subset \pi_{1} \bar{X}$.

$$
\overline{F X A M P I F \quad V-c^{1},{ }_{1} C_{11}^{\prime} C^{\prime}}
$$

$$
\text { EXAMPLE } \quad X=S^{\prime} V^{\prime} S^{\prime} V S^{\prime}
$$

