CATEGORY THEORY
INVENTED IN Iq4E B4
SAMUEL EILENBERG + SAUNTERS
MAC Q ANE.
revolution lets by jacob lurie
recall the fundamental groups

$$
\begin{array}{ll}
\pi_{1}\left(x, x_{0}\right) \text { As A GROUP } \\
\text { ASSOCIATED } & \text { WITH A PINIETS }
\end{array}
$$

$$
\text { SPACE }\left(X, X_{0}\right) \text { SUCH THAT }
$$

FOR ANY MAP $\left(x, x_{0}\right) \xrightarrow{6}\left(Y, y_{D}\right)$ WE GET GROUP HOMOMORPHISM

$$
\pi_{1}\left(X_{1} x_{0}\right) \xrightarrow{\pi_{1}(b)} \pi_{1}\left(N_{1} y_{0}\right)
$$

TI, (-) IS DEFIVED IN TERMS OF M伊

$$
(I, 2 J) \longrightarrow\left(x, x_{0}\right) \xrightarrow{p}\left(Y, x_{0}\right)
$$

fp is A closed PATA IN Y.

$$
\frac{\text { DEFINITION }}{\operatorname{CONGISTS}} \text { A CATEGQRN }
$$

i) A collection Of OBJECTS
(WHIM MAY OR MAY NOT BE
A SET)
2) FOR EACM PAIR OF OBJECY
Xt T HERE A SEM OF

$$
\text { MORPHISMS } X \rightarrow Y
$$

(EXAM |LE MAB S BETHE SEM)
Denotes By e(x,y)
SUCH THAT
a) (avens 3 OBJECTS
$x_{s} y>z$ THERE IS A
COMPOSITION FAIRIES

$$
(0(y, z) x(0(x, y) \rightarrow(0) \quad \underset{z}{ }(x)
$$

EXAMMLE : X, Y, Z ARE BETS

WE REQUIRE (lg) $b=h(g f)$

LXAMPLES
i) Set = CATEGORY OF SLTS

$$
\begin{aligned}
& \text { OBJECR ARU SETS } \\
& \text { MORPHISMS ARL MATSS }
\end{aligned}
$$

BETWEEN SETS

Mortilshs onre continumos mantes
3)
3) Mip = ategqRi oe giroups

OBJECTS ARE GROUPS
MORPNISMS ARES GROUL
4) Als = CAT AOMD MOMORPMIFS

OBECTS ARE ABELAN GRS MP
MORPUISMS AR GP NMMOMORPMSMS
5) CATEGORAE OF FELSB, RUNGS,

MONULES QUER A GIVEN RMGG R
6) EMPTY CATEGQRY

NO OBJECTS

1) TRIVIAL EATEGORY

ONE OBJECT wITH DENTITY

$$
M O R P+\| S M
$$

8) LET L be A Grauls

Bg nas one object X
(DEF. A MONONM| S A SET with a BINARY OPERATION
WHICH ASSOCMTIVE ANIP THERE
IS AN IDENHITY ELEMENT)
IS AN IDENTITY ELEMENT)
\rightarrow IN WHIEN EACH MORTHSM
9) LET Y BE A SET ACTET? By a Grovp Gi.

$$
\begin{aligned}
& B G(Y)=\text { CATEGORH } \\
& \text { OSJECTS ARE ZLTS IN } \\
& \text { HOR EAGH YC Y AND EACH } \\
& \text { YGG THERE IB A. }
\end{aligned}
$$

$$
w+(9 b)=F(g) T(f)
$$

$$
\begin{aligned}
& \text { MORPHISM y } \longrightarrow \gamma(y) \in Y \\
& \begin{array}{c}
\text { (10) WAlKINC ARRON CATEORY } \\
\text { TWO OBJECTS A, B }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { MANY OTHER EXAMPLES } \\
& \text { NEW DEENTITON } \\
& \text { LET (ANT 刃 BE CATEGRRES }
\end{aligned}
$$

$$
\begin{aligned}
& \text { there is an object } \\
& \text { T(x) in } 8 \\
& \text { (EXAMTEE: U CATEQRI OR } \\
& \text { phint serces } \\
& \theta=\operatorname{Ar}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2) FOR EACH MDRPHISM } \\
& \text { X } \quad \rightarrow \text { Y } 1 N \text { @ WE COET } \\
& \text { A morp HSM } \\
& F(x) \xrightarrow{F(b)} F(1)
\end{aligned}
$$

(

$$
\begin{aligned}
& \begin{array}{c}
\text { OBSERVATION: } \\
\text { DIAGRAM- IN A CATEGDRYM }
\end{array} \\
& \text { cAN REEARDEP AS } \\
& \text { Functor To o From } \\
& \text { A SUITABLE SMALL } \\
& \text { CATEGORy (MEANING nOME IN } \\
& \text { WhICH THE COLLECTION OF } \\
& \text { OBjecra is A SET) } \\
& \text { ExAMPLE: THE TWO DIAGRAMS } \\
& \text { AbOVE CIRCLED NN GREEN } \\
& \text { ARE FUNGTORS FROM }
\end{aligned}
$$

EXAMPLE

QxAMPIE A IUNCTOR

DEFINES
WiTH A
CriROUF

